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Title : Errors and edits: plasticity in Escherichia coli’s gene 
expression 
 
Abstract : Transmission of genetic information from DNA to proteins is not as 
rigid as one may think. Despite their marvellous sophistication, the machines at 
the core of the central dogma rely on chemical processes and complex 
interactions, and are not exempt from errors, that organisms can either choose 
to mitigate, or use to their own advantage. I will present a pair of studies which 
reflect the two sides of this dichotomy. First, we developed a new 
methodology which allowed us to detect a large number of amino acid 
misincorporations within the proteome of Escherichia coli from high precision 
mass spectrometry data. We show that these errors are mostly the result of a 
competition between cognate and non cognate tRNAs in the ribosome, and 
that they respond dynamically to environmental perturbations, such as amino 
acid starvation and anti ribosome drugs. Furthermore, we demonstrate that 
cells tend to encode their proteins in a way that minimizes the deleterious 
effects of translation errors. In a second study, we discovered that mRNA 
editing is not restricted to eukaryotes, but is present in bacteria. We found that 
Escherichia coli exploits a tRNA adenosine to inosine editing enzyme to 
stimulate bacterial drug persistence through the recoding of a toxin’s mRNA. 
  



Ernest Mordret – PhD thesis - 2017 
 

  4 

 
Titre : Erreurs et corrections : plasticité de l’expression 
génétique chez Escherichia coli 
 
Résumé : La transmission de l’information génétique est généralement décrite 
comme un processus déterministe. Malgré leur sophistication, les machineries 
moléculaires en charge de l’expression génétique fonctionnent grâce à des 
réaction chimiques stochastiques par nature, et ne sont pas à l’abri d’erreurs, 
dont un organisme vivant peut choisir de minimiser les effets, ou au contraire 
de les utiliser à son avantage. Je présente dans ce manuscrit deux études 
illustrant ces deux possibilités. Dans un premier temps, nous avons développé 
une nouvelle méthodologie nous permettant de détecter un grand nombre de 
misincorporation d’acides aminés à travers le proteome d’Escherichia coli, à 
l’aide de données de spectrométrie de masse. Ces erreurs réagissent de 
manière dynamique à des perturbations environnementales telles que la 
privation d’un acide aminé ou la présence d’antibiotiques visant le ribosome. 
De plus, nous démontrons que la cellule encode ses protéines d’une manière 
qui minimise leurs effets délétères. Dans une deuxième étude, nous montrons 
que l’édition d’ARN messagers n’est pas restreinte aux Eukaryotes. Escherichia 
coli utilise le surplus d’activité d’une enzyme modifiant l’adenosine d’un 
anticodon d’ARNt en inosine, afin de modifier la sequence codante d’une 
toxine, accentuant en retour le phénomène de persistance bactérienne. 
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Introduction 
Proteins enable most of chemical reactions in cells. They serve as an interface 
between the information world, stored in an organism’s DNA sequence, and its 
chemical environment. They typically fold into distinct patterns, dictated by 
their amino acid sequence, which is itself defined almost deterministically by 
their DNA coding sequence. These folds in turn create a dynamic, three 
dimensional environment, locally decreasing the energetic barrier of specific 
chemical reactions, and potentially allowing thermodynamically unfavorable 
reactions by coupling them to favored ones. By doing so, they open the realm 
of an out of equilibrium chemistry necessary for the appearance of the order 
which characterizes living organisms. The regulation of their expression levels, 
determined by a constant sensing of the environment, offers a formidable way 
for organisms to navigate through the space of possible metabolisms, and thus 
to fine-tune their inner-workings to the available resources or challenges they 
encounter, towards the goal of generating all the necessary building blocks to 
the replication of the organism.  
 
Proteins are synthesized by polymerization of amino acids using mRNA as a 
template, through a process called translation. The order in which different 
amino acids are assembled is crucial, and will eventually determine the 3D 
conformation of the protein, and its function. Whereas replication and 
transcription can take advantage of simple base-pairing rules to ensure that 
the information stored in the DNA in faithfully transmitted over time, translation 
pairs any of the 64 possible triplets of RNA bases, or codons, to one of the 20 
types of amino acids (sense codons) or a translation termination signal (stop 
codons).  
 
This matching relies on a complex machinery. First, free amino acids are linked 
to small RNA molecules called tRNAs (transfer RNAs) by a set of proteins, the 
aminoacyl-tRNA synthetases (aaRS). tRNAs share a common core 3D structure, 
and their identity is defined by a triplet of bases on one of their loops, the 
anticodon. tRNAs loaded with an amino acid, (aminoacyl-tRNA) are then ready 
to enter the ribosome, a large molecular machine composed of RNA and 
proteins. After an initiation phase in which the ribosome positions itself at the 
beginning of the mRNA’s coding sequence and starts a polypeptide chain, it 
proceeds to elongate this chain by ratcheting along the mRNA three bases at a 
time, and matching the newly examined codon to an aminoacyl-tRNA with the 
complementary anticodon. It evaluates the validity of the codon anticodon 
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match by probing the stability of the base pairing between the two RNA 
segments. 
 
The correspondence table between codons and amino acids, dubbed the 
genetic code, appears to be near universal, and offers the intriguing property 
of being error tolerant – single-letter DNA mutations will lead to either no 
changes in the encoded amino acid (synonymous mutation) or a substitution to 
a chemically similar amino acid. Most amino acids are encoded by more than 
one codon, and bioinformatic studies have shown that, despite being 
interchangeable in theory, the frequencies of synonymous codons deviate 
significantly from the expectations from mutational biases alone in an 
organism-dependent manner, a phenomenon called codon usage bias (CUB). 
In particular, the intensity of CUB correlates with gene expression levels.  
 
Several hypotheses have been put forward to explain CUB. In higher 
organisms, it is generally accepted that selection plays less of a role due to 
typically small effective population sizes. Codons frequencies are therefore 
best explained by mutational biases, with local preferences of one codon over 
another deriving from fluctuations of the mutational spectrum. However, in 
organisms with large effective population sizes, the very small fitness effect of 
choosing one codon over another can be selected for. The cause of these 
fitness effects is a topic of debate. Some claim that codons are primarily 
selected for speed: codons supported by a large number of tRNA genes tend 
to reduce the ribosome’s waiting time, and thus allow for a better use of this 
costly machinery. It has also been suggested that slower codons are selected 
in the 5’ end of highly expressed genes, in order to space translation initiation 
events and to prevent the occurrence of downstream molecular “traffic jams”. 
Similarly, the translation of linkers between protein domains appears to be 
slower, to let these domains fold sequentially. Additionally, RNA structure 
requirements can constrain the identity of bases in the coding sequence. 
Another school of thoughts holds the view that some codons are more 
accurate than others, and are therefore enriched in the coding sequence of 
highly expressed genes in order to mitigate the deleterious effects of 
erroneous protein synthesis. The driving force behind this phenomenon is 
selection against misfolding, as misfolded proteins tend to be dysfunctional, 
generate spurious protein-protein interaction, and saturate the protein quality 
control machinery. 
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Whereas DNA polymerases typically make a mistake every 109 to 1010 bases, 
proteins are synthesized at a much higher error level, with current estimates 
ranging between 10-3 and 10-4 errors per inserted amino acid. This high error 
rate implies that a sizeable fraction (~15%) of a population of typical 200 aa 
long proteins contains at least one mistake. As a result, protein sequences 
have evolved to be robust to most single amino acid changes, and these 
constraints limit the choice of codons, in turn funneling the proteins’ potential 
evolutionary paths. A recent trend even suggests that controlled levels of 
mistranslation can be beneficial to the organism’s fitness. Mistranslation 
selectively affecting a codon or group of codons was shown to help parasitic 
cells evading their host’s immune system, or deal with oxidative stress. In 
extreme cases of adaptive selection, low abundance mistranslated proteins 
can be selected for their ability to solve a problem better than the native 
sequence, thereby indirectly favoring sequences whose mutational neighbors 
have higher fitness. 
   
In this introduction, I will outline the players and mechanisms of the prokaryotic 
protein translation, with a particular focus on Escherichia coli, and the various 
ways these mechanisms can fail and lead to errors. I will describe the 
evolutionary pressures that shape the evolution of the translation machinery 
and protein sequences, and review previous attempts to estimate the rates and 
spectrum of phenotypic errors. 

The prokaryotic translation machinery 

Here, I will present the main actors of the translation process in Prokaryotes, 
and review their structural characteristics, functions and involvement in the 
different stages of translation. I will then briefly present the mechanisms of the 
three core stages of mRNA translation by the ribosome (initiation, elongation 
and termination) in the case of faithful translation.  

Amino acids 
Amino acids are small organic molecules characterized by a carboxylic acid (-
COOH) and a primary or secondary amine group (-NH2 or -NH). The general 
geometry of these molecules is depicted in Figure 1A. The R group, in 
magenta, is called the residue, and can theoretically be any group of atoms. 
The α-carbon bearing the residue is chiral, but Life has universally preferred 
the L geometry represented in the figure to the D stereoisomers. The 
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carboxylic acid end of an amino acid (C-terminus) can react with the amine 
group of another (N-terminus) and form a peptide bond (Fig. 1B), releasing a 
water molecule in the process. This condensation reaction offers a natural way 
to polymerize amino acids. The peptide bond is stable under cellular 
conditions, and structurally rigid: the 6 atoms within the dashed box all lie on 
the same plane, thus restricting the number of possible conformations of the 
resulting peptide. 
Proteins are usually composed of a combination of the 20 proteinogenic 
amino acids presented in Fig. 1C. The 20 amino acids are usually grouped by 
chemical properties: their charge and polarity will affect their ability to form 
hydrogen bonds with the surrounding water molecules, while their volume and 
3D conformation will restrict the flexibility of the peptide chain. 
 

 
Figure 1: structure and properties of L-amino acids. A: General structure of an amino acid. The 
asymmetric carbon in green is called the !-carbon . The R group, in magenta, is called the residue. B: 
Formation of the peptide bond. The carboxyl group of amino acid 1 interacts with the amine group of 
amino acid 2, forming a peptide bond and releasing water. All atoms within the rectangle lie on the same 
plane. C: Structure and properties of the proteogenic amino acids. All figures adapted from Wikipedia. 
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Transfer RNAs 
Transfer RNAs, or tRNAs are short (70-80 nt) RNA fragments which serve as 
adapter molecules during translation. They are characterized by a shared 
general “cloverleaf” structure (Fig. 2A), which allows them to be non 
specifically recognized by different players of the translation machinery. The 
middle loop harbors a 3-nt sequence called the anticodon, which determines 
the identity of the tRNA. A tRNA bearing a given anticodon will be loaded with 
the appropriate amino acid by a set of enzymes called aminoacyl-tRNA 
synthetases (aaRS). Later, it is this anticodon that will allow the ribosome to test 
whether it is inserting the appropriate amino acid during translation, by 
assessing the stability of the base pairing between codon and anticodon. 
tRNAs represent as much as 15% of the RNA molecules of the cell, and it is 
generally accepted that there relative intra-cellular abundance closely matches 
the tDNA gene copy number in the organism’s genome. They are typically 
long lived, and can serve many rounds of translation. In E. coli, the 61 sense 
codons are served by only 39 different tRNA types (Fig. 2C). This implies that, 
despite all of the 20 amino acids being associated to at least one tRNA type, 
some codons cannot be translated by a perfectly matching tRNA. Dotted 
arrows in figure 2C represent the general matching rules in prokaryotes. In 
addition to these canonical tRNAs, which all serve a similar role as adaptor 
molecules during translation elongation, E. coli also harbors a distinct class of 
tRNA for translation initiation, tRNAf-Met, and is able to conditionally insert the 
non-canonical amino acid Selenocysteine at amber stop codons (UAG) via a 
suppressor tRNASelCys. 
 
Premature tRNA transcripts undergo several modifications before serving their 
role in translation. Figure 2B summarizes the post-transcriptional modifications 
known to affect tRNAs in Gram-negative bacteria. These modifications stabilize 
the 3D structure of the molecule, affect its interaction with other players of the 
translation machinery, or even fine-tune its ability to base pair with cognate 
and near cognate codons when they occur directly on the anticodon loop. 
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Figure 2. A: Consensus tRNA secondary structure presented in the “cloverleaf” form with the universal 
numbering system. B: Modification profile for tRNA sequences from Gram-negative bacteria (69 
sequences from 8 species). The pie charts within each position in the cloverleaf correspond to the 
percentage of all modified nucleosides (modified being drawn in black). In the tables the series of 
numbers next to the series of symbols indicate the frequency of occurrence of listed nucleosides at the 
particular position. A and B were reproduced, and their legends adapted from Machnicka et al., 20141. C: 
Genetic code and general codon–anticodon recognition rules for tRNA genes, and tDNA gene copy 
number in E. coli (in red). Figure adapted from Dos Reis et al., 20042. 

 

Aminoacyl-tRNA synthetases (aaRSs) 
aaRSs catalyze the specific loading of an amino acid to the 3’ end of its cognate 
tRNA. They use the energy of a phosphate bond to catalyze the aminoacylation 
reaction. In a first step, the enzyme binds an ATP molecule and its cognate 
amino acid to form an aa–AMP complex, releasing a phosphate ion in the 
process. It then recognizes its cognate tRNA molecule, transfers the amino acid 
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to the last tRNA nucleotide (position 76), on its 2’ or 3’ end, and releases the 
AMP molecule. aaRSs are divided into two evolutionarily distinct classes that 
differ by the structure of their catalytic domain. Class I enzymes, responsible for 
the tRNA aminoacylation of Cys, Ile, Leu, Met, Val, Arg, Gln, Glu, Trp and Tyr, 
bind the tRNA acceptor helix on the minor groove side, and can load the 
amino acid on the 2’ and 3’ –OH groups of the respective tRNA, with a 
preference for the 2’ -OH. Except for TrpRS and TyrRS, which work as dimers, 
the rest of class I synthetases are monomeric. Conversely, class II synthetases 
(Gly, His, Pro, Ser, Thr, Asn, Asp, Lys, Ala, Gly and Phe) usually work as 
monodimers or tetramers, bind the acceptor helix of the tRNA from the major 
groove site, and generally load the amino acid on the 3’ -OH. In E. coli, there is 
one aaRS gene for each of the 20 amino acids, with the exception of lysine, 
which is associated to two genes (lysS, constitutively expressed, and lysU, 
induced during heat shock). The genes are scattered across the genome, and 
typically expressed at similar relative concentrations3 

The prokaryotic ribosome 
The ribosome is a large molecular complex of ribosomal RNAs (rRNA) and a 
number of ribosomal proteins, which serves as a catalytic hub for the process 
of translation. It is made of two subunits, named 50S and 30S in prokaryotes 
after their characteristic sedimentation rate in Svedberg units. The large (50S) 
subunit is composed of 33 proteins and two rRNA fragments, called the 23S 
(2904 nt) and 5S (120 nt) rRNAs. The small (30s) subunit is made of a single 16S 
rRNA (1542 nt) and 21 proteins. The full ribosome (70S) is around 20 nm in 
diameter, and can be found bound to cytoplasmic mRNAs, where it translates 
cytosolic proteins, or to the inner membrane via the signal-recognition-
particule’s receptor, for the translation of inner membrane, periplasmic, outer 
membrane and secreted proteins. mRNAs are commonly translated by more 
that one ribosome, forming a complex called a polysome. The 50S subunit 
contains three cavities capable of accommodating tRNAs: the A-site 
(Aminoacyl-tRNA binding site) performs the tRNA selection step by probing 
that the tRNA anticodon matches the codon under scrutiny, the P-site 
(Peptidyl-tRNA binding site) holds the peptidyl-tRNA attached to the nascent 
polypeptide, and the E-site (Exit site) hosts the uncharged tRNA after the 
transfer. The part of the ribosome that catalyzes the addition of the new AA to 
the nascent peptide chain, called the Peptidyl Transferase Center (PTC), is 
situated between the A-site and the P-site, and leads to the ribosome exit 
tunnel, from which the peptide chain will eventually emerge and be released. 
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Despite the ribosome being usually presented as a monolithic complex with 
fixed stoichiometry of its different components, several lines of evidence have 
suggested that it actually adapts its composition in response to environmental 
cues. In particular, it is long known that E. coli ribosomes purified at various 
growth rates differ slightly in their proteins’ ratios4. Similarly, the seven rRNA 
operons of E. coli are not perfectly identical in sequence, and are differentially 
regulated. Finally, rRNA and ribosomal proteins are subjected to post-
transcriptional and post-translational modifications in a condition-dependent 
manner5. Taken together, these observations suggest that the cell might 
harness ribosome heterogeneity to fine-tune translation. 

