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Abstract 
Cellular phenotype emerges from the interaction between the environment and the 

genome. Metabolome - the variation in the complement of intracellular metabolites is 

the most direct manifestation of a cellular phenotype. In my doctorate I set out to 

investigate the effect of genetic and environmental fluctuations upon the metabolome. 

I developed a system for large-scale metabolome analysis in Saccharomyces 

cerevisiae. The method allows simultaneous detection and quantitation of more than 

one hundred different metabolites including various amino acids, sugars and sugar-

phosphates, organic acids and other molecules with mass lower than 1000 Da. 

I then utilized the system to collect data from over 500 samples including multiple 

deletion mutants of genes with paralogs, cultures subjected to various environmental 

stresses and cultures of a strain evolved to cope with heat shock. 

My results show that the metabolome is highly dynamic and responsive to both 

environmental stresses and genetic changes. High abundance of metabolic changes in 

deletion mutants of paralogous genes was found to be related to slow rate of 

evolutionary divergence of paralogs. Three types of reciprocal relationships were 

found among such gene pairs: (i) absence of a metabolic phenotype in any of the 

deletion mutants (ii) one-sided response, where deletion of one but not the other 

paralog exhibits metabolic effect (iii) concerted changes, where deletion of each 

paralog yields a similar phenotype. The various types of responses are suggested to 

depend upon the reciprocal transcriptional levels of the paralogous gene pair.  

The metabolic response to environmental stresses was shown to be evoked both 

through direct sensing of the environmental change as well as through an indirect 

mechanism of a decrease in growth rate of the cultures. The major molecule 

responsive to tested stresses was trehalose, which showed an elevation of two orders of 

magnitude during stress. Strains which were evolved towards heat tolerance exhibited 

high levels of trehalose and other stress-responsive metabolites in steady state even in 

the absence of stress.  

This work constitutes the largest body of study using metabolome analysis approach to 

functional genomics in S. cerevisiae. This is the first time a relationship between 

evolutionary dynamics and metabolomic variation is shown. I anticipate that future 

enhancements in analytical techniques will help us better understand the relationship 

between metabolome, environmental conditions and genetic background of organisms. 
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  תקציר
השונות  –מטבולום . האינטראקציה בין הסביבה לבין הגנום תולדה של ינושל אורגניזם חי ההפנוטיפ 

דוקטורט שלי עבודת הב. תאיהביטוי הישיר ביותר של פנוטיפ הוא  ,תאיים-התוךמטבוליטים באוסף ה

 .המטבולוםם על את ההשפעה של שינויים גנטיים וסביבתיישמתי למטרה לחקור 

). Saccharomyces cerevisiae(האפייה מדידה רחבת היקף של המטבולום בשמר מערכת ל תיפיתח

, סוכרים שונים, לרבות חומצות אמינו, מאה מטבוליטים שוניםזמני של מעל - בוזיהוי  השיטה מאפשרת

מערכת השתמשתי ב .Da 1000 -חומצות אורגניות ומולקולות אחרות עם מסה נמוכה מ, טיםאפוספ- סוכר

בעלי מוטציות מחיקה של מספר גנים הדוגמאות הופקו מזנים עם . דגימות 500- על יותר מלאיסוף נתונים 

שעבר אבולוציה של זן ותרביות סביבתיים שונים שנחשפו לתנאים יות תרב, פאראלוגים בגנום

 .החוםעקת עם  ותהתמודדל

. שינויים גנטייםהן לו ותר ומגיב הן לסטרסים סביבתייםבי מראות כי המטבולום הינו דינמיהתוצאות שלי 

פאראלוגיים נמצא קשור לקצב נמוך של צבירת  גניםבמחיקה בזנים בעלי שינויים מטבוליים ריבוי 

מונטי מחיקה שלושה סוגים של יחסי הגומלין נמצאו בקרב . שינויים אבולוציוניים בתוך זוגות פאראלוגיים

תגובה חד ) ii(מוטנטים מהשל פנוטיפ מטבולי בכל אחד  היעדר) i: (דלהלןכ פאראלוגיים ניםזוגות גשל 

, משותפים שינויים) iii(השפעה מטבולית השני מראה אך לא , אחדפאראלוג המחיקה של  שבה, תצדדי

סוגים שונים של תגובות אני גורס כי . דומים יםפנוטיפ המניבאחד מהפאראלוגים מחיקת כל מקרים בהם 

   .הפאראלוגיים הגנים ותת של זוגוהדדיהברמות השעתוק  תלוייםמטאבוליות 

מופעלת הן באמצעות חישה ישירה של   לשינויים סביבתייםהתגובה המטבולית בהמשך אני מראה כי 

ה לסטרסים שנבדקו מרכזית שמגיבהמולקולה ה. השינויים והן על ידי ירידה בקצב הגידול של תרביות

שעברו אדאפטציה זנים  .ייה של מעל לשני סדרי גודל בתגובה לסטרסמציגה עלאשר , הינה טרהאלוז

סטרס אחרים גם במצב -מגיביומטבוליטים טרהאלוז חום הציגו רמות גבוהות של עמידות ללאבולוציונית 

  .ללא סטרס - קבוע 

תמש במטבולומיקה על מנת לענות על משה, עד היוםשנעשה עבודה זו מהווה את המחקר הגדול ביותר 

לראשונה מוצג בעבודה קשר בין , כמו כן. S. cerevisiae-ות מתחום הגנומיקה הפונקציונלית בשאל

  .תהליכים אבולוציוניים לשינויים המטבוליים שמתלווים אליהם

לנו להבין טוב יותר את הקשר בין התנאים  וריעזת כימיה אנליטיאני צופה כי שיפורים עתידיים בשיטות 

  .אורגניזםע הגנטי של רקלמטבולום ולהסביבתיים 
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1 Introduction 

 

Life persists through metabolic processes that occur within the cells of different 

organisms. While genes and proteins are responsible for carrying out the reactions, 

metabolites are the subject matter of these reactions. In my thesis I researched the 

interplay between the two levels – the level of the genes, and the level of the 

metabolites. Environmental effects exist in-between the two levels, where genes 

buffer the external effects and modify the complement of intracellular metabolites to 

allow cells to survive. 

 

1.1 Robustness to deletion mutations 

It was previously shown that ~80% of the genes in the yeast Saccharomyces 

cerevisiae are not essential for the survival of the organism when deleted1,2. Three 

different mechanisms were suggested to be responsible for this observed resilience to 

deletion mutations. Namely, genetic redundancy, distributed robustness and 

conditional non-functionality. Where: genetic redundancy is a case in which a paralog 

or an analog of the deleted gene may provide functional compensation for the genetic 

deficiency and restore a viable phenotype3-5, distributed robustness is a mode where the 

compensation for the lost function is carried out through the rearrangement of 

portions of the entire metabolic network4,6, and conditional non-functionality is a case 

when the deleted gene is essential only in a particular subset of conditions that were not 

tested in the deletion studies; thus, a gene’s dispensability is observed only due to lack 

of an appropriate experiment5-7. 

In general, the complement of the biological molecules inside the cells may be 

divided to four levels. The genome, the transcriptome, the proteome and the 

metabolome8; the metabolome being the set of all the intra-cellular metabolites in a 

particular condition. The metabolome can be seen as the uppermost “omics” level 

since it is affected by the mRNA and protein concentrations, and is the most basic 

manifestation of the cellular phenotype.  

The intracellular metabolites participate in almost all reactions in the living cell. The 

level of the metabolites is directly affected by deletion of the enzymes that carry out 

reactions with the metabolites as substrates and products. Therefore, one can expect a 
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direct connection between the metabolome of the different S. cerevisiae strains and 

their resistance to deletion mutations. 

In addition to being used as a model for genetic perturbations yeast has been 

employed in studies of the effect of various environmental stresses on living cells. 

Multiple experiments were performed to assess the effect of external stresses on yeast 

transcriptome and proteome9-12. Understanding the manifestation of the stress-

response on the level of metabolites is paramount in the understanding of basic 

cellular processes related to metabolism. 

1.2 Metabolomics in Saccharomyces cerevisiae 

It was shown that there are about 550 metabolites in S. cerevisiae13,14. Any single 

intracellular metabolomics method can identify and quantify 70-80 of these 

metabolites. 

Most of the research up until now focused on the development of methods for the 

metabolic profiling of yeast strains. There are several research groups that study the 

metabolomics of S. cerevisiae15-19 both on the level of the intra-cellular metabolome 

and on the level of the extracellular metabolome. Using metabolomics information it 

was shown that metabolic profiles discriminate among various yeast strains20 and 

growth conditions15,17. However, no metabolomic study until today has investigated in 

a large-scale manner the response of yeast cells to gene deletion or to multiple 

environmental stresses. 

1.3 Research main goals and motivation 

In my research I have set out to determine the cellular manifestation on the molecular 

level of yeast function when faced with either genetic stress (gene deletion) or 

environmental perturbation as exemplified by several stresses. 

I have chosen to analyze how genetic redundancy affects the cellular metabolome by 

analyzing yeast gene deletion strains. Yeast paralogs tend to be dispensable upon 

deletion more often than singleton genes1. Prior work in Pilpel laboratory has shown 

that paralogous pairs regulate the expression of each other on the transcriptional 

level21. Further studies have outlined the natural selection forces that acted on 

paralogous genes to retain a certain degree of redundant functionality22-24.  

The metabolome is the most direct measurement of the cellular phenotype. Therefore, 

I expect natural selection towards partial functional redundancy and differential 
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transcriptional regulation of paralogs to be manifested when measuring the 

metabolome – allowing us to better understand resilience to deletion. 

To explore yeast stress response in terms of intracellular metabolome I have chosen to 

look at a few stresses as a model. Environmental stresses are well studied in S. 

cerevisiae and multiple studies dealt with the transcriptional response of yeast to 

changes in the environment9,10,25. Looking at the metabolic response to environmental 

stresses, we can learn about the relationship between the transcriptome and the 

metabolome. Additionally, cell exposure to different stress allows identification of 

metabolites responsive to stress; those that might be helpful in providing the resilience 

to environmental conditions. 

To further assess how yeast cells cope with stresses, I have analyzed the metabolic 

response to heat of strains evolved for ~1000 generations under laboratory conditions 

to cope with high heat. This sheds light in greater detail on metabolic state required 

for best response to environmental stress. 

1.4 Hypotheses for metabolic response to paralogous gene deletion 

Several potential metabolic responses can be predicted in paralogous deletion 

mutants. 

For mutants in enzymes that provide perfect backup for each other (i.e. carry out the 

same reaction, such as paralogs that diverged only recently in the evolution) I would 

expect in some cases no or little difference in the metabolome compared to WT. Yet 

lack of a metabolic change, would also be expected in the very different cases with 

respect to deletion of genes which are not active in tested conditions e.g. glucose-

repressed genes in glucose rich growth media26,27. Deletion of genes from each of the 

two types above is not expected to have an effect on the metabolic composition of 

yeast cells, thus telling the two options apart in cases of little metabolic change is not 

trivial. 

There are two other interesting scenarios for paralogous deletion. The first in the case 

of backup with transcriptional reprogramming, i.e. cases in which the remaining 

paralog increases its expression level in response to deletion of its counterpart21-23, 

and the other is when a continued persistence of both paralogs is sustained to augment 

gene expression and flux through specific pathways6,28. In this case, the expression 

levels of the genes are not expected to change upon deletion of any of the paralogs.  
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In the case of backup with transcriptional reprogramming, upon deletion of one of the 

paralogs the mRNA levels of the other paralog might need to be elevated23. This 

effect might lead to only partial complementation and might exert an effect upon the 

metabolome. On the other hand, it was also shown that many genes have more than 

just one function29. In duplicate genes this multi-functionality of the common 

ancestral gene may be responsible for the process leading to specialization and 

functional divergence of paralogs30,31. Therefore, in the case of deletion with 

reprogramming, cellular effects beyond those resulting from incomplete backup by 

the upregulated paralog may arise. Minor function unique to the remaining paralog 

(also termed “moonlighting”32) with elevated levels would tend to affect the 

metabolome. This is another reason I would expect different metabolic profiles of the 

two deletion mutants. 

In some instances, however, transcriptional reprogramming occurs only upon deletion 

of one of the paralogs, but not upon the deletion of the other22. In such special cases a 

one-sided metabolic response would occur upon the deletion of one paralog but not 

the other. 

In the second case, paralogs which perform similar functions may complement each 

other to increase the metabolic flux through a reaction. One such example are genes 

duplicated during the whole genome duplication event in yeasts that increased the 

overall glycolytic flux within cells33. 

Upon deletion of each one of the paralogs in such case, the concentration of the 

precursor of the reaction would increase, and may further drive downstream effects. 

These downstream effects may be similar for both paralogs. Therefore, the metabolic 

profiles of the deletion mutants relative to WT samples would tend to be similar for 

both of the paralogs. 

The summary of predicted relative metabolic profiles can be found in Table 1. 

Hypotheses summary for paralogous backup 
redundancy scheme employed by 
paralogs 

predicted response to deletion 

full complementation little effect on metabolic profile 

backup with transcriptional response one-sided or two-sided effect on 
metabolome  

retention of paralogs for flux increase similar effects for both paralogs when the 
flux through each of the two genes is 
similar  

Table 1 – Hypotheses summary regarding behavior of mutant strains with deletions of 
paralogous genes.  
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2 Materials and Methods 

 

2.1 Strains and cultures 

2.1.1 Standard strains 

Strains used in the study belonged to the large-scale yeast deletion library34 based on 

the BY4741 strain (MATa; his31; leu20; met150; ura30) 

 

2.1.2 Heat-adapted strains 

Strains adapted to heat were evolved in several steps by Avihu Yona from Pilpel lab: 

Adaptation to high glucose - BY4741 cultures were grown in 24 well plates (1.2 ml) 

for 73 days in YPD medium with 2 mg/ml doxycyclin at 30°C, using a daily dilution 

cycle of 1:101. 

After that, cells were plated and a single colony was taken for further evolution. 

The single colony was grown in a similar manner at 37°C for 28 days. 

Days 29-39 at 38°C 

Days 40-66 at 39°C 

As a control, the single colony after step 1 of evolution was grown for 66 days with 

similar dilution at 30°C. 

The heat-evolved strains showed resilience to heat stress. Avihu showed that control 

strain held for 90 min. in 45°C survived poorly (26%), but the evolved strains showed 

significantly higher survival rates (71% survival). 

Avihu also showed that after the first period of adaptation to 30°C the cells became 

diploid, therefore the results from these experiments can’t be compared directly to 

those from the haploid BY4741 strain. 

2.2 Culture growth 

To minimize the effect of growth conditions on experiments cultures were grown in a 

controlled fashion to equal cell density. The growth procedure for each experiment 

was as follows: 

Cultures were thawed from a frozen stock to YPD plates. 
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Twenty four hours before sampling 5 ml starter cultures were grown from single 

colonies at 30°C in rotary shaker at 100 rpm in mineral medium (see below). 

After ~4 hours optical density at 600nm (OD600) was measured for all starters, and 

cultures were diluted into 50 ml erlenmeyers, such that in ~18 hours they would reach 

OD600 = 0.7. Growth rate estimate of 2.35 hours/generation was used (wild type (WT) 

growth rate in mineral medium). 

Eighteen hours later OD was measured again and actual growth rate was calculated 

for each mutant. Samples were diluted such that in ~2 hours OD reached 0.75. This 

step ensured that all strains were harvested at the same growth stage. 

