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1| Abstract 

Protein translation is one of life’s most costly processes as it extensively consumes 

production resources, raw material consumables and energy. Thus, organisms have 

evolved ways to synthesize new proteins in efficient and regulated manners. Although 

translation is a well studied process, we still do not fully understand its economy, and 

more specifically how cells minimize the costs of genes’ translation while maintaining 

the desired expression level.  Towards that aim, we decided to utilize an integrated 

approach of synthetic biology, lab-evolution and deep sequencing. Recently, a large 

synthetic gene library with ~14K variants was created and used to study the effects of 

various regulatory 5' region elements over the expression level of a GFP gene in 

Escherichia coli.  This library allows the studying of different features, such as 

transcription levels, translation initiation rates, codon biases and mRNA secondary 

structures on synthesis cost, directly from cell’s fitness, as the GFP has no function in the 

cell. We utilized this powerful tool to learn about the effects of sequence variation on 

the fitness of the cell, by growing and evolving the library for 28 days in six parallel 

evolutionary lines and sequencing samples at regular intervals of ~30 generations.  Since 

all designs are competing against each other, we can compute the relative fitness of 

each of them. A comparison between fitness and GFP expression level revealed a 

negative correlation, but, interestingly only above a certain threshold. Comparing the 

expected and observed fitness showed large span even when accounting for protein 

expression level. By analyzing this "fitness residual" we found that ribosome attenuation 

at the early elongation phase allows minimizing cost of translation. Interestingly, this 

attenuation is reached by three independent mechanisms: First is a tight mRNA 

secondary structure. Second, is a high affinity of the mRNA to the ribosome anti- Shine 

Dalgarno binding site. Third, a ribosomal-flow model, which relies on the translation 

speed of each codon, suggests that positive residual designs tend to show deeper and 

earlier ribosomal bottle-necks than negative designs. In addition to production 

resources, consumables also affected fitness. In particular, we found that incorporation 

of amino acids with a low energetic cost is associated with a positive fitness residual. In 

conclusion, our study provides a comprehensive data set and analysis that help decipher 

the economy of translation and identify in particular factors that allow minimizing 

production costs at a desired expression level. 
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2| Introduction 

Translation is a fundamental cellular process that is performed by all life forms. Since 

proteins are the molecules that perform most of life’s functions, cells use translation 

as a regulatory mechanism for central cellular functions such as response to stress1,2, 

cell cycle3,4, and differentiation5–7. Thus, an efficient and timely translation process is 

at the heart of cell biology. Optimizing translation is also cardinal for heterologous 

gene expression, which has become a prominent tool in the pharmaceutical, 

agricultural, medical, and chemical industries8,9. In the past, it was believed that 

transcription was the dominant mechanism that dictates expression levels10. Yet, 

today we realize the complexity of the picture, as signal transduction, transcription, 

translation, and degradation were all shown to affect the concentration of proteins 

in the cell11–13. Strikingly, although translation is a thoroughly studied process, the 

mechanisms of its regulation are far from being fully understood. 

Translation machinery is one of the largest and most complicated complexes in the 

cell, comprising of the ribosome, tRNA, tRNA-synthetases and amino-acids. 

Ribosomal RNA comprises ~60% of the cellular RNA14, while ribosomal protein make 

up ~10–20% of the proteome15,16. tRNA is also a highly abundant species of RNA, 

making up ~15% of the cellular RNA14. Together tRNA and rRNA comprise the vast 

majority of the cell’s RNA content17. Notably, amino acids are a central metabolic 

resource in the cell, 65% of its consumed energy is devoted to their synthesis18 . 

Interestingly, it is estimated that ~50% of the cellular proteome is related to the 

translation machinery19, leading to the conclusion that around half of the translation 

machinery requirement is for self-maintenance.   

 Although translation of new proteins is mandatory to sustain life, it also bears a 

significant cost. This cost can be the result of either the result of the translation 

process itself, or the energetic cost of the resources that are utilized during 

translation20,21. It is estimated that ~75% of the cell’s energy is devoted to the 

synthesis of new proteins22. Thus, mechanisms to regulate the translation process 

itself have evolved to ensure that it is performed efficiently. These mechanisms 
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assist the cell to minimize mis-translation events23, correctly allocate ribosomes 

along the mRNA24 and regulate initiation rates25,26. 

Until recently, it was believed that the only translation regulating mechanism was on 

initiation rates. The initiation rate, which is the rate at which translation events start, 

was shown to be majorly affected by the Shine-Dalgarno26 (SD) motif in 

prokaryotes27–29. In addition to the SD motif, it was recently revealed that the 

secondary structure of the Ribosome Binding Site (RBS) region also participates in 

regulation over the initiation30,31. While the regulatory mechanisms of  translation 

initiation  were being studied32, it was not entirely apparent that the elongation 

phase of translation also poses regulatory qualities. At the time, synonymous 

changes were thought to have no effect on translation and thus dubbed "silent" 

mutations33,34. Once sequencing became a mainstay in biological research and actual 

sequence data was obtained for the first time, it became clear that not all codons 

were created equal. Consistently, a phenomenon termed “codon usage bias” was 

revealed, in which the distribution of codons in the genome is non-random35–37. 

Notably, codon bias was more pronounced in highly expressed genes, which utilize a 

very specific set of codons, that differs between organisms38,39. Additionally, it was 

becoming clear that the codon usage of genes was correlated with tRNA 

availability40,41. Some hypothesized that the adaptation to the tRNA pool was what 

enabled the highly expressed genes to be translated efficiently, with abundant tRNAs 

more available in the cytoplasm and thus more rapidly translated42. Yet, a different 

approach suggested that the codon bias was better explained by the GC content of 

the area surrounding the gene in the genome, as genomic GC content contributes to 

structure and heat resistance43. 

In recent years, due to advances in high-throughput sequencing44,45 and DNA 

synthesis technologies46 alongside with the emergence of the ribosome profiling 

technology47, it has become clearer that translation elongation is a non-uniform 

process. By sequencing all ribosome occupied RNA in the cell, it is possible to 

estimate elongation rate from ribosome density for every position on a transcript. 

Using this method exposed that translation is a highly diverse process, with yeast 
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translation elongation rates varying by 3 orders of magnitude48, and different 

environments, such as nutrient starvation52 or meiosis53. Recently, a number of 

ribosome profiling studies of closely related yeast strains, and their hybrids, has 

explored the effect of translational regulation on expression50,51. These studies 

suggest a major role for translation as a regulatory mechanism on gene expression. 

Conflicting data are undecided on whether this observation is a major means of 

regulation50, or a minor one51, but what is clear is that regulation of expression levels 

evolves on both the transcriptional and translation levels.  

Many models for measuring codon usage have been proposed in the past, in hopes 

that the correct model would be an accurate predictor for translation speed. The 

first widely used model, which was suggested to model translation speed of a given 

codon, relied on the assumption that highly expressed genes utilize the most 

adapted codons. A gene with a codon bias that resembles the codon bias in highly 

expressed genes should be highly expressed in itself. Thus the Codon Adaptation 

Index (CAI)52 was proposed, by comparing the codon usage in a gene to the codon 

usage of a reference set of highly expressed genes. Further findings suggested that 

translation speed was correlated more directly to tRNA availability53. This notion was 

somewhat confirmed by experiments heterologously over expressing tRNA genes, in 

which rare tRNA was expressed and changes in expression levels were observed54. 

This meant that by changing the tRNA pool, one could affect translation efficiency. 

Conversely, the tRNA pool of an organism does not entirely correlate with the most 

abundant codons in the genome, with some codons lacking a cognate (fully 

matching) anti codon tRNA. Thus, the tRNA Adaptation Index (tAI) was defined55, a 

parameter which takes the organism’s tRNA levels and wobble pairing rules into 

consideration when calculating a codon adaptation. tRNA levels were difficult to 

obtain (and still are to date) so the tAI was based on genomic data, using tRNA gene 

copy number as a proxy for cellular concentrations of tRNAs. When analyzing 

ribosome profiling data some claim that there is correlation between tAI and 

ribosome pausing56,57.  
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tRNA availability is not the only parameter thought to explain codon bias and 

elongation speed. For instance, a sequence parameter not taken into account when 

calculating tRNA adaptation is the local mRNA secondary structure of the transcript. 