Initiation phase 
The ribosome, an initiator tRNAf-Met, and three proteins (IF1, IF2 and IF3) are 
the molecular players of the initiation stage. First, the initiator tRNAf-Met, which 
is structurally distinct from the elongator tRNAMet, is charged with a methionine 
by the MetRS. The Met-tRNAf-Met complex is then recognized by a methionyl-
tRNA formyltransferase (MTF), which formylates the bound methionine. 
Initiation Factor 3 (IF3) recognizes an inactive 70S ribosome, and promotes the 
dissociation of the two subunits. Initiation Factor 1 (IF1) binds to the base of 
the A-site of the 30S subunit and helps the dissociation. Initiation Factor 2 (IF2), 
fMet-tRNAf-Met and the mRNA proceed to associate with the 30S subunit in a 
random order to form the 30S pre-initiation complex. A base pairing 
interaction between the Shine-Dalgarno sequence of the mRNA and the anti 
Shine-Dalgarno sequence of the 16S rRNA mediates the recognition of the 
mRNA by the 30S subunit, and directs it towards the 5’ end of the mRNA, 
usually 8-nt upstream of the AUG codon indicating the start of the coding 
sequence. The fMet-tRNAf-Met complex is positioned in the P-site, and, 
following a conformational rearrangement that promotes an interaction 
between the tRNA and the start codon, IF1 and IF3 are ejected. IF2 facilitates 
the association of the 30S initiation complex to a free 50S subunit, hydrolyzing 
a GTP molecule in the process, and leaves the newly formed 70S initiation 
complex6. 
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Figure 3 : overview of the different stages of prokaryotic translation. Figure reproduced from Schmeing & 
Ramakrishan, 20097 

 

Elongation phase 
Following initiation, the 70S initiation complex is bound to the mRNA with the 
start codon facing the tRNAf-Met in the P-site, while the A-site is empty. The 
ribosome can now start elongating the peptide chain by repeating the 
following elongation cycle. Elongation Factor Thermo unstable (EF-Tu) first 
binds a free aa-tRNA and a GTP molecule. These complexes will repeatedly 
enter the A-site until an aa–tRNA•EF-Tu•GTP molecule whose anticodon 
matches the codon is found. The ability of the ribosome to discriminate 
between cognate and non cognate tRNAs relies on differences in free energy 
between correct and incorrect codon-anticodon matches, and its accuracy is 
further improved by the addition of an irreversible step (the hydrolysis of the 
GTP molecule), through a mechanism called kinetic proofreading (KPR), whose 
role will be discussed in details in a dedicated section. Once a aa–tRNA•EF-
Tu•GTP complex has been accepted, GTP is hydrolyzed by EF-Tu, which is 
itself released, and the remaining aa-tRNA complex is moved to the (PTC). 
Following release, EF-Tu•GDP transfers its GDP to another elongation factor, 
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EF-Ts, binds a new GTP molecule, and dissociates from EF-Ts, allowing it to 
bind a new aa-tRNA. The ribosome enters the peptide-bond formation step, in 
which the amine group of the amino acid in the A-site nucleophilically attacks 
the ester carbon of the peptidyl-tRNA in the P-site, in a step is catalyzed by the 
23S rRNA. Eventually, the peptide chain is transferred from the tRNA in the P-
site to the aa-tRNA in the A-site. This transfer enables a translocation step, in 
which the ribosome will reposition itself by exactly one codon towards the 3’ 
end of the mRNA, and the A-site peptidyl-tRNA moves to the P-site, while the 
P-site tRNA is transferred to the E-site. First, the two tRNAs move with respect 
to the 50S subunit:  the “head” of the P-site tRNA rotates towards the E-site, the 
ribosome undergoes a conformational change called ratcheting, which is 
stabilized by the binding of the elongation factor G GTPase (EF-G) to the 30S 
subunit A-site. EF-G replaces the A-site peptidyl-tRNA and pushes it towards 
the P-site, while the tRNA in the P-site is transferred to the E-site. Following 
GTP hydrolysis, the 30S subunit ratchets, and moves together with the mRNA.  
EF-G dissociates from the ribosome, which can then proceed to another cycle 
of elongation, or terminate translation if it reaches a stop codon. 

Termination and recycling 
After many cycles of elongation, the ribosome should eventually reach one of 
the stop codons (UAA, UGA and UAG). Two release factors, RF1 and RF2, 
perform the recognition of the stop codon; both RF1 and RF2 can recognize 
the UAA stop, but UAG is only read by RF1, and UGA only by RF2. They enter 
the A-site, and interact with PTC via a conserved GGQ motif, exposing the 
ester bond between the tRNA and the nascent peptide chain to a nucleophile 
attack by a water molecule. The glutamine from the GGQ motif stabilizes the 
deacylated P-site tRNA, thus favoring the reaction. The newly synthesized 
protein is released, and a third release factor, RF3, binds and destabilizes the 
ribosome•RF1/RF2 complex. RF3 hydrolyses a GTP molecule, and both RF3 
and the tRNA in the E-site dissociate from the ribosome-mRNA complex, which 
is left with an empty A-site and E-site, and a deacylated tRNA in the P-site. In 
order to recycle the ribosome, EF-G and the ribosome recycling factor (RRF) 
bind the remaining complex, and promote the dissociation of the two subunits. 
The 30S subunit, still bound to the decylated tRNA and the mRNA, finally 
dissociates from these two molecules thanks to the action of IF3, and a new full 
cycle of translation can start again. 
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From folding to degradation: a 
protein’s life cycle. 

Before accomplishing its function, a protein must first undergo several steps, 
which start with folding into a defined 3D structure, but might also include 
targeting to a specific location within the cell, undergoing post-translational 
modifications, and assembling into complexes. Proteins are assisted in their 
folding by a suite of proteins called chaperones. They are eventually diluted by 
growth, and those that fail to fold properly are preferentially degraded to 
recycle their amino acids or simply aggregated to mitigate their toxic effects. In 
this section, I will review our current knowledge of these different steps, as it is 
important them to understand them to fully comprehend the effects of 
translation errors. 

Chaperone independent folding 
Due to its wide use in recombinant protein production, protein folding has 
been extensively studied in E. coli. It is known since Anfinsen’s experiment in 
1973 that, at least for small globular proteins, “the three dimensional structure 
of a native protein in its normal physiological milieu (solvent, pH, ionic 
strength, presence of other components such as metal ions or prosthetic 
groups) is the one in which the Gibbs free energy of the whole system is 
lowest; that is, that the native conformation is determined by the totality of 
inter-atomic interactions and hence by the amino acid sequence, in a given 
environment8.” Despite the astronomical number of confirmation that can be 
adopted even by a relatively small peptide chain, folding can happen at very 
fast time-scales, on the order of milliseconds, an observation dubbed 
Levinthal’s paradox. Levinthal himself noted that the paradox could be easily 
resolved if “protein folding [was] sped up and guided by the rapid formation of 
local interactions which then determine the further folding of the peptide; this 
suggests local amino acid sequences which form stable interactions and serve 
as nucleation points in the folding process9”, i.e. if folding happened 
sequentially. Proteins typically fold in a way that hides hydrophobic, sticky 
residues in their core, while their surface harbors by more hydrophilic residues. 
Unfolded or misfolded proteins tend to expose hydrophobic residues, thereby 
increasing the risk of disturbing cellular processes through spurious protein-
protein interactions and aggregation in the crowded intra-cellular 
environment. Most natural proteins were measured to exhibit a difference in 
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free energy between folded and unfolded states ΔG on the order of 5-10 
kcal/mol10. Assuming thermodynamic equilibrium, the ratio of unfolded to 

folded proteins is given by the formula !!"#$%&'&
!!"#$%$

= 𝑒
!∆!
!" , where k is Boltzmann’s 

constant (k = 1.986 cal/mol/K). For a typical ΔG = 5 kcal.mol-1, this ratio is 
approximately 2.9 × 10-4 at 37°C, indicating that the folded vastly outnumbers 
the unfolded (or misfolded) forms.  
 
Because folding happens fast and co-translationally, the nascent peptide chain 
can start folding as soon as it exits the ribosome tunnel. Proteins are organized 
into independently folding subunits called domains. Evolutionary evidence 
revealed that cells slow down translation of the regions between domains 
called linkers11, thus favoring the formation of stable partial structures during 
the elongation of the nascent chain.  

Chaperone assisted folding in E. coli  
Despite the fact that protein folding is a thermodynamically favorable process, 
it is assisted by the action of the trigger factor protein (TF) in E. coli. TF, present 
in dimeric form in the cytoplasm, binds monomerically to the large ribosomal 
subunit, close to the exit tunnel, and interacts with the nascent peptide chain, 
as it is still bound to the translation ribosome. In vivo, TF preferentially binds 
ribosomes whose nascent peptide chain reaches at least 100 amino acids in 
length. It recognizes motifs of 8 amino acids enriched in hydrophobic or basic 
residues, and aids de novo folding through ATP-independent cycles of binding 
and release from both the ribosome and the nascent chain, until hydrophobic 
residue are effectively positioned in the core of the nascent protein and 
inaccessible to the TF monomer. Approximately 70% of proteins undergo TF-
assisted folding, whereas the remaining 30% require the action of additional 
chaperones (Fig 4A).  
These proteins include, in E. coli, the Hsp70 chaperone DnaK and its co-
chaperones DnaJ and GrpE, and the Hsp60 chaperonin GroEL/GroES system. 
DnaK assists the folding of ~700 mostly cytosolic proteins. Similarly to TF, it 
binds 5-7 long stretches of amino acids enriched for hydrophobic residues, 
and interacts with them through cycles of ATP-dependent binding and release. 
DnaJ identifies misfolded proteins and transfers them to DnaK, and stimultates 
DnaK binding through ATP hydrolysis. GrpE releases ADP from DnaK, which 
upon binding a new molecule of ATP will dissociate from its substrate, thus 
completing the cycle. Conversely to TF, however, these enzymes can function 
co-translationally and post-translationally. Approximately 250 different protein 
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substrates can interact with GroEL/GroES, but it is only necessary for the 
folding of ~85 of them, thanks to redundancy with the other chaperones. The 
GroEL chaperonin complex serves as a molecular cage for protein folding, 
which means it can only function post-translationally. It is composed of two 
rings of 7 subunits, and interacts with its co-chaperonin GroES, which closes 
the cage as a “molecular lid”. Substrates are bound at multiple sites, and 
concertedly released by the 14 subunits (cf. Fig. 4C). Since only one substrate 
protein is allowed at once in the cage, the GroEL/GroES system prevents 
aggregation of the substrate proteins12.  
Finally, ClpB is a stress-induced chaperone whose function is to process 
aggregates. It works together with the DnaK, DnaJ and GrpE enzymes: clpB 
binds to aggregated proteins and addresses them to DnaK for resolubilization 
after heat shock. For a complete review of the role of chaperones in E. coli’s 
protein folding, see Kim et al. 201313.  
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Figure 4. A: E. coli folding pathways. B: General chaperone mechanism. C: GroEL/GroES refolding mechanism. 
Figures reproduces from Kim et al. 201313 

 

Degradation of native, misfolded, and unfolded 
proteins. 
In steady state, a protein’s expression level is determined by its production 
rate, !, its dilution rate !!"# and its degradation rate !!"#14: 
     [!"#$! ! !

!!"#!!!"#
  

The dilution rate is directly determined by the growth rate, and inversely 
proportional to the cells doubling time. At high growth rate, the half-life of 
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most proteins is greater than the doubling time, which means that degradation 
does not affect their expression level very much. However, the cell uses 
degradation to purge misfolded and aggregated proteins, and to perform 
rapid regulation of protein levels. Distinct proteins carry these two aspects of 
protein degradation. The Lon protease is in charge of degrading unfolded or 
misfolded proteins, and requires ATP to unfold and ratchet the misfolded 
protein through its proteolytic chamber.  
The ClpAP proteases are in charge of degrading proteins tagged with a 
degradation signal (degron). They also require ATP to perform degradation.15 

Aggregation: toxic side product of mitigation 
strategy? 
As mentioned above, misfolded proteins tend to expose hydrophobic residues 
that “stick” and perturb protein-protein interactions (PPIs). When the 
chaperone network is overloaded as a result of proteotoxic stress, these 
misfolded proteins clump together and form aggregates called inclusion 
bodies. While these aggregates were initially though to be toxic for the cells, it 
now appears that they serve as damage control strategy. First of all, if the 
toxicity of unfolded and misfolded proteins stems from its tendency to disturb 
PPIs, the cost of misfolding is roughly proportional to the surface of contact of 
these proteins. However, if these proteins aggregate in a roughly spherical 
shape, for any increase of volume of the aggregate 𝛥𝑉, the associated increase 
in surface in only proportional to 𝛥𝑉!/!, compared to the linear increase 
expected from an aggregate free situation. Additionally, it serves as a bet-
hedging strategy: during cell division, aggregates are asymmetrically 
transmitted from the mother cell to the daughter cells, and preferentially 
associate with the cells older poles16. This bet hedging strategy allows a higher 
growth rate at the population level. Finally, a recent study in S. cerevisiae 
revealed that aggregation is not necessarily restricted to misfolded protein, 
but rather that it can be a reversible, adaptive strategy in the response to heat 
shock by momentarily protecting functional proteins17. 

The proteostasis network functions at the edge of 
aggregation 
A computational model of the proteostasis network, at the systems level, 
revealed that it balanced energy and chaperone utilization efficiently15,18. The 
proteostasis network performs sorting of misfolded proteins in a way that 
resembles the way hospitals sort patients. The network efficiently addresses 
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the sickest proteins to the most ATP-expensive chaperones, and the 
chaperone concentrations are just high enough to keep the proteome from 
aggregating. Their protein levels are adjusted to the growth rate, and are 
therefore higher in fast growing bacteria, when the synthesis rate is high, but 
also at very low growth rate to prevent degradation of misfolded proteins 
when they cannot be balanced by protein synthesis. 
A study in S. cerevisiae19 addressed the direct cost of expression of misfolding-
prone proteins by comparing the growth rate of cells expressing a wt-YFP to 
that of cells carrying destabilized mutants of YFP. When the YFP variants were 
induced, so that the YFP would represent 0.1% of the total protein content of 
the cell, the most destabilized mutant suffered from a growth rate reduction of 
3.2% compared to the wild type control. This emphasizes the notion that the 
cost of dealing with misfolding is much higher than the mere synthesis cost of a 
properly folding protein. 
 

Protein localization 
Even though the bacterial cell is much simpler in its organization than its 
eukaryotic counterpart due to its absence of organelles, it has been estimated 
that nearly one fifth of E. coli proteins is actively targeted to a defined 
subcellular localization, which include the inner and outer membranes, the 
periplasm, and the extra-cellular space (secretion)20. Even cytosolic proteins 
can be locally restricted to subcellular localization such as the nucleoid (the 
region of the cytoplasm in which the DNA is stored and condensed), the z-ring 
(a short-lived structure indicating the middle of the cell before division) or the 
cell poles. For most proteins, the localization process appears to be driven by 
diffusion and binding to “anchor proteins”, which are actively directed to these 
subcomponents of the cell. Approximately 96% of the exportome (proteins 
targeted to one of the membranes, the periplasm, or the extracellular space) 
requires the action the prokaryotic translocon20. The translocon, embedded in 
the inner plasma membrane, is a channel composed of proteins SecYEG. 
Proteins are addressed to the translocon co or post-translationally by the 
recognition of an n-terminal signal peptide by the SRP and SecA proteins. The 
signal peptide consists of a stretch of positively charged amino acids, followed 
by 6-18 hydrophobic amino acids and finally 1-11 polar amino acids containing 
an cleavage site recognized by the membrane anchored SPase I. Substrates of 
the Sec translocon can be co-translationally integrated to the membrane, or 
post-translationally translocated. 
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Multi-protein assemblies 
Most proteins in E. coli carry their function as complexes. These can range in 
complexity from a simple homo-dimeric form to large hetero complexes. A 
combination of affinity-purification and mass spectrometry on one side, and 
co-occurrence of proteins in orthology across species, revealed that the E. coli 
proteome contains more than 400 complexes21. Since complexes only function 
when all of their components are present, the cell developed strategies to 
express the various members of a complex at the right stoichiometry. First of 
all, members of a complex are often transcribed from the same operon, and 
therefore can be simultaneously regulated. Furthermore, recent ribosome 
profiling data revealed that the synthesis rate of the different proteins within an 
operon closely match their stoichiometry in the resulting complex22. Residues 
facing the interface of a complex are usually more conserved than other 
surface residues23. In Eukaryotes, dominant negative mutations are often 
associated with complexes, indicating that a single miscoded protein can 
inactivate an entire complex24. 
A recent study indicated that even monomeric proteins evolve at the edge of 
multimeric assembly25. Garcia-Seisdedos et al. expressed point mutated E. coli 
proteins in vitro and heterologously in S. cerevisiae, and observed that in some 
case they could form up to 1µm long fibrils. Together these results indicate 
that the oligomerization state of proteins can be easily disturbed, even by 
single nucleotide mutations.  