After 2 hours samples were harvested for metabolite extraction 

The mineral growth medium composition was as follows: 

Glucose - 20 g/l 

Ammonium sulfate (NH4SO4) - 5g/l 

KH2PO4 (2 g/l),  

MgSO4·7H20 (0.55 g/l),  

NaCl (0.1 g/l), 

CaCl2·2H2O (0.09 g/l 

Uracil (0.02 g/l), L-Histidine (0.02 g/l), L-Leucine (0.1 g/l), Methionine (0.02 g/l) 

ZnSO4·7H2O (0.7 × 10-4 g/l) 

CuSO4·5H2O (0.1 × 10-4 g/l),  

H3BO3 (0.1 × 10-4 g/l)  

KI (0.1 × 10-4 g/l),  

FeCl3·6H2O (0.5 × 10-4 g/l), 

inositol (0.12 g/l),  

thiamine/HCl (0.014 g/l),  

pyridoxine (0.004 g/l),  

Ca-pantothenate (0.004 g/l),  

biotin (0.0003 g/l)  

  

2.3 Sample quenching and extraction 

Quenching and extraction protocol was modified based on of the protocol developed 

by Castrillo et al35. 

Quenching and Washing 
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All quenching and washing procedures were carried out at -40°C, temperature was 

controlled manually using a digitally monitored dry ice-ethanol bath. For each 

experiment 18 ml of sample were harvested in two batches of 9 ml. 

Each batch was pippetted into 50 ml polypropylene Falcon tubes (Falcon) filled with 

36 ml pre-cooled 60% quenching solution and shaken vigorously(methanol-water, 

buffered with 10 mM pH 7.4 Ammonium Acetate (Fluka, ≥99.9999%). Analytical 

grade methanol and water (Merck) were used). The quenching solution was prepared 

at most 24 hours before the experiment. 

After quenching, the cells were spun for 3 min at 3200 g in pre-cooled (-10°C) 

centrifuge (Eppendorf) with the buckets cooled to -20°C. 

The supernatant was removed from the tubes and 10 ml of fresh quenching solution 

were added for washing the remaining medium out. Cell pellet was resuspended by 

vigorous shaking and vortexing. At this stage the two batches taken from each sample 

were reunited. 

Following an additional 3 minute spin at 3200 g the supernatant was removed once 

again. To normalize for possible loss of samples in the extractions a defined amount 

of Ribitol (Sigma) was added to each sample (30µl of 0.017mg/ml) as an internal 

standard36. 

Extraction 

Samples were extracted for 3 minutes at 80°C in 5 ml boiling ethanol-water solution 

(80:20, buffered with 0.05 mM Ammonium Acetate, pH 7.4). The extraction solution 

was freshly prepared in every experiment day.  

To remove cell debris the samples were spun for 15 minutes at 3200 g at room 

temperature. Supernatant from each sample was collected into three aliquots 

(Eppendorf, 2 ml, round bottom). 

Sample volume was reduced in speedvac (Savant) for 1.5 hrs. The three aliquots for 

each sample were reunited into one and lyophilized overnight. The dried samples 

were stored until chemical analysis between two to four weeks at -80°C in a Revco 

freezer. 

2.4 Gas chromatography – mass spectrometry analysis 

For chemical analysis of metabolites, gas chromatography – mass spectrometry (GC-

MS) was carried out. The GC-MS system was composed of a COMBI PAL 

autosampler (CTC analytics), a Trace GC Ultra gas chromatograph equipped with a 
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PTV injector, and a DSQ™ II quadrupole mass spectrometer (ThermoElectron). The 

protocol for the analysis followed established techniques in Aharoni lab37-39. Sample 

volumes of 1 µl were injected into the GC-MS following methoxymation by Methoxy 

amine HCl (40 µl of 20 mg/ml solution in pyridine were added to dried samples) and 

derivatization with N-Methyl trimethyl silyl trifluoro acetamid (MSTFA) – 70 µl / 

110 µl36. A retention time standard mixture (14 μg/ml each of n-dodecane, n-

pentadecane, n-nonadecane, n-docosane, n-octacosane, n-dotriacontane, and n-

hexatriacontane in pyridine), was injected after each set of samples.  

 

2.5 Quantitation and Assignment of mass signals to metabolites 

Pre-processing of multiple chromatograms was performed using xcms package 

v.1.1440 for R v.2.8 programming language. Xcms allows multiple chromatogram 

alignment, signal extraction and quantitation of mass signals. 

The following settings were used with xcms: 

for xcms peak detection: 

method = "matchedFilter", fwhm = 1.8, step = 0.2, steps = 4, mzdiff = 0.7, index = 0, 

snthresh = 4, max = 10000 

Two cycles of grouping and retention time correction were applied. 

grouping settings: 

bw = 0.8, mzwid = 0.7, max = 500, sleep = 0 

retention time correction settings: 

method = "linear", span = 0.2  

The missed peaks filling was carried out using the default setting 

 

All post-processing normalization and analysis procedures were carried out by custom 

scripts coded in Matlab v. 7.7 (Mathworks). 

2.6 Estimation of OD at the time of quenching 

Before quenching, optical density (OD) was measured for each sample at λ=600nm. 

The OD is proportional to cell density. To calculate the culture opacity at the moment 

of quenching, the OD for each sample was corrected by the growth rate of the sample 

and the time that passed from measuring the OD until sampling. ODfinal = OD0•2t/gr 
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where gr is the generation time for the sample as measured experimentally and t is the 

time that passed from OD0 measurement until quenching. 

 

2.7 Stress administration 

60 minutes stresses were administered to cultures before sampling as follows: 

Ethanol stress – Absolute ethanol was added up to 5% v/v in the medium. 

Oxidative stress – H2O2 was added to 0.3 mM final concentration from a 300 mM 

stock. 

Drug-induced growth arrest – Two independent experiments were carried out using 

cycloheximide (protein synthesis inhibitor41). 350 µl or 500 µl of 700 µg/ml stock in 

DDW were added to 50 ml cultures for a final concentration of 5 µg/ml and 7 µg/ml 

in the medium. 

Heat stress – cells were transferred to an incubator preheated to 45°C. Temperature of 

the medium was monitored constantly. Once the cultures reached 36°C (~15 minutes), 

the cultures were transferred to a 37°C incubator. 

Heat stress for heat-adapted strains – A similar procedure was used, however, cells 

were transferred into an incubator preheated to 50°C. For the final stress of 39°C cells 

were taken out of the incubator when they reached 38°C (~15 minutes) and 

transferred to a 39°C incubator. For a final stress of 45°C cells were held until 44°C 

in the 50°C incubator (~25 minutes), then the temperature was rapidly lowered in the 

incubator to 45°C. 

2.8 Significance of transcriptional changes in trehalose pathway in 

strains evolved towards heat resilience 

Transcriptional changes were measured by Avihu Yona from our lab using an 

Affymetrix yeast microarray following exposure to 42°C or 45°C stresses. 

Trehalose metabolism genes were taken from the Kegg metabolic pathways repository 

(accessed 10/04/2010)42-45. 

The significance was assessed heuristically: 

In every checked condition (60 minute response to 42°C or 45°C relative to 30°C 

control strain or heat-evolved strain relative to control strain @30°C) the mean 

upregulation of trehalose biosynthesis genes (Supplementary 3) was calculated. To 

assess significance of change the mean upregulation level of the trehalose 
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biosynthesis was compared to the means of 100,000 random sets with the same 

amounts of genes as in the trehalose biosynthesis pathway (7 genes). 
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3 Results 

 

3.1 Analytical method development 

To analyze the yeast metabolome in a comprehensive manner I required a method that 

would allow both rapid and stable metabolomic analysis of multiple yeast strains and 

conditions. Several methods exist that allow the metabolic profiling of S. 

cerevisiae15,35,46,47(review), however, none of the published methods in their original 

form provided satisfactory results for high sample throughput in my experimental 

settings. The main parameters to control in experiments include sensitivity of the 

analytical method to a wide spectrum of metabolites and repeatability between 

biological replicates.  

Upon checking many of the existing protocols for usability in a large-scale study I 

discovered that most current techniques required major modifications for my study. 

The existing methods were either not scalable enough15,48 (thus not allowing high 

sample throughput), lacked in the spectrum of materials that could be reliably 

extracted from the cells35,46 or were not reproducible enough46.  

I have thus developed a pipe-line for the cultivation, sampling, extraction and data 

analysis of yeast cells in a reliable, and high-throughput manner that allowed me to 

ask questions pertaining to the response of a large part of the yeast metabolome to 

different conditions and genetic perturbations. The outline of the experimental flow 

for data acquisition and analysis is depicted in Figure 1. The numbers 1-6 above the 

different experimental stages are described respectively in subparagraphs  3.1.1 to 

 3.1.6. 
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3.1.1 Controlled growth of biological samples  

Many of the differences in the intracellular metabolome depend upon growth 

conditions and growth rate19. Therefore, uneven growth of cultures is one of the main 

caveats when analyzing the yeast metabolome. To generate robust results when 

analyzing multiple samples I developed a protocol to ensure controlled cell growth in 

5 

6 

1 2 3 

4 

Figure 1 - The workflow for sample preparation, chemical analysis and raw data analysis. 
Stages marked with numbers 1-6 are described in detail in sub-paragraphs  3.1.1 to  3.1.6 
respectively.  
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all cultures. The growth conditions I developed are described in detail in Methods 

section ( 2.2). 

Briefly, the cells were thawed from frozen stock onto YPD plates, and then grown to 

similar growth stage. 

Additionally, there was need to minimize the effect of the culture medium on the 

results. Many compounds from the standard growth media are also present in the 

yeast cells. To maximize the amount of metabolites that originate from the cells I used 

a minimal defined mineral medium49 supplemented with necessary amino acids for 

culturing. Ammonium sulfate was used as the nitrogen source and glucose as the 

carbon source.  

As can be observed from Figure 2, the final variation in optical density between the 

cultures was small (relative standard deviation of ~11%). Further, I applied a 

correction for the differences in OD at the data normalization stage (see below). 

 

Figure 2 - Distribution of the final OD values before harvesting for 442 samples taken 

for the analysis of paralogous backup. The final mean optical density over 442 cultures 

was 0.761±0.086 

3.1.2 Extraction of metabolites from the cells 

Cell quenching and extraction protocol was based on the protocol developed by 

Castrillo et al35 with the main modification being the pH buffering agent and 
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sampling volume reduction. The original pH buffering agent (tricine) was seen as an 

overloaded peak in chemical analysis in my experimental set-up. I evaluated several 

extraction and quenching conditions differing in pH buffering conditions (tricine 

buffered, ammonium acetate buffered and non-buffered). Conditions that had the least 

variability were those in which the quenching solution was buffered with ammonium 

acetate. Ammonium acetate buffer is volatile, and evaporates during sample drying 

leaving little impact on the samples. This protocol was recently independently 

shown18 to be very effective for large-scale sampling of S. cerevisiae. The volume of 

quenching was reduced to 18ml of yeast culture to allow for higher throughput in the 

experiments. The final protocol allowed for 12 samples to be harvested at once. This 

was an improvement over the more laborious protocol for 6 samples employed by 

Castrillo et al35. 

Briefly, cells were quenched in buffered methanol at -40ºC, centrifuged and washed 

with cold methanol to remove traces of medium. Subsequently, samples were 

extracted in boiling ethanol, followed by volume reduction in speed-vac dryer 

(Savant). Finally, samples were freeze-dried in lyophilizer over-night and kept @ -

80ºC until chemical analysis. 

3.1.3 Chemical analysis of metabolites 

For chemical analysis of metabolites, gas chromatography – mass spectrometry (GC-

MS) was carried out. This method was chosen due to the wide range of the 

metabolites it allows to detect, high degree of separation between metabolites, the 

high precision in quantification, the availability of the equipment and the relatively 

low costs per sample. Other methods for analysis of primary metabolites were 

considered (specifically liquid chromatography – mass spectrometry), however, the 

absence of readily-available equipment and protocols has stopped me from pursuing 

these directions further. 

The protocol for the analysis followed established techniques in Aharoni lab37-39. 

Samples were injected into the GC-MS following methoxymation by Methoxy amine 

HCl and derivatization with N-Methyl trimethyl silyl trifluoro acetamid (MSTFA)36. 

Methoxymation causes the opening of sugar rings, and MSTFA is an effective 

trimethylsilyl donor which reacts to replace labile hydrogens on a wide range of polar 

compounds with a -Si(CH3)3 group. MSTFA produces volatile and thermally stable 

derivatives.  
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3.1.4 Computerized analysis of chromatograms 

After chemical analysis my goal was to automatically analyze the abundance of mass 

signals in the data. The goals of such an analysis are: robust peak detection in 

chromatograms, alignment of peaks in different chromatograms and peak integration. 

I experimented with several software suits (MZmine50, XCalibur (ThermoFinnigan) 

and xcms40 for the R programming language) that performed the above actions. Xcms 

produced the best results for automatic analysis among the three, as it allows 

relatively fast processing times, has a very precise quantitation algorithm and highly 

sensitive detection of compounds in complex matrices (such as used in yeast).  

Xcms performs multiple chromatogram alignment, signal extraction and quantitation 

of mass signals. Mass quantitation of xcms corresponded to manual quantitation (see 

Figure 3) very well with a fit of R2=0.99. Manual quantitation for this test was 

performed in XCalibur v. 1.4. 

 

Figure 3 - Comparison of manual quantitation and automatic quantitation by xcms 

based on 30 different peaks from a standard mixture. 

 

Although xcms presents good results in peak quantitation, manual adjustments must 

be carried out for proper chromatogram alignment. Chromatograms were re-aligned 

by time after xcms quantitation and the minimal common set of mass signals 

identified in all chromatograms was kept for further analysis. 

Manual integration vs . XCMS integration - log2  scale
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3.1.5 Data normalizations 

Following my analysis I have encountered several sources of variability in the 

samples, due to sample loss, growth medium effects, different cell density in the 

cultures and intrinsic noise due to minute differences in growth conditions. I could 

compensate for sample loss by careful normalization of data to internal standards and 

for enhanced cell amounts by normalization to the measurements of cell amounts at 

sampling time. To cope with other effects I performed statistical analysis of replicates, 

as detailed below. 

3.1.5.1 Normalizing for sample loss during extraction 

During the data analysis, for each sample the mass signals were divided by the 

amounts of ribitol as identified by injection of a standard into the GC-MS. 

3.1.5.2 Normalizing the metabolome data for variability in cell density 

To account for variability in cell/ml quantities in samples the intensities of mass 

signals were divided by the estimated OD value (see Methods section  2.6). 

3.1.6 Method for mass signals assignment to metabolites 

During quadruple mass spectrometry analysis metabolites are ionized and broken up 

to fragments. The original molecule is screened by the abundance of fragments, 

however, the amounts of each of these fragments (mass signals) is proportional to the 

original amount of the metabolite. As my aim was to investigate the nature of the 

metabolic response to environmental perturbations and gene deletions it was 

important to reassemble the mass signals to metabolites for all the samples. I devised 

an automatic algorithm that associates mass-signals to metabolites and implemented it 

in Matlab v. 7.7.  

The algorithm developed for mass signal to metabolite assignment utilizes the fact 

that metabolites vary in their levels across multiple experiments of different biological 

samples. This variability is due to slight differences in the extraction procedure of 

samples, as well as biological variation between samples. At the same time, the 

relative amounts of different mass signals resulting from a single metabolite are 

expected to be stable across all experiments due to the robust hard ionization of 

substances in quadrupole mass spectrometer.  



24 
 

The method unifies mass signals based on the correlation between their intensities in 

multiple conditions as well as on the similarity in chromatographic retention times. 

Since the ratio between the intensities of two mass signals that belong to the same 

metabolite is almost constant across different samples, the correlation between them is 

high across multiple experiments. On the other hand, I expect the correlation between 

a pair of mass signals that belong to different metabolites because of the variation in 

relative levels of the two metabolites in different biological samples. 

To assign mass signals to metabolites I clustered the results of xcms output derived 

from multiple samples using a hierarchical clustering algorithm. 

3.1.6.1 Distance calculation for clustering 

The distance between each two mass signals (Equation 1) was defined as the 

correlation between them in case the retention time difference between the two mass 

signals was equal or lower than a user-defined cutoff. When the retention time 

difference was larger than the threshold, i.e. the two mass signals originated from two 

different chromatographically separated compounds, the distance between the two 

mass signals was set to be very large.  