As mentioned earlier, secondary structure is crucial to translation initiation, but 

recent works show that it can have a strong effect on elongation by inducing 

translational pauses58.  An additional non-tRNA related parameter is Shine-Dalgarno 

affinity, which can stall ribosomes by binding to the anti Shine-Dalgarno site on the 

riobosome59. This mechanism is particularly interesting since it is not codon 

dependent and can affect translation speed out of frame. Finally, it has been shown 

that the peptide sequence can also affect translation speed. By reanalyzing ribosome 

profiling data, Charneski et al.60 deduced that peptide charge was in correlation with 

ribosome density; even to a great extend compared to secondary structure. In 

particular, these authors deduced that positively charged amino acids likely greatly 

retard ribosomes downstream from where they are encoded, presumably because 

they interact with the negatively charged ribosomal exit tunnel. This observation was 

further validated by Lu et al.61 by synthesizing a library of peptides with increasing 

lengths of charged amino acids that would localize to known regions of the 

ribosomal exit tunnel at the time of translation. By measuring peptide lengths, the 

authors found that positively charged stretches promote ribosomal arrest, whereas 

negative or neutral stretches are translated faster. In contrast, Artieri et al.62 

proposed that these results were due to sequencing bias and sparse coverage of 

certain regions. Specifically, Artieri et al suggest that proline slows the ribosome 

when it is coded in a contiguous stretch62–64, and this mechanism can explain most 

ribosomal attenuation. 

Considering all the diverse mechanisms discussed above that regulate translation, it 

is interesting to reveal the evolutionary mechanisms and forces that led to their 

appearance. The two most accepted theories are selection for translation accuracy 

and translation efficiency. Translation efficiency has also been studied thoroughly, 

though the connection between translation speed and translational efficiency is still 

far from being understood. Initially it was assumed that genes that were better 

adapted to the tRNA pool, preferring to use common codons, are translated faster 
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and thus more efficiently65. This hypothesis was validated by studies which 

attempted to optimize the codon bias of a sequence to its host organism using 

codon bias data and secondary structure, leading to increased heterologous gene 

expression in many cases8,66–68. Conversely a similar study found that the use of 

codons less affected by amino acid starvation was the main predictor of 

heterologous expression levels69.  Recently, a study on ribosome profiling data has 

shown that codons with less abundant cognate tRNAs are decoded slower, thus 

resulting in decreased elongation rates70. The group reanalyzed various organisms' 

ribosome profiling data and calculated the Mean of the Typical Decoding Rates 

(MTDR), and went on to show that this measure correlates well with genomic 

expression levels71. Alternatively, many studies have shown that translation 

efficiency relies on other parameters, such as mRNAs secondary structure56, or the 

lack of Shine-Dalgarno-like sequences59. Finally, a recent study has shown that codon 

bias, and secondary structure act in a compensatory fashion. By analyzing genomic 

data, and reanalyzing expression data from a synthetic library, Gorochowski et al. 

found that tRNA adaptation and mRNA secondary structure are usually high when 

the other is low. The study explains that this phenomenon may smooth out 

translation elongation rates lowering the likelihood of potentially deleterious pauses 

or speed-ups. 

The solution for this supposedly paradoxical situation may lie in the fact that the 

transcript has a sequential nature, and codon context is an essential variable to 

consider when predicting elongation efficiency. A group recently developed a model 

of tRNA adaptation which takes into account the location of the codon, and reported 

significant correlation to expression72. Specifically, it has been shown that 5' region 

of the transcript is a crucial area for regulation efficient translation73. This sector, the 

border between initiation and elongation, seems to be a highly influential area with 

many overlapping signals. Some groups maintain that the parameter of most 

significance on the 5' end is the codon adaptation, but counter intuitively the codons 

should be non-adaptive. The non-adaptive codons create an area of very slow 

translation early on in the peptide, forming a "translation ramp", which has been 

found in highly expressed genes both in genomic data24 and analysis of synthetic 
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libraries74. This ramp is hypnotized to slow down translation in early elongation, but 

leads to overall efficient translation by preventing ribosomal jams and translation 

abortion by optimally spacing ribosomes. Conversely, studies have found that the 

determining parameter on the 5' end of the coding sequence is loose mRNA 

secondary72,73,75,76.  This should allow for high initiation rate and smooth flow of the 

ribosome afterwards. Many of these studies have used synthetic libraries to examine 

this subject, by recoding and measuring the expression of genes with different codon 

biases and secondary structures73,76,77. Further studies based on multi genomic 

analysis claim that the codon bias observed in the 5' region is not a translational 

ramp, but a byproduct low GC content which seems too correlated with low tRNA 

adaptation78. Contrarily, a study has explained that the previous findings are due to 

the use of synthetic genes with uncommonly strong mRNA secondary structure and 

when considering natural secondary structure levels codon usage bias has a 

significant contribution to translation speed79. Finally, numerous groups have tried 

to reconcile the various hypotheses by proposing that all options can influence 

translation efficiency. Analysis of ribosome profiling data has shown that multiple 

parameters have an effect on translation efficienc57,70,80, including both codon usage 

bias and mRNA secondary structure, as well as amino acid charge and proline 

content.  

A basic question arises from the aforementioned findings, how do we measure 

translation efficiency? As shown above, the majority of recent research on the 

subject uses expression level as the measure of translational efficiency. This is an 

imperfect definition since not all protein production is required to sustain maximum 

capacity, and more importantly, it disregards the other variable that defines 

efficiency, cost. As discussed above, efficient expression is not maximal expression; 

rather it is expression at a desired level with minimal cost81. When ignoring the 

effect of cost on efficiency the evolutionary question is lost, and we cannot surmise 

from the data what strategy maximizes fitness. Recently, Ellis et al.82 have tried to 

answer this question by measuring constitutive expression of a reporter gene, on the 

background of various synthetic constructs that varied in gene copy number, 

transcription level, initiation rate, and codon optimization. By comparing reporter 
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gene output level among all designs, Ellis et al. were able to measure the effect of 

these different parameters on the translation capacity of the cell. The authors found 

that optimal designs, which maximized both cellular capacity and protein production 

of the synthetic construct, demonstrated higher transcription levels and lower 

initiation rates. While interesting, this work only measured translational cost of a 

construct on a reporter gene, but did not address the link to cellular fitness. 

In our project we try to pour light onto this unanswered question, how does the cell 

optimize expression for fitness? We do this by using a synthetic library developed in 

one of the previously mentioned studies. In a recent study Goodman et al.76 

addressed the question of maximizing protein production by examining expression 

of a synthetic library. The group synthesized a library combining 2 promoters with 

different transcription levels, 3 RBSs with varying initiation rates, and 137 initiator 

peptides taken from the highest expressed proteins in the E. coli genome. These 11 

amino acid peptides were each recorded 13 times to represent different codon 

biases and secondary structures (See methods and figure 1). The library was 

expressed in E. coli, and the expression level of each design was analyzed by 

combining flow cytometry and next generation sequencing. The obvious result was 

that expression level correlates well with the different transcription and translation 

initiation rates, but these alone were not sufficient to explain all the variance in 

expression levels. The group concluded that the main parameter during early 

elongation dictating efficient expression was the secondary structure, with little 

correlation to codon bias.  

While that experiment helped clarify which sequence features maximize expression, 

it did not provide an idea on which features affect the cost of production. While cost 

increases with production level, and fitness decreases with cost, an interesting 

question is which sequence features minimize fitness cost at a given expression 

level. In our experiment we used the Goodman et al. library to examine the relation 

between sequence variation and expression cost. We evolved the library in the lab 

for ~270 generations in 6 replicates, and sequenced the population at different time 

points, and different lineages. This procedure allowed us to examine the relative 
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fitness of all the designs and find which sequence parameters effect fitness. 

Predictably, the population changes drastically over time, with some designs 

disappearing completely and others taking over more than 80% of the population. 

Additionally, we observed a significant correlation between protein level and fitness, 

but only above a certain threshold of expression. This indicates our set up can detect 

the cost of expression, but only when it is strong enough to overcome inherent 

cellular noise. We calculated a "fitness residual', being the difference between 

expected fitness at a given expression level and the observed fitness at that level. 

We found that several parameters that promote ribosome attenuation in early 

elongation are correlated with fitness residual. We also found that protein energetic 

cost has a strong influence on fitness as well. 
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3 | Goals 

In this work we aimed to shed light on a relatively untouched aspect of translation- 

its cost on the cell. We set out to understand the mechanisms in which the cell 

optimizes expression, namely minimizing cellular cost while maintaining a desired 

expression level. Particularly, we focused on the importance of sequence features at 

the 5' end of the gene, and how they affect the relative fitness of the cell.  