Mechanisms and rates of phenotypic 
mutations 

Phenotypic mutations are defined as “errors that occur when a DNA coded 
gene is transcribed to mRNA and subsequently translated to protein26”. They 
resemble DNA mutations (insertion, deletion and point mutation), but are not 
transmittable to the cell’s progeny, and typically occur at much higher rates26. 
They can be divided into transcription errors (insertion, deletion, point 
mutation or spurious editing), and translation errors (amino acid substitution, 
frameshift, readthrough, and premature termination). I will discuss the 
molecular mechanisms that lead to these errors, and the various ways cells 
cope with, and even harness them to adapt to the environment. 
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Transcription errors 
Strand specific RNA-seq technologies have shone light on the imprecise nature 
of transcription initiation and termination27. However, the transcription 
elongation phase of transcription appears to be mostly devoid of errors, and 
until recently its errors were too rare to be detected by standard RNA 
sequencing because of machine errors and mutations introduced during 
reverse-transcription. Traverse & Ochman28 applied the CircSeq method29 to 
solve this problem and directly measure transcription error rates in E. coli. 
During CircSeq, mRNAs are first circularized, and then repeatedly reverse 
transcribed, so that the final cDNA contains tandem repeats of the mRNA’s 
sequence. Errors found across several tandem repeats cannot originate from 
reverse transcription or sequencing mistakes, and are therefore present at the 
RNA level, regardless of whether they occurred during transcription of after. 
They measured the rate of nucleotide substitutions, and found it to be fairly 
constant across conditions, with an average error rate of 5.10-5 errors per base, 
and a tendency to replace C with U (implying a G:U mismatch during 
transcription). Errors did not localize to the leading or the lagging strand, and 
were very moderately affected by their local context. In a following article30, the 
same authors studied the rate and spectrum of insertion and deletion 
transcription errors, and found it to be about an order of magnitude lower than 
the rate of substitutions, with deletions prevailing over insertions. Surprisingly, 
these deletions to be more likely to preserve the reading frame, with observed 
error rates peaking for 3 and 6 nt deletions. However, we cannot exclude that 
these peaks are the results of degradation of mRNAs containing frame-
disturbing deletions, as they are likely to cause premature translation 
termination and trigger mRNA degradation. Insertions, on the other end, 
appear to happen mostly within repeating sequences, and usually consist in 
adding an additional repeat. 
In order to polymerize at such high level of accuracy, it has been suggested 
that RNA polymerases are able to backtrack to correct their mistakes. 
Specifically, “the polymerase jumps forward and backward along the template 
DNA with a net movement that is driven in the forward direction by 
thermodynamically favorable nucleotide addition in the forward-translocated 
state31”. It not only relies on the base pairing ability between the next template 
DNA base and the incoming RNA base, but also on the base stacking free 
energy difference between a correctly inserted nucleotide and a mismatch. A 
mismatch affects the base stacking energy of the preceding and following 
nucleotide pairs. This standard free energy difference, i.e. the melting energy 
of the pair of base pairs formed by the two last incorporated nucleotides, 
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serves to discriminate against mismatches in initial selection. A 
misincorporation also slows down the incorporation of the next nucleotide. 
The proofreading stems from the ability of the enzyme to cleave the 5’ end of 
the transcript after backtracking. For a detailed review of the mechanisms and 
determinants of transcriptional accuracy, see Gamba & Jenkin, 2018 32. 
Despite being relatively rare compared to other phenotypic errors, the effect 
of transcription errors is amplified by the fact that many copies of a protein can 
be produced from the same mRNA. This property has been harnessed to 
engineer bi-stable switches in E. coli that allow epigenetic inheritance33. 
 
In addition to RNA polymerase errors, other processes can affect RNA 
sequences post-transcriptionally. 8-oxo-guanine, a derivative of guanine 
generated when the ribonucleotide pool is exposed to reactive oxygen 
species, can be created within RNAs, where it affects its base pairing 
preferences and can induce protein recoding34. Similarly, adenosine to inosine 
and cytosine to uracil RNA editing are now believed to be common across 
higher eukaryotes. Inosine base-pairs with A, C and U, and was shown to 
induce protein recoding in human, mouse and zebrafish35. In the second 
chapter of my thesis I will challenge the prevalent notion that RNA editing does 
not recode bacterial mRNAs. 

Frameshifting errors 
Translation usually occurs in a defined frame, that the ribosome maintains 
along the length of the transcript. However, some sequences tend to confuse 
the ribosome, and induce a slippage towards one of the neighboring frames. 
In E. coli, +1 and -1 nucleotides frameshifts are the most frequent, and have 
been harnessed by the cell to regulate the production of key enzymes 
(programmed frameshift), including an interesting case of self regulation of the 
frameshifting propensity: the expression of the release factor protein RF2, 
whose primary role is to terminate translation via its recognition of the UAA 
and UGA stop codons, is stimulated by a +1 frameshift, resulting in the bypass 
of a UGA stop codon and the production of a full length, functional protein36. 
Other well-studied cases of programmed frameshift in E. coli include the dnaX 
frameshifting element, which regulates the relative expression of the τ and 𝛾 
subunits of DNA polymerase III by redirecting the ribosome to the -1 frame 
approximately 50% of the time37, or the joint production of a copper 
transporter and a copper chaperone by the same gene in different frames38. 
These cases are usually characterized by specific RNA structures, such as 
slippery homo repeats and pseudo-knots, which have been selected to 
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generate high levels of frameshifting. In order to evaluate the basal frameshift 
error rates in vivo, Meyerovich et al.39 introduced a plasmid containing a 
frameshifted GFP in the gram positive bacteria B. subtilis and compared the 
residual fluorescence to that of a wild type GFP. They found that 2% of the GFP 
encoding a frameshift at the DNA level were able to revert and produce a 
functional protein. Since the DNA frameshift was inserted near the beginning 
of the sequence (10th codon), it is likely that this figure represent a cumulative 
rate of frameshifting over the first codons. Assuming that frameshift errors are 
evenly distributed across the first 10 codons, the resulting figure of 0.2% errors 
per codon is still astonishingly high compared to other phenotypic errors, 
especially since early frameshifts are likely to create non functional, truncated 
proteins. 
Until recently, large-scale detection of programmed frameshift relied on the 
fact that coding sequences show a decreased conservation of the 3rd codon 
position (wobble) in evolutionary alignments. Ribosome profiling technologies 
now generate single nucleotide resolution maps of ribosome density across 
the transcriptome. The characteristic 3-way periodicity of these profiles reveals 
the dominant frame in which an mRNA is translated. In their analysis of the 
translational changes induced by the [PSI+] prion in S. cerevisiae, Baudin-
Baillieu et al.40 took advantage of this feature to identify frameshifts throughout 
the transcriptome, and showed that they were stimulated by the prion. 

Readthrough errors 
Stop codon suppression or translation readthrough occurs when the ribosome 
bypasses a stop codon and interprets it as a sense codon. Like in the frameshift 
case, one can divide these errors into basal readthrough errors, which happen 
at any given stop codon, and programmed readthroughs, which are selected 
for and potentially regulated. In the strict sense, the definition of a readthrough 
error only applies to cases where a tRNA competes with the release factors, 
resulting in the ribosome inserting an amino acid in place of the stop codon, 
and proceeding to translate until it reaches the next stop codon (or the end of 
the transcript, resulting in the degradation of the mRNA transcript41. However, 
cases of frameshifts that bypass a stop codon and add a peptide extension 
using a non canonical frame share similarities with bona fide readthrough, and 
can be included in a broader definition of the term. 
In E. coli, the most archetypal case of programmed readthrough is probably 
the insertion of selenocysteine at UGA stop codons. A suppressor tRNA 
bearing the TCA anticodon is first charged with serine by the SerRS, and the 
selA enzyme converts the Ser-tRNASec to Sec-tRNASec. Insertion of 
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selenocysteine at UGA only happens at sites where the UGA stop codon is 
associated to a specific RNA structure, the SECIS element42. 
Ribosome profiling experiments in E. coli revealed that readthrough is a 
pervasive phenomenon, and estimated that as many as 50 genes showed signs 
of translating ribosomes in sequences’ C-termini43. This phenomenon was 
mostly observed at UGA codons, and stimulated by the deletion of RF2. RF2 
depletion also disturbed the expression of biosynthetic genes under 
attenuation control. Fan et al.44 used a synthetic reporter construct to assess 
the variability of readthrough efficiency at UGA codons in a population of E. 
coli cells. The readthrough frequency, around 2% on average, varied 
substantially from cell to cell, and was correlated with a reduced protein 
synthesis. High levels of readthrough reduced the lag time necessary to exit 
stationary phase. The notion that global readthrough can be evolutionarily 
selected for and adaptive was supported by the finding that it was pervasive 
and regulated in the fruit fly D. melanogaster45. The C-terminal extensions were 
added at specific developmental stages, and often contained localization tags, 
but were not phylogenetically conserved, suggesting that readthrough is an 
adaptive mechanism to increase the proteome’s plasticity, and might perhaps 
serve as a “stepping stone” for more complex evolutionary processes. 
Yanagida et al.46 compared the way different species of yeasts encode their 
IDP genes (responsible for fatty acids oxidation). They showed that pre whole-
genome-duplication (WGD) species encoded IDP with a single gene, which is 
conditionally addressed to the peroxisome thanks to the addition a localization 
tag via a regulated +1 frameshift to bypass the canonical stop codon. Post 
WGD species, on the other hand, simplified this system by differentially 
expressing two different copies of the gene, with or without the peroxisome 
tag. 

Premature termination 
Whenever a ribosome terminates translation before reaching the canonical 
stop codon of an mRNA transcript, an incomplete protein is formed. Since an 
incomplete protein is unlikely to perform its function, and will probably 
misfold, premature termination is considered to be very deleterious, and has 
been proposed to a major driver of codon usage bias47. It can result from a 
nonsense transcriptional error, in which a stop codon would appear in the 
mRNA coding sequence, or from ribosome drop-off, a process stimulated by 
extensive stalling at a codon due to the lack of cognate aa-tRNAs. Conversely 
to readthrough, ribosome drop-off is too subtle to be directly measured at the 
gene level by ribosome profiling, but Sin et al.48 developed a sensitive 
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statistical procedure to quantify the decrease of ribosome density along 
transcripts globally, in a range of conditions. They estimated the drop off rate 
to be on the order of 4 × 10−4 per codon, which implies that for a typical, 300 
codon long ORF, only about 90% of the ribosomes would reach the canonical 
stop codon. Whether the decrease in ribosome density comes from frameshifts 
leading to out of frame termination or genuine termination events at sense 
codons, and the fate of these prematurely terminated protein, remains unclear. 
Zaher & Green49 revealed an intriguing interplay between amino acid 
misincorporation and premature termination. They showed that strains deleted 
for RF3, which was believed to primarily serve in the dissociation of RF1 and 
RF2 at the end of the translation process, suffered from increased sensitivity to 
errors in protein synthesis, and that RF3 tended to stimulate premature 
termination when a the tRNA in the P-site formed a mismatch with its codon. 
Since frameshifting can, at least transiently, form mismatches in the E and P-
sites, RF3 was also shown to mitigate its effects. Finally, premature translation 
termination by RF3 appears to decrease mRNA stability, but not protein 
stability.  
While ribosomes do not appear to dwell longer on any particular codon type 
in rich conditions, amino acid starvation has been shown to lift the degeneracy 
of the genetic code, and to induce ribosomal pausing at codons associated to 
the amino acid depleted from the medium50. The severity of the effected on 
synonymous codons was well predicted by a simple (but counter-intuitive) 
model of tRNA charging51, which showed that tRNAs associated to rare codons 
were more readily charged than more common isoacceptors during starvation 
for the associated amino acid. In line with these observations, cassettes 
expressing YFP in which all codons for a given amino acid were systematically 
recoded to only one of the codons for this amino acid resulted in measurable 
differences in fluorescence during starvation for this amino acid52. The codon 
robustness index that they proposed to evaluate the amount of premature 
termination at a given codon during starvation correlated well with the 
observed dwelling time of the ribosome, suggesting that premature 
termination is mostly dictated by competition between aa-tRNAs and release 
factors. 

Single amino acid misincorporations 
Until now, our experimental knowledge regarding rates of amino acid 
misincorporations originates almost exclusively from reporter constructs 
studies. One of the first reliable estimates of these error rates in vivo came from 
the ingenious experiment of Edelmann & Gallant53. They took advantage of the 
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fact E. coli’s flagellin does not encode for any cysteine in its sequence, and fed 
cells with cysteine marked with the radioactive 35S sulfur isotope. After 
purifying the protein and running it on a SDS polyacrylamide gel, measuring 
radioactivity levels allowed them to reveal the amount of 35S-Cys inserted per 
flagellin. They argued that this insertion was likely occurring at CGU/C arginine 
codons, and deduced that the error rate of misincorporation of cysteine at 
these codons was on the order of 1.0 x 10-4. They also confirmed that this error 
rate was increased in the presence of small concentrations of streptomycin, 
and during starvation for arginine, therefore highlighting the role of aa-tRNA 
competition in determining translation accuracy. Similar tricks were used to 
estimate specific misincorporation levels in reporter constructs, but were 
usually limited in scope54–57. 
Kramer & Farabaugh58 designed a series of firefly luciferases to estimate a 
wider range of codon-specific error rates. They used the fact that luciferase 
requires a lysine to be present in position 529 to perform its enzymatic activity, 
and created luciferase constructs in which codon 529 was systematically 
mutated to all near-cognate codons and some non-cognate codons. For each 
of these constructs, the residual luminescence served as a proxy for the rate of 
misreading of the variable codon by Lys-tRNAUUU. They found error levels to 
vary widely, and to be mostly determined by competition between cognate 
and near cognate tRNAs: overexpressing the rare arginine tRNAUCU drastically 
reduced the ArgàLys error levels at cognate AGA and AGG codons. Error rate 
from the 14 near cognate codons to lysine varied by a factor of 10. The highest 
error levels were associated to U:U or G:U mismatches, as would be expected 
from the thermodynamics of base pairing. They also characterized the effects 
of two aminoglycosides, streptomycin and paromomycin, and two ribosomal 
mutations. The two drugs increased error levels at near cognate codons, and 
the rpsD mutation increased the errors at already error prone codons. They 
were able to measure decreased error levels in the rpsL hyper accurate 
mutant, with error prone codons reverting to background levels of mistakes. 
 
The first peek at the full translation error spectrum was provided by a mass 
spectrometry analysis of six recombinant proteins purified from E. coli59. They 
first identified canonical, error free peptide, and then use a blind modification 
search strategy to identified “modified versions” of these peptides. They 
excluded PTMs and MS artifacts using a set of ad hoc rules, and retained 
among the remaining identifications those consistent with amino acid 
misincorporations. The vast majority of the errors they detected could be 
rationalized as originating from an mRNA/tRNA mismatch, rather than a 
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transcriptional error or a synthetase error. Furthermore, GmRNA:UtRNA 
mismatches, but also CmRNA:UtRNA and UmRNA:UtRNA mismatches at the wobble 
position, were the most frequently observed. They confirmed that the identity 
of the codons determined its errors by synonymously recoding one of the 
proteins many times. The error rates they measured from these recoded 
proteins were well predicted by the nature of the mRNA/tRNA mismatch. 
As shown by these experiments, misloading errors, i.e. errors in which an aaRS 
pairs a tRNA to a non-cognate amino acid, are much rarer than ribosomal 
errors. aaRS tend to be precise, and perform their function with an accuracy in 
the 10-4–10-5 range60. However, several cases of regulated, adaptive 
mistranslation have been reported, which usually take advantage of the tRNA 
charging step to generate high levels of a specific subset of translation errors. 
C. albicans, a pathogenic yeast, is part of a clade that reassigned the CUG 
codon from leucine to serine. However, it is able to partially revert and insert 
high levels of leucine at this codon during invasive growth, recoding 
predominantly proteins expressed at its surface. This processed is believed to 
promote cell-adherence (leucine is more hydrophobic than serine), and 
evasion of the host immune response thanks to the increased sequence 
variability61. 
Another well-characterized case of adaptive mistranslation is the controlled 
misacylation of methionine onto various non-cognate tRNAs during oxidative 
stress. This phenomenon was observed in E. coli62, S. cerevisiae63 and H. 
sapiens64. In mammalian cells, the levels of mismethionylation shoot from 1% 
to 10% during ROS exposure. The adaptiveness of this phenomenon stems 
from the ability of methionine residues to protect proteins against ROS-
mediated damage. 
Similarly, in E. coli, oxidative stress appears to trigger another type of 
mistranslation. The editing domain of the threonine aaRS (thrRS) is inactivated 
by the oxidation of a cysteine residue. The modified enzyme is not able to 
discriminate against serine, which is then inserted at high levels at threonine 
codons65. For a complete review on adaptive mistranslation mechanisms, see 
Pan 201366. 
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How does the cell mitigate the effects 
of amino acid substitutions? 

Since amino acid substitutions tend to be detrimental to fitness, organisms 
have developed mechanisms to minimize their error rates, and strategies to 
ensure that the residual errors are well accepted. Here, I will review the various 
mechanisms that allow the translation machinery to perform at high accuracy, 
and the ways its components have co-evolved with mRNA sequences to ensure 
that amino acid substitutions are minimally disruptive to fitness. 