 
I determined the clustering parameters and method by benchmarking the clustering 

results vs. a test set of mass signals assigned to metabolites. The benchmark set 

Equation 1 - Calculation of the distance for the clustering algorithm which unifies mass signals based on 
Spearman’s correlation coefficient and distance in the retention time. If the retention time difference 
between two mass signals is larger than a user defined threshold, the distance between them is much bigger 
then between two peaks that are near each other in retention time. 

        If     ThresholdUserD ijRT _ ,           ijijD 1  
 

        Otherwise:                                      ijRTij DD 100  
 
where: 

ijRTD  is the retention time difference between two mass signals i and j 
User_Threshold is the threshold defined by user of the maximal retention time difference between 
two mass peaks that can belong to the same compounds. This distance is usually defined based on a 
set of compounds from a standard sample. In the test data set the retention time distance was set to 
be 1.5 seconds. 

ij is the Spearman’s rank correlation coefficient between the intensities of the mass signals across 
multiple conditions. 

ijD  is the final distance between the two mass signals that will be used as the distance measure for 
the clustering procedure. 



included 51 mass signals in 8 groups with overlapping retention times assigned to 17 

metabolites. Different clustering methods and cutoff parameters were tested for the 

automatic assignment of these mass signals to metabolites (Figure 4). 

The similarity of automatic clustering results to the manual assignment of mass 

signals to metabolites was assessed each time by the Jaccard similarity coefficient 

(Equation 2). 

 

 

 

Figure 4 –Jaccard score for the fit of automatic assignment of metabolites to clusters 

based on a test set for three different clustering methods and different cutoffs for 

clustering. 
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Average-linkage
Complete-linkage
Single-linkage

Equation 2 - Calculation of the Jaccard similarity coefficient. The Jaccard coefficient penalizes both for 
splitting the same manually identified cluster to smaller clusters, and for combining too many mass signals 
into one metabolite. 

011011
11

nnn
nJaccard


   

where for each pair of mass signals  
n11 is the amount of pairs that were assigned to the same metabolite both automatically and 
manually 
n10 is the amount of pairs that were assigned to the same metabolite manually, but not 
automatically 
n01 is the amount of pair that were assigned to the same metabolite automatically, but do not 
belong to the same metabolite in the manual assignment.  



Average linkage was the most robust method with respect to the range of parameters. 

A cutoff of 0.6 gave the highest assignment score for the average linkage method. 

3.1.6.2 Manual curation of automatic mass-signal to metabolite assignment and 

data quality assessment 

After clustering of the data I manually curated all resulting clusters by observing in 

the original chromatograms the masses that clustered together. If the masses did not 

overlap exactly on the retention time scale in one or more of the chromatograms the 

masses were separated to different metabolites. Mass signals that appeared in two 

metabolites with somewhat overlapping retention times were removed from further 

analysis due to possible mistakes in quantitation by xcms (see example in Figure 5). 

 

 

Figure 5 – An example of manual post-processing of chromatograms. A screenshot from 

a sample chromatogram in XCalibur with single ions 73, 245 and 263 (A, B and C 

respectively). The mass in section A. (mz=73), exists both at retention time 10.86 min. 

and at 10.89 min. xcms is prone to error in quantitation of such masses, therefore this 

mass signal and similar instances within other samples were removed from further 

analysis. The two compounds were quantified by their unique respective masses at 

mz=245 (B) and mz=263 (C). 

A 

B 

C 
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The above pre-processing steps resulted in a list of masses, their quantities in each 

sample (peak areas) and their assignment to metabolites. 

3.1.6.3 Identification of metabolites (mass-signal clusters) 

All previous analysis allowed me to assign mass signals to metabolites, yet it does not 

supply with the identity of the metabolites. To get more biological understanding 

from metabolomics results I needed to identify as many metabolites as possible in the 

samples.  

Compounds were putatively identified by comparison of their retention index and 

mass spectrum with those generated for authentic standards analyzed on my 

instrument39. When the corresponding standards were not available, compounds were 

putatively identified by comparison of their retention index and mass spectrum with 

those present in the mass spectra library of the Max-Planck-Institute for Plant 

Physiology (Q_MSRI_ID; http://csbdb.mpimp-

golm.mpg.de/csbdb/gmd/msri/gmd_msri.html) and the commercial mass spectra 

library NIST (www.nist.gov). MS-Search v.2.0d software (NIST) was used for 

matching spectra of metabolites to standards. Manual comparison of retention indices 

of standards to the detected metabolites was used to filter the hits from MS-Search 

software. Retention time indices calculations were based on a mix of alkane chains 

injected into the GC-MS during every run. 

My method allowed the detection of 136 compounds in yeast cells. Forty three (43) 

out of them fit to the retention time and mass spectrum of known compounds and, 

therefore, could be identified. The list of identified compounds can be found in 

Supplementary 1. 

3.1.6.3.1 Metabolic network coverage by identified metabolites. 

In the next step I wanted to observe how well the metabolic network of S. cerevisiae 

was covered by the identified metabolites. Major classes of the identified metabolites 

included organic acids, amino acids, sugar-phosphates, sugar-alcohols and others. 

I plot the metabolites that I could identify on the metabolic network representation of 

yeast (Figure 6– in red). Overall, I see that the coverage of the metabolic network is 

quite uniform apart from the ergosterol/lipid biosynthesis pathways and vitamins/co-

factors pathways which are underrepresented in my set of identified metabolites. This 

is mainly due to detection limits of the GC-MS apparatus I used. 



 

Figure 6 - Representation on the metabolic network of S. cerevisiae of reactions that 

were perturbed (by deletion mutations – see paragraph  3.2.1) in cyan and metabolites 

that could be identified in red. The names near each section represent a cluster of 

similar pathways. 

 

3.1.7 Statistical analysis of metabolome measurements of different strains and 

treatments vs. control 

3.1.7.1 Experimental design for sampling and subsequent replicates analysis 

To allow for multiple replicates I analyzed 12 samples in every day of experiments. 

As a general rule, different strains or treatments were analyzed in four replicates along 

with four controls (wild type (WT) or untreated quadruplicate) within each day. A 

major goal was to reduce variation in sampling conditions between the replicates. 

The standard daily setup included 3 experiment sets of 4 samples, each containing: 

4 wild type/untreated replicates. 

4 replicates of one mutant or treatment. 

4 replicates of a second mutant or treatment. 
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Time between quenching of the first and the last samples in every experiment day was 

15 minutes at most. After extraction and drying, samples were kept at -80ºC for a 

minimal period of two weeks, but no longer than one month to minimize the 

variability in the treatment of different samples. 

The order of the injections into GC-MS was randomized within every day of chemical 

analysis. Samples were prepared every day, such that the time between injection into 

GC-MS of the first and last sample was not more than 24 hours. 

3.1.7.2 Relative quantitation and analysis of significance of replicate 

measurements via randomization 

The first stage in analysis of a large set of samples consisted of removal from further 

analysis of outlier samples detected by manual inspection of the data.  

Due to the high variability in instrument sensitivity across days it was not possible to 

directly compare the signal intensity between different strains or treatments. 

Therefore, for each metabolite within each of the samples I needed to normalize the 

signal to the WT/untreated samples. The mean of ratios of experiments (rh in 

Equation 3) to control samples within the same day were treated as the metric for a 

change.  
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Equation 3 – For every metabolite, for every day of experiments for each experiment set 

h within that day, the ratio between the mean of the values of experiments was divided 

by the mean of the WT values within that day. nh is the amount of replicates in an 

experimental set. nw is the amount of wild type/untreated control samples within a day. 

jha to 
hnha are the measured metabolite values of each experimental set within a day. Wi 

to W wn are the measured metabolite values of wild type/untreated samples within a day. 

To determine the significance of the ratio score I constructed a null distribution for 

each metabolite in the following manner: 

For every set of replicates h out of a total of m sets of experiments (including 

WTs/non-treated sets), and every replicate hi out of total nh replicates within a set 



30 
 

having metabolite levels 
iha to 

hnha  corresponding values 
ih to 

hnh were calculated 

for the null model according to Equation 4: 
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Equation 4 – Formula for calculation of metabolite-specific null values for 

significance analysis of sample ratios to control. h is a particular set of replicates, 

nh is the amount of replicates for set h. 
iha is the intensity of metabolite in an 

instance i of set h. 

This means that every value was normalized by the mean of the other replicates, thus 

representing the variability within each sample group and creating a null distribution 

which is has the same variance or higher than the variance in the original samples. I 

calculated the p-value for each mean of ratios of set h normalized to the mean of WT 

(rh in Equation 3) by randomization of the null model set. To mimic the fact that I 

averaged ratios across nh replicates I drew random sets of the same size from the null 

set and averaged them. This procedure was carried out 1,000,000 times for each 

metabolite and for each ratio rh.  

I defined the p-value of a given ratio score as the fraction of random sets that had a 

similar or higher average than the ratio score rh. 

I corrected for multiple hypotheses testing using the FDR method51 with a q-value of 

5%. All ratios of metabolites in all the mutant strains/treatments that did not pass the 

resulting cutoff of 5% were set to 1 to abstain from further analysis of non-significant 

results. 

3.1.8 Reproducibility of data for deletion mutants  

Metabolomics results are known to be highly unstable and may vary greatly even 

between replicate samples within the same day52. To assess long-term reproducibility 

of my method I carried out complete and independent profiling of 8 deletion mutants 

with a difference of 10 months between samplings. 

First, I analyzed changes that were labeled significant in both studies. The correlation 

coefficient between metabolite changes between the two samples was 0.82, across 33 
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metabolites (p < 10-8). Looking at the dot plot (Figure 7), I can observe that only three 

metabolites out of the 33 change in opposite directions in the two studies, while all the 

other metabolites change in the same direction in both studies (same-direction 

changes are 90% of all significant changes). 

 

Figure 7 – Dot plot of (mutants/WT) on log2 scale for metabolites significantly changing 

in two replicate studies of 8 deletion mutants with 10 months difference between 

sampling dates. Each label designates the metabolite that significantly changed, and the 

mutant in which this change occurred. Unidentified metabolites are marked with “u” 

and a number following the designation. 

However, when I performed such a comparison on the combination of significant 

changes in the two studies the correlation dropped markedly to r=0.23 (p<10-4). 

Nevertheless, same-direction changes (i.e. instances in which a metabolite’s 

concentration changed in the same direction in both studies) represented 73% 

(213/290) of overall significant changes in at least one of the experimental sets. To 

assess the significance of this extent of agreement between replicates I performed a 
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shuffling permutation analysis and derived the null distribution of expected same-

direction changes. With 100,000 permutations I have not even once reached 213 

same-direction calls in shuffled data (Figure 8) (p-val<10-5). 

 

                  old data 

new data 

↑ 

significant 

↑ non-

significant 

↓ non – 

significant 

↓  

significant 

↑ significant 20 75 35 2 

↑ non-significant 91 359 153 11 

↓ non-significant 15 198 70 8 

↓ significant 1 14 11 10 

Table 2 – Distribution of amounts of metabolites increase/decrease in two 

independent experiment sets (sampled 10 months apart) of 8 single gene deletion 

mutants. For each category of metabolites (significantly changing or non-

significantly fluctuating upwards/downwards as signified by arrows) in the old 

set (columns) the table contains in rows the distribution between the categories 

for the new set of experiments. 
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Figure 8 – Distribution of randomly shuffled same-direction changes for old and new 

extraction experiments of deletion mutants. At random ~185 same-direction hits are 

expected in the data, this is much less than the observed 213 in true data (marked with a 

red dot). 

Therefore I can deduce that the direction of change is overall very significantly 

repeatable. 
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3.2 Metabolic profiling of S. cerevisiae paralogous deletion mutants 

After the development of the analytical method I have set out to explore the 

phenomenon of backup through genetic redundancy that is carried out by paralogs in 

the S. cerevisiae genome. By analyzing deletion mutants that have a paralog 

elsewhere in the genome I expected to uncover the metabolic component underlying 

genetic redundancy and transcriptional reprogramming.  

3.2.1 Analysis of paralogous single mutants 

To check the hypotheses outlined in Table 1 in the introductory section  1.4 I have 

carried out metabolic profiling of 78 single gene deletions that represent 39 pairs of 

paralogous enzymes from diverse gene families metabolic network of S. cerevisiae. 

This set represents more than a third of the total of 105 duplicate gene families in the 

metabolic network of S. cerevisiae. Mutant list can be found in Supplementary 2. 

Through mining these metabolic profiles I will gain additional understanding of the 

deletion phenotype of genes in S. cerevisiae.  

3.2.1.1 A view on co-regulation of different compounds  

First, I wanted to look at the similarity of response of different compounds to gene 

deletions. I plotted a correlation matrix of fluctuations for the different compounds. 

For additional insight into the closeness of different compounds in the space of the 

mutants I performed clustering of metabolites and the data was sorted according to the 

clusters. 

Two observations are evident when looking at the correlation matrix (Figure 9). One 

is that many compounds are co-regulated. The other is that some clusters are 

dominated by a certain metabolite type. For example the amino-acids cluster 1 

(marked on plot by 1), contains exclusively amino-acids (ornithine, lysine, arginine 

and glutamate). Moreover, I can probably explain the reason for these amino acids to 

occur in the same cluster. Ornithine, glutamate and arginine all originate in the same 

biosynthetic pathway in S. cerevisiae; glutamate in turn is a major substrate in the 

production of lysine. It is highly possible that the similar fluctuations due to amino 

acids control or availability of substrates gave rise to this cluster. Other clusters with 

similar compounds included the sugar-phosphate cluster (cluster 2) and a second 

amino acid cluster (cluster 3). Unfortunately, my strength to elucidate pathways or 
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relationships between compounds is severely limited by the inability to identify more 

metabolites. It does seem however, that relative metabolite levels are related to the 

levels of other metabolites from the same biosynthetic pathways. 

 

 

3.2.1.2 Observing metabolic response in the Δaco1 and Δaco2 mutants 

As a primary check for my results I wanted to focus on the behavior of one specific 

pair of paralogous genes with well studied function. For this I chose ACO1 and ACO2 

and analyzed the metabolic profile obtained for their deletion mutants. ACO1 encodes 

the enzyme aconitase which is part of the tri-carboxylic acid cycle (TCA cycle - 

Figure 10) and converts citrate to iso-citrate via the intermediate aconitate. ACO2 has 

an amino acid sequence similarity of ~52% to ACO1 and has a putative aconitase 

activity53. 

 

Figure 9 – Correlation matrix of different compounds across multiple deletion mutants. Data 
was log2 scaled, and metabolites sorted by simple hierarchical clustering. Numbers of groups 
relate to: 1) amino acid cluster 1; 2) sugar-phosphates and 3)amino-acids cluster 2 

1 

2 

3 
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In Figure 11 I plotted the changes in metabolites for both mutants relative to the WT. 

I can see that Δaco1 mutant had more metabolites significantly changing in response 

to the deletion than Δaco2 (27 in Δaco1 and 19 in Δaco2, with mean fold change of 

1.98). The ACO1 gene is known to be the major isoenzyme responsible for the 

aconitase activity54, it was also shown to be one of the factors for mitochondrial 

genome maintenance55. As could be expected, metabolites from the TCA cycle that I 

measured (marked with red color in Figure 10 and in Figure 11A) were up-regulated 

in Δaco1, but less so in Δaco2 possibly due to its lower enzymatic activity and lower 

flux change in the cycle. Thirteen (13) metabolites exhibited significant changes in 

both mutants with similar directionality of the change. Interestingly, two of the 

identified common metabolites are sterols of unidentified structure. Sterol 

biosynthesis in yeast cells are occurs only in aerobic conditions and multiple 

mitochondria genes were suggested to function in sterol biosynthesis56. Deficiency in 

mitochondrial function by deletion of aconitase may have inadvertently led to 

accumulation of particular sterols in the cells. 