Goal I 

We aimed to monitor the effect of translation on cellular fitness by utilizing an 

existing, synthetic library. This goal was achieved by subjecting the library to a lab-

evolution experiment followed by sequencing samples to track the frequency of each 

design according to time.  

Goal II 

Next, we aimed to elucidate sequence parameters that minimize translational cost. 

By linking protein expression to relative fitness in the population, we hoped to find 

parameters that explain the deviations from expected fitness at a given expression 

level. To this end, we analyzed various nucleotide and amino acid sequence 

parameters and compared them to the deviation from expected fitness. Thus, we 

were able to uncover parameters that led to higher than expected fitness. 
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4 | Methods 

4.1 Library architecture  

The library (Fig. 1) reported in Goodman et al.76 was synthesized by Agilent 

Technologies using an oligo synthesis process83. All oligos were then ligated to the 

plasmid (pGERC) directly upstream to a GFP reporter.  Each design in the library is 

composed of a promoter, a Ribosome Binding Sites (RBS) and a linker of 11 amino 

acids. The library as a whole includes: two promoters with either Low or High 

transcription levels. Three synthetic RBSs with  Strong, Mid, or Low translation 

initiation rates, as well as 137 different genomic RBSs that were defined as the 20bps 

upstream to the ORF of the 137 most highly expressed genes in E. coli genome (WT).  

Finally, 137 coding sequences (CDS) consisting of the first 11 amino acids from the 

same highly expressed genes.  Notably, Each CDS appears in the library in 13 

different synonymous forms:  the WT sequence, the most common codons based on 

the frequencies in the E. coli genome, the rarest codons, and additional 10 designs 

with increasing mRNA secondary structure folding energies. All combinations 

amounted in 14,234 distinct designs. 
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Figure 1 – Goodman et al. library design 
The library is composed of 14,234 designs linked to a sfGFP reporter gene. Each design includes a 
promoter (High and Low), an RBS (Strong, Mid, Weak, and WT), and a stretch of 11 aa taken from the 
137 highest expressed E. coli genes. Each CDS was recoded synonymously 13 times to represent 10 
levels for mRNA secondary structure, the WT sequence, the rarest and most common codons. 

 

4.2 Evolution 

Lab-evolution experiment was carried out by serial dilution. The library was grown 

on 1.2 ml of LB + 50g/ml kanamycin at 30°C in six parallel lineages and was diluted 

daily by a factor of 1:128 into fresh media (results in ~6.9 generations per dilution). 

This procedure was repeated for 28 days and every four days (~27 generations) 

samples were taken from each lineage, mixed with glycerol and kept at -80°C. Thus, 

each of the six independent lineages has seven samples at days 4, 8, 12, 16, 20, 24 & 

28.   
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4.3 Library preparation and sequencing  

Plasmids from time zero (library “ancestor”) and 42 evolution samples were purified 

with a QIAgene mini-prep kit and used as templates for PCR to amplify specifically 

the variable region of all designs in the population.  To minimize PCR and sampling 

biases, we used a large amount of template, ~500ng of DNA, and a relatively short 

PCR of 26 rounds. The forward primer (sequence 

CAGCTCTTCGCCTTTACGCATATG) was paired with 5 different reverse primers 

(sequences:  R1: GACAATGAAAAGCTTAGTCATGGCG, R2: 

ACAATGAAAAGCTTAGTCATGGCG, R3: 

CAATGAAAAGCTTAGTCATGGCG, R4: AATGAAAAGCTTAGTCATGGCG, 

R5: ATGAAAAGCTTAGTCATGGCG) that are one bp shifted from each other to 

insure that library complexity was high enough for Illumina sequencing. PCR 

products were then run on BluePipin to capture the correct amplicon size of   ~140 

bps and remove any un-specific amplicons. Then, DNA buffer was exchanged using 

Agencourt AmPure SPRI bead cleanup protocol. Hiseq library was prepared next 

using the sequencing library module from Blecher-Gonen, R. et al. 201384. In short, 

blunt ends were repaired, Adenine bases were added to the 3' end of the fragments, 

barcode adapters containing a T overhang were ligated, and finally the adapted 

fragments were amplified. The process was repeated for each sample with a 

different Illumina DNA barcode for multiplexing, and then all samples were pooled in 

equal amounts and sequenced. We preformed a 125 bp paired end high output run 

on the HiSeq 2500 PE Cluster Kit v4. Base calling is performed by RTA v. 1.18.64, and 

de-multiplexing is carried out with Casava v. 1.8.2, outputting results in FASTQ 

format. 

 

4.4 Data processing 

De-multiplexed data was received in the form of FASTQ files split into samples.  First, 

SeqPrep85 was used to merge paired reads into a single contig, to increase sequence 

fidelity over regions of dual coverage, as was done in the Goodman and Kosuri et al. 

studies76,86.  The size of each contig was then compared to the theoretical combined 

length of the forward primer, the reverse primer and the variable region of the 

designs.  Next, the forward and reverse primers were found on each contig (allowing 
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for 2 mismatches) and trimmed out. This step was performed for both the forward 

and reverse complement sequences of the contig, to account for non-directional 

ligation of the adaptors during library preparation. Next, the reverse primer was 

searched at the last 5 nucleotides of the contig to account for different primer 

lengths, as explained in section 4.2. Once primers were trimmed, the contig was 

tested again for its length to ensure no indels had occurred. The percentage of 

contigs that were filtered out at this step was not dependent on the evolutionary 

time of the sample, suggesting that indels do not play a major role in the 

evolutionary competition. Then, contigs were discarded if they included ambiguous 

bases anywhere along their sequence.  Contigs were then compared sequentially to 

the entire library, comparing the sequence each contig to the sequence of each 

design.  Any contig without a matching design within two mismatches or less was 

discarded. Contigs with more than a single matching design with the same reliability 

were also discarded due to ambiguity.  Mismatches were calculated using a simple 

base comparison between the contig and the sequence of each design. Each contig 

that passed these filters was counted in key value data structure, connecting all 

designs in the library to their frequency in each sample.  All contigs discarded from 

any of the steps were recorded with their sequence quality data and reason of 

failure. This data was then used for all downstream analyses.  

 

Flow Chart 1 - FitSeq Data Processing Flow 

 

 

Output Data 
Demultiplexed reads according to lineage and time-point 

Merge Reads 
Merging paired end reads to increase fidelity using SeqPrep 

Trim Primers 
 locating primers in contig and extracting area of interest 

Match Designs 
Comparing contigs to designs allowing for up to 2 mismatches 

Count Designs  
Creating a marix of design frequencies for each sample 
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Figure 2 – Number of reads passing the various pipeline stages per sample 

Each column represents a sample, in the form of <lineage>_<time-point>, with each of the colors 
matching each of the pipeline stages: pink = all reads of a given sample, purple= successfully merged 
reads, blue= successfully trimmed reads, turquoise = reads that were matches to a single design in the 
library. Notably, the variability in number of reads passing each stage is dependent on the total 
number of reads in the sample, and not on the time or lineage of the experiment. 

 

4.5 Sequence features 

Data set from Goodman et al.  

The data-set from Goodman et al. was obtained and provided the framework for our 

data-set. In short, the Goodman et al. data included the sequence of each design, 

DNA count (plasmid copy number of each design), RNA level normalized to DNA, raw 

FlowSeq data, protein levels calculated from FlowSeq data, tRNA adaptation data 

such as tAI and CAI, secondary structure  (ΔG)  and GC content. More detailed 

explanations on this data and its derivation can be found in the supplementary 

material of Goodman et al. 2013.  

Calculating translation initiation rate per design 

We estimated the translation initiation rate of each design with the “RBS 

calculator”87,88 which simulates initiation rates given a UTR and a coding sequence. 

This calculation is achieved by using a biomechanic model combining the affinity to 

the anti Shine-Dalgarno sequence at the ribosome binding site, mRNA secondary 

structure of the UTR and coding sequence, and steric interference of the ribosome 

and the mRNA.  

TASEP simulation  
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To model the effects of sequence on translation we collaborated with the lab of Prof. 

Tamir Tuller at Tel Aviv University to simulate ribosome flow on each of the designs. 