Molecular mechanisms of translational accuracy 
During translational elongation, the ribosome repeatedly samples aa-tRNAs 
from the cytosol, with the help of EF-Tu. The process of aa-tRNA selection is 
blind, and governed by diffusion only. In order to discriminate between 
cognate and non-cognate tRNAs, the ribosome has to rely exclusively on the 
difference in free energy (ΔΔG) between correct and incorrect matches in the 
A-site. Assuming that the selection process relies on thermodynamic 
equilibrium, an error rate of 10-4 would imply a difference in free energy 
between cognate and near cognate tRNA to the A-site codon on the order of 
10kT, or 0.5 kcal.mol-1 at a temperature of 37°C, but this value is actually 
higher than the ΔG associated to the perfect binding of a tRNA to its cognate 
codon. Hopfield67 and Ninio68 independently recognized this contradiction, 
and both proposed that the accuracy of tRNA selection was in fact increased 
by the addition of an irreversible step, through a mechanism that they 
respectively termed kinetic proofreading or kinetic amplification. They 
correctly identified that GTP hydrolysis, which though to be a wasteful reaction, 
actually provided the necessary boost in accuracy by introducing irreversibility 
in the selection process (Fig 5A). Recent advances relying on fluorescence 
resonance energy transfer (FRET) allowed a precise determination of the 
different rates constants of the elongation cycle, shinning light on the 
interactions between the ribosome and the tRNAs in the A-site, and its ability 
to discriminate cognate from non-cognate tRNA at several steps through 
conformational changes (Fig 5B, reviewed in Wohlgemuth et al., 201069. 
Despite of the molecular complexity of the proofreading mechanisms, 
Banerjee et al. employed a simplified, general model of proofreading (Fig 5C) 
and used the method of first passage processes to model the speed and 
accuracy of the ribosome, and their relationship to the different rate constants. 
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They were able to show that the ribosome usually operates in a regime that 
sacrifices accuracy for speed, i.e. that it could easily achieve higher accuracy at 
a lower speed, by simply reducing its rate of GTP hydrolysis (Fig 5D). A linear 
trade-off between speed and accuracy was observed within an in vitro 
translation system, in response to variation in the Mg2+ concentration70. 
Most aaRS also rely on energy consuming proofreading mechanisms to 
achieve high acylation accuracy71. They typically discriminate well between 
cognate and non-cognate tRNAs, thanks to information encoded both in the 
tRNA’s anticodon and its backbone structure. Discrimination against non-
cognate amino acid relies on a double sieve mechanism: the active site first 
accepts amino acids chemically similar to the cognate AA, but sterically 
excludes larger ones. In a second, energy consuming step, the editing site 
probes the chemical properties of the amino acid in the catalytic site and 
hydrolyses non cognate amino acids72. Despite being quite accurate, tRNA 
acylation is not perfectly error-proof. In particular, it has been suggested that it 
would be more difficult for the synthetases to exclude small non-cognate 
amino acids than larger one. This tendency might be at least partially corrected 
by EF-Tu’s binding preferences. LaRiviere et al.73 probed the affinity of EF-Tu to 
correctly and incorrectly loaded aa-tRNAs, in vitro. They showed that EF-Tu 
binds correctly charged tRNAs within a limited range of affinities, but binds 
incorrectly charged tRNAs over a much wider range. The binding strength 
seems to be determined by a linear combination of two factors, one 
determined by the tRNA backbone and the other by the amino acid. Among 
the correct matches, a amino acid which binds EF-Tu with a low affinity is 
usually associated to a tRNA whose backbone binds the elongation factor with 
high affinity, and vice versa. Therefore, incorrect matches do not benefit from 
this compensation effect, possibly leading to very strong or very weak binding 
to EF-Tu. The authors suggested that the cell might use this mechanism as a 
safeguard against mistranslation. 
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Figure 5: kinetic proofreading in the ribosome. A: General scheme of kinetic proofreading (KPR) in the ribosome. 
The EF-Tu • GTP • tRNA complex bind the A-site reversibly. Because of the difference in affinity to the A-site between 
correct and incorrect tRNA, the correct complex will be bound to the A-site after equilibration. The GTP hydrolysis 
forces the system to either reject the tRNA and repeat the cycle, or incorporate the amino acid in the nascent peptide 
chain. B: State of the art model of tRNA selection in the ribosome. The rate constants were measured for cognate and 
non-cognate tRNA using FRET. k-2, k3, k5 and k7 depend on the identity of the tRNA, and favor the insertion of cognate 
over non cognate tRNAs. Reproduced from Wohlgemuth et al., 2011. C: Simplified model of KPR used by Banerjee et 
al. E : free ribosome. ER/EW: ribosome associated with the right (R) or wrong (W) tRNA. ER*/EW*: activated ribosome 
• tRNA complexes. PR/PW: incorporation of the R or W tRNA in the peptide chain. D: The rate of GTP hydrolysis 
governs a trade-off between speed and accuracy in the ribosome. MFPT : mean first passage time. The black curve 
represents the simulated speed and accuracy of translation elongation as the rate of GTP hydrolysis tends to 0, using 
parameters measured on the wild type E. coli ribosome. The blue and purple curves are generated using parameters 
measured on an error prone and hyper accurate ribosome, respectively. The observed value of k2,R (red circle) 
indicates that the ribosome usually operates in a regime where speed is optimized rather than accuracy. Reproduced 
from Banerjee et al., 2017 
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The genetic code minimizes the effects of amino 
acid substitutions. 
The structure of the genetic code appears is nearly universal, and virtually 
conserved through all forms of life, with the exception of some minor codon 
reassignments. Its is characterized by an exceptionally high robustness to point 
mutations: codons of the same amino acid usually share their first and second 
positions, and amino acids that share similar chemical properties tend to have 
similar codons. Although there exist more robust codes, Freeland & Hurst74 
evaluated than only one in a million randomly generated codes (in which the 
observed sets of codons are randomly reassigned amino acid) would surpass 
the observed one in terms of robustness to point mutations and translation 
errors. This result is at first at odds with the notion that the code is near 
universal, and therefore likely to be poorly evolvable, or as Francis Crick would 
call it, “frozen”. However, it is now believed that the robust properties of the 
genetic code emerged through the combined effects of co-evolution and 
selection75. First of all, primordial proteins were likely composed of a subset of 
the current proteogenic amino acids. These primordial amino acids, which 
were naturally present in the environment, did not require the existence of a 
complex metabolism. Similarly, primordial translation was likely statistical, and 
therefore had to be robust to very high error levels. As more complex 
biosynthetic pathways emerged, the set of codons for an amino acid could be 
split to encode this amino acid and a newly synthesized one. These two amino 
acids could, for example, first share an aaRS that would then duplicate and 
develop an increased specificity towards either one or the other. This process 
guarantees that amino acids sharing part of their biosynthetic pathways would 
be encoded by similar codons. 
An early genetic code would have likely treated the branched chain amino 
acids (valine, leucine and isoleucine) interchangeably. Phylogenetic techniques 
revealed that indeed, there biosynthetic pathways are evolutionarily 
intertwined and that their aaRS share a common ancestor, and were able to 
retrace the history of the genetic code’s evolution.76 

Organisms balance their pool of tRNAs with the 
codons they express. 
Systems biology often treats the fluxes in the cell like the fluxes of an economy. 
Processes like translation seem to obey the law of supply and demand: a pool 
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of codons needs to be efficiently translated by a pool of tRNAs, and commonly 
translated codons should be matched with abundant tRNAs. This necessity of 
matching the codon pool to the tRNA pool is mostly driven by the pressure to 
translate proteins both fast and accurately. A common codon that is translated 
by a rare aa-tRNA will induce ribosome stalling, because the ribosome will 
have to sample many non cognate aa-tRNA complexes before finding the 
correct one. The ribosome is a large molecular complex in which the cell 
invested a lot of resources, and assigning it to an inefficiently translated codon 
represents an opportunity cost: it could be translating other, more efficiently 
encoded mRNAs during the same time window. Shah & Gilchrist77 formalized 
this concept and developed an elegant population genetics based model to 
explain how codon usage bias results form the conflicting forces of mutation, 
selection for translational speed, and drift. Their model is based on the 
assumption that the force of selection counteracts the cost of ribosome 
stalling, and therefore acts proportionally to a gene’s protein synthesis level. 
Wallace et al.78 modified Shah & Gilchrist’s model to account for noisy 
experimental data, yielding higher estimates of the selection coefficients for 
“good codons”. They rightfully noted that selection could not be assumed to 
work exclusively against ribosomal stalling, because selection against 
translation errors would lead to a similar signature. The cost associated to 
translation errors is indeed likely to be proportional to both the expression 
level of the genes in which they occurred, and to the time the ribosome spends 
sampling for the correct aa-tRNA. In order to disentangle the effects of speed 
and accuracy on the codon usage bias of genes, Drummond & Wilke79 relied 
on a statistical test that excluded the confounding influence of gene 
expression. They hypothesized that cells would likely use good, error-proof 
codons at positions that are crucial for protein folding, and that these positions 
would be more conserved in evolutionary alignments. They showed that, 
within genes, conserved positions were indeed encoded with a different set of 
codons than non-conserved positions, suggesting that selection for translation 
accuracy was a major determinant of codon usage bias. Whether cells optimize 
their translation primarily for speed or accuracy remains an open question. 
Yang et al.80 were the first to notice that yeast cells seem to control the trade-
off between speed and accuracy by the way they encode their mRNAs. They 
observed that conserved positions correlated to stronger RNA structures 12nt 
downstream, consistent with the notion that this structure would slow down the 
ribosome while it probes the conserved codon in its A-site. 
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The other side of the supply-demand balance is determined by the expression 
of tRNA genes, the availability of amino acids, and the activity of aaRS genes. 
This balance is maintained by processes occurring at physiological and 
evolutionary timescales. On a rapid, physiological timescale, the levels of free 
amino acids are tightly regulated: their biosynthesis pathways rely on feedback 
loops such as transcriptional attenuation81, and the interconnectivity of the 
metabolism usually allows cells to efficiently reallocate metabolite fluxes to 
mitigate the effects of amino acid starvation82. Severe amino acid starvation 
results in the production of ppGpp, a metabolite produced during amino acid 
induced ribosome stalling. ppGpp in turn activates the stringent response, 
which redirect resources from high growth rate associated function such as 
replication, transcription and translation toward amino acid biosynthesis 
pathways. Impairing the production of ppGpp by the ribosome associated 
GDPase RelA resulted in a 10-fold reduction of translation accuracy83. As seen 
previously50–52, synonymous codons are differentially affected when the cell is 
starved for the associated amino acid. In order to respond efficiently to this 
challenge, genes involved in the biosynthesis of the depleted amino acid tend 
to be preferentially encoded with codons that are robustly translated when the 
tRNA charging levels are low.51 
On evolutionary timescales, codon usage bias and tDNA gene copy number 
co-evolve to maintain the balance of supply and demand2. Yona et al. revealed 
that the tRNA pool could rapidly adapt in the laboratory and restore the 
supply-demand balance after they deleted a rare tRNAArg

CCU, by spontaneously 
mutating the anticodon of one copy of the common tRNAArg

UCU to CCU84. 
Bioinformatic analyses revealed that these anticodon reassignments are in fact 
common, and can even happen between tRNAs decoding different amino 
acids84,85. This suggests that the tRNA pool is extremely plastic, and can rapidly 
adapt to changes in translation demand. One can suppose that the high 
evolvability of the tRNA pool implies that it is indeed optimized for a fast and 
accurate protein synthesis. 

Translation accuracy affects the evolution of 
protein sequences. 
Selection pressures can act on the coding sequences of highly expressed 
proteins to minimize the impact of their translation errors by choosing 
appropriate codons, but to what extent does translation accuracy affect the 
evolution of their primary amino acid sequences? In the context of adaptive 
selection, where mutations are selected because they confer a significant 
fitness advantage, Whitehead et al.86 investigated the potential role of 
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phenotypic errors with regard to epistasis. Taking the example of a cysteine 
bridge in which both cysteines need to be present for the protein to gain 
activity, they showed that in case of strong selection the intermediate 
genotypes in which only one cysteine is present could be positively selected 
because phenotypic errors would lead to a fraction of the protein bearing the 
two cysteine residues. Bratulic et al.87 tested the effects of translation accuracy 
on the evolution of a plasmid-borne betalactamase. In order to speed up the 
evolution of sequences, they performed cycles of in vitro PCR mutagenesis, 
transformation, and plasmid selection based on the fitness advantage they 
conferred to the host in a medium containing antibiotic. They carried the 
experiment in parallel a wild type and in an error prone strain. Evolving in an 
error prone environment conferred sequences a higher folding stability, which 
was the result of stabilizing non-synonymous mutations on the proteins 
surface. They did not show sign of synonymous codon selection, and the 
occurrence of synonymous SNPs at sites where mutations have destabilizing 
effects was not reduced in error-prone populations. However, despite the 
large population size, their evolutionary system can hardly be compared to the 
evolution of natural sequences, as the selection coefficients are very large and 
the number of generations was limited to about 50. Observing the subtle 
effects of mistranslation on the evolution of proteins working near optimally 
would be very difficult in a laboratory setup, and these questions would 
probably be best addressed through a combination of population genetics 
and simulation. 
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Chapter 1: Systematic detection 
of amino acid substitutions in 
proteome reveals the 
mechanistic basis of ribosome 
errors  
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Abstract 

Translation is limiting the accuracy of information transmission from DNA to 
proteins. Understanding how cells ensure proper translation of proteins amidst 
trade-off between accuracy, speed and energy expenditure and whether 
translation accuracy is modulated across environmental conditions, expression 
levels or gene locations is largely hindered by lack of a quantitative 
experimental methods to detect and quantify amino acid misincorporation at 
the full proteome level. Here we systematically detect and quantify errors in 
entire proteomes from mass spectrometry data. Following HPLC MS-MS data 
acquisition, in E. coli and in S. cerevisiae, we identify peptides whose mass 
deviate from genome-encoded peptide sequence by one amino acid, verifying 
that the mass shift cannot be explained by a post-translational modification. 
Our analysis reveled that most substitutions occur between amino acids that 
share near-cognate codons. Further analyses suggest that the majority of these 
near-cognate substitutions occur due to codon-to-anticodon mispairing within 
the ribosome. Patterns of errors due to mispairing were similar in E. coli and 
yeast, suggesting a universal mechanism that accounts for ribosomal errors. 
Focusing further on the E. coli, we treated the cells with two drugs that 
decrease ribosomal proofreading and found that they increase error rate due 
to mispairing at the wobble codon position. Generally, amino acid 
substitutions tended to occur in positions that are less evolutionarily 
conserved, and that minimally affect protein energetic stability, indicating a 
selective pressure to minimize phenotypic errors when potentially detrimental. 
Genome wide ribosome density data indicate that mistakes tend to occur in 
sites where ribosome velocity is relatively high, supporting the notion of a 
trade-off between speed and accuracy as predicted by proofreading theories. 
Starving the cells for particular amino acids results in specific patterns of amino 
acid substitutions reflecting the amino acid deficiency. Together our results 
reveal a mechanistic basis for ribosome errors in translation. 
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Introduction 

Genetic information propagation along the Central Dogma is subject to errors 
in DNA replication, RNA transcription and protein translation. DNA replication 
typically manifests the highest fidelity among these processes, featuring 
genetic mutation rate on the order of 10-10 per nucleotide per genome 
doubling88,89. “Phenotypic mutations”, i.e. errors in RNA transcription and in 
protein translation, in which the wrong RNA nucleotide or amino acid are 
respectively incorporated, occur at considerably higher rate. A recent estimate 
made in bacteria, is that transcription error rate ranges between 10-5 to 10-6 
per incorporated nucleotide28. As for translation, the classical kinetic proof 
reading theory67 suggested that the error rate per amino acid would have 
been extremely high (10-2) at chemical equilibrium, and it is only due to the 
investment of energy in the form of hydrolysis of GTP that it can be reduced to 
about 10-4 on average.   
The two main steps that account for errors in translation are the mischarging – 
where the wrong amino acid is acylated to a tRNA, or mispairing where a tRNA 
mispairs with the wrong codon within the ribosome. To reduce errors due to 
mispairing proofreading is made within the ribosome in a process that 
consumes energy and that compromises translation speed90,91. Mischarging of 
tRNA with the wrong amino acids is also subject to proof reading working at 
the aminoacyl tRNA synthetase level92. Like in any information channel, 
translation systems must thus face a “trade-off between energy, speed and 
accuracy90. 
The heavy investment of cells in proofreading the translation process, in 
energy and in time is a clear indication that too high error rate would be 
detrimental. Indeed proteins that contain amino acid substitutions tend to 
misfold and aggregate, promote spurious protein-protein interactions, and 
they may saturate protein quality control machinery, resulting in proteotoxic 
stress93. Conversely, some mistakes may be tolerated and a certain level of 
error might even prove to be advantageous. It has been shown that 
mistranslation is beneficial in response to environmental stresses as it can help 
sustain and disseminate cellular phenotypic viability94. On an evolutionary time 
scales too, phenotypic errors might be essential in facilitating adaptation of 
complex traits when combined with genetic mutations86 [Whitehead, the look 
ahead effect], and by the purging of deleterious mutations95. A computational 
analysis of codon usage patterns across genomes revealed that a subset of 
codons are preferred over others at positions crucial for folding in highly 
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expressed proteins, suggesting that evolution indeed favors more accurate 
codons at these sites79.  
 
Recent development in RNA sequencing technologies quantified the rate of 
translation errors to reside in the range between 10-5 and 10-6, an order of 
magnitude or two lower than the rate reported in protein translation58. In 
contrast, errors in protein translation have remained elusive and difficult to 
detect. An early effort by Edelmann and Gallant53, who quantitatively tracked 
the insertion of radioactively labeled cysteine in E. coli’s flagellin, a cysteine 
free protein, revealed a first global estimate of mistranslation, with 
misincorporations happening on average every 10,000 amino acids. Since 
then, the use of fluorescent or luminescent reporter constructs allowed the 
quantitative tracking of specific types of mistranslation, at defined sites. These 
methods have highlighted the importance of codon-anticodon recognition 
and tRNA competition as determinants of these error rates, and were used to 
characterize the effects of aminoglycoside antibiotics and ribosome ambiguity 
mutations (ram)58,96. 
Yet, major questions still remain open. While error rates could be measrured 
precisely within specific positions of reporter constructs,, the overall error 
spectrum across the proteome has not yet been characterized. Such 
measurements would allow the assessment of the relative contribution of 
mischarging and mispairing.. Further, identification of error positions would 
allow to study the dependency of error on codon identity, and reveal whether 
specific positions within proteins are more prone to errors.  
 