Figure 10 - TCA cycle, Aco1p and Aco2p enzymes are noted on the plot. Metabolites which were 
measured and changed significantly upon deletion of either ACO1 or ACO2 are marked in red. 

Aco1p 
Aco2p? 

2-oxoglutarate 
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3.2.1.3 Observing the metabolic effect of Δnth1 and Δnth2 mutants 

Looking at the response of the metabolome in deletion mutants of an additional 

paralogous gene pairs - the NTH1 and NTH2 genes, few metabolites exhibit changes 

(Figure 12). However, when observing known metabolites in the Δnth1 mutant (Figure 

13), elevated levels (~100 fold increase) of trehalose are evident. Nth1p is responsible 

for the degradation of trehalose to glucose; therefore, its elevated levels could be 

expected. The NTH2 gene is 77% similar to NTH1, however its expression is silenced 

during exponential growth in S. cerevisiae53. The Δnth2 mutant does not show the 

same elevated trehalose levels as its counterpart, probably due to the experimental 

conditions which I used; in my studies the cells were harvested during exponential 

growth, when NTH2 is silenced. 

Figure 11 - A. Dot plot on a log2 scale describing the ratios of metabolites in Δaco1 and Δaco2 

mutants to WT. Metabolites changing significantly in one of the mutants are marked in green, 

metabolites from the TCA cycle are labeled marked in red. Metabolites that do not exhibit a 

significant change in any of the mutants are marked in blue. B. Relative metabolite changes in 

the two mutants on log2 scale. Color bar on the right presents colors associated with two-fold 

change steps. All metabolites not changing significantly or having less than two-fold change are 

grey. 



 

Figure 12 - Levels of metabolites in Δnth1 and Δnth2 mutants. The data is on a log2 scale 

with the color bar representing the fold change on the right. Grey metabolites do not 

exhibit significant or strong changes. Colorscale is similar to Figure 11B. Zoom-in on 

known metabolites (upper part of the plot) is in Figure 13. 

 

 

Figure 13 – Levels of known metabolites in Δnth1 and Δnth2 mutants. The data is on a 

log2 scale with the color bar representing the fold change on the right. Grey metabolites 

do not exhibit significant or strong changes. Color scale is similar to Figure 11B. 

Additional discussion regarding the Δnth1 mutant can be found in paragraph  4.2.2 (p. 77). 

Δnth2 Δnth1 



3.2.1.4 Reciprocal metabolic response of paralogous gene deletion mutants 

After the analysis of the particular pairs of paralogs I have set out to obtain a large-

scale view of paralogous backup. In order to notice the most prominent effects I 

primarily limited my analysis to 2-fold changes in the mutants relative to the WT 

controls (Figure 14). 

 

Figure 14 – Metabolite changes in paralogs relative to WT. Rows represent metabolites’ 

relative intensity. Columns mark different mutants. Both members of each paralogous 

pair are found near each other and the different pairs are separated from one another 

by vertical red lines. The data is on a log2 scale with the color bar representing the fold 

change on the right. Grey metabolites do not exhibit significant or strong changes. In the 

upper part of the figure appear metabolites that could be identified, different groups of 

metabolites are separated by black horizontal lines. The groups are according to 

structural (chemical) classes of compounds, detailed in Supplementary 1. 

Three different types of responses depicted in Figure 15 were identified when 

comparing reciprocal metabolic response within deletions of pairs of paralogs.  

Little or no metabolic response upon the deletion of each of the paralogs.  

Concerted changes in metabolites upon the deletions of the paralogs, i.e. the deletion 

mutants shared significantly up- or down-regulated metabolites. 
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One-sided response. I observe pairs, in which only of one of the deletants responds 

strongly to the deletion, while the metabolic response to the deletion of the paralogous 

counterpart is very mild. 

 

Figure 15 - Nine examples of different types of metabolic responses (from left to right – 

little metabolic effect, multiple concerted changes and one-sided response to deletion). 

Color scale and metabolite order are as in Figure 14. 

Several explanations may be offered for the observed phenomena. I will go over the 

different types one by one. 

3.2.1.4.1 Evolutionary correlates for the extent of metabolic response to deletion 

To better understand the relationship between paralogs with little metabolic response, 

or rather to understand the significance of the amount of changes in the metabolome, I 

assessed the rate of purifying selection on the paralogs. I have employed analysis of 

rate of synonymous (Ks) and non-synonymous (Ka) substitutions - Ka/Ks – a well 

excepted measure of rate of evolution of paralogs57,58. The rate of mutation of 

sequences is not similar for all positions in genes. Mutations which do not change 
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amino acid composition of a gene (synonymous mutations) are considered 

evolutionary neutral, while mutations which do result in amino acid substitution are 

likely to cause detrimental changes in protein function58. Therefore, the rate of 

fixation of non-synonymous mutation is slower. It is possible to assess the rate of 

synonymous (Ks) and non-synonymous (Ka) substitutions in a pairs of genes21,59. 

Gene pairs with a lower Ka/Ks ratio are usually thought to be under purifying 

selection57,58, i.e. these genes are under selective pressure to weed out non-

synonymous mutations which disrupt gene function. 

I analyzed the Ka/Ks ratios in my gene pairs’ sequences and compared them with the 

mean amount of changed metabolites for each pair (Figure 16). 

 

 

Figure 16 – Ka/Ks ratio vs. the mean amount of significantly changed metabolites in 

each paralogous deletion pair. Red ellipse marks gene pairs that are outliers to the main 

correlation trend. 

I observed a significant positive correlation between the mean amount of changed 

metabolites in a pair and its Ka/Ks (r=0.43, p=0.017). However, I have additionally 

found that there is a negative correlation between Ks and the mean amount of changes 

in metabolites (r=-0.45). To verify that the positive correlation with Ka/Ks is not 

solely due to the Ks values, but also due to the Ka component, I performed a partial 
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correlation analysis of Ka/Ks vs. the mean amount of metabolic changes controlling 

for Ks values. The resulting partial correlation was still significantly positive (r=0.34, 

p=0.03). 

Looking beyond the correlations two groups of gene pairs can be discerned in Figure 

16. I identify specific groups of paralogous pairs which exhibit a deviation from the 

overall pattern (see red circled gene pairs in Figure 16). These pairs exhibit a 

relatively high Ka/Ks ratio (and thus lower purifying selection), while exhibiting 

relatively low amounts of metabolic changes upon deletion. 

Further discussion in paragraph  4.1.1 

 

3.2.1.4.2 Pairs exhibiting “concerted” changes 

Another type of metabolic phenotype is the one displaying “concertedness”, as 

exemplified by the pairs of paralogs appearing in Figure 17. 

 

Figure 17 – Five mutant pairs with high concertedness scores as calculated by random 

permutation analysis. Color scale and metabolite order are is as in Figure 14. Grey 

metabolites are not significantly changing. 
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Pairs with concerted changes are these in which similar metabolic changes relative to 

the WT strain arise upon deletion of any of the two paralogs.  

In order to achieve a deeper insight into paralogous pairs with concerted response I 

first needed to devise a score for the level of “concertedness”. I have counted for each 

pair of deletion mutants the amount of same-direction changes in significantly 

responding metabolites in both mutants and subtracted from it the amount of opposite 

direction changes in significantly responding metabolites.  

To assess the significance of this overlap I performed 2·107 shuffles for each pair of 

paralogous deletants such that the labels of significantly changing metabolites were 

distributed between all measured metabolites for each of the deletion mutants and 

then calculated the overlap score for each of the shuffles. For the significance of 

metabolic response “concertedness” for each of the pairs I calculated the proportion of 

times shuffled data had “concertedness” score ≥ true “concertedness” score. The final 

“concertedness” measure was derived by taking –log10 of that fraction (Figure 18). 

 

Figure 18 – log10(p-value) estimating the “concertedness” for different paralogous gene 

deletion pairs. Values above the red line (p-value≤0.02) passed significance testing 

controlling for multiple hypotheses with FDR q-value of 0.05. 
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Further discussion in paragraph  4.1.2. 

3.2.1.4.3 Pairs exhibiting one-sided response to gene deletion 

The third phenotype that could be discerned among the relative metabolic profiles of 

paralogous deletion pairs was termed “one-sided response”: a situation in which 

deletion of one of the paralogs evokes a strong metabolic response, while the deletion 

of the second paralog causes little or no metabolic phenotype. Several examples of 

such a behavior can be found in Figure 19. 

 

Figure 19 - Five mutant pairs with high one-sidedness scores as calculated by random 

permutation analysis. Color scale and metabolite order are is as in Figure 14. 

I quantified the basic measure for one-sidedness of response of paralogous pairs to 

deletion by calculating the value given in Equation 5. I measured the difference 

between the amounts of significantly changing metabolites in each of the samples, 

subtracted the overlap in changed metabolites and normalized by the total amount of 

changing metabolites. 
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To assess the significance of one-sidedness I performed 10,000 shuffles for each pair 

of paralogous deletants such that the labels of significantly changing metabolites were 

randomly distributed between all measured metabolites in both deletion mutants. For 

the p-value of “one-sidedness” of response for each of the pairs I calculated the 

proportion of times shuffled data had one-sidedness score ≥ true one-sidedness score. 

The final “one-sidedness” score was derived by taking -log10 of the p-value of one-

sidedness measure. This scoring method captures well apparent one-sidedness, when 

many metabolites are perturbed upon deletion, but with few changes in a pair (such as 

in the Δnth1/Δnth2 pair) it is harder to achieve significant one-sidedness; since by 

random chance the few changes can appear in one, but not the other deletion mutant. 

I can see that only 8 pairs of mutants had a significant one-sided response to deletion 

mutation (Figure 20). 

ji

commonji
k NN

N-N-N
  O ij


  

Where Ok is the one-sidedness measure for each pair of single gene deletion mutants. Ni and 

Nj are the amount of significant changes in each of the deletion mutants’ metabolic profiles. 

ijcommonN is the amount of metabolites changed to the same direction in both mutants. 

Equation 5 – Concertedness measure calculation for each pair of gene deletion mutants. 
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Figure 20 – “one-sidedness” levels of different paralogous gene deletion pairs. The score 

was constructed as noted above. Values on the red line and above (p-value≤0.0057) 

passed significance testing control for multiple hypotheses with FDR q-value of 0.05. 

Further discussion in paragraph  4.1.3. 

 

3.2.1.5 A potential metabolic basis for mutants’ growth defects 

Among the mutants I have profiled, some differed in their growth rate on minimal 

medium relative to the wild type strain. Metabolites both regulate the growth rate of 

yeast cells and are affected by it. Therefore, I have set out to check which metabolites 

are either positively or negatively correlated with the growth rate or fitness of cells. 

For each mutant I measured the growth rate relative to the WT grown in the same day. 

As a proxy to fitness I used the inverse of the relative growth rate (1/relative growth 

rate).  

First, I wanted to examine whether the sheer amount of changed metabolites in 

mutants was indicative of deviation from the wild type fitness levels.  

I can observe that there is no direct correlation between the count of changed 

metabolites and the fitness of mutants (Figure 21). However, when looking only at 
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mutants with relative fitness lower than wild type I see a modest, yet significant 

negative correlation (r=-0.43, p-value = 0.02) between relative fitness and the amount 

of changed metabolites. 

 

Figure 21 – Relative fitness of paralogous single mutants as a function of amount of 

significantly changed metabolites in a mutant. Labels of select mutants are given on the 

plot. 

I further performed a similar analysis splitting between metabolites whose 

concentrations increased in mutants and those whose concentrations decreased 

(Figure 22). 
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Figure 22 - A. Amount of metabolites increased after deletion of each mutant vs. relative 

fitness of the mutant (mutant growth rate/wt growth rate). B. Amount of metabolites 

decreased after deletion of each mutant vs. relative fitness of the mutant. Labels of select 

mutants are given on the plots. 

The correlation between the amount of changes to each of the sides and the relative 

fitness of mutants different than WT is still negative (-0.1 and -0.3 for amounts of 

increased and decreased metabolites respectively) but not significant given the sample 

size. This suggests, then, that the association of fitness is with the overall metabolic 

change, rather than the directionality of the change. 

To check which specific metabolite’s levels are associated with the fitness of mutant 

strains I performed a correlation analysis between the two variables. Yet, no 

individual metabolite showed significant correlation with the mutant fitness. Perhaps, 

however, due to some higher level interactions between metabolites the combined 

information from multiple metabolic profiles of mutants can be used to predict fitness 

defects? 

To tackle this question I used a simple artificial neural network which learned to 

predict the fitness of all mutants from metabolic profiles. The predictor network was 

constructed with just one perceptron neuron. The perceptron was trained on a 

randomly chosen set of metabolic profiles of mutants containing 70% of the data and 

each time validated on the remaining 30%. The proportion of training and the 

validation set contained the same amounts of data with growth defects. The target was 

a vector with designation whether a mutant had or did not have a growth defect. For 
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each such perceptron, as a control I trained a similar perceptron on the same data with 

a shuffled target vector. The comparison between performance on shuffled labels and 

true data was repeated 500 times. Figure 23 depicts the distributions of the amount of 

correctly classified mutants in the validation set of shuffled and true data. 

 

Figure 23 – Based on 500 splits of data to training and validation set. In blue is the 

distribution of proportion of correctly classified growth defects phenotypes from 

validation sets as predicted by perceptrons trained on true labels. In red is a control: the 

distribution of proportion of correctly predicted growth defect phenotypes from the 

validation sets predicted by perceptrons trained on shuffled labels. 

I can see a difference in the two distributions. The mean and the median proportion of 

correct predictions using the shuffled labels was as expected 50%. Based on the true 

data, however, correct predictions existed on average in 60% of the cases. This 

difference was highly significant (Wilcoxon rank sum test p-value<10-32). I also 

observed that in successful predictions some metabolites (e.g. ornithine) repeatedly 

exhibited high weights in the classifying neuron. 

Further discussion in paragraph  4.1.4. 

 

3.2.1.6 Prediction of subcellular localization of proteins based on the metabolic 

profile of deletion mutants 

Deletion mutants that I analyzed differed in their subcellular localization. I observed 

that metabolites known to exist in a specific subcellular location change in response to 
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the deletion of genes that are localized to that location. Specifically the mutants with 

deletion in the ACO1 and ACO2 genes (which are part of the TCA cycle genes 

localizing to the mitochondria) exhibited significant changes in metabolites that 

participate in mitochondrial respiration (Figure 11, section  3.2.1.2). 

I wanted to check further whether this behavior is a general property of deletion 

mutants. If so, then metabolomics data from deletion mutants might be used to predict 

the subcellular localization of genes. 

I have employed a strategy similar to that described in section  3.2.1.5. I constructed a 

dataset with the annotation of subcellular localization according to GO60 

(Saccharomyces Genome Database accessed June, 2009) of proteins whose deletion 

mutants I profiled. Subsequently, I divided the genes into 4 groups; mitochondrial 

only, cytoplasmic and mitochondrial, cytoplasmic only and belonging to other 

subcellular localizations (peroxisome, endopasmic reticulum etc.). A simple two-layer 

probabilistic neural network was constructed, using the “newpnn” built-in Matlab 

program, to predict subcellular localization of a mutant by its metabolic profile. The 

data was divided once again to 70% training set mutants and 30% validation set. The 

proportion of genes belonging to each of the four subcellular localization groups was 

kept constant in the training and the validation sets. As a control I trained a similar 

neural network using shuffled labels of the subcellular localization of the mutants. 

The process was repeated 5000 times. Figure 24 depicts the distributions of the 

proportion of correctly classified mutants in the validation sets of shuffled and true 

data. 
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Figure 24 - Distribution of proportion of correctly predicted cellular localizations of 

mutants based on the metabolic profiles of deletants – 5000 randomizations. In blue is 

the distribution of correct predictions in the validation sets based on neural networks 

trained on true designations of subcellular localizations to mutants, in red is the 

distribution of proportion of correct predictions in validation sets classified based on 

neural networks trained on data with shuffled designations of subcellular localization. 