To this end, we used the Totally Asymmetric Simple Exclusion Process (TASEP)89  

model of particle flow and translation speed taken from the MTDR70 work of the 

Tuller lab. The MTDR data is derived from ribosome sequencing data by calculating 

the ribosome profile distribution of each codon. This measurement symbolizes the 

translation speed of each codon, and it correlates significantly with tRNA availability. 

In the TASEP simulation, ribosomes are injected to the transcript according to an 

initiation rate (taken from the RBS calculator data), and they translate at a per-codon 

speed that is described by the MTDR value of each codon. The simulation is run until 

steady state is reached and average density of ribosomes is recorded for each codon 

for a given sequence. We used the TASEP simulation to obtain the mean ribosome 

number occupying a single mRNA, the mean ribosomal density per codon, the 

ribosomal density at the first codon, and the location and depth of the ribosome-

flow bottleneck, being the codon with the highest ribosome density 

Peptide properties  

Peptide properties were calculated using the "Peptides" R package90. We calculated 

different amino acid composition metrics, aliphatic index91, Boman index92, charge93, 

hydrophobic index94, hydrophobicity95, instability index96, molecular weight, and pI. 

Amino-acid cost was derived using the "aacost" table from the "seqinr" package97, 

which holds for each amino acid the amount of energy consumed for its production 

in high energy ATP or GTP bonds98. Cost was either evaluated per amino acid or 

summed for the whole peptide. 

Shine-Dalgarno affinity 

The Shine-Dalgarno affinity was calculated identically to Li et al. Nature 201298. In 

short, for each position we calculated the affinity occurring 8-11 bp upstream, the 

distance between the ribosome A site and the anti Shine-Dalgarno site. The affinity 

was calculated for all 10 bp sequences in the area, and the maximum value was 

returned. Affinities were pre calculated for all possible 10mers, using the RNA 

annealing function from the Vienna package. We then calculated the affinity for the 

entire variable sequence and recorded for each design the affinity of the first 
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position, the number of positions with a non-negligible affinity (ΔG< 0), the median, 

mean, and standard deviation for the non-negligible positions, and the position with 

the maximum affinity in the design. We repeated this analysis for the constant 

region, taking into account that the affinity of the first 11 bases of the GFP depended 

on the sequence of the variable region. 

 

4.6 Statistical analysis of FitSeq data and library parameters 

Linear regression of fitness based on protein levels 

A one parameter linear regression was calculated between protein levels and fitness 

on a log2*log2 scale. As a proxy for fitness, the design frequency at generation 84 

(i.e. normalized read count of the design out of the total sample read count) was 

divided by the initial frequency of the design in the ancestor population. We filtered 

out designs that had a log 2 protein level above 17.5, since this is the point of 

saturation in Goodman et al. measurements. Additionally, designs with log 2 protein 

levels of less than 14 were discarded as their fitness didn't show significant 

correlation with protein level (see Fig. 9).  Notably, only designs with High promoters 

were included in the analysis, since almost all Low promoter designs did not pass the 

protein level filter. This decision was essential as there are very few low-promoter 

designs that pass the threshold, and these designs demonstrate unique features 

such as a very low GC-content that could mask other signals. 

 

Calculation of fitness residuals and classifying designs into positive and negative 

fitness residual groups 

We defined the "fitness residual" of a design as the difference between the fitness 

predicted by the linear model and its expression, and the observed fitness that was 

calculated as explained above. We then split the designs into two groups- positive 

fitness residual designs and negative fitness residual designs. To account for random 

noise during evolution and sampling biases we only included designs that showed an 

identical fitness residual sign in five or six lineages. The set of all the above filters 

resulted in 613 designs in the negative group and 951 in the positive.  
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Parameter comparison between two fitness residual groups 

A one-sided Wilcoxon rank-sum test was used to compare  the distributions of 

different sequence parameters between the positive and negative fitness residual 

groups99,  and resulting p-values were corrected for multiple hypotheses using the 

Holm–Bonferroni method100. This correction was performed separately for either 

peptides or nucleotide sequence parameters as these two parameter types were 

analyzed independently. Next, we tested the effect size of each parameter  using the 

Hodges–Lehmann estimator101 and set a cutoff of 5% for parameters we defined as 

important. We choose this threshold since it demonstrated the sharpest reduction in 

effect size when all parameters were ranked from highest to lowest effect size. Here 

too, the analysis was performed separately for amino acid and nucleotide 

sequences. Notably, the 5% cutoff was adequate in both cases. All effect sizes, p 

values, and q values for both amino acid and nucleotide sequences can be found in 

appendix A. 

 

Amino acid enrichment and enrichment ratio calculation 

To calculate the frequency of the various amino acids in the collective proteome in 

either the positive or the negative fitness residual group, we counted the 

occurrences of each amino acid in each design. We then summed this number for 

each amino acid across all designs in each group and divided the sum by the number 

of designs in each group multiplied by 11. To quantify the relationship between 

amino acid enrichment and energetic-cost we calculated the frequency ratio of each 

amino acid by dividing the amino acid frequency of the positive fitness residual 

group by the frequency of the negative group. If this enrichment value is larger than 

1 for a given amino acid, it is enriched in the positive group. If the value is smaller 

than 1, then the amino acid is enriched in the negative fitness residual group. We 

then calculated the Pearson correlation between the amino acid enrichment ratio 

and the amino acid energetic-cost (see 4.5). 
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5 | Results 

5.1 Library designs show growth rate differences even with a short duration of 

growth 

To study the relation between sequence parameters in the 5' region of a gene to the 

output expression level, Goodman et al. synthesized a synthetic library with ~14K 

different designs expressing a GFP gene with an upstream variable region76 (see 

methods and figure 1). Then, the GFP expression level of each design was measured 

and correlated with different sequence parameters (see introduction). To check 

whether different designs demonstrate a range of fitness values, we decided to 

analyze the DNA coverage of each design in Goodman et al. published data, which 

we hypothesized to serve as a proxy for cellular fitness. If expression of the GFP gene 

indeed serves as a burden on the cell’s ability to grow, expression levels should 

correlate negatively with fitness. Since the library was grown for an estimated 

duration of ~50-70 generations at the time of Goodman et al. experiment, we 

hypothesized that major growth differences could already be detected. 

Indeed, we found that not all designs are represented equally in the population, with 

design frequencies spanning three orders of magnitudes (Fig. 3). Notably, when 

splitting the library into design groups according to the promoter-RBS classes, we 

observed an association between the median frequency of each class and the class 

identity, which in turn are associated with GFP expression level (see introduction).  

Notably, designs with the High promoter showed significantly less DNA coverage 

than designs with the Low promoter, simply indicating that high transcription rate 

was selected against during the process of library preparation. A similar trend was 

found among the different RBSs as the group with the strongest RBS demonstrated 

the lowest DNA coverage. These observations suggest that the various designs in the 

library not only range in GFP expression levels but also in fitness, making it ideal for 

posing questions about the efficiency of the translation process and how cells 

minimize its  cost.  
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Figure 3 – DNA coverage data from Goodman et al. shows high level of variability and association 
with expression level 
The DNA sequencing data was collected to estimate the plasmid copy number of each design in the 
population for normalization purposes. Notably, the variability of the DNA coverage value is very high 
with a values ranging between 15 and 14,463 with a mean of 2,535 and a standard deviation of 1,342. 
Interestingly, the DNA coverage of the groups defined by promoter and RBS are different, in 
respective to their expression level.  The differences between the promoters are most pronounced, 
but the RBS show the same pattern as well. P. value < 2.2e-16 is marked by an asterisk (*). 

 

5.2 FitSeq experiment further elucidates fitness differences in the library 

To take full advantage of the potential of the library and reveal more subtle growth 

differences among the designs, we designed a new approach, "FitSeq" (Fig. 4 and see 

methods). In FitSeq, we performed a lab-evolution experiment with the library as the 

ancestor source. The experiment was run in six parallel lineages for ~200 

generations, with samples taken every ~30 generations. The ancestor and all 

samples were then sequenced and analyzed for dynamics and sequence parameters 

that minimize translation cost.  

* 
* 

* 
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Figure 4 – FitSeq – a method to compare the relative fitness of a synthetic library 
A) The library (in this case from Goodman et al.) is evolved in a serial dilution set up, in multiple 
lineages. B) The evolution is sampled at constant time intervals. C) The sample DNA is extracted, 
amplified, and barcoded. D) Barcoded fragments are sent to deep sequencing. E) Sequencing results 
are processed and analyzed according to time point and lineage. 