Mass Spectrometry (MS), which now permits routine, high throughput 
characterization of canonical proteomes and common post translational 
modifications (PTMs), was described as an upcoming tool for the study of 
protein mistranslation for almost a decade93 and more recently harnessed to 
detect various substitutions from several purified recombinant proteins 59, and 
to detect and quantify the incorporation of norvaline at leucine positions 
across the proteome of E. coli mutants97. Yet, MS has yet to be harnessed for 
the unbiased study of amino acid substitutions on a proteome wide scale. Such 
full study was hitherto hindered by the low rate of substitutions compared to 
other natural and post-processing protein modifications and a much larger 
search space.  
Here, we used Strong Cation-Exchange chromatography (SCX) fractionation 
and high resolution Liquid Chromatography (LC)-MS-MS to achieve a deep 
coverage of E. coli’s proteome, and assessed the effects of two aminoglycoside 
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antibiotics, streptomycin and paromomycin, on the bacteria’s translation error 
rates and spectrum. In addition, we also assessed the effect of starvation to a 
particular amino acid on the mistranslation rate of its cognate codons. We have 
carried out our analysis with MaxQuant98, repurposing its dependent peptide 
algorithm to identify mass shifts consistent with amino acid substitutions, and 
stringently filtering out potential artifacts. We then validated these 
identifications using a set of independent analyses that include a shift in HPLC 
retention time due to change in hydrophobicity of the encoded amino acid. 
Performing these experiments and analyses on E. coli in several growth 
conditions and analyzing similar data in the yeast S. cerevisiae, we could detect 
over 3500 site-unique substitution events. 
 
This observed set of substitutions could, for the most part, be explained by a 
single mismatch in the codon-anticodon complex. In particular, G:U 
mismatches at the 1st and 2nd positions prevail, despite the recent 
observation that the geometry of the small ribosomal subunit’s decoding 
center prohibits G:U wobble interactions at these positions99,100. The increased 
error rates observed in the presence of aminoglycoside drugs support the 
conclusion that these mistakes arise in the ribosome due to codon-anticodon 
mispairing. The set of errors that we detected in published MS data of S. 
cerevisiae shared a strikingly similar pattern of mismatches with E. coli, 
suggesting that errors are deeply constrained by base pairing chemistry. 
Furthermore, we show that rapidly evolving amino acid positions are more 
likely to bear amino acid substitutions. Observed substitutions tended to 
minimally affect protein energetic stability, and analyzing transcriptome-wide 
ribosome density data revealed low density at sites of mistakes, indicating at 
speed-accuracy trade-off. Our experimental observations support the view that 
organisms do mitigate the effects of translation errors by locally fine-tuning the 
way they encode proteins. Starving the cells for serine increased errors from 
this amino acid in a codon dependent manner. Our method offers quantitative 
estimates of error levels at a much larger scale than previously achieved, and 
offers a way to systematically study the response of the translation machinery 
to various stresses and conditions. 
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Results 

A pipeline to confidently identify amino acid 
substitutions in a proteome 
 
Mass spectrometry allows for large-scale identification of peptides at the 
proteome level. The task of identification of peptides with amino acid 
substitutions could thus resemble that of detecting known peptides that 
underwent post-translational modifications (PTMs). Despite the fact that the 
detection of common PTMs, such as phosphorylation or acetylation, has 
become commonplace101, detecting amino acid substitutions by specifying a 
full list of all possible substitutions would result in a dramatic increase in the 
size of the peptide database. For example, assuming peptides of average 
length 10, there would be on the order of 200 times more singly-modified than 
canonical peptides to search for, leading to impractical search times and a 
considerable loss of statistical power. 
Blind modification searches102–104, i.e. approaches that offer a way to identify 
(singly) modified peptides without requiring the user to input a list of 
predefined modifications, take advantage of the fact that modified peptides 
are usually less abundant than their unmodified counterparts. Therefore, a 
modified peptide is only likely to be detected if the canonical peptide has 
already been detected. We used MaxQuant to identify modified peptides with 
its “dependent peptide search” algorithm. “Dependent Peptides” are defined 
as peptides that show mass shifts in comparison to the unmodified, genome-
encoded “Base Peptides” (Fig. 1B). We then applied a series of filters to the list 
of dependent peptides, in order to stringently remove known PTMs and 
artifacts and conservatively retain only amino acid substitutions. The outline of 
our pipeline is described in Figure 1A. For a detailed description of the 
pipeline, see Methods.  
We generated a deep coverage, high resolution map of the E. coli proteome in 
rich medium at 37°C, and in addition evaluated the effect of two 
aminoglycosides antibiotics at sub-lethal concentration, and the effect of 
starvation to serine on the accuracy of its translation machinery. In total we 
generated error maps of 9 samples, each in two replicates (see Methods). All 
together we detect 3596 independent amino acid substitutions (each defined 
here by a unique position within a specific protein and a unique amino acid 
substitution) in the E. coli proteome. Similarly we analyze an existing proteome 
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dataset105 from the yeast S. cerevisiae at a single type, non-treated, condition 
that yielded 225 substitutions for comparison. 
 
 
 
 
 
 

 
Figure 1: A computational pipeline to confidently identify amino acid substitutions from Mass Spectrometry 
data. A: Overview of the pipeline. For a detailed description of the different steps, see Material & Methods. B: 
MaxQuant Dependent Peptide search performs exhaustive pairing of unidentified spectra to a spectral library 
derived from the identified spectra. For each pair of (identified, unidentified) spectra of the same charge z, and 
found in the same fraction, the algorithm first computes the mass difference "m = munidentified - midentified . It simulates 
in silico, and sequentially, the addition of a single moiety of mass "m at any position in the identified peptide, and 
generates the corresponding theoretical spectrum for the modified peptide. These spectra are then compared to 
the experimental spectrum using MaxQuant Andromeda’s score formula. The pair with the highest score is retained, 
and the significance of the match is assessed using a target-decoy FDR procedure. C: The observed retention time 
shift induced by our set of substitutions is accurately predicted by a simple sequence-based retention time model.!
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Most of the high quality hits are bona fide amino 
acid substitutions. 
Given mass differences detected between base and dependent peptides we 
must first establish that they represent amino acid substitutions. For that, we 
took advantage of the fact that many amino acid substitutions change peptide 
hydrophobicity and they hence result in predictable retention time shifts 
during liquid chromatography. The retention time of a peptide can be 
predicted with high accuracy (R2 > 0.9) approximately as the sum of the 
hydrophobicity coefficients of its amino acids106. Therefore, the predicted 
HPLC retention time of the substituted amino acid can be computed and 
compared to the observed retention time recorded for the substituted 
peptide. We trained a retention time prediction tool on a list of confidently 
identified peptides, and generated an expectation of the retention time shift 
induced by the detected substitutions. We compared this expectation to the 
observed retention time shift for each of the detected substitutions in the 
MOPS dataset (Fig. 1C). This analysis supports the notion that most of the 
substitutions detected are genuine amino acid replacements.  
Note that our sampling strategy allows us to detect substitutions originating 
from the highly expressed proteins only.  
 
We define a substitution as a combination of a position in a protein, an “origin” 
amino acid (and its associated codon), and a “destination” amino acid. We then 
divide all substitutions in two sets: a substitution is classified as a Near Cognate 
Error (NeCE) if the error-bearing codon of the origin amino acid matches with 
one nucleotide difference at least to the codons of the destination amino acid, 
and as Non Cognate Error (NoCE) otherwise. The structure of the genetic code 
dictates that only a minority of the substitutions would be classified as NeCE. In 
particular, of all detectable codon to amino acid substitution types 30% are 
expected to be of the NeCE type. In stark contrast, 88% of the unique 
substitutions detected by our method with the full E. coli dataset are classified 
as NeCE. Thus, the great majority of observed substitutions in our data can be 
rationalized by a similarity between the origin’s codon and a codon of the 
destination amino acid. Such enrichment for NeCE compared to expectation 
serves as an indication that we inspect genuine amino acid substitutions (see 
SOM for a formal statistical test) 
An intriguing possibility is that NeCE substitutions might predominantly 
represent codon-anticodon mis-pairing events that occur within the A-site of 
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the ribosome,  and that NoCE substitutions might occur elsewhere, i.e. in the 
amino acid charging phase by the relevant aaRS. We attempt below to support 
the notion that indeed the majority of NeCE events represent mRNA-tRNA mis-
pairing events. 

Overview of amino acid substitution landscape in 
E. coli  
Substitution matrices are common in biological research, for example decades 
of research in genomics revealed 4*4 nucleotide substitutions matrices for 
DNA and RNA polymerases, and 20*20 matrices of substitutions between 
amino acids in evolution. Our amino acid substitution data allow us to generate 
64*20 codon to amino acid matrices that depict the prevalence of each type of 
amino acid error in a dataset. Note that in no way these matrices represent real 
relative probabilities of mistakes as our ability to detect an error depends on 
the original protein’s expression level, which also influences its codon choices. 
The numbers of unique peptides supporting any codon to amino acid 
substitution type is show in Fig. 2A; the intensity of the shade is proportional to 
the logarithm (base 2) of the number of unique genome positions in which 
substitutions were observed. Because leucine and isoleucine are isomers and 
thus share the exact same mass, our method is not able to distinguish the two 
amino acids as destinations of a substitution; thus, we grouped together 
substitutions towards Ile and Leu. Furthermore, substitution types that 
transform a codon into its cognate amino acid, involve a stop codon, or 
substitutions that cannot be detected using our method because they 
represent a mass shift that corresponds precisely to the mass shift and 
specificity of a PTM, were grayed out, and discarded from subsequent analyses 
(see Methods).  
An interesting observation we make on this matrix is that the codon that 
encodes for an amino acid affects its substitution destination. This is nicely 
illustrated with substitutions from Gly to Asp and Glu. We see that when Gly is 
encoded by the GGC codon, the frequent substitution destination is the near-
cognate Asp (that can be encoded by the near cognate codon GAC), while 
encoding Gly with GGA often results in substitution of Gly by Glu (presumably 
due to its near cognate codon GAA). Similar cases in which different codons 
for the same amino acid tends to show different amino acid substitution 
pattern can be found in the matric  
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Figure 2 : overview of the substitution profile of E. coli in MOPS complete medium. A : Matrix of substitutions 
identifications. Each entry in the matrix represents the number of independent substitutions detected for the corresponding 
(original codon, destination amino acid) pair, in the SC-complete dataset. The logarithmic color bar highlights the dynamic 
range of detection. Grey squares indicate substitutions from a codon to its cognate amino acid, substitutions from stop 
codon, substitutions undetectable via our method because they are indistinguishable from one of the PTMs or artifacts in 
the unimod.org database. Substitutions to Leu and Ile are a priori undistinguishable, and thus grouped together. B : Left 
panel : For each of the top 10 most frequently detected substitution types, we fetched the quantification profile of the 
dependent peptide and the base peptide. Each dot represents the ratio of intensities IDP/IBP for each of the samples, when 
both peaks have been detected and quantified. The black line indicates the medians of the distributions. Right panel: we 
inferred the most likely mismatch for each of the substitution types, using a procedure described in the Material and 
Methods. This allows us to guess that the V -> I/L substitutions are likely substitutions from Val to Ile, enabled by a G:U 
mismatch at the 1st position. 
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Once we validated the amino acid substitutions we calculated the observed 
error rate (i.e. the ratio of intensity between the dependent and base peptide) 
for the all detected substitutions. As example, the SerAGCàAsn substitution, 
was detected in total in 81 peptides across the E. coli proteome of the non-
treated samples. Figure 2B shows the error rate estimations in each of these 
substitutions – each dots in the plot corresponds to one specific SerAGCàAsn  
substitution on a particular genomic position, and the error rate is on the y-
axis. Likewise the 10 most frequent substitutions types in the proteome are 
shown.  The majority of the substitutions that are observable in our dataset 
span the error rate range around 10-3, with the most highly abundant 
substitutions types showing slightly higher error rates. Due to the MS 
acquisition strategy, positions that feature a low error rate are less likely to be 
detected, which could lead to an over-estimation of the actual error rates. We 
measure the proteome, and detect translation errors, in three time points 
along the growth cycle (beginning in exponential growth phase and ending 
with the stationary phase (Fig S1). An intriguing trend we observed is that error 
rates seem to consistently decline as cells enter the stationary phase. The 
actual decline in error rate might be under estimated here, due to the fact that 
we measure errors from the whole current proteome without restriction to 
mistakes made at newly synthesized proteins. 

A global nucleotide mispairing mechanism for 
translation errors 
We further classified NeCE substitutions based on the location of the mismatch 
within the codon and the nucleotide types they involved. We define the count 
density for a given mismatch type as the number of substitutions that can be 
explained by that type of mismatch divided by the number of substitution 
types that can be explained by the same mismatch, and report the count 
density for the two biological repeats in Fig. 4B. This analysis results in three 
4*4 “mismatch matrices” that depict the prevalence of mismatching for each 
nucleotide in the codon with each of the three non-perfectly matching 
nucleotides in the anticodon Fig 3B. Substitutions that could be caused to 
multiple mismatches were assigned to the most likely mismatch using an 
expectation-maximization scheme (see Material and Methods). The most 
frequently observed substitution type involves G:U mismatches in the first or 
the second position of the codon. Interestingly, this rule holds only for 
mismatches where the codon base is G and the anticodon base in U; the fact 
that the opposite geometry (i.e. errors in which a U is in the codon and a G in 
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the anticodon) seems to be less error prone is surprising at first, but might be 
explained by the numerous modifications affecting uracil at the tRNA level.  
 

E. coli  and S. cerevisiae  share similar error 
profiles 
While both characterized by a mostly planktonic lifestyle and high growth 
rates, E. coli and S. cerevisiae have been diverging from one another for at 
least 2.7 billion years. Comparing the error profiles of these two organisms, 
thus, allows us to look at how strongly these errors are constrained, both by 
chemical and evolutionary necessities. We reanalyzed a previously published 
mass spectrometry dataset of strong anion exchange (SAX) and SCX 
fractionated proteome of S. cerevisiae grown in a single condition, a rich 
medium (30°C, YPD)105 using our pipeline.  
We were able to detect a total of 225 substitutions in the yeast proteome. Here 
too the majority of the errors, 143, were classified as NeCE. Comparing the 
error spectrum between the eukaryote and the prokaryote we observed a high 
overlap between the set of substitution types seen in the two organisms. This 
observation reveals a universal error pattern for mistakes that are likely to 
occur within the ribosome, while most NoCE substitutions likely originate from 
separate factors unique to each of the species. The most notable difference 
between the two species is in the most frequently observed substitution of Ala 
to Cys in yeast, which is not seen in the bacterium. Indeed a recent report107 
reveals the basis for this observation – that eukaryotic, but not prokaryotic 
Alanyl-tRNA synthetase (AlaRS) have precisely the tendency of mischarging 
tRNACys with Alanine. 
 For the yeast data too we computed the 3 4*4 substitution matrices and 
observed that in similarity to the E. coli matrices they also feature G:U 
mismatch at the first or second positions (Fig. 4B). Observing such levels of 
error similarity between such loosely related organisms, exhibiting distinct 
codon usage biases and a relying on very different translation machineries, 
hints at the possibility that these errors depend on universal constraints. 
Whether these constraints are of a purely chemical nature, or the observed 
substitutions happen to be more tolerable by these organisms remains to be 
determined.  
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Figure 3 : Comparing the error profiles for E. coli and S. cerevisiae reveals a shared signature of errors. A: the 
substitutions identifications matrices of S. cerevisiae (green channel, left) and E. coli (red channel, right) are compared and 
overlaid (middle). The intensity of the color is proportional to the logarithm of the number of independent identification, 
with one pseudo-count. Values are normalized by the highest entry in the matrix for each of the two organisms. The blue 
box highlights the recently described property of eukaryotic AlaRS to mischarge tRNA.  B: NeCE are classified by the 
mismatch most likely to generate them. The shade intensity reflects the ratio of independent substitution to number of 
substitution types associated with the corresponding mismatch. Grey boxes are either correct base-pairings, or mismatches 
to which no substitutions could be unambiguously mapped. Upeer panel indicates results obtained from E.coli lower panel 
was generated based on S.cerevisiae data.  