I can see a difference in the two distributions. The mean and the median proportion of 

correct predictions in the control was 43%. Whereas correct predictions ratio based on 

the true data rises to 53% of the cases on average. This difference was highly 

significant (Wilcoxon rank sum test p-value<10-200). 

Further discussion of the results in paragraph  4.1.5. 

3.2.2 Metabolic profiling of yeast double mutants in paralogous genes 

Four different paralogous pairs whose double mutant was viable in the minimal 

medium used in the study were chosen for the analysis of double-mutations (APA1, 

APA2, FRDS1, FRDS2, HXK1, HXK2, ITR1 and ITR2).  

Since I mainly attempted to understand the relationship between single gene deletions 

and double deletions, I was especially interested in the metabolic manifestation of 

negative epistasis in yeast. Epistasis is a phenomenon in which a gene either masks or 
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augments the effect on the phenotype of another gene. In the case of gene deletions 

and their effect on fitness one can define epistasis (ε) as a case when the fitness of a 

double mutant is different than the expected product of the fitness of the single 

mutants (ε = Wx’x’’ – Wx’•Wx’’, where Wx’ is the fitness of the deletion mutant in the 

first gene, Wx’’ is the fitness of the second deletion mutant and Wx’x’’ is the measured 

fitness of the double mutant). Negative epistasis is, therefore, a situation in which the 

fitness drop of the double mutant relative to the WT is more significant than the 

product of fitness decreases in each of the single mutants. 

I obtained epistasis measurements from the study of DeLuna et al.61 for pairs of yeast 

paralogs. In the DeLuna study epistasis was experimentally determined for each pair 

in a set of multiple pairs of paralogous genes including the four genes used in my 

study. However, it is important to notice that the epistasis measurements of  DeLuna 

were carried out in rich medium, while my study was carried out in minimal medium. 

The setup of the experiments in the current study slightly differed from that of the 

single gene deletion experiments. Each day of experiments contained triplicates of 

WT, mutant 1, mutant 2 and double mutant denoted “1/2”. 

Figure 25 depicts the metabolite changes in the single and double mutants following 

the standard normalization procedures. To facilitate viewing of the results, all 

metabolites, that showed insignificant, or less than 3-fold change relative to the WT 

were grayed out. 
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Figure 25 – Metabolite changes in single and double mutants in paralogs relative to WT. 

Rows represent metabolites’ relative intensity. Columns mark different mutants. 

Metabolomics data for each single mutant and the double mutant from each paralogous 

pair are found near each other. Different pairs are separated by vertical red lines. Color 

scale and metabolite order as in Figure 14. To facilitate visual analysis metabolites that 

either show a response of less than 3-fold, or metabolites that are not significantly 

changing are depicted in grey. 

One can see that there are marked differences between the response of each pair of 

genes to deletion and their double mutant. Both double mutants Δapa1Δapa2 and 

Δfrds1Δfrds2 are quite similar to each of their single mutants in the magnitude of 

their metabolic response to deletion; in contrast, Δhxk1Δhxk2 and Δitr1Δitr2 are 

exhibiting very strong metabolic changes relative to their respective single mutants.  

In the next step of analysis I looked at the relationship between each of the mutants in 

the mutant set and the double mutant with regard to the amounts and identity of all 

significantly changed metabolites (Figure 26 – note, that the results taken, also 
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include metabolites that showed less than 3-fold change, therefore the amount of 

metabolites is larger than what was shown in Figure 25).  

 
If there were no epistasis, the basic expectation for double mutants would be to show 

response only among metabolites that were changed in the single deletion mutants. I, 

however, observed an interesting phenomenon. The set of metabolites changed in the 

double mutants in all cases contained most of the metabolites that were changed in the 

single mutants and additionally had a relatively very large set of metabolites changing 

uniquely in the double mutants. The Δhxk1, Δhxk2 and Δhxk1Δhxk2 strains present a 

Figure 26 – A Venn diagram describing the amounts of significantly changed metabolites in each 
of the mutant sets. The labels of the mutants are adjacent to the circles. Circle size and 
intersections are approximately proportional to the amount of metabolites changed in each group 
– total amount of significantly varying metabolites in each mutant is given in parentheses 
(including those with less than two fold change). Epistasis scores (ε) from the DeLuna study for 
each gene pair is given in the upper left part of each subplot. 

23.0

02.0 11.0

14.0
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special case. In these three mutants the overlap between metabolic changes is very 

large. This can be explained by the fact that each of the single mutants by itself 

exhibits significantly slow growth, and the double mutant adds upon that phenotype a 

synergistic effect resulting in a markedly pronounced growth defect (as indicated by 

the most negative epistasis coefficient ε =-0.23).  

Δfrds1 and Δfrds2 on the contrary, exhibiting lower epistasis (ε =-0.11), did not 

exhibit any growth defect in my medium, and that could be the reason for the absence 

of a strong metabolic response or a marked increase in the amount of changes in the 

double mutant. 
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3.3 Metabolic profiling of S. cerevisiae response to various stresses 

So far I examined the metabolic response of yeast to genetic perturbations, i.e. single 

or double deletion mutants. I next wanted to examine the metabolic effect of another 

type of perturbation – environmental stresses. For that I measured the metabolic 

response of Saccharomyces cerevisiae cells to several different environmental 

stresses. 

The following stresses were chosen for evaluation: ethanol stress (5%), heat shock 

(37°C), oxidative stress (H2O2 0.3 mM), and drug-mediated growth arrest via protein 

synthesis inhibition using cycloheximide (7 µg/ml)*. The exposure to the stress lasted 

for 60 min. after which the samples were harvested. 

The experiments were carried out in a manner similar to the single gene deletion set 

of experiments. Figure 27 depicts the metabolite changes in different environmental 

conditions following the standard normalization procedures. 

 

 

                                                
* Repeat ethanol and cycloheximide 5 µg/ml experiments were also carried out and 

showed qualitatively similar results (data not shown). 
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Figure 27 – Cellular response to a 60 minute exposure to different environmental 

stresses relative to the standard non-stressed conditions. Color scale (log2 scale) and 

metabolite order are as in Figure 14. Zoom in on known metabolites is in Figure 28 

A zoom-in on known metabolites (the upper portion of Figure 27) clarifies the signal 

(Figure 28). 
 

37°C Ethanol 5%  H2O2 0.3mM Cycloheximide 
7 µg/ml 



 

Figure 28 – Cellular response to a 60 minute exposure to different environmental stress 
relative to the standard non-stressed conditions – Identified metabolites. Color scale 
(log2) is similar to Figure 14. 

Four observations are apparent from the results. One is that the environmental stress 

response has a wide effect on the metabolome (14% - 35% of metabolites exhibit 

more than 2-fold change relative to unperturbed strains).  

From the correlation matrix of the stress responses (Figure 29) it appears that the 

cycloheximide stress response is least similar to other metabolic phenotypes. 

 

Figure 29 – Pearson correlation coefficient matrix for fold change relative to 
unperturbed culture in environmental stresses 
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A third, striking result is the highly elevated level of trehalose (at least 30 fold 

increase in all applied stresses). Glutamate also shows response in all stresses, albeit 

to a lesser extent. Serine and 5-methylthioadenosine show an increase in three of the 

four stresses. 

The fourth apparent result is related to the directionality of change in metabolites (the 

tendency of a stress to cause accumulation of metabolites or depletion thereof). 

 Cycloheximide 

7 µg/ml 

Ethanol 5% 

 

H2O2 0.3 mM 37°C 

Number of metabolites 

Increased 
12 8 16 28 

Number of metabolites 

Decreased 
7 40 5 3 

Table 3 – Count of increased or decreased metabolites (at least 2 fold change) in 

different environmental stresses – including unidentified metabolites 

From Table 3 two opposite patterns emerge. On one hand the ethanol exposure caused 

depletion of multiple metabolites, on the other hand in response to both heat shock 

and H2O2 more metabolites increase rather than decrease. This pattern may be related 

to growth decrease mediated by ethanol, and to growth increase caused by 

temperature increase. 

See section  4.2 for additional discussion of the environmental response results. 

3.3.1 Ethanol stress analysis 

In Figure 28, several specific metabolites changing in the 60 minute ethanol stress can 

be seen. However, I additionally wanted to observe the development of the response 

to ethanol. Metabolic response can occur either on the level of the proteins already 

existing in the cell, or via new protein biosynthesis. Metabolites changing first in 

response to stress are expected to be controlled by existing protein pool, while those 

responding later are expected to be controlled by stress responsive newly synthesized 

proteins. 

In general, in the 60 minute ethanol-exposed cultures a metabolome-wide decrease in 

most metabolites can be seen, however, changes in two metabolites are of special 

interest – a decrease in Glucose-6-phosphate (G6P) levels, and extremely high 
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trehalose levels (Figure 28); G6P levels decreased ~3 fold, while trehalose levels 

increased ~226 fold (see section  4.2.1 for further discussion of the role of trehalose 

and Glucose-6-phosphate ). 

To analyze the speed of the response of cells to ethanol additional, independent, 

experiments were carried out with similar levels of ethanol stress, but different 

durations (10 minutes, 30 minutes and 60 minutes). The 60 minute replicate shows 

qualitatively similar results to the first 60 min experiment. 

Results in Figure 30 and Figure 31 show that, while limited, a metabolic response 

occurs within the first 10 minutes of exposure to 5% ethanol. In particular (looking at 

identified metabolites in Figure 31), a decrease in G6P levels is evident across all 

timepoints. Trehalose levels in the first two experiments remain similar to the 

unperturbed strain, and rise only towards 60 minutes. Therefore, it would be logical to 

assume that the decrease in G6P is mediated mainly by existing proteins, while an 

increase in trehalose is mediated via protein biosynthesis. 

 
 

 

 

5%, 10 min 
EtOH 

5%, 30 min 
EtOH 

5%, 60 min 
EtOH 

Figure 30 – Cellular response to ethanol 5% exposure of 10 minutes and 30 minutes relative 
to the metabolic profile of an unperturbed strain. Color scale (log2) and metabolite order are 
similar to Figure 14. (Results in 60 minutes stress may differ somewhat from those in Figure 
27, since the two experiments were carried out with ~1 year difference) 
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Figure 31 - Cellular response to ethanol 5% exposure of 10 minutes and 30 minutes – 

Identified metabolites. Glucose-6-phosphate and trehalose are marked with red arrows. 

Color scale (log2) is similar to Figure 14. 

Further discussion of regarding ethanol response can be found in section  4.2.1. 

3.4 Metabolic profiling of S. cerevisiae strains evolved to cope with 

high intensity heat stress 

To further analyze the response of yeast cells to stresses I have profiled a strain of S. 

cerevisiae that was evolved to cope with increased heat (see methods section  2.1.2). 

The metabolic response of evolved cultures and control cultures (that evolved under 

same conditions, yet permissive temperature of 30°C) to heat stress was assessed. 

Two levels of stress were used; 39°C exposure that is extremely stressful for non-

evolved cultures, while the evolved cultures routinely cope with this stress and exhibit 

normal growth rates. To check the response of evolved strains to a temperature that 

represents a heat shock for them – a treatment of 45°C was used too. Additionally, to 

assess the baseline changes in the metabolome of the evolved strains I profiled the 

evolved strain at 30°C. Results of the experiments are presented in Figure 32 and 

Figure 33. 

5%, 10 min 
EtOH 

5%, 30 min 
EtOH 

5%, 60 min 
EtOH 
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Figure 32 - Cellular response to heat shock of evolved and control strain. Data is given 

on a log2 scale relative to the values of control strain in 30°C. Color scale (log2 scale) 

and metabolite order are as in Figure 14. Since the control strain at 30° is normalized to 

itself, it appears in gray 

 

Control strain 
30°C 

Evoltant 
39°C 

Evoltant 
30°C 

Control strain 
39°C 

Control strain 
45°C 

Evoltant 
45°C 
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Figure 33 - Cellular response to heat shock of evolved and control strain. Data is given 

on a log2 scale relative to the values of control strain in 30°C – only identified 

metabolites. Color scale (log2) is similar to Figure 14. Since the control strain at 30° is 

normalized to itself, all metabolites in this strain appear in gray 

Control strain 
39°C 

Control strain 
45°C 

Evoltant 
30°C 

Evoltant 
39°C 

Evoltant 
45°C 
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Figure 34 – Plot of the mass fragment signals (markers) projection on the first two 

principal components, following a principal component analysis of the evolved strain (in 

blank circles) and the control strain (full circles) response to varying heat stress. Mass 

signals were log2-transformed before PCA. The first principal component captures 61% 

of variance in the data, while the second captures 17%. 

 

Looking at the results, several phenomena can be noted. 

The growth temperature is the dominant factor that affects the metabolome. At each 

temperature the evolved strain and the control strain are more similar to one another 

than to the same strain at a different temperature 

Judging from the distance in the space of the first two principal components between 

control strain at 30°C and the evolved strains (Figure 34), as could be expected, the 

response of both the evolved and the control strain to higher temperature (45°C) is 

more pronounced than the response to 39°C 
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The response of both strains to 45°C exposure is similar (in Figure 35B the 

metabolites in both strains appear on the diagonal, and the location in the PCA space 

of the evoltant and the control strain in 45°C is similar in Figure 34), while the 

exposure to 39°C degrees (Figure 35A) in the evolved strain brings about a stronger 

response than in the control strain. Most metabolites that increase upon exposure to 

39°C exhibit a higher response in the evoltant than in the control. 

The baseline metabolome (at 30°C) of the evolved strain is mostly similar to that of 

the control strain. However, when changes do occur most of them are in metabolites 

that are strongly responsive to heat stress (Figure 32, Figure 33). 

When looking only at identified metabolites (Figure 33), it can be seen that changes in 

the evolved strain under non-stressed conditions (30°C) are in the following 

compounds: Ornithine, Glutamate, Sorbitol and Trehalose. 

In addition to the metabolome, a transcriptional profiling of the evolved (denoted 

evo39) and the control (denoted evo30) strains was carried out. Avihu Yona from our 

lab, who carried out the evolution experiments, subjected the evolved and control 

cultures to 42°C and 45°C stresses and measured mRNA levels across several 

timepoints. I analyzed the control strain data after 60 minutes exposure to 42°C and 

45°C stresses relative to no heat exposure, as well as two replicates of the strain 

Figure 35 –Dot plot for metabolite changes relative to control in 30°C in control and 

evolved strains at 39°C (plot A) and 45°C (plot B). Ratios were log2 transformed and 

non significantly changing metabolites were set to 0. The diagonal (y=x) is plotted in 

black. 

A B 
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evolved under heat shock relative to control strain at 30 degrees (t=0). Results of 

transcriptome analysis with respect to metabolic genes (as outlined in the iLL672 

model62) appear in Figure 36. 

When comparing the evoltant to the control strain (Figure 36A) it appears that no 

single gene related to the metabolic changes that I observe is up- or down-regulated in 

the evoltant (see genes and gene names marked in red on Figure 36A). However, 

when looking at genes which are related specifically to trehalose metabolism (genes 

marked with magenta full circles in Figure 36 A-C, Supplementary 3) is appears that 

as a whole they are significantly (see Methods  2.8 for methodology) up-regulated in 

the evoltant. Additionally it appears, that those same genes are also significantly up-

regulated in the control strain after exposure to heat stress of 42°C and 45°C (Figure 

36B and Figure 36C respectively). This leads to the conclusion that in the evolved 

strain, genes related to a pathway necessary to cope with heat stress have higher levels 

to begin with. i.e. even before the induction of stress response.  
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Figure 36 – Transcriptional response of metabolic genes in evolution. A. The 
average fold change (on log2 scale) of different transcripts in the evolved strain 
relative to WT. In red circles are marked (and labeled) genes which fluctuate 
more than 2.5 standard deviations from the mean of all genes expression levels. 
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Magenta full circles are genes related to trehalose biosynthesis pathway (for full 
list of genes see Supplementary 3). B. Relative transcript levels @42oC exposure 
for 60 minutes of control strain. In magenta circles are marked genes related to 
trehalose biosynthesis. C. Relative transcript levels @45oC exposure for 60 
minutes of control strain. In magenta circles are marked genes related to 
trehalose biosynthesis. On all the figures the mean increase in genes related to 
trehalose pathway is marked, as well as the p-value of its significance given the 
number of genes in the pathway (see Methods section  2.8) 

Further discussion with respect to the comparison of strains evolved under heat stress 

regime can be found in Section  4.3. 