 

5.3 FitSeq data reveals evolutionary dynamics in which most variants go extinct 

while others fixate in the population  

To learn about the population dynamics in our lab-evolution experiment, we first 

looked at design extinction over time by calculating the percentage of designs 

covered with at least a single read over time (Fig. 5).  Consistently, the number of 

designs covered by sequencing declines over time as some are out-competed by 

their opponents. Interestingly, design coverage remains similar among independent 

lineages until generation ~112, while differences in emerge after that time point. The 

major collapse in design coverage occurs at generation ~168 and by generation ~200 

A 
B 

C 
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coverage ranges between ~87-93%, signifying in the extinction of around ~1400 

designs. 

Figure 5 – Percent of library designs covered over time 
Percent of designs in population covered by at least 1 read. Lineages start diverging in at generation 
140. 

 

To quantitatively compare the evolutionary dynamic among all samples, we 

calculated the Gini index102, which reflects the inequality in a population, for each 

time point per lineage. Here, we calculated the inequality in designs’ frequencies 

where a Gini score of 0 means that all library designs share the same frequency, and 

a score of 1 means that only a single design exists in the population. Consistent with 

our previous finding, the initial Gini score of the ancestor is above 0. Examining the 

Gini index over time (Fig. 6) revealed that inequality rises throughout all lineages, 

with the most rapid escalation happening after generation 112.  The final Gini scores 

are close to 1, indicating that few designs fixate in the population. 
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Figure 6 – Gini index score over time by lineage 
The Gini score represents the inequality in frequency distribution in the population. A score of 0 
represents equal frequencies among designs in the population, and a score of 1 means that a single 
design exists.  The Gini scores starts climbing in all lineages at around generation 112.  The final Gini 
score of all lineages is close to 1, meaning most of the population is composed of very few designs. 

 

Then, we turned to elucidate the population dynamics over time when splitting the 

library to six groups according to the promoter-RBS classification (Fig. 7). While 

frequency distributions of all groups are similar at first, expression-based differences 

emerge starting at generation 84. Interestingly, towards the end of the experiment 

the entire population collapses, consistent with the Gini index score discussed 

above.  
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Figure 7 – Frequency distribution divided by generation, promoter, and RBS 
The distribution of frequency in lineage A, representing all lineages, is initially similar among the three 
RBS and only slightly different between the promoters. At generation 84, the high promoter designs 
decline, especially those with the strong RBS. At generation 140 the population means start declining 
and reach a very low frequency by generation 196. This is probably due to single designs fixating in 
the population.  The same dynamics are reproduced for all lineages. 

 

We then further explored the similarities among samples by clustering them 

(UPGMA) according to either Pearson or Spearman correlation of design frequencies. 

With 7 time points, 6 repeats and 1 ancestor we had a total of 43 samples to 

compare to one another. We assessed similarity between each pair of samples, 
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based on read counts of all ~14,000 designs through two means, the Pearson, or 

Spearman correlation. The Pearson dendrogram (Fig. 8A) shows that in early time 

points the samples are clustered according to the generation of the sample and not 

by the independent lineage. However, starting around generation 112, samples from 

the same lineage tend to cluster together.  This observation suggests that the 

population dynamics in our experiment is split into two phases. First, a deterministic 

phase in which the designs compete among themselves and the dynamic is governed 

by the fitness of each design compared to the mean fitness in the population. This 

phase is less subjected to random events and thus the dynamics in each lineage is 

similar to others. At a certain point, depending on factors like dilution ratio or 

population size, beneficial mutations emerge either on the variable region of each 

design or in the genome itself. Since these mutations occur randomly in cells with 

different background, a stochastic element is affecting population dynamics and thus 

few, arbitrary designs fixate in the population of each lineage. Interestingly, the 

Spearman-based clustering revealed that samples were clustered together according 

to generation, rather than lineage, throughout the experiment (Fig. 8B). This 

difference between Person and Spearman may be the result of the non-parametric 

nature of the Spearman correlation, which is less affected by extreme outliers. Thus, 

in our case, the Spearman-based clustering demonstrates the deterministic forces in 

the experiment (governed by fitness) rather than the stochastic ones (governed by 

random mutations and drift).  
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Figure 8 – Sample clustering according to Pearson or Spearman correlation 
The UPGMA dendrograms were created using the correlation of design frequencies between each 
pair of samples as a distance matrix. A) Pearson correlation dendrogram, the samples initially cluster 
by generation, and later cluster by lineage. B) Spearman correlation dendrogram in which samples 
cluster mostly by generation throughout the entire experiment. Labels are colored according to 
generation, whereas branches according to lineage. 

 

In this work, our aim was to first reveal the fitness differences among all designs in 

the library in order to elucidate sequence parameters that minimize expression 

costs. Hence, we needed to choose the most appropriate time in our lab-evolution 

experiment that shows growth differences on the one hand but is not affected by 

beneficial mutations, fixation of mutated designs or stochastic events on the other 

hand. Given figures 5-8, we found that generation 84 fit these criterions best.  

 

 

A 
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5.4 Correlation between fitness and GFP expression levels appears only above a 

threshold 

Since expressing the GFP deprives valuable resources from the cell, the higher the 

GFP expression level is the faster the design is out-competed by other designs, and is 

less prevalent in the population. Thus, we hypothesized that fitness and GFP 

expression level should correlate across all GFP expression levels. As a proxy for 

fitness, we used the frequency of each design at generation ~84 normalized to its 

initial frequency in the ancestor, as explained in section 5.3 (see methods). Fig. 9 

demonstrates the fitness over GFP expression level for all designs with the high 

promoter. Interestingly, it seems that fitness is affected by expression only above a 

threshold of 14 (arbitrary units of GFP reads). This observation suggests that 

expression of a functionless protein can cause a burden on cell growth only above a 

certain expression level. Below this level, we found that the effect of gene 

expression on fitness is negligible, presumably because resources are not 

considerably more wasted compared to other processes that lead to such misuse, 

such as inaccurate gene expression or noise. 
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Figure 9 – Fitness correlated to protein level  
The log 2 protein levels from Goodman et al. correlate (slope = -0.39 p-value = 2.70e-160 RMSD = 
0.72) with the frequency of the designs normalized to their initial frequency (fitness), but only above a 
protein level of 14. Fitness residual is defined as the distance on the Y axis between any point and the 
linear model. The blue points are the positive fitness residual group, whereas the red points are the 
negative fitness residual group. The grey points are all points below the expression threshold that do 
not show correlation with fitness and are not included in the linear model or the fitness residual 
groups. 

 

5.5 Ribosome attenuation by multiple mechanisms at 5' of coding sequence is 

advantageous to the cell 

By quantifying the effect of protein expression on fitness, we could now characterize 

mechanisms that allow designs to minimize expression cost. To achieve this goal, we 

first performed a linear regression between fitness and expression for all designs 

with a protein level between 14 and 17.5 (see methods). Then, we defined the 

“fitness residual” of a design as the difference between the expected fitness, as 

predicted by this linear regression, to the observed fitness in the lab-evolution 

experiment. Then, we split the designs into two groups of either positive (designs 

that are doing better than expected, blue points in Figure 9) or negative (designs 

doing worse than expected, red points in Figure 9). Since the observed fitness 
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residual is prone to noise due to drift and sampling errors, we only classified designs 

whose fitness residual sign was identical in five or six lineages. We then compared 

various parameters between the two fitness residual groups, and found three 

advantageous mechanisms that are associated with positive fitness residual designs. 