 

The effect of drugs and amino acid starvation on 
substitution patterns 
To gain further insight on error patterns and how they are affected by various 
perturbations, we either treated E. coli cells with two types of antibiotics that 
reduce ribosome proof reading capability, or starved them for an amino acid, 
serine. We applied two aminoglycoside antibiotics, paromomycin and 
streptomycin, to the bacteria. These two drugs are believed to interfere with 
the ribosome’s proofreading activity108, and their effect on translation accuracy 
was previously measured using a luciferase reporter construct58. We measured 
the proteome under each of the drug treatments by the MS-MS procedure and 
re-ran our error detection pipeline. To compare between the error patterns 
induced by the drugs, we again inspected the 64*20 codon to amino acid 
matrices (Fig. 4A), the error rate profiles (Fig. 4CZ) and the three 4*4 
nucleotide mispairing matrices (Fig. 4C). Comparing the 64*20 matrices 
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between the non-treated and drug treated samples reveals a clear pattern – 
the drugs increased error rates especially at 3rd codon wobble positions, while 
other mismatch positions remained relatively unaffected. This observation is 
confirmed by the three 4*4 matrices. The increased error rate at the 3rd 
position can be quantified using MS1 information, as reported in Fig. 4B. 
We have next starved the bacteria to serine, measured again the proteome by 
the MS-MS procedure and re-ran our error detection pipeline. The prediction 
was that upon starvation to this amino acid we should observe elevated level of 
errors leading from this amino acid to others. Indeed, we observe that the rate 
of SerAGCàAsn steadily increased upon starvation. We quantified further, as 
cells enter more deeply into the stationary phase, when the effect of starvation 
is supposed to intensify the rate of the substitution from Ser to Asn increases. 
This result indicates to a clear mechanism that accounts for mistakes in 
translation in which a shortage of an amino acid determines its probability to 
be replaced by others.  
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Figure 4 : the error spectrum is affected by external perturbation. A: the substitutions identifications matrices of E. 
coli in LB (green channel, left), or LB supplemented with paromomycin (red channel, right), are compared and overlaid 
(middle). The intensity of the color is proportional to the logarithm of the number of independent identification, with 
one pseudo-count. Values are normalized by the highest entry in the matrix for each of the two organisms. The blue 
boxes highlight errors involving 3rd position mismatches. B: Quantification of the top 10 most frequent substitutions in 
the drugs dataset. Errors involving 3rd position mismatches are shaded in light blue.  C: NeCE are classified using the 
same procedure as in Fig. 2B, for the LB samples, with or without paromomycin. D: Effect of serine starvation on errors 
at serine codons, for the three most frequently detected substitutions affecting serine codons. 
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Misincorporations occur at error-tolerant and 
rapidly translated positions 
Drummond & Wilke79  posited that cells, in order to avoid the fitness loss due 
to protein misfolding and aggregation, manage their errors by selecting error-
proof codons at positions where inserting the correct amino acid is critical to 
folding or function. They were able to support that theory using computational 
means, but had to rely on key assumptions. In particular, they used 
evolutionary conservation as a proxy for sensitivity to phenotypic errors, and 
they derived the identity of error prone and error proof codons from 
conservation data. Correspondingly, fast evolving positions within protein are 
predicted to be less critical for protein folding and function thus correspond to 
sites where rate of mistranslation is expected to be higher. This assumption 
that evolutionary conservation correlates with phenotypic error rate was 
indeed made in several additional recent publications. Yet, the lack of a 
systematic set of translation error events within a proteome precluded so far 
the examination of the notion that they occur preferentially in rapidly evolving 
sites, or in positions that minimally affect protein structure and function. A 
careful analysis of the classical model of kinetic proofreading revealed an 
complex trade-off between speed and accuracy during the aa-tRNA selection 
step by the ribosome: ribosomes are more likely to misincorporate amino 
acids at sites where they translate rapidly109. This trade-off was examplified by 
mutants that featured modified translation speed110, and by in vitro conditions 
that affect ribosome velocity70. Yet examination of the theory in natural sites 
within genes, in which ribosome’s speed can now be deduced111, was so far 
impossible to obtain due to lack of ability to measure translation errors 
genome-wide .    
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Figure 5: general properties of substitutions. A. Sampling strategy: In order to test if the set of 
detected substitutions differs from expectations in any way, we first need account for the fact that many 
local properties of proteins are affected by the protein’s expression level, and so is our ability to detect 
substitutions from that protein. First, the local property of interest (‘score’) is recorded at all the positions 
bearing a substitutions. The average of that set is plotted as a red dashed line. To compare this average 
to an appropriate control, we devised three strategies to eliminate the potential contributions of protein 
level, amino acid identity and codon identity on the score. In each of these strategies, we draw 1000 sets 
of the same size as the set of observed substitutions, and plot the average of each of these sets as a blue 
dot. In the first strategy, for every bona fide distribution, we draw the score from any position within the 
same protein. In the second strategy, we draw the score from any position within the same protein that 
shares the same amino acid as the one bearing the bona fide substitution. Similarly, in the third control, 
the codon for the sampled position has to be the same as the substituted codon. B. Amino acid 
conservation: We derived amino acid conservation scores for E. coli proteins, using the COGs database 
to fetch 50 homologs, MUSCLE to align them, and rate4site to estimate the evolutionary rate at each site. 
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The resulting scores are standardised per proteins, and a high score indicates low conservation. The 
empirical p-values are computed by dividing the number of blue dots above the red line, divided by 
1000. n indicates the number of positions considered in this analysis. C. Ribosome density: Ribosome 
profiling data from [ref] was processed (see methods) to estimate the ribosome density at positions along 
the E. coli transcriptome. Since ribosome density/speed can only affect errors in cis, this analysis was 
restricted to NeCE. D. Effect of substitutions on protein stability: for proteins whose 3D structure is 
known, we evaluated the effect of NeCE on protein stability using FoldX. In control 1, we test if the 
observed substitutions are on average less destabilising than those stemming from other single-nt 
mismatches between the codon and the anticodon, at the same position. In control 2 and 3, we test if the 
observed substitution type observed was less destabilising on average at the observed position than at 
other positions sharing the same AA, or the same codon. 

We decided to test if the mis-incorporations we observed indeed occurred at 
less conserved, rapidly evolving, positions by comparing the distribution of 
conservation scores for our observed substitutions to that of carefully selected 
control positions. Normalized conservation scores were computed for each 
protein by fetching homologs, aligning their sequences, and running 
rate4site112 to determine the evolutionary rate at each site in the protein. We 
recorded the normalized score for each of the positions for which a 
substitution was detected. We use standardized rate4site evolutionary rate 
scores per protein; a high score indicates low conservation of the amino acid 
position across orthologous proteins. In order to account for the fact that some 
amino acids tend to be more conserved than other, and that some codons are 
over-represented at conserved positions, we devised three strategies to 
generate adequate negative controls (Fig. 5A). In the first and least stringent 
strategy, for each observed substitution, we sampled a normalized 
conservation score from any position in the same protein. In the second 
strategy, the random re-sampling was carried not only within the same protein, 
but also with the additional constraint that the amino acid identity in the 
randomly sampled position has to match the same amino acid type observed 
at the position at which the substitution occurred. Finally, in the most stringent 
of these negative controls, we performed a random re-sampling within the 
same protein, at sites sharing the same codon as the observed positions. We 
generated 1,000 such re-samplings in each of the three types of negative 
control, and compared the mean of the observed distribution of scores at the 
observed substitution positions to those of the random control distributions to 
obtain empirical p-values.  The mean rate of evolution at substitution sites is 
similar to that of random sets of positions generated though the first model, 
but significantly higher than that of the random generated with the other two 
(fig 5B). Consistent with the previous prediction79, controlling for the codon 
reduced the magnitude of the difference between the real error sites and 
random sites (fig 5B “same codon vs “same AA”) , supporting the notion that 
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evolution allows or precludes error-prone codons from sites that are 
correspondingly tolerant or intolerant to errors.  
Similarly, to the conservation test, we examined the non-independent 
possibility that observed amino acids substitutions in the E. coli proteome tend 
to minimally affect the energetic folding stability of protein in which they occur. 
To this end, we used FoldX113 to compute ΔΔG, i.e. the difference in folding 
energy between each original, genome-encoded protein and its 
corresponding substituted version. After obtaining distributions of such scores, 
we compared these distributions to those obtained upon three random 
sampling negative control strategies (Fig. 5D). In the first control strategy we 
analyze the stability difference between the wild-type protein and all the 
proteins that could be obtained by mutating a single nucleotide of the error-
bearing codon (“identity control”). In the other two negative controls, we 
maintained the identity of the originally observed pair of substituted and 
substituting residues, but modeled the effect on ΔΔG upon substituting 
between these two amino acids, albeit at randomly chosen positions within 
same proteins sharing the same amino acid, or the same codon (“amino acid 
position and codon position controls”). In the identity control, we test if codons 
are preferentially mistranslated to amino acids that are accepted at the 
position of error, controlling for the established property of the genetic code 
of allowing substitutions between chemically similar amino acids. The two 
position controls test if substitutions happen at sites at which they better 
tolerated, and if the codon identity explains this effect. 
We find that observed substitutions tend minimally disrupt protein folding, 
with a mean ΔΔG of 1.454 kcal/mol. This value is very significantly lower than 
that obtained under the identity control (mean ΔΔG ~ 1.9 kcal/mol). Among 
the possible single nucleotide mismatches that could lead to a mistake, the cell 
seems to be more permissive to those less disruptive to protein stability. 
Consistent with the conservation findings, errors are seen preferentially at sites 
that minimally affect folding, suggesting positional information within genes 
that allows mistakes to happen where they would be minimally disruptive. 
Controlling for the codon identity did not explain this effect. We cannot 
exclude an equally interesting alternative that some substitutions that 
destabilize protein structure lead to a more rapid degradation, and are thus 
precluded from being sampled in our method. 
Lastly, we aimed to test the notion that the ribosome is prone to make an error 
at positions in which it translates more rapidly. An indirect means to deduce 
the ribosome speed on each position in each gene is to measure its read 
density in a ribosome footprint experiment. At steady state flow the product of 
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speed and density should be constant. Hence, region of locally high density in 
ribosome footprinting indicate a locally low speed of the ribosome. We 
computed the normalized read density profile of most E. coli protein using 
ribosome profiling data of bacteria grown on MOPS complete medium (see 
Material & Methods). We could then ask if error sites feature the expected high 
speed, i.e. low density. Computing the mean ribosome density among all the 
error sites, and comparing that mean to the mean of 1000 randomly sampled 
positions indeed showed a small-effect but statistically significant trend (Fig. 
5C) – error sites are less dense, and are hence deduced to be translated more 
rapidly than matched controls.  

Discussion 

Here we report on a new method to observe single amino acid 
misincorporations, which we used to detect over 3500 distinct translation 
errors across the proteome of E. coli. Our method takes advantage of the very 
high accuracy of modern mass spectrometer to generate high confidence 
identifications. Orbitrap mass spectrometers can be tuned to detect mass 
differences on the order of thousandth of Daltons, during both the MS1 and 
MS2 acquisition phases. This accuracy in turn allows us to distinguish peptides 
and peptide fragments of almost identical masses, but of different atomic and 
isotopic compositions, and thus greatly improves the performance of database 
search algorithms. Our method is therefore able to distinguish amino acid 
substitutions from PTMs of similar masses. Despite the FDR procedure applied 
at the end our pipeline, we cannot exclude with absolute certainty that some of 
the substitution types we detect are in fact un-annotated PTMs that cannot be 
distinguished from amino acid substitutions. However, the retention time shifts 
in HPLC observed for our set of identifications correlate very well the expected 
retention time shifts predicted from sequence information alone, an 
observation that could not be explained by the identification of spurious PTMs. 
One cannot guarantee a priori that these substitutions stem from errors in the 
translation machinery, because non-synonymous errors at the DNA or RNA 
levels could generate the same mistakes at the protein level. However, our 
samples originate from clonal populations, which implies that DNA mutations 
are unlikely to reach a detectable level in the absence of strong adaptive 
selection, and would be very rarely observed to occur across multiple samples. 
Since we analyze samples in which the number of cells (~109) is greatly 
superior to the inverse of the observed lower bound of transcription error rates 
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(~105), and the average number of mRNA per cell for the genes we detect is 
greater than one, the relative abundance of errors is expected correspond to 
the transcription error rate at any examined site, and should not fluctuate from 
sample to sample thanks to the assumption of ergodicity. This estimate is two 
orders of magnitude lower than the average observed error rates quantified by 
our method. Even though transcription error rates were shown to be fairly 
constant over a range of conditions in E. coli, we cannot rule out the possibility 
that local transcription error rates hotspots could yield peptides detectable by 
our method.  
 
The set of observed substitutions therefore likely derives from errors within the 
translation machinery. Two distinct processes have been shown to generate 
high levels of errors: aaRS can mistakenly load an amino acid to a non-cognate 
tRNA, and the ribosome can pair a correctly charged aa-tRNA complex to a 
non-cognate codon. Both processes rely on small energetic differences 
between correct an incorrect pairings. For the ribosome, the recognition 
process exploits the difference of free energy between cognate and non-
cognate codon-anticodon pairs. Some aaRS also probe the nature of the 
anticodon of the tRNA before loading, and additionally rely on clues from the 
tRNA backbone to achieve a high specificity. The amino acid recognition step 
can be challenging due to similarities between amino acid types, and a subset 
of these enzymes have to rely on an editing step to achieve higher specificity. 
Differential binding of EF-Tu to misacylated tRNAs was shown to discriminate 
against common aaRS mistakes114, and thus provides an additional layer of 
specificity. We argue that most of the substitutions detected in our work stem 
from errors in the ribosome. Indeed, the overwhelming majority (88%) of the 
substitutions could be explained by a single codon-anticodon mismatch, a 
fraction much higher than expected by chance due to the organization of the 
genetic code (30%). Additionally, treating the cells with aminoglycoside 
antibiotics known to perturb the accuracy of the ribosome affected the rate 
and spectrum of errors, increasing in particular the error rates for substitutions 
involving mismatches at the 3rd codon position. However, we were able to 
identify several instances CysàAla subtitutions (NoCE) in the S. cerevisiae 
samples, consistent with a recent report that eukaryotic, but not prokaryotic 
AlaRS had a tendency to mischarge non-cognate cysteine tRNAs107. 
Comparing the error spectrum of the E. coli and S. cerevisiae in untreated, rich 
conditions revealed a large overlap between the set of observed substitution 
types, and a striking prevalence of Gcodon:Uanticodon mismatches at the first and 
second positions. Structural analysis of G:U and U:G mismatches within the 
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ribosome revealed that they typically adopted a Watson-Crick G:C like 
geometry rather than the expected wobble one due to spatial constraints in 
the decoding center. These errors are therefore believed to originate from rare 
enolic or anionic states of nucleobases, as proposed by Rozov et al.99. The 
surprising observation that G:U mismatches are typically much more prevalent 
than the symmetrical U:G conformation could be explained by the abundance 
of uracil modifications on the anticodons of tRNAs. 
 
The E. coli MOPS dataset allowed us to quantify a large number of 
substitutions. The mean error rate detected was on the order of 10-3, in the 
higher end of the range of previously reported estimates. Several reasons can 
be invoked to explain this observation. First, MS detectability is intimately 
linked to MS1 intensity levels: since the mass spectrometer systematically 
samples the most intense peptides in each scan, we are bound to 
preferentially detect and quantify substitutions associated to high error rates. 
Similarly, a peptide’s MS1 intensity depends on its abundance in the sample 
and on its ability to ionize well. The abundance of the correct peptide is usually 
much higher than that of the error-bearing one, which means that it will be 
sampled more often. The quantification depends on the sampling of the lower 
abundance, error-bearing peptide. Substitutions that increase the peptide’s 
ionization efficiency are therefore bound to increase its detectability, and will 
result in an inflated error rate. While it is generally accepted that ionization 
efficiency depends on a peptide’s sequence in a very non-linear fashion, we 
trained a linear regressor to evaluate the mean effects of amino acid 
composition on ionization efficiency. Our model gave satisfactory results (see 
appendix : Prediction of Ionization efficiency from amino acid composition), 
and indicated that, except in a few cases, substitutions should not result in a 
dramatic change in ionization efficiency. It remains difficult to assess to what 
extent the standard deviation of the error rate for each substitution type 
reflects biological variability or technical biases. 
 Comparing the median error rates of several substitutions across the different 
physiological states during bacterial growth revealed that they react 
dynamically to the changing environment: substitutions rate from valine 
codons tended to decrease with time, while glycine codons became more 
error-prone in later stages. The extent of this change might be underestimated 
due to the fact that we are not specifically quantifying the error rate of newly 
synthesized protein, but rather quantifying the errors in batch. Starving the 
cells for serine revealed a striking increase in the error rate of two substitutions 
involving serine codons, SerAGCàAsn and SerAGTàAsn. The median error rate 
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for these codons rose to almost 10-2 in the stationary phase time point, with 
some sites reaching an error rate approaching 10-1. Other serine codons were 
also affected, but the scarcity of sampling for these rarer errors precluded a 
reliable quantification of the process. Theory predicts that the 4-box codons of 
serine (TCN) should suffer more from serine depletion than the 2-box codons 
(AGY) because of a differential charging of the tRNA isoacceptors51. Our failure 
to detect a large quantity of errors at TCN sites might be partially explained by 
the preferential usage of AGY codons in genes over-expressed during serine 
starvation51. 
 