4 Discussion 
According to the Central Dogma, the genome is the blueprint for cellular functions, 

the cellular functionality is mostly carried out via proteins, with the transcriptome 

serving as the mediator between the two levels. Ultimately, the function of many of 

the proteins, predominantly of enzymes and transporters, is to maintain cellular 

metabolites at desired levels and to ensure cell proliferation.  

The metabolome, i.e. the complement of all the small intracellular molecules is 

affected both by the environment and by the genetically encoded proteins. Therefore, 

it is the first and the most direct manifestation of the cellular phenotype; the complex 

of the traits which is determined at the meeting point of the environment and the 

genotype. 

In my thesis I have set out to study on one hand the effect genetic changes on the most 

basic manifestation of the phenotype (the metabolome), and on the other hand the 

effect of the environment on the metabolome. 

To carry out the analysis of yeast metabolome I developed a robust method which 

allows multiple sample analysis in relatively short periods of time (Results Section  0). 

The method showed repeatability and relative stability of experimental results over 

long periods of time. 

4.1 Analysis of deletion mutants of paralogous genes 

One of the commonly occurring evolutionary processes in genomes is gene 

duplication. The effect of gene duplication on cell survival and transcriptome is quite 

will studied, however, the effect on the metabolome has not been explored. I applied 
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the newly developed method for the analysis of 78 deletion mutants representing 39 

pairs of paralogous genes, which are known to be related to metabolism in yeast. 

To begin with, I conducted analysis of several specific deletion mutants mainly as a 

control for the experimental method. Two observations were apparent from the 

analysis of Δaco1, Δaco2, Δnth1 and Δnth2. First, the metabolites that significantly 

change upon deletion of these genes are often related to the pathway in which the 

deletion was carried out. Second, as could be expected, the deletion of the more active 

paralog in the checked conditions (ACO1 and NTH1) brought about more changes 

than the deletion of the less active counterpart. 

Next step was to analyze the group of paralogous gene deletions as a whole. Three 

major types of relative metabolic changes could be noted – small changes upon 

deletion of each of the two paralogs, “concerted” changes and one-sided changes. In 

the latter, deletion of one paralog causes many metabolic changes, while the deletion 

of the other leads to a few changes. 

4.1.1 Paralogous gene pairs that exhibit low or no metabolic response upon 

deletion 

As could be seen from Section  3.2.1.4 (p. 40, Figure 15), one of the phenotypes to 

deletion of paralogs was that little that or no significant metabolic changes occurred in 

response to the deletion. There are two possible explanations for such pairs. One is 

that the genes that were deleted have no effect on the metabolome, at least in the 

checked conditions, e.g. because of repression (for instance DLD1 and DLD3 which 

both play a function in lactate metabolism, but are repressed upon growth on glucose). 

The second explanation for no apparent effect can be that paralogs provide good 

backup to each other, i.e. that the genes function in a similar manner. 

A definitive test between the two hypotheses is true, would be to measure the fitness 

of double mutants. According to the first hypothesis the double mutant should be 

viable, while, if the second hypothesis is true the double mutant would suffer from the 

absence of backup, and exhibit low fitness. Since creating double mutant strains is a 

laborious procedure and would be out of scope of current dissertation, a possible 

correlative key for deciding between the two hypotheses may be found in the rate of 

evolutionary divergence of paralogous gene pairs. Selective pressure toward similar 

functionality of genes (purifying selection) that exhibit little metabolic change would 
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favor the second hypothesis, as non-functional genes are expected to be evolving 

independently of the amount of metabolic changes.  

In paragraph  3.2.1.4.1 (Figure 16) a positive correlation was found between the Ka/Ks 

ratio of paralogous pairs and the mean amount of metabolic changes upon the deletion 

of each of the members. This positive correlation implies that the amount of changed 

metabolites is associated with purifying selection towards keeping paralogous pairs 

similar. Upon deletion of genes that show slow functional divergence from one 

another there are less metabolites changing. This finding supports the second 

hypothesis – regarding the similarity of the genes. I propose that the effect of little or 

no metabolic change might be due to well carried out backup between paralogs, which 

were selected to maintain similar functionality, rather than due to the occurrence of 

non-functional genes. The above is also in agreement with Kafri and colleagues22-24 

who suggested that paralogous gene pairs are selected to retain some degree of 

similarity in their activity to allow for better functioning of the cells e.g. with respect 

to molecular noise. 

As to the pairs that showed relatively low purifying selection with few metabolic 

changes upon deletion (red circled gene pairs in Figure 16) I can hypothesize that 

genes in this part of plot are not strongly active in the conditions I checked (high 

glucose). 

Indeed, when looking at their identity I notice that the DLD1 (which is repressed by 

glucose) and DLD3 (whose expression is driven by mitochondrial damage) gene pair 

is in that group. Another example is the DAK1 and DAK2 paralogous pair responsible 

for the dihydroxyacetone kinase activity. These genes are too mostly inactive in 

glucose rich unstressful conditions (BIOBASE knowledge library, accessed 

31/08/2009); the deletion mutants for these two genes can be found too in the red 

circled region. Given their relatively high Ka/Ks ratio it is possible that in stressful 

conditions or upon growth on glycerol deletion of these genes will produce a stronger 

metabolic response. 
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4.1.2 Paralogous gene pairs that exhibit “concerted” metabolic response upon 

deletion 

Concerted changes appear to be encountered quite often upon the deletion of paralogs 

(see section  3.2.1.4.2). This phenotype was significantly shown in 23 out of the 39 

gene pairs I have analyzed. 

At least two possible reasons may contribute to the observed phenotypes. The first is 

the dosage effect which assumes that the two paralogs perform a common reaction 

and both are required to provide the full flux through the reaction and synthesize the 

full amount of the downstream product. In case of deletion of any of these paralogs 

the flux through the reaction will be diminished and the downstream effects will be 

similar for both of the paralogs (mainly increase in upstream metabolites). Another 

possible explanation is that the two paralogous genes belong to the same protein 

complex. Without either of them the complex is destabilized or its formation happens 

with lower probability. Therefore the flux through the reaction is diminished and the 

downstream effects are similar. However, as most of the checked pairs are not part of 

known complexes this second hypothesis is rather unlikely.  

Unfortunately, not enough data exists to unequivocally support the first hypothesis 

either. Direct experimental measurements of metabolic fluxes would be very helpful. 

 

4.1.3 Paralogous gene pairs exhibiting one-sided metabolic response upon 

deletion 

One sided metabolic response in my data is a situation in which one of the deleted 

paralogs exhibits significantly more changes than its peer. My results show that 8 out 

of 39 paralogous pairs exhibit significant one-sided metabolic response (results 

section  3.2.1.4.3) 

I can offer two plausible hypotheses explaining the observed one-sided response of 

paralogs. One is existence of good backup by transcriptional reprogramming of one 

paralog, but not the other22. Another explanation may lie once again in non-

functionality of one of the checked genes in my experimental conditions. For 

example, the glutamate dehydrogenase gene GDH3 is known to be repressed by 

glucose rich conditions, while its paralog (GDH1) is active in glucose rich 

conditions63. This is in good correspondence with the absence of metabolic response I 

observed in the Δgdh3 mutant, and a strong response upon deletion of Δgdh1. 
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Moreover, it was experimentally shown that deletion of GDH3 does not cause any 

change in the levels of GDH1 (Michael Springer, personal communication). Such a 

change could have caused an increased flux through the reaction and might have 

resulted in some change in the metabolic phenotype.  

Another pair with one-sided phenotype is the HXK1 and HXK2 pair. Double mutants 

Δhxk1Δhxk2 cannot ferment glucose, i.e. the two genes provide backup for each 

other64. HXK2 encodes the major isoform of hexokinase that is required for 

glycolysis. Its expression represses HXK1. Upon deletion of HXK2 though, HXK1 is 

derepressed65. My results show that indeed under glucose rich conditions the mutant 

Δhxk1 did not exhibit a strong metabolic phenotype (second mutant pair in Figure 14) 

probably due to its repression in my experimental conditions. HXK2 deletion on the 

other hand, produced a few metabolic changes. This phenomenon might be explained 

by non-perfect backup of Δhxk2 by the upregulated HXK1. Interestingly, this pair of 

mutants has a Ka/Ks ratio of 0.2 (Figure 16). I can hypothesize that non-full backup 

of the Δhxk2 mutant is among other things due to a relatively high divergence rate 

between the two paralogs.  

 

4.1.4 The state of the metabolome is a predictor of growth rate decline 

Some deletion mutants that I profiled showed slowed growth rates (results section 

 3.2.1.5). I conjecture that the metabolome on one hand affects the growth rate of 

mutant, and on the other hand is affected by the growth rate. Therefore, it was logical 

to expect that the metabolome carries information regarding the growth rate. 

No specific metabolite was found to correlate with growth rate of deletion mutants. 

However, I could observe that growth rate could be predicted to a limited extent based 

on the combined levels of all the metabolites. Several metabolites, such as ornithine, 

often appeared in the successful predictor solutions. Such metabolites might be those 

that mediate the relationship between metabolite levels and growth rates in S. 

cerevisiae mutants. However, the significance of this finding was hard to assess 

statistically. This finding requires future study and analysis to establish the causality 

of the phenomenon to pinpoint the role of specific metabolites in determining the 

growth rate. 
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4.1.5 Metabolic response to deletion is a predictor of the cellular localization of 

the deleted gene 

It is plausible to assume that deletion of a gene in a particular subcellular location e.g. 

mitochondria will cause accumulation or decrease in metabolites that belong to that 

specific organelle. Indeed both anecdotal observations and a large-scale prediction of 

cellular localization based on the metabolic level (section  3.2.1.6), show that 

metabolites are connected and have predictive power with respect to the cellular 

location of the deleted gene. While the quality of subcellular location prediction using 

metabomolome changes is not very high (as compared to random), it nevertheless 

allows enrichment of the annotation of deleted genes. 

While in S. cerevisiae, high-throughput studies have already pinpointed the cellular 

localization of most genes66, metabolomics opens a possibility to uncover the 

localization of genes in other species. 

 

4.1.6 Analysis of double mutants in S. cerevisiae 

In order to further elucidate the behavior of paralogous gene pairs in S. cerevisiae, I 

carried out metabolic profiling on selected double mutants in paralogous genes. 

Overall I could see that metabolomic analysis of double mutants carries some 

potential for understanding the mechanisms underlying the epistasis of genes, 

however, a fuller, more complete, understanding and decryption of metabolic profiles 

requires more accurate results and larger data sets. It is also possible, that a clearer 

signal would be available, if I had growth rate measurements in mineral medium, the 

conditions in which all my metabolomics experiments were performed. Even though 

the DeLuna data set is based on minimal medium, the yeast nitrogen base used for 

that study, is more complex than the defined mineral basis for the mineral medium. 

 

4.2 The yeast metabolome is highly responsive to environmental 

stimuli 

After gaining an insight into the response of the metabolome to genetic perturbations. 

I set out to address the second variable affecting phenotype – the environment. To that 

end I profiled the metabolome after exposure to several different environmental 

stresses. 
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It was shown that yeast exhibit a similar transcriptional response to an array of 

stresses9,10. Several transcription factors were shown to be responsible for the 

observed similarity, namely the YAP gene family25,67. 

The results from my experiments (Paragraph  3.3) lead to several conclusions; some 

are basic, while others are not as apparent. First of all, the results showed that the 

environmental perturbations lead to an extensive response on the level of metabolites. 

The high responsiveness of the metabolome to the environment allows cells to 

achieve high plasticity. A simultaneous modification of the levels of multiple 

metabolites permits cells to achieve optimal response to external conditions. 

Another observation was that there are stresses which are similar to each other in 

terms of response to the environmental perturbation (specifically the oxidative stress 

and heat shock). Interestingly, it was previously shown that hydrogen peroxide and 

heat shock invoke very similar transcriptional stress response in yeast cells and that 

similar signaling molecules mediate the information needed for the response9,68,69. 

High elevation in trehalose levels will be discussed below, and can perhaps be better 

understood by a more particular ethanol stress analysis (Paragraphs  3.3.1 and  4.2.1).  

4.2.1 Ethanol stress in S. cerevisiae induces high levels of trehalose to cope with 

substrate-accelerated toxicity 

Ethanol stress that was used in my study is a well-studied stress to which cells are 

routinely exposed. During yeast fermentation ethanol is a major by-product of energy 

metabolism. Ethanol is toxic for most organisms, as it disrupts cellular membranes, 

exerts osmotic stress on cells and may inhibit enzyme function within the cells. While 

yeasts can better cope with ethanol stress than most other organisms, they too suffer 

from its adverse effects70-72. 

Cells respond to ethanol first by growth arrest, due to either cell volume shrinkage or 

loss of turgor pressure due to water leakage through osmosis. This process is very fast 

and is usually completed within a minute. After that, cells develop a secondary 

response to stress by synthesis of membrane-stabilizing compounds, osmo-protective 

compounds and heat shock proteins. One of the dangers of growth arrest in yeast 

cells, is that it may cause adverse effects due to substrate accelerated toxicity73. 

Substrate accelerated toxicity in glycolysis is caused by an imbalance between the 

production and degradation of hexose-phosphates. Production of glucose-6-phosphate 

and fructose-1,6-bisphosphate from glucose in the early stages of glycolysis utilizes 
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ATP. Insufficient degradation of these sugar-phosphates due to inhibited growth and 

“stuck” downstream pathways may lead to accumulation of the two intermediates, 

sequestering of phosphate and its depletion74. This paradoxically causes eventual cell 

death by starvation. 

Yeast response to ethanol was investigated to some extent on the level of the 

transcriptome12. Several works were presented on the level of the metabolome75,76 in 

which the authors mainly looked at processes associated with long term fermentation 

by S. cerevisiae. In these studies the changes in the extracellular environment are 

gradual, and only the late fermentation stages are subject to a significant ethanol 

stress. It is not possible to examine through such experiments the short-term response 

of S. cerevisiae to ethanol, which is associated with fast cellular accommodation to 

significant pressure from the environment. 

It was shown that the transcriptional response to low concentrations of ethanol12 and 

to other stresses9,10 peaks ~30 minutes after exposure to stress. It was also shown that 

~7% of the yeast transcriptome exhibits significant changes after ethanol exposure12, 

whereas I show that the metabolome exhibits a much wider effect in response to 

similar levels of ethanol stress (~40% of the metabolome changes in response to the 

stress). 

Noticeably, in my experiments the levels of most metabolites are lower in stress than 

in standard conditions. This might be the result of decrease in overall metabolism of 

yeast cells, and the growth arrest that is the result of stress. 

The exception to this rule, however, is the extremely elevated level of trehalose (~230 

fold increase in ethanol-exposed cells relative to standard conditions). 

It is known that trehalose and genes related to its metabolism increase in ethanol 

stress12 among other stresses77. It was also suggested that biosynthesis of trehalose 

benefits yeast cells in coping with external stress not only by reducing the direct 

effects of stress (e.g. osmotic pressure), but mainly by introduction of an energetic 

futile cycle to cope with the substrate accelerated toxicity74,78 mentioned above. 

Trehalose biosynthesis constitutes a futile cycle beginning with glucose-6-phosphate 

and ending with glucose (Figure 37). It was also shown that all genes that constitute 

this cycle are upregulated upon exposure to ethanol12. 