 

Strong secondary structure at the 5' of the coding sequence is associated with 

higher than expected fitness 

Goodman et al. showed that loose mRNA secondary structures are correlated with 

high GFP expression levels. Interestingly, our work revealed that a desired 

expression level could be reached with a smaller translational cost if the transcript 

demonstrates a strong secondary structure at its 5’ end.  Figure 10A shows the GC-

content distributions of the positive and negative fitness residual groups while figure 

10B shows the distributions of the simulated free energy of the mRNA secondary 

structure. Evidently, positive fitness residual designs demonstrate higher GC-content 

(Effect size = 7.15%, q. value = 1.67E-22, Wilcoxon rank sum) and stronger secondary 

structures (Effect size = 6.73, q. value = 2.65E-13, Wilcoxon rank sum) compared to 

the negative fitness residual designs. Importantly, the position of strong secondary 

structured areas in the 5' region of the transcript is of relevance to the fitness 

residual sign. Specifically, when the ΔG is calculated for the entire variable region of 

the transcript (UTR+variable region) there is no significant difference between the 

positive and negative fitness residual groups (Fig 10C, Effect size = 2.59%,  q. value = 

1.34E-03, Wilcoxon rank sum). This observation suggests that positive fitness 

residual is specifically associated with strong secondary structures immediately after 

the start codon at the 5' of the ORF and not with up-stream regulatory elements 

such as the RBS. This conclusion further supports the need to attenuate ribosome at 

the early phase of elongation to increase the fitness residual. 
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Figure 10 – Comparison of ΔG and GC content between positive and negative fitness residual groups 
Distributions of negative (pink) and positive (blue) fitness residuals. A) GC-content of the coding 
sequence, positive higher than negative (Effect size = 7.15%, q. value = 1.67E-22). B) Folding energy of 
coding sequence, positive higher than negative (Effect size = 6.73%, q. value = 2.65E-13). C) Folding 
energy of coding sequence and UTR, insignificant (Effect size = 2.59%, q. value = 1.34E-03).  

 

A deep ribosome-flow bottleneck at the beginning of translation elongation is 

associated with positive fitness residual 

The adaptation of a transcript to the cellular tRNA pool has been widely studied in 

recent years, and demonstrated as a regulatory mechanism for elongation. 

Specifically, a ramp model of slowly translated codons at the 5’ of the transcript has 

been suggested to support translation of genes (see introduction). Thus, we 

compared the tAI and cAI indexes, being a proxy for translation speed of a given 

transcript, of the positive and negative fitness residual groups. We hypothesized that 

small tAI or cAI scores, which mean stalled ribosome, should associate with positive 

fitness residual. Yet, our data showed no significant difference between the two 

groups (Fig. 11A+B, cAI: Effect size = 4.03%, q. value = 5.68E-05, tAI: Effect size = 

3.83%, q. value = 3.84E-05, Wilcoxon rank sum). 
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Figure 11 – tAI and CAI show no association with fitness residual 
Distributions of both tAI (A Effect size = 3.83%, q. value = 3.84E-05) and cAI (B, Effect size = 4.03%, q. 
value = 5.68E-05) do not demonstrate significant difference between positive or negative fitness 
residual design. 

 

The tAI and cAI indexes provide a crude estimation of translation rate for an entire 

sequence. This characteristic may obscure delicate differences regarding ribosomal 

flow among different sequences. Thus, to examine more subtle effects of codon 

adaptation on ribosomal flow and link them to translational dynamics, we 

collaborated with the Tuller lab at Tel Aviv University to simulate the ribosomal 

density profile of each design. To this end, we used the TASEP model that is based on 

both simulated initiation rates and MTDR translation rates, a measure of codon 

translation time derived empirically from ribosome profiling data (see methods). By 

analyzing the simulation data at steady-state we obtained the ribosomal bottleneck 

for each design, being the position with the highest ribosomal density on the 

transcript. The distribution of bottleneck positions shows that deeper bottlenecks 

are associated with positive fitness residual designs (Fig 12, Effect size = 9.72% q. 

value = 1.42E-13, Wilcoxon rank sum). This observation serves as an additional 

support that an early ribosomal attenuation reduces translational costs at a given 

expression level and further shows that the speed at which codons are translated 

could be utilized by cells as a mechanism of translation elongation cost regulation. 

Interestingly, splitting the designs into the three RBS types shows a modest, yet 

potentially significant difference: Strong RBS shows the most statistically significant 

difference between the distributions of bottleneck depth of the negative and 

positive fitness residuals (Effect size of 5.99%, p-value = 7.04e-04) compared the Mid 
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(Effect size = 1.94%, p value = 1.39e-01) and Weak RBSs (Effect size = 6.82%, p value 

= 2.32e-02). This is consistent with the ramp theory which predicts that bottleneck is 

beneficial only at high initiation rate (data not shown). 

 

Figure 12 –Simulated ribosomal bottleneck depth is associated with fitness residual 
A) Positive (blue) fitness residual designs demonstrate deeper bottlenecks (Effect size = 9.72% q. 
value = 1.42E-13). 

 

Affinity to anti Shine-Dalgarno motif in early elongation leads to better fitness 

A recently discovered mechanism for ribosome attenuation suggests that the affinity 

of sequences to the ribosome anti Shine-Dalgarno motif leads to ribosome pausing59. 

We calculated the Shine-Dalgarno affinities along the sequence of each design (see 

methods) and found that strong affinity early in the gene coincides with positive 

fitness residual designs. This observation is based on the number of positions along 

the sequence with a non-negligible affinity to the ribosome anti Shine-Dalgarno 

sequence, which was found to be higher for positive fitness residual designs 

compared to the negative group (Fig. 13, Effect size = 7.41% q. value = 1.36E-12). 

Thus, we suggest that Shine-Dalgarno motif associated with ribosomal attenuation is 

an additional mechanism in the cellular toolbox to maximize fitness.  
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Figure 13 – High affinity to anti Shine Dalgarno site is associated with positive fitness residual 
High Shine-Dalgarno affinity is associated with positive (blue) fitness residual designs as seen by 
counting the number of positions with a non-negligible affinity to the anti Shine-Dalgarno motif 
(Effect size = 7.41% q. value = 1.36E-12) 

  

5.6 Amino acid properties affect fitness residual 

The building blocks of all proteins are amino acids, making them the most consumed 

resource in translation. Each amino acid has its own unique chemical properties and 

may interact differently with the translation machinery. We thus hypothesized that 

the amino acid composition of the nascent polypeptide may affect translational cost. 

Indeed, we found that different amino acid parameters differ between the positive 

and negative fitness residual groups. Interestingly, positive fitness residual designs 

tend to have a more hydrophilic peptide (Fig. 14A, Effect size = 13.50%, q. value = 

2.76E-34). Consistently, a polar amino acid content was also found to associate with 

a positive fitness residual (Fig. 14B, Effect size = 14.30%, q. value = 4.37E-32).  These 

findings, along with other, similar parameters such as aliphatic residue composition, 

Boman index, charged residue composition, and aliphatic index (See appendix A.1), 

suggest that hydrophilic peptides lead to a higher fitness residual.  We hypothesize 

that these peptide parameters are associated with the tendency of the protein to 

form aggregates103 (see discussion).  
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Figure 14 – Comparison of peptide properties between positive and negative fitness residual groups 
Hydrophilic peptides (A, p Effect size = 13.50%, q. value = 2.76E-34), and polarity (B, Effect size = 
14.30%, q. value = 4.37E-32) are associated with positive fitness residual designs.  

 

Energetic-cost of amino-acid production is correlated with fitness residual 

Amino-acids do not differ only in their chemical nature, but also by the energy-rich 

ATP or GTP bonds that the cell consumes in their metabolic production98. Hence, we 

hypothesized that usage of energetically-expensive amino-acids may provide a 

heavier burden compared to cheaper ones. Indeed, lower-cost peptides were found 

to associate with positive fitness residual designs (fig. 15A, Effect size = 11.20%, q. 

value =8.90E-48). Additionally, we examined the frequency of each amino acid in the 

positive and negative fitness residual groups (see methods). Figure 15B 

demonstrates the enrichment of each amino-acid in either the positive or the 

negative design group. Strikingly, amino-acids with a low energetic-cost (Glu, Gln & 

Ala) were found to be more frequent in the positive fitness residual group, while 

high-cost amino acid (Phe, Ile & Tyr) are enriched in the negative fitness residual 

group. To reveal how translation rate and energetic-cost of amino-acid are linked, 

we calculated the enrichment ratio of each amino acid by dividing the amino-acid 

frequency in the positive group by the frequency in the negative group (see 

methods). Remarkably, this enrichment-ratio was found to correlate with the 

metabolic cost of each amino-acid (fig. 15C, Pearson correlation: 0.52, p-value: 

0.018), demonstrating the significance of this parameter to determining the fitness 

residual of a design. Indeed, the strongest correlation between enrichment-ratio to 

A B 



37 

 

cost was found for designs with the strong RBS, while the mid RBS designs show a 

weaker correlation that disappears completely for the weak RBS with a slow 

initiation rate (Fig 16). These observations suggest that energetically-expensive 

amino-acid do not only burden cells during their costly production but also while 

they are being utilized by the ribosome during the translation process, presumably 

due to a feedback that increases their synthesis upon consumption in translation 

 

 

Figure 15 – Energetic cost of amino acid is correlated with fitness residual 
A) Energetically-cheap peptides are associated with positive (blue) fitness residual designs (fig. 15A, 
Effect size =11.20%, q. value =8.90E-48). B) High cost amino acids (Phe, Ile, Tyr) are more abundant 
amongst negative fitness residual designs and cheap amino acids (Glu, Gln, Ala) are more frequent in 
positive fitness residual designs. C) The ratio between amino acid ratio and energetic cost is 
correlated (Pearson correlation: -0.52, p-value: 0.018). 