Translation errors have been hypothesized to be a major constraint in protein 
evolution, and to drive the long known anti-correlation between gene 
expression and evolutionary rate at the protein level79. According to this 
theory, the selective pressure to prevent translation errors constrains the 
synonymous encoding of amino acids critical to protein folding, and organisms 
must select preferred, error-proof codons at positions where errors are likely to 
disturb protein stability. These highly constrained sites are characterized by a 
higher evolutionary conservation, and a slow rate of evolution. Our set of 
substitutions enabled us to directly test if errors indeed happen preferentially 
at fast evolving sites. Our analysis carefully controlled for the effects of protein 
expression level on the detectability of translation errors, the codon usage of 
proteins, and their evolutionary conservation. It confirmed that indeed, 
substitutions occur on average at less conserved sites, but also that the choice 
of codons could not entirely explain this effect, suggesting that other factors 
might affect translation accuracy in cis. Similarly, simulating the effects of the 
set of observed substitutions on protein stability revealed that they tended to 
occur at sites where they minimally affected protein folding. Observed NeCE 
were also less destabilizing than randomly sampled NeCE at the 
corresponding sites, suggesting that the spectrum of ribosome errors is even 
more conservative than the effect of naïve single substitutions at the DNA level. 
Together, these results confirm that the cells encode their proteins and tune 
their translation machinery in ways that minimize the deleterious effects of 
amino acid misincorporations.  
Since codon identity does not entirely account for the fact that substitutions are 
preferentially observed at sites where they are tolerated, we tested if the 
ribosome itself might modulate its accuracy locally. Several lines of evidence 
indicate that ribosomes optimize both speed and accuracy, and must therefore 
perform a trade-off between theses two constraints. In particular, decreasing 
the ribosome’s GTP hydrolysis rate should result in an lower processing speed, 
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but a better discrimination between cognate and non cognate aa-tRNAs.109 We 
hypothesized that the ribosome might rely on external clues to locally slow 
down in order to increase its accuracy at critical sites. Our analysis of a 
published ribosome profiling dataset indeed revealed a subtle but significant 
shift in ribosome density: the sites at which we observed substitutions were 
characterized by a lower ribosome density, i.e. a higher speed. 

Material and Methods 

Strains and growth conditions 
To generate the E. coli drugs dataset, MG1655 cells were plated on LB agar 
and incubated at 30°C overnight. 6 colonies of MG1655 were picked and 
grown until stationary phase in 3 ml LB, 30°C. All 8 cell cultures were diluted 
1/100 and grown aerobically in 100 ml LB supplemented with the relevant 
antibiotics (see table X) in 500 ml Erlenmeyer flasks at 37°C until they reach 
mid-log phase (OD ≃ 0.5). For the serine starvation dataset, BW25113 (WT) 
and JW2880-1 (ΔserA, obtained from the Keio deletion library) cells were 
plated on LB agar and incubated at 37°C overnight. 2 colonies of each strain 
were picked and grown in 3 ml of modified MOPS rich defined medium made 
according to Cluzel et al recipe (SI Appendix) and incubated at 37°C until 
stationary phase. BW25113 and JW2880-1 cell cultures were diluted 1/1000 
and grown aerobically in 220 ml of modified MOPS rich defined medium and 
MOPS serine starvation medium accordingly in 500 ml Erlenmeyer flasks at 
37°C (mediums were made according to Cluzel et al 2012 SI Appendix). 

Proteome extraction 
We adapted our proteome extraction protocol from Khan et al., 2011 115. 
Samples were each split into two 50 ml falcon tubes, centrifuged at 4000 rpm 
for 5 min, and washed twice with PBS (add 10 ml PBS, vortex, centrifuge for 5 
min). Remaining PBS was vacuumed and the pellets were frozen in ethanol-dry 
ice. Pellets were re-suspended in 1 ml of B-PER bacterial protein extraction 
buffer (Thermo Fisher Scientific), pooled together, and vortexed vigorously for 
1 min. The mixture was centrifuged at 13,000 rpm for 5 min. The supernatant 
(high solubility fraction) was collected and frozen in an ethanol-dry ice bath. 
The pellet was re-suspended in 2 ml of 1:10 diluted B-PER reagent. The 
suspension was centrifuged and washed one more time with 1:10 diluted B-
PER reagent. The pellet was re-suspended in 1 ml of Inclusion Body 
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Solubilization Reagent (Thermo Fisher Scientific). The suspension was vortexed 
for 1 min, shaken for 30 min, and placed in a sonic bath for 10 min at maximum 
intensity. Cellular debris was removed from the suspension by centrifugation at 
13,000 rpm for 15 min. The supernatant was frozen in an ethanol-dry ice bath 
(low solubility fraction). 

SCX fractionation, HPLC and Mass Spectrometry 
400µg of protein was taken for in-solution digestion and processed by Filter 
aided sample preparation (FASP)116 protocol using 30k Microcon filtration 
devices (Millipore). Proteins were subjected to on-filter tryptic digestion for 
overnight at 37°C and the peptides were fractionated using strong cation 
exchange (SCX) followed by desalting on C18 StageTips117 (3M Empore™, St. 
Paul, MN, USA). Peptides were analyzed by liquid-chromatography using the 
EASY-nLC1000 HPLC coupled to high-resolution mass spectrometric analysis 
on the Q-Exactive Plus mass spectrometer (ThermoFisher Scientific, Waltham, 
MA, USA). Peptides were separated on 50 cm EASY-spray columns 
(ThermoFisher Scientific) with a 140 min gradient of water and acetonitrile. MS 
acquisition was performed in a data-dependent mode with selection of the top 
10 peptides from each MS spectrum for fragmentation and analysis  

Computational methods 
Raw files were analyzed with MaxQuant v. 1.5.5.1. The list of parameters is 
available in the supplementary materials. High and Low solubility fractions 
were aligned separately. The amino acid substitutions identification procedure 
relies on the built-in dependent peptide algorithm of MaxQuant.  

The Dependent Peptide search 
Experimental spectra are first searched using a canonical database search, 
without any variable modification, and a False Discovery Rate (FDR) of 1% is 
guaranteed by a target decoy procedure. Identified spectra are turned into a 
spectral library, and a decoy spectral library is created by reversing the 
sequences of the identified spectra. For each possible pair consisting of an 
identified spectrum in the concatenated spectral libraries and an unidentified 
experimental spectrum of the same charge, and recorded in the same raw file, 
we apply the following steps :  
Compute the mass shift Δm by subtracting the mass of the identified 
(unmodified) spectrum to that of the unidentified (modified) spectrum,  
Generate modified versions of the theoretical spectrum by adding in silico this 
mass shift at every position along the peptide, and 
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Evaluate the match between the theoretical spectrum and the experimental 
spectrum using a formula similar to Andromeda's binomial score. 
 
Finally, for each unidentified peptide, the match with the best score is 
reported, the nature of the match (target or decoy) is recorded, and a target-
decoy procedure118 is applied to keep the FDR at 1%. Peptides identified using 
this procedure are called Dependent Peptides (DP), whereas their unmodified 
counterparts are named Base Peptides (BP).  
Additionally, the confidence of the mass shift's localization is estimated using a 
method similar to MaxQuant/Andromeda's PTM Score strategy, which returns 
the probability that the modification is harbored by any of the peptide's amino 
acid. 

DP identifications fi ltering 
The list of all known modifications was downloaded from www.unimod.org, 
and those marked as AA substitution, Isotopic label or Chemical derivative 
were excluded. Entries in this list are characterized by a monoisotopic mass 
shift, and a site specificity (i.e. they can only occur on a specific amino acid or 
on peptides' and proteins' termini). We removed from our analysis any DP 
identification that could be explained by any of the remaining modifications, 
using the following criteria : the recorded Δm and the known modification's 
mass shift must not differ by more than 0.01 Da, and the modification must be 
harbored by a site consistent with the uniprot entry with a probability p ≥ 0.05.  
Conversely, we computed the list of all possible amino acid substitutions and 
their associated mass shifts. For every substitution, we only retained DP 
identifications such that the observed Δm and the AA substitution's mass shift 
did not differ by more than 0.005 Da, and the mass shift was localized on the 
substitution's original AA with p ≥ 0.95.  
Among the remaining DP identifications, those such that the peptide sequence 
after substitution was a substring of the proteome (allowing Ile-Leu 
ambiguities), were also removed, to prevent pairing of dependent peptides 
and base peptides between paralogs.  
Finally, the FDR was controlled once again at 1% using the same procedure as 
above. 

Error rate quantification 
In order to assess the error rate we quantify and compare pairs of base and 
dependent peptides across many samples. For each independent substitution, 
we fetched the quantification profile of the base peptide from MaxQuant’s 
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peptides.txt table, and similarly fetch the dependent peptide’s quantification 
profile from the matchedFeatures.txt table. Whenever a peak has been 
detected and quantified for both the dependent and the base peptide, we 
estimate the translation error rate as the ratio of their MS1 intensities. 

Evolutionary rates computation 
For each of the proteins associated to a substitution in the MOPS dataset, we 
fetched a list of orthologous protein sequences from the COG database119, 
excluding partial matches (membership class = 3). Proteins whose list of 
orthologs contained less than 50 sequences were excluded from this analysis. 
For the remaining proteins, we randomly selected 50 sequences from the list, 
and created evolutionary alignments using MUSCLE120. The alignments were 
then used to compute normalized evolutionary rates per site with the rate4site 
program112. The mean evolutionary rate of sites associated with detected 
substitutions was compared to that of a 1000 randomly sampled positions, 
using the strategy described in Fig. 5A 

Effect of substitutions on protein stability 
For each of the proteins associated to a substitution in the MOPS dataset, we 
attempted to fetch the best 3D structure for its biological assembly in the PDB 
database to estimate the effect of our substitutions on protein stability using 
the FoldX software113. We excluded membrane proteins, whose stability is 
poorly modeled by FoldX, and excluded ribosomal protein because the 
ribosome is too big to be modeled entirely. We restricted our analysis to WT 
proteins from E. coli, excluding structures determined from orthologs. Among 
the remaining structures, we selected those with the lowest R-free score. 
These structures were first “repaired” using the repairPDB command. We then 
evaluated the effect of a set of amino acid substitutions comprising the 
detected substitutions and the controls described in Fig. 5D on protein 
stability (ΔΔG), using the PositionScan command. Finally the mean ΔΔG of our 
set of substitutions was compared to the mean ΔΔG of 1000 randomly 
sampled substitutions, using the strategy described in Fig. 5A. 

Ribosome density computation 
Ribosome profiling data for the MOPS complete experiments were 
downloaded from Woolstenhulme et al., 2015121 (GSM1572266, 
GSM1572267). Reads were aligned using the 3’ mapping method described in 
the corresponding article, and shifted by 12 nt to obtain the density at the A-
site. Read counts from both replicates were summed to obtain more robust 
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estimates, and 20 codons were excluded from both the 3’ and the 5’ ends to 
avoid known biases. Genes whose read density (i.e. number of reads mapped 
divided by gene length) was lower than 10 were also excluded. For the 
remaining positions, we applied the transformation x : log2(x + 1) to stabilize 
the variance, and standardized the resulting score to obtain the normalized 
read density (NRD), so that the mean of the NRD per protein is 0 and its 
standard deviation is 1.  The mean NRD of the set of observed substitutions 
was then compared to that of 1000 randomly sampled substitutions, using the 
strategy described in Fig. 5A. 
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 RNA editing in bacteria recodes multiple proteins
and regulates an evolutionarily conserved
toxin-antitoxin system
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Adenosine (A) to inosine (I) RNA editing is widespread in eukaryotes. In prokaryotes, however, A-to-I RNA editing was
only reported to occur in tRNAs but not in protein-coding genes. By comparing DNA and RNA sequences of Escherichia coli,
we show for the first time that A-to-I editing occurs also in prokaryotic mRNAs and has the potential to affect the translated
proteins and cell physiology. We found 15 novel A-to-I editing events, of which 12 occurred within known protein-coding
genes where they always recode a tyrosine (TAC) into a cysteine (TGC) codon. Furthermore, we identified the tRNA-spe-
cific adenosine deaminase (tadA) as the editing enzyme of all these editing sites, thus making it the first identified RNA
editing enzyme that modifies both tRNAs and mRNAs. Interestingly, several of the editing targets are self-killing toxins
that belong to evolutionarily conserved toxin-antitoxin pairs. We focused on hokB, a toxin that confers antibiotic tolerance
by growth inhibition, as it demonstrated the highest level of such mRNA editing. We identified a correlated mutation pat-
tern between the edited and a DNA hard-coded Cys residue positions in the toxin and demonstrated that RNA editing oc-
curs in hokB in two additional bacterial species. Thus, not only the toxin is evolutionarily conserved but also the editing itself
within the toxin is. Finally, we found that RNA editing in hokB increases as a function of cell density and enhances its toxicity.
Our work thus demonstrates the occurrence, regulation, and functional consequences of RNA editing in bacteria.

[Supplemental material is available for this article.]

RNA editing is a post-transcriptional process in which RNA bases
are being altered (Knoop 2011). Adenosine (A) to inosine (I) RNA
editing is the most prevalent form of editing in metazoans
(Bazak et al. 2014). Inosine in turn can be identified by the trans-
lational or genetic machinery (e.g., reverse transcriptase) as a gua-
nosine (G). A-to-I editing can recode proteins in eukaryotes (for
example, humans and fungi) (Knoop 2011; Liu et al. 2016;
Wang et al. 2016). Themajority of editing events found in humans
occur in untranslated regions, while only a small fraction of edit-
ing events are found in coding regions, of which only a few lead
to nonsynonymous recoding (Ramaswami and Li 2014). All A-to-
I editing events in mRNA are mediated by enzymes belonging to
the ADAR (adenosine deaminase, RNA specific) family that was
suggested to constitute a metazoan innovation (Grice and
Degnan 2015). In bacteria, however, RNA editing was only report-
ed in a single nucleotide site, within a tRNA for arginine, and it is
mediated by the enzyme tRNA-specific adenosine deaminase
(tadA) (Wolf et al. 2002).

Recent advances in sequencing technologies have facilitated
the discovery of RNA modifications and edited sites in an unprec-
edented level both in the nucleus (Ramaswami et al. 2013; Bazak
et al. 2014; Schwartz et al. 2014; Liu et al. 2016; Wang et al.
2016) and within organelles (Bar-Yaacov et al. 2013; Bentolila
et al. 2013; Oldenkott et al. 2014). However, editing events in
mRNA were so far not reported in bacteria.

Results
In order to identify novel editing events, we deep sequenced in
parallel the RNA and DNA from two Escherichia coli strains (Fig.
1A). We used stringent parameters (Supplemental Fig. S1; Meth-
ods) to identify editing events that can manifest themselves as
base differences between the DNA and RNA sequences. We identi-
fied 15 novel A-to-G RNA editing events (12 within known ORFs)
in addition to the known editing site in tRNA-Arg (Fig. 1A;
Supplemental Table S1). Strikingly, examining all 12 sites inwhich
we detected editing within ORFs revealed that they are all predict-
ed to recode a tyrosine (Tyr) encoded by the TAC codon into a cys-
teine (Cys) encoded by the TGC codon. While the majority of
editing events were A-to-G, we also detected one additional geno-
mic sitewhich constituted aC-to-U substitution (which results in a
synonymous substitution at the protein level) (Supplemental
Table S1). All A-to-G editing events were embedded within a
four-base-long motif TACG, with the edited A on the second posi-
tion (Fig. 1B). Interestingly, this motif is completely identical to
the known tadA recognition motif (Wolf et al. 2002) present on
tRNA-Arg. In addition, tadA was previously shown to require for
its activity a specific RNA secondary structure loop conformation
around the edited site (Wolf et al. 2002). Indeed, RNA secondary
structure modeling (Gruber et al. 2008) predicts that the edited
base is also embeddedwithin a loop inmost of the newly identified
sites (Fig. 1C; Supplemental Fig. S2). This raised the suspicion that
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tadA, whichwas so far believed to exclusively edit the anticodon of
the tRNA-Arg, might be responsible for the editing of the afore-
mentioned positions. Therefore, we performed RNA-seq on two
additional strains, one overexpressing tadA from a plasmid and an-
other harboring a tadA mutation (Supplemental Fig. S3) reported
to completely abolish its activity in vitro and slightly reduce it in
vivo in the NWL37 strain (Poulsen et al. 1992; Wolf et al. 2002).
Since this strain was generated through an experimental lab evolu-
tion technique (interestingly, by exposing it to constant expres-
sion of the toxin hokC), we reasoned that it is possible that the
evolved strainmight also contain additionalmutations. Therefore,
rather than using this evolved strain, we have “surgically” intro-
duced only the inactivating mutation into tadA’s genome version
in the background of our strain (seeMethods). Consistent with our
hypothesis, overexpressing tadA dramatically increased the editing
levels in all A-to-G sites, while in the tadA mutant, editing levels
were abolished or dramatically reduced in all sites, including in
the tRNA-Arg (Fig. 1D; Supplemental Fig. S4; Supplemental Table
S1). Thus, all A-to-G substitutions in our RNA-seq data are likely

to represent an adenosine to inosine editing event (hereafter A-
to-I). Notably, editing levels of the C-to-U event (which did not
harbor the tadA motif) were unaffected upon overexpression of
tadA as well as in the tadAmutant (Supplemental Table S1). Over-
expressing tadA revealed 252 additional A-to-I sites in coding re-
gions that demonstrate RNA editing levels of at least 10% (Fig.
1E; Supplemental Table S2). Of these, 188 (75%) are embedded
within the TACG recognitionmotif and show a significant enrich-
ment for recoding a Tyr into a Cys codon (x21 = 1.35× 10−12) (Fig.
1E,F; Supplemental Tables S2, S3), raising the hypothesis that they
might represent additional targets for this enzyme. Thus, we
showed that A-to-I RNA editing in protein-coding genes occurs
in bacteria, recodes Tyr into a Cys codon, and is mediated by
tadA, an enzyme previously thought to be a tRNA-specific deami-
nase. Notably, there is no correlation between RNA editing levels
and mRNA expression levels of the 12 genes that are edited by
tadA in wild-type strains (Fig. 1A; Supplemental Fig. S5).