 

Figure 37– Metabolic pathways near the beginning of glycolysis in yeast cells, along with 

existing and putative futile cycles. Boxes depict metabolites, arrows depict enzymes. The 

names near the arrows are names of genes that encode relevant proteins. All the genes 

that appear on the plot were shown to be upregulated after 30 minutes of 7% ethanol 

stress12. Trehalose (elevated levels) is marked in red. Glucose 6-phosphate is marked in 

blue. The wide green arrow depicts the futile cycle that was suggested to function for 

sequestering of phosphate upon osmotic stress. 

This cycle depletes the intracellular stocks of glucose-6-phosphate and allows the 

regeneration of phosphate molecules. 
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Indeed the metabolome results showed a decrease in the levels of glucose-6-

phosphate upon exposure to stress. 

Fast biosynthesis of trehalose with lagging catabolism thereof, may lead to such an 

effect. The relative concentrations of the two molecules are interdependent as 

expected. The correlation between the transcript elevation and the changing 

metabolite levels elucidates the regulatory mechanism behind the futile cycle. It is 

logical to suggest that the regulation of the cycle's proteins is mostly on the 

transcriptional level rather than on the post-transcriptional levels. However, the very 

fast metabolic response to ethanol hints, that some changes are effected even before 

the initiation of the transcriptional response. 

To settle this issue unambiguously, however, detailed analysis of the dynamics of 

response is needed, involving higher frequency of measurements, flux analysis and 

simultaneous transcriptome analysis. 

 

4.2.2 Trehalose increase can be mediated both by the sensing of the 

extracellular environment and by deficient cell growth 

The stresses that I tested vary in the mechanisms of cellular sensing as well as in their 

effect on the growth rate (Table 4). While both ethanol and H2O2 lead to a decline in 

growth rate and are sensed by cells, the cycloheximide stress greatly decreases growth 

rate79 (repeated in our lab - data not shown), but is not expected to be sensed by yeast 

directly and evoke an environmental stress response. The 37°C stress on the other 

hand, actually increases growth rate by ~10%80 (and data not shown), while being 

sensed and invoking an environmental stress response9,81.  

 Growth arrest Extracellular stress sensing 

Cycloheximide 7 µg/ml Yes No 

Ethanol 5% Yes Yes 

H2O2 0.3 Mm Yes Yes 

37°C No Yes 

Table 4 – Division of stresses to those with growth arrest and with apparent sensing of 

the stress in the environment. 

Therefore, the elevated trehalose levels found in all stresses (Paragraph  3.3) constitute 

a surprising finding. The trehalose response is invoked in all cases, whether by the 
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sensing of the extracellular signal or by the decline in the growth rate. This suggests 

that trehalose is a major stress-responsive molecule regulated on multiple levels – 

both by sensing the environment and by growth rate decrease. 

Observing trehalose levels across the full experimental dataset (Figure 38) it is 

apparent that the mutant with the largest positive change (>70 fold change) in 

trehalose is Δnth1 which was already mentioned earlier (paragraph  3.2.1.3 on p. 37). 

 
Despite the increased trehalose levels in Δnth1, it was previously shown that this 

mutant has a growth deficiency when exposed to heat shock82. This leads to a 

conclusion that trehalose cannot function by itself as a protective compound in stress, 

but its pathway must be activated in stress response. Thus additional support is 

Figure 38 – Trehalose changes relative to control (on log2 scale) across all the 

collected experimental datasets. To avoid cluttering of the x-axis only 

mutants/conditions in which trehalose exhibited more than three-fold change are 

labeled and the respective bars colored in red. On the right side of the plot appear 

the environmental stresses and stress exposure experiments of heat-adapted 

evoltant strains 
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provided to the role of trehalose in the metabolic futile cycle which is needed to cope 

with substrate-mediated toxicity. 

In contrast to Δnth1, Δapa1 deletion mutant exhibits a decrease in intracellular 

trehalose. Apa1p is responsible for the catabolism of polyphosphates83. Both the 

polypohosphate hydrolysis and trehalose pathway activation are responsible for 

regulation of intracellular phosphate levels. Therefore, it is possible that the decrease 

in polyphosphate degradation is linked to trehalose biosynthesis to regulate the levels 

of phosphate. 

4.3 Evolution towards heat resilience elevates the steady-state levels of 

metabolites needed to cope with the stress 

To complement the study of the genetic and the environmental effect on the metabolic 

phenotype I have carried out profiling of a strain that was evolved in laboratory 

conditions towards 39°C heat shock resilience (see Paragraph  3.4). 

Several interesting observations could be noted. 

When a higher response is needed, the acquired higher metabolic response to stress 

does not scale up. The similarity in the response of the control and of the evoltant to 

45°C vs. higher response of the evoltant at 39°C suggests that the evolution on the 

metabolome is directed towards a particular environmental response – towards a 

particular temperature.  

In the evoltant - the higher levels in steady state of metabolites that are later increased 

in stress and the higher levels of these compounds in evoltant in the 39°C stress hints 

to the necessity of "early preparedness" to a stress as a mechanism to cope with it. 

Transcriptional state of genes related to the biosynthesis of stress-related compounds 

(specifically trehalose) exhibits the same phenotype – a steady state higher level of 

the transcripts necessary for heat response in the evolved strain. 

An alternative mechanism, which theoretically can be more beneficial, would be a 

faster response in needed molecules in strains that were evolved towards resilience to 

stress. However, probably rewiring of the transcriptional/translational modules in 

such a way is less feasible from an evolutionary point of view. 

Amusingly, an essentially similar mechanism has evolved in human metabolism. 

Caucasians are more adapted to ethanol than other populations84,85. The basal levels of 

alcohol dehydrogenase in Caucasians is can be higher than in other populations due to 
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increased gene expression86-88. Perhaps, over relatively short term evolutionary scale 

the easiest solution is to increase basal activity of metabolic enzymes (such as ADH in 

humans or trehalose pathway enzymes in S. cerevisiae). 

4.3.1 Stress-related compounds are elevated in a strain evolved to cope with 

heat 

As noted in paragraph  4.2 the rise in trehalose concentration which exists in the 

evolved strain is common to many stresses. The elevated levels of the other 

compounds, on the other hand, are quite interesting. Sorbitol was shown to often 

function similarly to trehalose in yeast cells89. Genes in the Glutamate pathway were 

shown to increase transcription upon exposure of cells to mild heat shock90. It is quite 

possible that ornithine levels subserve this mechanism – Ornithine can be converted to 

Glutamate by Car2p and Put2p  in S. cerevisiae via Glutamate-5-semialdehide53. 

 

Once again the coordination between metabolic response and transcriptional response 

suggests that response to environmental stress is via a transcriptional mechanism 

rather than major post-transcriptional effects. 
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Summary 

In my thesis I strived to explore the effect of the genotype and the environment on the 

most basic manifestation of the cellular phenotype – the metabolome. The phenotype 

is shaped from the interaction between the environment and the genotype. Therefore, I 

investigated the effect of different genotype and environmental perturbations on the 

cellular metabolome. 

First, I developed an analytical method that allowed simultaneous quantitation of over 

one hundred metabolites in multiple experiments in S. cerevisiae. The method showed 

sufficient reproducibility for the experimental needs.  

As a first biological control for the method I profiled the deletion mutants of genes 

NTH1, NTH2 and ACO1, ACO2 genes. The metabolome analysis of the pairs of 

mutants produced changes in pathways pertaining to the respective genes. 

Afterwards, I analyzed multiple deletion mutants in genes with paralogous pairs (78 

deletion mutants representing 39 pairs of genes). Several observations could be 

noticed. Among different deletion mutants the amount of significantly changing 

metabolites relative to the WT strain varied widely. Few metabolic changes were 

observed when the genes were non-functional or not expressed in the conditions of 

the study. Paralogous pairs with multiple changes upon deletion showed relatively 

high levels of purifying selection (i.e. selective pressure to maintain similar 

functionality of the genes). This result suggests that relatively to other genes, paralogs 

with high metabolic impact are slower to evolve. Possibly multiple metabolic changes 

are detrimental and interfere with protein evolution.  

When comparing the response to deletion of the different paralogs two phenotypes 

emerge. The metabolic response to deletion of each of the paralogs may be one-sided 

and accompanied by complementation of one but not the other paralog, or it can be 

“concerted” and lead to a similar metabolic impact upon deletion of each of the two 

paralogs. Concerted changes may occur in cases when paralogs are retained in 

evolution to increase flux through a specific reaction, therefore deletion of each of 

them brings about a similar phenotype. One sided changes on the other hand, occur 

either when one of the paralogs is non-functional in experimental conditions or is not 

able to provide backup for its peer due to high functional divergence. 
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In general, the metabolic phenotype of deletion mutations is somewhat predictive of 

the cellular localization of the deleted gene and can be related to the decrease in 

growth rate. 

The metabolome of double mutants, as could be expected, showed more changes 

relative to each of the single mutants. However, the relationship between the 

metabolic profiles of single or double deletion mutants and the epistasis associated 

with the affected pathway could not be inferred unequivocally from the experimental 

results.  Additional experiments are needed to elucidate this intricate association. 

To execute the second part of the study of the metabolic phenotype, I have next set 

out to observe the impact of the environment on the metabolome. I analyzed the effect 

of several environmental conditions on the metabolic profile of yeast cells.  

All environmental stresses showed a consistent increase in several compounds, 

trehalose being the most notable of them. The change in multiple compounds in 

response to environmental stress may point to a general mechanism of cell protection 

from environmental changes. When analyzing particularly the metabolome in 

response to ethanol, it is plausible that the increase in trehalose is a mechanism to 

cope with substrate accelerated toxicity. The dynamics of ethanol stress response 

development suggests there are some metabolites that react to stress via the 

complement of the proteins already available in the cell. The major metabolic stress 

response (including trehalose increase), though, is executed after a time period 

sufficient for protein synthesis. Judging by the diversity of stresses, a response can be 

induced both via an active sensing of hostile environment and via passive sensing of 

cellular growth arrest. 

In the last set of experiments I set out to explore the relationship between the genome 

and the environment. Results from examination of a strain evolved to cope with high 

temperature stress suggest that in the short term evolution acts to increase the steady 

state of metabolites that serve as protective compounds in stress response, this can be 

carried out perhaps by a new transcriptional steady-state of genes necessary for 

coping with the stress. 

 

Overall, this doctorate contains the largest metabolome study available to-date in 

Saccharomyces cerevisiae, one of the major model organisms in functional genomics. 

Protocols and results from this study can be used for future investigation of the 

metabolome and genomic studies. 
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Supplementary data 

1) The following compounds could be identified in metabolomics experiments and 

classified to different compound classes: 

Compound Class 

Galactose Sugar 

Glucose Sugar 

Mannose Sugar 

Glucose-6-phosphate Sugar-phosphate 

Unknown Sugar-phosphate-a Sugar-phosphate 

Unknown Sugar-phosphate-b Sugar-phosphate 

Fructose-6-phosphate Sugar-phosphate 

Myo-Inositol Inositol derivatives 

Myo-Inositol-1-phosphate Inositol derivatives 

3-phosphoglycerate 

Organic acids and organic acid 

phosphates 

Malate 

Organic acids and organic acid 

phosphates 

Oxalate 

Organic acids and organic acid 

phosphates 

2-Oxoglutarate 

Organic acids and organic acid 

phosphates 

Citrate 

Organic acids and organic acid 

phosphates 

Fumarate 

Organic acids and organic acid 

phosphates 

Succinate 

Organic acids and organic acid 

phosphates 

4-hydroxybenzoic acid Amino acid precursors 

Acetyl-glutamate Amino acid precursors 

5-Methylthioadenosine Amino acid precursors 

Ornithine Amino acids 

Methionine Amino acids 

Lysine Amino acids 
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Arginine Amino acids 

Aspartate Amino acids 

Glutamate Amino acids 

Pyroglutamate Amino acids 

Serine Amino acids 

Phenylalanine Amino acids 

Adenine Nucleobases 

Uridine Nucleobases 

Glycerol Sugar Alcohols 

Galactinol Sugar Alcohols 

Sorbitol Sugar Alcohols 

Sucrose Complex sugars 

Trehalose Complex sugars 

Unknown Sterol-a Sterols 

Unknown Sterol-b Sterols 

Hexadecanoate Fatty acids 

2,4,6-Tri-t-butylbenzenethiol Other 

Phosphate Other 

 

  

2)  The following mutants were used in the study of paralogous deletions: 

GPM2 GPM1 

HXK1 HXK2 

PDC5 PDC6 

TDH1 TDH2 

DLD1 DLD3 

GAL1 GAL3 

ACO1 ACO2 

IDP2 IDP3 

FRDS1 FRDS2 

MDH2 MDH3 

FKS1 FKS2 

GSY1 GSY2 

NTH1 NTH2 
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PMT2 PMT3 

CDA1 CDA2 

INP52 INP53 

ITR1 ITR2 

BAP2 BAP3 

SUL1 SUL2 

ALD2 ALD3 

ARO3 ARO4 

ASN1 ASN2 

GDH1 GDH3 

LYS20 LYS21 

SAM1 SAM2 

SER3 SER33 

PRS2 PRS4 

SOL3 SOL4 

ADE16 ADE17 

APA1 APA2 

URA7 URA8 

ARE1 ARE2 

CSH1 SUR1 

DAK1 DAK2 

GPX1 GPX2 

HMG1 HMG2 

YSR2 YSR3 

FET3 FET5 

TRX1 TRX2 

3)  The following genes are related to trehalose biosynthesis reactions: 

Genes: TPS1, TPS2, TPS3, TSL1 

 Reaction: UDP-Glucose+Glucose-6-phosphate =>Trehalose-6-phosphate+UDP 

Gene: TPS2 

Reaction: Trehalose-6-phosphate => trehalose + PO4 

Gene: PGM2 

Reaction: Glucose-6-phosphate<=>Glucose-1-phosphate 
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Gene: UGP1 

Reaction: Glucose-1-phosphate+UTP=>UDP-Glucose+2Pi 

Gene:NTH1 

Reaction: Trehalose=>Glucose 

     

 

 

 

 



87 
 

References  

1. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae 
genome. Nature 418, 387-91 (2002). 

2. Steinmetz, L.M. et al. Systematic screen for human disease genes in yeast. Nat 
Genet 31, 400-4 (2002). 

3. Wagner, A. Robustness against mutations in genetic networks of yeast. Nat 
Genet 24, 355-61 (2000). 

4. Wagner, A. Distributed robustness versus redundancy as causes of mutational 
robustness. Bioessays 27, 176-88 (2005). 

5. Gu, Z. et al. Role of duplicate genes in genetic robustness against null 
mutations. Nature 421, 63-6 (2003). 

6. Papp, B., Pal, C. & Hurst, L.D. Metabolic network analysis of the causes and 
evolution of enzyme dispensability in yeast. Nature 429, 661-4 (2004). 

7. Thatcher, J.W., Shaw, J.M. & Dickinson, W.J. Marginal fitness contributions 
of nonessential genes in yeast. Proc Natl Acad Sci U S A 95, 253-7 (1998). 

8. Nielsen, J. & Oliver, S. The next wave in metabolome analysis. Trends 
Biotechnol 23, 544-6 (2005). 

9. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells 
to environmental changes. Mol Biol Cell 11, 4241-57 (2000). 

10. Causton, H.C. et al. Remodeling of yeast genome expression in response to 
environmental changes. Mol Biol Cell 12, 323-37 (2001). 

11. Godon, C. et al. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol 
Chem 273, 22480-9 (1998). 

12. Alexandre, H., Ansanay-Galeote, V., Dequin, S. & Blondin, B. Global gene 
expression during short-term ethanol stress in Saccharomyces cerevisiae. 
FEBS Lett 498, 98-103 (2001). 

13. Duarte, N.C., Herrgard, M.J. & Palsson, B.O. Reconstruction and Validation 
of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-
Scale Metabolic Model. Genome Res., 2250904 (2004). 