 
Figure 16 – Correlation between amino acid ratio and cost is more significant for strong RBS 
The correlation between amino acid ratio and energetic cost of amino acid is strongest for designs 
with the strong RBS (Pearson correlation: -0.63, p-value: 0.003), weaker for the mid RBS (correlation: -
0.53, p-value: 0.015), and is non-significant for the weak amino acid (correlation: 0.1, p-value: 0.66). 

 

 

 

A B C 



38 

 

5.7 Secondary structure, ribosomal flow, Shine-Dalgarno affinity, hydrophility and 

amino-acid energetic-cost contribute to fitness residual independently 

In this work, we revealed different mechanisms that minimize translational cost and 

increase the fitness of the cell. Although these mechanisms are different by nature 

they may be inter-connected, namely that designs that score high on one of these 

parameters may tend to score highly on others. For example, Shine-Dalgarno affinity 

could correlate with secondary structure as both parameters are influenced by GC-

content. To check this possibility, we computed the correlation among the different 

parameters (fig. 17). Reassuringly, no strong, significant correlation was found 

between any two parameters either when correlating all  designs in the library (fig. 

17A) or only the designs with a consistent fitness residual sign (fig. 17B). This analysis 

strengthens our observations for each of the mentioned mechanisms and their 

independent contributions to fitness. 
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Figure 17 – Comparison of sequence parameters between positive and negative fitness residual 

group 

No correlation exists among secondary structure, bottleneck strength, peptide cost, peptide 

hydrophobicity, and Shine-Dalgarno affinity, either when considering all designs of the library (A) or  

only designs with identical fitness residuals in 5 or 6 lineages (B). 
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6 | Discussion 

Translation is a cardinal, basic, and a wide spread cellular process. Hence, its 

efficiency is of high importance to the cell. One way to  rationalize efficiency is 

defined as the benefit-cost ratio
104

. The cost of expressing a protein can affect the 

fitness of a cell by wasting valuable resources and burdening the production of other 

essential proteins
81

. This possibility may lead to a lower fitness of a given cell and 

thus its extinction from the population. Thus, selection may act to minimize the cost 

of translation via diverse molecular mechanisms that are only partly elucidated. 

Although translational efficiency has been highly studied in the past, most works have 

been dedicated to researching regulatory mechanisms that maximize protein 

expression
66,72,73,75–77,105

. In this work, we focused on translational cost, cellular 

fitness and the molecular mechanisms that link the two. 

To this end, we developed a method, termed FitSeq, to infer the cost of protein 

expression at various levels. Our findings suggest that there is a significant correlation 

between protein expression and fitness, although this correlation is not as simple as 

we predicted. Interestingly, the correlation is apparent only above a certain threshold 

of protein expression. We propose that this lack of correlation below the threshold is 

the result of other cellular processes, which alter translational cost, such as variance in 

gene expression, that mask the cost of expression. If any of these factors has a larger 

impact on the cell than the cost of expressing the GFP, then it would be difficult for us 

to detect the cost above the random noise. 

We then defined the "fitness residual" of each design as the difference between the 

fitness predicted by the correlation with expression, and the actual fitness observed. 

We split the designs into two groups, those with positive fitness residuals which were 

doing better than expected, and those with negative fitness residuals, which were 

doing worse. Interestingly, many designs had very noisy fitness residuals, 

demonstrating both positive and negative signs across the independent lineages of our 

experiment. Only hundreds designs showed positive or negative fitness residual 

consistently. This observation could be due to high impact of stochastic events 

throughout the experiment on fitness residual. To take this noise into account, we only 

considered designs with fitness residual signs that were identical in 5 or 6 lineages, 

thus strengthening the significance of our observations. 
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Our lab previously hypothesized that a translational ramp in the early elongation 

region of the transcript, generated by codons that are translated by tRNA with low 

cellular concentrations, would lead to high translational efficiency
24,74

. Conversely, 

other works have shown that loose mRNA secondary structure is correlated with high 

expressions levels
76,77

. Remarkably, our work suggests that several independent 

mechanisms can govern this translational ramp and increase cellular fitness. Indeed, 

we revealed that three parameters, which lead to slow translation speed, are associated 

with positive fitness residuals: strong secondary structures, high occurrence of 

significant Shine-Dalgarno affinities, and low concentrations of the corresponding 

tRNA. From these observations we conclude that ribosome attenuation in the early 

phase of translation elongation is advantageous to cellular fitness, regardless of the 

stalling mechanism.  

In addition to nucleotide parameters that were revealed to affect the translational 

cost, we next examined peptide parameters. Notably, we found that peptide 

hydropholicity is associated with positive fitness residuals. Since amino acid  

hydrophobicity is highly correlated with measures of protein aggregation 

propensity103, we speculate that the negative fitness residuals observed among the 

more hydrophobic peptides might represent a tendency of the gene product to 

aggregate. If true, this hypothesis adds an additional component of cost, protein 

toxicity. 

Additionally, we witnessed a correlation between positive fitness residuals and 

amino acid energetic-cost. Previous works found genomic evidence that highly 

expressed genes demonstrate higher frequencies of  low-cost amino-acids98,106. The 

authors suggest that this observation is the outcome of metabolic cost on translation 

and natural selection. This idea was further substantiated by a study fusing the 

cellular transcriptome, ribosome profile data and flux balance analyses21. The work 

of Hu et al. showed that amino-acid metabolism positively correlates with 

translation efficiency and ribosome density. Thus, the consumption of raw materials 

by translation results in production of these materials to compensate for their usage. 

However, in measurements performed by Stoebel et al. no cost for amino acid 

consumption was found, and all cost was attributed to transcription and 

translation20. Notably, our results confirm the theoretical possibility that selection 
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acts on the amino-acid sequence to minimize its metabolic cost. Although the 

chemical nature of the amino acids probably affects their usage by cells, there are  

evolutionary scenarios in which evolution could influence the choice of amino acid 

on the basis of frugal metabolic cost. Examples for this could be choosing a the 

cheaper of the three basic amino acids when a positive charge is needed, or 

preferring to choose non polar amino acids of low cost in transmembrane domains. 

In conclusion, the goal of my thesis was to examine the mechanisms by which the 

cell minimizes translational cost. We developed a method to derive the relative 

fitness of a synthetic library, relaying on lab-evolution and high-throughput 

sequencing. This approach enabled us to reveal the link between protein cost and 

fitness. We were then able to ascertain fitness parameters that allow designs to 

perform better than expected according to their expression levels. In the future, our 

system may be applied to study more sequence parameters and how they affect 

translational cost, or even the cost of other stages in expression such as 

transcription, degradation, or even splicing. By combining forward engineering of 

sequences with controlled lab-evolution environments, we could discover more 

mechanisms that minimize expression cost in the cell. 
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7 | Future plans 

In light of our findings, we have several future plans we wish to pursue. First, we aim 

to understand the topic of cost in different environments, as these environments will 

surely change cellular priorities and translation regulation in turn. We plan to 

perform additional FitSeq experiments with the library we utilized in this work under 

different conditions, such as amino acid starvation or temperature induced stress. 

Such conditions are expected to expose other mechanisms that affect translational 

cost because starvation is likely to change translation speed due to depletion of 

charged tRNA and stress will lead to vast changes of the proteome and thus 

translational speed will probably be one of the regulatory mechanisms of this 

change. 

Since the library created by Goodman et al. only allowed us to explore the 5’ of the 

transcript, we would aim to construct additional synthetic libraries that would allow 

us to explore sequence parameters on other areas of the transcript such as 

translation termination and mRNA degradation. Furthermore, this approach will 

enable us to examine the effect of ribosomal pausing in all regions of the transcript, 

by modifying areas mid translation. These studies could shed more light on the 

subject of translational cost.  

Separately, we wish to validate our findings in the genomic context of prokaryotes. 