14. Herrgard, M.J. et al. A consensus yeast metabolic network reconstruction 
obtained from a community approach to systems biology. Nat Biotechnol 26, 
1155-60 (2008). 

15. Villas-Boas, S.G., Moxley, J.F., Akesson, M., Stephanopoulos, G. & Nielsen, 
J. High-throughput metabolic state analysis: the missing link in integrated 
functional genomics of yeasts. Biochem J 388, 669-77 (2005). 

16. Allen, J. et al. High-throughput classification of yeast mutants for functional 
genomics using metabolic footprinting. Nat Biotechnol 21, 692-6 (2003). 

17. Martins, A.M. et al. A systems biology study of two distinct growth phases of 
Saccharomyces cerevisiae cultures. Current Genomics 5, 649-663 (2004). 

18. Ewald, J.C., Heux, S. & Zamboni, N. High-throughput quantitative 
metabolomics: workflow for cultivation, quenching, and analysis of yeast in a 
multiwell format. Anal Chem 81, 3623-9 (2009). 

19. Castrillo, J.I. et al. Growth control of the eukaryote cell: a systems biology 
study in yeast. J Biol 6, 4 (2007). 

20. Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome 
data to reveal the phenotype of silent mutations. Nat Biotechnol 19, 45-50 
(2001). 



88 
 

21. Kafri, R., Bar-Even, A. & Pilpel, Y. Transcription control reprogramming in 
genetic backup circuits. Nat Genet 37, 295-9 (2005). 

22. Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic 
redundancy through responsive backup circuits. Proc Natl Acad Sci U S A 
103, 11653-8 (2006). 

23. Kafri, R., Springer, M. & Pilpel, Y. Genetic redundancy: new tricks for old 
genes. Cell 136, 389-92 (2009). 

24. Kafri, R., Dahan, O., Levy, J. & Pilpel, Y. Preferential protection of protein 
interaction network hubs in yeast: evolved functionality of genetic 
redundancy. Proc Natl Acad Sci U S A 105, 1243-8 (2008). 

25. Rodrigues-Pousada, C., Menezes, R.A. & Pimentel, C. The Yap family and its 
role in stress response. Yeast (2010). 

26. Westergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L. & Nielsen, J. A systems 
biology approach to study glucose repression in the yeast Saccharomyces 
cerevisiae. Biotechnol Bioeng 96, 134-45 (2007). 

27. Macquillan, A.M. & Halvorson, H.O. Physiological changes occurring in 
yeast undergoing glucose repression. J Bacteriol 84, 31-6 (1962). 

28. Seoighe, C. & Wolfe, K.H. Yeast genome evolution in the post-genome era. 
Curr Opin Microbiol 2, 548-54 (1999). 

29. Khersonsky, O., Roodveldt, C. & Tawfik, D.S. Enzyme promiscuity: 
evolutionary and mechanistic aspects. Curr Opin Chem Biol 10, 498-508 
(2006). 

30. Nobeli, I., Favia, A.D. & Thornton, J.M. Protein promiscuity and its 
implications for biotechnology. Nat Biotechnol 27, 157-67 (2009). 

31. Jensen, R.A. Enzyme recruitment in evolution of new function. Annu Rev 
Microbiol 30, 409-25 (1976). 

32. Jeffery, C.J. Moonlighting proteins. Trends Biochem Sci 24, 8-11 (1999). 
33. Conant, G.C. & Wolfe, K.H. Increased glycolytic flux as an outcome of 

whole-genome duplication in yeast. Mol Syst Biol 3, 129 (2007). 
34. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome 

by gene deletion and parallel analysis. Science 285, 901-6 (1999). 
35. Castrillo, J.I., Hayes, A., Mohammed, S., Gaskell, S.J. & Oliver, S.G. An 

optimized protocol for metabolome analysis in yeast using direct infusion 
electrospray mass spectrometry. Phytochemistry 62, 929-37 (2003). 

36. Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of 
genetically or environmentally modified plant systems. Plant Cell 13, 11-29 
(2001). 

37. Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite 
profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5, 763-9 
(2004). 

38. Mintz-Oron, S. et al. Gene expression and metabolism in tomato fruit surface 
tissues. Plant Physiol 147, 823-51 (2008). 

39. Malitsky, S. et al. The transcript and metabolite networks affected by the two 
clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 
148, 2021-49 (2008). 

40. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: 
processing mass spectrometry data for metabolite profiling using nonlinear 
peak alignment, matching, and identification. Anal Chem 78, 779-87 (2006). 



89 
 

41. Cooper, T.G. & Bossinger, J. Selective inhibition of protein synthesis 
initiation in Saccharomyces cerevisiae by low concentrations of 
cycloheximide. J Biol Chem 251, 7278-80 (1976). 

42. Kanehisa, M. Representation and analysis of molecular networks involving 
diseases and drugs. Genome Inform 23, 212-3 (2009). 

43. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG 
for representation and analysis of molecular networks involving diseases and 
drugs. Nucleic Acids Res 38, D355-60. 

44. Kanehisa, M. The KEGG database. Novartis Found Symp 247, 91-101; 
discussion 101-3, 119-28, 244-52 (2002). 

45. Kanehisa, M. et al. From genomics to chemical genomics: new developments 
in KEGG. Nucleic Acids Res 34, D354-7 (2006). 

46. Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J. & Nielsen, 
J. Global metabolite analysis of yeast: evaluation of sample preparation 
methods. Yeast 22, 1155-69 (2005). 

47. Canelas, A.B. et al. Quantitative Evaluation of Intracellular Metabolite 
Extraction Techniques for Yeast Metabolomics. Anal Chem (2009). 

48. de Koning, W. & van Dam, K. A method for the determination of changes of 
glycolytic metabolites in yeast on a subsecond time scale using extraction at 
neutral pH. Anal Biochem 204, 118-23 (1992). 

49. Baganz, F., Hayes, A., Marren, D., Gardner, D.C. & Oliver, S.G. Suitability of 
replacement markers for functional analysis studies in Saccharomyces 
cerevisiae. Yeast 13, 1563-73 (1997). 

50. Katajamaa, M. & Oresic, M. Processing methods for differential analysis of 
LC/MS profile data. BMC Bioinformatics 6, 179 (2005). 

51. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a 
Practical and Powerful Approach to Multiple Testing. Journal of the Royal 
Statistical Society Series B-Methodological 57, 289-300 (1995). 

52. Steuer, R. On the analysis and interpretation of correlations in metabolomic 
data. Briefings in Bioinformatics 7, 151-158 (2006). 

53. SGD. SGD project. "Saccharomyces Genome Database". (SGD project. 
"Saccharomyces Genome Database", 2009). 

54. Gangloff, S.P., Marguet, D. & Lauquin, G.J. Molecular cloning of the yeast 
mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation 
of expression by glucose plus glutamate. Mol Cell Biol 10, 3551-61 (1990). 

55. Chen, X.J., Wang, X., Kaufman, B.A. & Butow, R.A. Aconitase couples 
metabolic regulation to mitochondrial DNA maintenance. Science 307, 714-7 
(2005). 

56. Schneiter, R. Intracellular sterol transport in eukaryotes, a connection to 
mitochondrial function? Biochimie 89, 255-9 (2007). 

57. Hughes, A.L. Adaptive evolution of genes and genomes, 235 (Oxford 
University Press, 1999). 

58. Kimura, M. Preponderance of synonymous changes as evidence for the neutral 
theory of molecular evolution. Nature 267, 275-6 (1977). 

59. Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for 
protein-coding DNA sequences. Mol Biol Evol 11, 725-36 (1994). 

60. Dwight, S.S. et al. Saccharomyces Genome Database (SGD) provides 
secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res 
30, 69-72 (2002). 



90 
 

61. DeLuna, A. et al. Exposing the fitness contribution of duplicated genes. Nat 
Genet 40, 676-81 (2008). 

62. Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes 
in Saccharomyces cerevisiae. Genome Res 15, 1421-30 (2005). 

63. DeLuna, A., Avendano, A., Riego, L. & Gonzalez, A. NADP-glutamate 
dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic 
properties, and physiological roles. J Biol Chem 276, 43775-83 (2001). 

64. Ma, H. & Botstein, D. Effects of null mutations in the hexokinase genes of 
Saccharomyces cerevisiae on catabolite repression. Mol Cell Biol 6, 4046-52 
(1986). 

65. Rodriguez, A., De La Cera, T., Herrero, P. & Moreno, F. The hexokinase 2 
protein regulates the expression of the GLK1, HXK1 and HXK2 genes of 
Saccharomyces cerevisiae. Biochem J 355, 625-31 (2001). 

66. Huh, W.K. et al. Global analysis of protein localization in budding yeast. 
Nature 425, 686-91 (2003). 

67. Fernandes, L., Rodrigues-Pousada, C. & Struhl, K. Yap, a novel family of 
eight bZIP proteins in Saccharomyces cerevisiae with distinct biological 
functions. Mol Cell Biol 17, 6982-93 (1997). 

68. Wu, W.S. & Li, W.H. Identifying gene regulatory modules of heat shock 
response in yeast. BMC Genomics 9, 439 (2008). 

69. Estruch, F. Stress-controlled transcription factors, stress-induced genes and 
stress tolerance in budding yeast. FEMS Microbiol Rev 24, 469-86 (2000). 

70. Mager, W.H. & Ferreira, P.M. Stress response of yeast. Biochem J 290 ( Pt 1), 
1-13 (1993). 

71. Alexandre, H. & Charpentier, C. Biochemical aspects of stuck and sluggish 
fermentation in grape must. Journal of Industrial Microbiology & 
Biotechnology 20, 20-27 (1998). 

72. Bisson, L.F. Stuck and sluggish fermentations. American Journal of Enology 
and Viticulture 50, 107-119 (1999). 

73. Norbeck, J. & Blomberg, A. The level of cAMP-dependent protein kinase A 
activity strongly affects osmotolerance and osmo-instigated gene expression 
changes in Saccharomyces cerevisiae. Yeast 16, 121-37 (2000). 

74. Teusink, B., Walsh, M.C., van Dam, K. & Westerhoff, H.V. The danger of 
metabolic pathways with turbo design. Trends Biochem Sci 23, 162-9 (1998). 

75. Ding, M.Z., Cheng, J.S., Xiao, W.H., Qiao, B. & Yuan, Y.J. Comparative 
metabolomic analysis on industrial continuous and batch ethanol fermentation 
processes by GC-TOF-MS. Metabolomics 5, 229-238 (2009). 

76. Devantier, R., Scheithauer, B., Villas-Boas, S.G., Pedersen, S. & Olsson, L. 
Metabolite profiling for analysis of yeast stress response during very high 
gravity ethanol fermentations. Biotechnology and Bioengineering 90, 703-714 
(2005). 

77. Voit, E.O. Biochemical and genomic regulation of the trehalose cycle in yeast: 
review of observations and canonical model analysis. J Theor Biol 223, 55-78 
(2003). 

78. Blomberg, A. Metabolic surprises in Saccharomyces cerevisiae during 
adaptation to saline conditions: questions, some answers and a model. Fems 
Microbiology Letters 182, 1-8 (2000). 

79. Shilo, B., Riddle, V.G. & Pardee, A.B. Protein turnover and cell-cycle 
initiation in yeast. Exp Cell Res 123, 221-7 (1979). 



91 
 

80. Mensonides, F.I., Schuurmans, J.M., Teixeira de Mattos, M.J., Hellingwerf, 
K.J. & Brul, S. The metabolic response of Saccharomyces cerevisiae to 
continuous heat stress. Mol Biol Rep 29, 103-6 (2002). 

81. Mensonides, F.I., Brul, S., Klis, F.M., Hellingwerf, K.J. & Teixeira de Mattos, 
M.J. Activation of the protein kinase C1 pathway upon continuous heat stress 
in Saccharomyces cerevisiae is triggered by an intracellular increase in 
osmolarity due to trehalose accumulation. Appl Environ Microbiol 71, 4531-8 
(2005). 

82. Nwaka, S., Kopp, M. & Holzer, H. Expression and function of the trehalase 
genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem 270, 
10193-8 (1995). 

83. Booth, J.W. & Guidotti, G. An alleged yeast polyphosphate kinase is actually 
diadenosine-5', 5"'-P1,P4-tetraphosphate alpha,beta-phosphorylase. J Biol 
Chem 270, 19377-82 (1995). 

84. Dohmen, K. et al. Ethnic differences in gastric sigma-alcohol dehydrogenase 
activity and ethanol first-pass metabolism. Alcohol Clin Exp Res 20, 1569-76 
(1996). 

85. Parlesak, A., Billinger, M.H., Bode, C. & Bode, J.C. Gastric alcohol 
dehydrogenase activity in man: influence of gender, age, alcohol consumption 
and smoking in a caucasian population. Alcohol Alcohol 37, 388-93 (2002). 

86. Birley, A.J. et al. ADH single nucleotide polymorphism associations with 
alcohol metabolism in vivo. Hum Mol Genet 18, 1533-42 (2009). 

87. Chen, H.J., Tian, H. & Edenberg, H.J. Natural haplotypes in the regulatory 
sequences affect human alcohol dehydrogenase 1C (ADH1C) gene expression. 
Hum Mutat 25, 150-5 (2005). 

88. Edenberg, H.J. Regulation of the mammalian alcohol dehydrogenase genes. 
Prog Nucleic Acid Res Mol Biol 64, 295-341 (2000). 

89. Shen, B., Hohmann, S., Jensen, R.G. & Bohnert, H. Roles of sugar alcohols in 
osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in 
yeast. Plant Physiol 121, 45-52 (1999). 

90. Sakaki, K., Tashiro, K., Kuhara, S. & Mihara, K. Response of genes 
associated with mitochondrial function to mild heat stress in yeast 
Saccharomyces cerevisiae. J Biochem 134, 373-84 (2003). 

 
 



92 
 

List of Publications 
1. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-

regulated transcriptional network. 
Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez 
E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, 
Aharoni A. 
PLoS Genet. 2009 Dec;5(12):e1000777. Epub 2009 Dec 18. 

 
2. Dual labeling of metabolites for metabolome analysis (DLEMMA): A new 

approach for the identification and relative quantification of metabolites by 
means of dual isotope labeling and liquid chromatography-mass spectrometry. 
Feldberg L*, Venger I*, Malitsky S, Rogachev I, Aharoni A. 
Anal Chem. 2009 Nov 15;81(22):9257-66. 
*Equal Contribution 
 

3. The transcript and metabolite networks affected by the two clades of 
Arabidopsis glucosinolate biosynthesis regulators. 
Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni 
A. 
Plant Physiol. 2008 Dec;148(4):2021-49. Epub 2008 Oct 1. 
 

4. Non-targeted analysis of spatial metabolite composition in strawberry 
(Fragariaxananassa) flowers. 
Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S, 
Aharoni A. 
Phytochemistry. 2008 Oct;69(13):2463-81. Epub 2008 Sep 4. 
 

5. Gene expression and metabolism in tomato fruit surface tissues. 
Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang 
Z, Jetter R, Venger I, Adato A, Aharoni A. 
Plant Physiol. 2008 Jun;147(2):823-51. Epub 2008 Apr 25. 
 

6. Network analysis of protein structures identifies functional residues. 
Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, 
Pietrokovski S. 
J Mol Biol. 2004 Dec 3;344(4):1135-46. 



93 
 

Statement of Independent Contribution 
The majority of this work is my independent effort.  

Parts of the work pertaining to the analysis of evolutionary adaptation to heat stress in 

S. cerevisiae were carried out by Avihu Yona, a fellow PhD student in Pilpel lab. 

Avihu has carried out the evolution of the strains and performed experimental 

transcriptomics analysis on the mutant strains after exposure to heat stress. 

I have performed all the metabolomics analysis procedures, as well as the analysis of 

the resulting data and analysis of the relationship between metabolomics and 

transcriptomics. 

 