Hence, we plan to examine the presence of the mechanisms we found to halt 

ribosomal flow at the 5’ of the transcript in natural genes. Additionally, we would 

like to explore the proteomic trends we found in this work. Our results suggest that 

hydrophylic residues close to the start codon are beneficial, possibly due lower 

aggregation tendencies, and we wish to learn if natural genes demonstrate this 

phenomenon. Moreover, we showed that a low amino-acid energetic-cost minimizes 

translational cost. Interestingly, recent studies showed that costly amino-acids 

appear in smaller frequencies in highly expressed genes98,106. We thus plan uncover 

additional traces of cost-based evolution. Specifically, we would expect to see non-

functional regions comprised mostly by cheap amino acids compared to functional 

positions of proteins. 
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Finally this study has interesting biotechnological implications, in the field of 

heterologous gene expression. In this field people express foreign genes within cells 

and hope to maximize production. While most current efforts are geared towards 

maximization of protein produced, the well-being of the host cell is likely to be very 

crucial too. The set of fitness-residual minimizing properties suggested here may 

thus help in better design of heterologously expressed genes in such a way that their 

production within a host cell will minimize the reduction in costs. Since often the 

amino acid sequence in such heterologous expression systems is predetermined, it is 

mainly the ribosome allocation properties that would prove themselves as relevant 

to such expression optimization. We thus would aim to develop a fitness residual 

calculator to assist in the forward design of heterologous genes, which would 

maximize the fitness of the cell while maintaining high production values.  
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8| Appendix A – Parameter lists 

8.1 List of nucleotide sequence parameters and statistical test results 

 
Parameter Description  Direction  p value q values Effect size 

GC1 content GC% at the 1st position of the codon  Positive > Negative 1.18E-15 2.71E-14 11.10% 

GC3 content GC% at the 3rd position of the codon  Positive > Negative 4.80E-10 8.64E-09 11.10% 

Average ribosome number on mRNA Number of ribosome sequestered to the 
transcript as simulated by TASEP 

 Positive > Negative 3.59E-16 9.33E-15 10.70% 

Average ribosome density Average density of ribosomes for entire 
transcript as simulated by TASEP 

 Positive > Negative 3.61E-16 9.33E-15 10.70% 

Ribosomal bottleneck depth Density of position with highest density in 
transcript as simulated by TASEP 

 Positive > Negative 1.71E-15 3.76E-14 9.72% 

Ribosomal density at start codon  Density of starting codon as simulated by 
TASEP 

 Positive > Negative 1.29E-16 3.48E-15 8.92% 

Average translation rate  Rate of protein production as simulated by 
TASEP 

 Positive > Negative 3.61E-16 9.33E-15 8.55% 

Shine-Dalgarno affinity position count Number of positions that show a non-
negligible SD efficiency 

Positive > Negative 6.79E-14 1.36E-12 7.41% 

Coding sequence GC% GC content of coding sequence Positive > Negative 5.58E-24 1.67E-22 7.15% 

Transcript GC% GC content of transcript, including coding 
sequence and UTR 

Positive > Negative 9.95E-20 2.89E-18 7.04% 

Coding sequence ΔG ΔG of mRNA secondary structure, without 
UTR 

 Positive < Negative 1.26E-14 2.65E-13 6.73% 

CAI Codon Adaptation Index Positive > Negative 4.06E-06 5.68E-05 4.03% 

tAI tRNA Adaptation Index Positive > Negative 2.56E-06 3.84E-05 3.83% 

Shine-Dalgarno affinity standard 
deviation 

Standard deviation of  SD affinity for all non-
negligible location 

Positive > Negative 1.66E-05 1.83E-04 3.68% 

Transcript ΔG ΔG of transcript, including  UTR Positive < Negative 1.49E-04 1.34E-03 2.59% 

RBS initiation rate Initiation rate calculated by Ribosome 
Binding Site calculator 

 Positive > Negative 1.61E-17 4.51E-16 2.03% 

Shine-Dalgarno affinity mean Mean value of SD affinity for all non-
negligible positions 

Positive > Negative 8.04E-04 6.43E-03 1.36% 

Shine-Dalgarno affinity median Median value of SD affinity for all non-
negligible positions 

Positive > Negative 9.83E-04 6.88E-03 1.23% 

GFP Shine-Dalgarno affinity median Median value of SD affinity for all non-
negligible positions in GFP 

Positive < Negative 4.14E-01 4.14E-01 0.06% 

GFP Shine-Dalgarno affinity mean Mean value of SD affinity for all non-
negligible positions in GFP 

Positive < Negative 1.46E-01 3.89E-01 0.02% 

GFP area Shine-Dalgarno affinity 
standard deviation 

Standard deviation value of SD affinity for all 
non-negligible positions in GFP 

Positive < Negative 5.33E-02 2.78E-01 0.01% 

GC2 content GC% at the 2nd position in the codon  Positive > Negative 5.21E-06 6.77E-05 0.01% 

GFP Shine-Dalgarno maximal affinity 
score 

Max value of SD affinity for all non negligible 
positions in GFP 

Positive > Negative 4.64E-02 2.78E-01 0.00% 

Shine-Dalgarno maximal affinity score Max value of SD affinity for all non-negligible 
positions  

Positive < Negative 1.13E-05 1.36E-04 0.00% 

RBS Shine-Dalgarno affinity Value of SD affinity of the Ribosome Binding 
Site 

Positive < Negative 8.54E-09 1.45E-07 0.00% 

GFP Shine-Dalgarno affinity position 
count 

Number of positions that have non-
negligible SD efficiency in GFP 

Positive > Negative 1.91E-06 3.06E-05 0.00% 

Ribosomal bottleneck position Position with highest density in transcript as 
simulated by TASEP 

Positive < Negative 1.00E-10 1.90E-09 0.00% 

Shine-Dalgarno maximum affinity 
position 

Position with maximum value of SD affinity 
for coding sequence 

Positive < Negative 9.72E-02 3.89E-01 0.00% 

GFP Shine-Dalgarno maximum affinity 
position  

Position with maximum value of SD affinity 
in GFP 

Positive > Negative 1.25E-01 3.89E-01 0.00% 
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8.2 List of peptide sequence parameters and statistical test results 

 
Parameter Description  Direction  p value q value Effect Size 

Aliphatic residue composition Percent of initiator peptide that is aliphatic Positive < Negative 6.47E-30 3.30E-27 16.70% 

Charged residue composition Percent of initiator peptide that is charged Positive > Negative 5.21E-18 1.87E-15 16.70% 

Non polar residue composition Percent of initiator peptide that is non polar Positive < Negative 7.13E-35 4.37E-32 14.30% 

Polar residue composition Percent of initiator peptide that is  polar Positive > Negative 7.13E-35 4.37E-32 14.30% 

Peptide Hydrophobicity Calculated as in Kyte et al.95  Positive < Negative 3.82E-37 2.76E-34 13.50% 

Peptide aliphatic index Calculated as in Ikai et al.91 Positive < Negative 6.27E-25 2.90E-22 11.90% 

Peptide Boman index Calculated as in Boman  et al92. Positive > Negative 1.92E-36 1.28E-33 11.80% 

Peptide energetic cost Calculated as in Akashi et al.98 Positive < Negative 1.14E-50 8.90E-48 11.20% 

Peptide instability index Calculated as in Guruprasad et al.96 Positive > Negative 1.18E-14 3.07E-12 7.91% 

pI Calculated as in Bjellqvist et al.107  Positive < Negative 3.10E-04 3.69E-02 2.34% 

Peptide Molecular Weight Calculated as in Wilkins et al.108  Positive < Negative 7.28E-03 4.37E-01 1.94% 

Hydrophobic moment Calculated as in Eisenberg et al.94 Positive < Negative 1.71E-01 1.00E+00 0.84% 

Acidic residue composition Percent of initiator peptide that is acidic Positive > Negative 4.18E-23 3.60E-02 0.02% 

Basic residue composition Percent of initiator peptide that is basic Positive > Negative 1.12E-01 1.74E-20 0.01% 

Aromatic residue composition Percent of initiator peptide that is aromatic Positive < Negative 6.23E-17 1.00E+00 0.00% 

Tiny residue composition Percent of initiator peptide that is tiny Positive > Negative 1.81E-03 1.85E-14 0.00% 

Small residue composition Percent of initiator peptide that is small Positive > Negative 2.89E-10 1.54E-01 0.00% 
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