Interestingly, we found that four of the A-to-I editing sites ob-
served in wild-type cells occur within the ORF of genes belonging

Figure 1. RNA editing occurs in E. coli and it is mediated by tadA. (A) RNA-seq (and DNA-seq) from two WT E. coli strains (Top10 and MG1655-EcM2.1,
blue and red, respectively) reveals 15 novel A-to-G(I) RNA editing sites in E. coli in addition to the known editing site in tRNA-Arg. Notably, all sites found in
known genes (12 out of the 15 sites) recode a tyrosine (TAC) into a cysteine (TGC) codon. The three RNA editing sites that do not occur in knownORFs are
denoted by their genomic coordinates and genomic strand (+ or −). RNA editing levels are defined here as the number of reads with a G at the position out
of all reads that cover the position. RNA samples were extracted inmid-log phase at OD600∼ 0.7. (B) All sites share a common four-base DNAmotif which is
identical to tadA’s recognition motif. (C) RNA secondary structure modeling predicts that edited sites are embedded within a loop. Here, the secondary
structure of hokB (as well as tRNA-Arg) is presented (the RNA secondary structure modeling of all other targets found in this work is shown in Supplemental
Fig. S2). (D) Overexpressing (green) or mutating (gray) tadA increases or reduces the editing level, respectively. Dotted lines represent the average editing
levels measured for each gene in the two WT strains. RNA samples were extracted in mid-log phase at OD600∼ 0.5–0.6. (E) Overexpression of tadA reveals
additional putative editing sites, of which 75% are embedded within the canonical motif (TACG, black bar), while the rest deviate by one base from the
canonical motif. (F ) Out of 188 editing sites which occur within genes, 134 (black bar) recode a Tyr into a Cys codon (71%). Error bars in parts A and D
represent standard errors of measuring editing level in a given coverage. Exact values can be found in Supplemental Tables S1 and S2.
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  to the hok family of host-killing toxins (Fig. 1A). Proteins encoded
by this family belong to the hok-sok toxin-antitoxin module that
confer membrane de-polarization, which results in growth inhibi-
tion and potentially cell death (Pedersen and Gerdes 1999;
Verstraeten et al. 2015).Multiple sequence alignment of the toxins
belonging to the hok family revealed that the editing event which
recodes a Tyr (TAC) into a Cys (TGC) codon at position 29 of hokB
aligns against a conserved genome-encodedCys residue in the oth-
er hok members. Remarkably, in the other toxins, hokC, hokD,
and hokE, editing recodes another position in the peptide, 46,
there too converting a Tyr (TAC) into a Cys (TGC) codon (Fig.
2A). hokB in turn harbors a DNA-encoded Cys at position 46.
Thus, across the hok family of E. coli toxins, there are two posi-
tions, of which one is always hard-coded with Cys in the genome
and the second contains a hard-code Tyr that can be converted
into a second Cys upon editing of the RNA (except in hokA).
The conserved Tyr is always encoded in these positions through
the TAC codon which is contained in the editing motif TACG,
and never with the synonymous codon for this amino acid, TAT,
which does not confer to the editing motif consensus. The five ge-
nome-encoded hok genes share about a third of their sequence

(i.e., conserved positions). At the RNA level, in all of them the ed-
ited site resides within a predicted secondary structure loop; how-
ever, hokB’s sequence around the edited site is the only one with
complete identity to the loop of tRNA-Arg, which is the known
substrate of tadA (Fig. 1C; Supplemental Fig. S2). All five Hok genes
encode a short peptide (∼50 amino acids) with an N-terminus that
is embedded within the membrane, while the C-terminus is locat-
ed within the periplasm (Poulsen et al. 1991). We therefore mod-
eled the 3D structure of all five hok peptides which displayed a
conserved 3D structure of an alpha helix at the N-terminus and
two beta strands at the C-terminus (Supplemental Fig. S6).
Notably, the residues at position 29 and 46 of hokB reside each
in one of the two beta strands and are predicted here to be in close
proximity to each other. Four of the toxins (hokA, hokC, hokD,
and hokE) were reported to be inactive in E. coli (Pedersen and
Gerdes 1999), thus raising the interesting possibility that high lev-
els of RNA editing can be found in functional, rather than non-
functional, hok members. Nevertheless, our results suggest that
these genes are at least transcribed and that hokC, hokD, and
hokE are edited (Fig. 1A; Supplemental Fig. S5; Supplemental
Table S1). We therefore focused further on hokB that was shown

Figure 2. Evolutionary analyses suggest an interplay between the recoded and a hard-coded cysteines in hokB. (A) Multiple sequence alignment of five
hok proteins encoded by the E. coli genome (NC_000913.3). The hokB edited version recapitulates the cysteine at position 29 which is hard-coded in the
genome of all other hok protein family members. Symmetrically, hokC, hokD, and hokE editing sites (position 46) recapitulate the cysteine at the same
position of hokB. (B)Multiple sequence alignment of hokB of a representative nonredundant set of orthologs frombacterial species harboring an annotated
hokB gene suggests interplay between peptide residues at positions 29 and 46. Notably, all the Tyr codons at position 29 or 46 are encoded by the editable
codon (TAC, embeddedwithin the TACGmotif). The complete alignment can be found in Supplemental Table S4. (C) Amaximum likelihood phylogenetic
tree based on the 16S rRNA gene, showing the amino acid composition at hokB’s positions 29 and 46 in each bacterial genus with species harboring an
annotated hokB. (D,E) RNA editing in hokB was identified in publicly available Klebsiella pneumoniae (37) and Yersinia enterocolitica (32) samples with suf-
ficient coverage (≥51×) of RNA reads and at least two reads supporting an editing event. This editing event is predicted to recode position 46 (Tyr>Cys) in
hokB. SRA accession numbers can be found in Supplemental Tables S5 and S6. Error bars represent standard errors of measuring editing level in a given
coverage.
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to be active (Verstraeten et al. 2015) and demonstrated the highest
level of RNA editing. When we analyzed multiple sequence align-
ments of annotated hokB’s orthologs from different bacterial spe-
cies, we found that most orthologs either have a Tyr encoded by
the editable TAC codon (embedded within the TACGmotif) at po-
sition 29 and a Cys at position 46, or, in other orthologs, a Cys at
position 29 and an editable Tyr codon at position 46. Note that
some species in this sample have Cys at both positions (Fig. 2B,
C; Supplemental Table S4). This remarkable correlated pattern
raised the question whether hokB mRNA editing can occur and
can be detected in other species. Indeed, by analyzing multiple
publicly available RNA-seq data sets (Leskinen et al. 2015), we ob-
served A-to-I mRNA editing that recodes position 46 in two path-
ogenic bacteria, Klebsiella pneumonia and Yersinia enterocolitica
(Fig. 2D,E; Supplemental Tables S5, S6). It is possible that hokB
RNA is edited in additional species which currently are lacking
publicly available RNA-seq data sets or only have an insufficient
number of RNA reads (>10×) that cover hokB. Thus, not only is
hokB evolutionarily conserved, but also RNA editing within it
can be identified in species other than E. coli.

hokB was implicated in arresting cellular growth via mem-
brane depolarization, and by doing so, it was found to mediate an-
tibiotic tolerance through amechanismof persistence (Verstraeten
et al. 2015). Additionally, it was demonstrated that expression of
hokB is elevated in response to starvation (Verstraeten et al.

2015). Since one of the characteristics of reaching culture station-
ary phase is a lack of nutrients, we aimed to examine if the editing
levels of hokB change as a function of cellular density of the bacte-
rial culture. Indeed, editing levels of this toxin’s mRNA site were
found to increase from ∼28% at early logarithmic phase to ∼93%
when the culture enters stationary phase (Fig. 3A; Supplemental
Table S7). Thus, in addition to elevation in toxin expression,
hokB’s RNA editing levels are elevated during culture growth. We
further asked how the predicted change in amino acid, from Tyr
to Cys at position 29, can affect hokB’s activity. To answer this
question, we first mutated the genomic hokB gene. The first ver-
sion was a positive control, as it contained the WT version of the
toxin (hokB-WT) with the codon TAC coding for Tyr; the second
version mimicked constitutive editing, with the codon TGC en-
coding for a Cys yet hard-coded into the DNA (hokB-Cys29); the
third version of the mutated toxin had the Tyr at the edited posi-
tion, yet with the synonymous codon TAT that is noneditable
(hokB-Tyr29) (Supplemental Table S7). No observable difference
in growth was detected between the three strains (Supplemental
Fig. S7). This lack of observable phenotype could be expected given
that hokB’s expression is governed by high levels of the alarmone
(p)ppGpp, a condition that is observed in only 1/10,000 cells
(Gerdes and Maisonneuve 2015) during logarithmic phase.
Therefore, we utilized a previously established strategy (Ver-
straeten et al. 2015) of overexpressing hokB from a plasmid to

Figure 3. hokB mRNA editing increases with cell density and enhances its toxicity. (A) hokB mRNA editing levels (black) in E. coli MG1655-EcM2.1 WT
strain as measured in different culture densities (green). Notably, the standard error of measuring editing levels in a given coverage in all samples was small-
er than 0.00012%. (B–E) The E. coli Top10-ΔhokB strain was transformed with inducible plasmids harboring the WT (green), constitutively edited (Cys29,
red), and noneditable (Tyr29, blue) hokB versions fused tomCherry reporter protein (N-terminus). (B) Growth analysis without induction of hokB (0% arab-
inose). (C ) Growth analysis with induction of hokB (0.2% arabinose). (D) mCherry levels without induction (0% arabinose). (E) mCherry levels with induc-
tion (0.2% arabinose). Error bars represent standard error for 14 replicates (B–E).
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acquire a detectable signal in order to facilitate the study of the ac-
tivity of the three versions of the toxin we created. In order to
detect potential functional differences between hokB-WT, hokB-
Cys29, and hokB-Tyr29, we expressed the three versions of the tox-
in from an inducible plasmid in an E. coli strain that lacks its ge-
nome-encoded hokB. When each of the hokB versions is induced,
we observed reduction in growth rate and yield compared to cells
not expressing hokB (Fig. 3B,C). Yet, while the toxicity observed in
the hokB-WT and hokB-Tyr29 versions is relatively mild, it is very
dramatic in the hokB-Cys29 version (Fig. 3B,C). In fact, the
Cys29 strain shows signs of growth only 9 h after induction of
the toxin. Note that the growth observed in the Cys29 strain after
9 h is probably a result of some (potentially genetic) adaptation
that allows the cells not to express the toxin and therefore support
growth, while the two other strains still express it (Fig. 3D,E). In
other words, the Cys29 version is so toxic that it only allows a
small fraction of cells in the population that do not express hokB
to grow. Since the frequency of such cells is very low (below the
technical detection), growth of Cys29 cells is only visible after 9
h. Nonetheless, if we allow all three strains to grow tomid-logarith-
mic phase without expression of hokB and only then inducing
hokB expression, we observe a clear mCherry signal, including in
the Cys29 strain, indicating that hokB gene is intact and can be in-
duced in all three variants (Supplemental Figs. S8–S10). This result
further supports our conclusion that the lack of growth observed
upon induction of the hokB-Cys29 version is due to hokB toxicity
rather than lack of hokB expression from the plasmid. Thus, RNA
editing that converts Tyr to Cys at position 29 of hokB enhances
its toxicity.

Discussion
Why do bacteria exercise RNA editing? In mammalian cells, edit-
ing occurs mostly in noncoding regions (Bazak et al. 2014). In bac-
teria, however, as we have shown, out of the 15 novel A-to-I sites,
12 occurwithin knownprotein-coding genes and recode a Tyr into
a Cys codon. RNA editing in bacterial coding regions could provide
another layer of post-transcriptional regulation, and it can contrib-
ute to proteome diversity, as was recently suggested in cephalo-
pods (e.g., octopus and squids) (Liscovitch-Brauer et al. 2017). In
hokB’s case, RNA editing appears to provide another layer of regu-
lation of toxicity. This editing-induced increase in toxicity of hokB
could either represent a change in toxicity per protein molecule or
an increase in its amount (e.g., by a stabilizing effect).

Turning editing on or off can affect the RNA and even the pro-
tein sequence within relatively short physiological time scales.
This is demonstrated here in our observation that RNA editing lev-
els in hokB increase with culture density. In addition, editing may
allow cells to obtain both the edited and unedited versions of
hokB, and even “play” with the ratio between them, generating
phenotypic heterogeneity between genetically identical cells.
Such cell-to-cell variability, when exercised in the activation pat-
tern of host-killing toxins, can potentially affect the antibiotic per-
sistence they confer and thus might form an even more complex
bet-hedging mechanism than was previously suggested (Ver-
straeten et al. 2015).

Why do we observe different editing levels among the 15
newly discovered mRNA editing sites? It was shown that RNA sec-
ondary structure is important for tRNA-Arg editing (Wolf et al.
2002). Therefore, difference in secondary structure and/or addi-
tional sequence features might affect editing levels by affecting
tadA-RNA interaction. Indeed, tadA’s structure in complex with a

tRNA-Arg loop (Losey et al. 2006) demonstrates that the enzyme
interacts with seven of the tRNA substrate nucleotides that consti-
tute the entire hepta-loop. Thus, loop size and additional sequence
features could affect enzyme-substrate interaction and hence edit-
ing level. Indeed, the only newly discovered RNA target that has
complete sequence identity to the tRNA seven loop nucleotides
is hokB, which reassuringly shows the highest editing level, second
only to the tRNA. All other targets either differ in their sequence
(surrounding the core TACG motif) or loop size. Future studies
are needed to examine if all detected mRNA editing events
have functional consequences or whether some of them represent
an “accidental” activity due to sequence/structure similarity
to tadA’s substrates. tadA is found in most bacterial species
(Yokobori et al. 2013). Therefore, our work sets the stage for inves-
tigating RNA editing in other bacterial species that harbor this en-
zyme. Moreover, tadA’s orthologs (such as Tad1p and ADAT) are
found in eukaryotes (yeast [Wang et al. 2016] and human [Grice
and Degnan 2015], for example). Since we now implicated tadA
in mRNA editing, in addition to its established role in tRNA edit-
ing, future studies should examine whether its orthologs are in-
volved in mRNA editing in other organisms too. In conclusion,
RNA editing occurs in bacteria and can recode protein sequences,
potentially affecting their function as well as cell physiology, at
least in hokB’s case. Thus, sequence variation among bacteria
should also be examined at the RNA level.

Methods

RNA and DNA purification
RNA and DNA were purified using the GeneJET RNA Purification
kit (Thermo Fisher Scientific) and Wizard Genomic DNA
Purification kit (Promega), respectively, according to themanufac-
turer’s protocol. Cultures were grown on LB supplemented with
ampicillin (100 µg/mL). RNA was purified from a culture at the
middle of logarithmic phase (OD600 in a 1-cm cuvette ∼0.8) for
whole transcriptome sequencing and hokBMAGE (multiplex auto-
mated genome engineering) strains; different ODs as specified in
Figure 3A. DNA was extracted and purified at stationary phase.

cDNA synthesis
One microgram of total RNA was subjected to cDNA synthesis us-
ing either theM-MLV cDNASynthesis kit (Promega) or SuperScript
II (Thermo Fisher Scientific), following the manufacturer’s
protocol.

PCR reaction mix, primers, and conditions
All data regarding PCR reaction mix, conditions, and primers can
be found in Supplemental Tables S8 and S9. PCR products were vi-
sualized by an EtBr-stained 1%agarose gel. PCR fragmentswere pu-
rified using aWizard SV Gel and PCR Clean-Up System (Promega),
following the manufacturer’s protocol.

Massively parallel deep sequencing
RNA was treated with a Ribo-Zero rRNA Removal kit (Illumina).
Libraries for sequencing RNA to examine RNA editing levels in dif-
ferent optical densities of microbial cultures (OD600) were con-
structed by designing PCR primers targeting the hokB gene with
tails that match Illumina adapters (PCR1). A second PCR (PCR2)
was carried out to attach the adapters for the Illumina run. Total
DNA and RNA libraries of wild-type and of hokB versions that are
expressed from plasmids were sequenced using 151-nt or 75-nt
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paired-end reads, respectively, on theNextSeq platform (Illumina).
Bacterial strains that were sequenced were: RNA-seq – WT1
(Top10), WT2 (MG1655-EcM2.1), tadA overexpression (Top10
harboring a pBAD plasmid overexpressing tadA), and tadAmutant
(MG1655-EcM2.1 strain with an introduced tadA mutation); and
DNA-seq – WT1 (Top10) and WT2 (MG1655-EcM2.1).

Analysis of massively parallel sequencing data
E. coli sequencing reads were aligned against theMG1655Genome
(NC_000913.3). For multiple sequence alignment, we utilized
BWA-MEM (Li and Durbin 2009) with default parameters. Only
reads that were aligned to the corresponding genome were used
for further analyses. SAMtools (Li et al. 2009) was used to convert
the SAM to the BAM sequence format. MitoBam Annotator
(Zhidkov et al. 2011) transformed the BAM files into tables con-
taining all parameters (e.g., base composition, coverage per base,
etc.) for each position in the E. coli genome. These tables were
used to identify sites that differ between RNA samples and their
correspondingDNA base. Initial RNA editing sites were considered
high quality only if identified in at least 30 sequence reads that
contain a high-quality base call (≥30 Phred quality score); if their
minimal read fractionwas at least 3%; if each site contained at least
five forward and reverse reads; they presented a mixture of only 2
nucleotides; and after manual inspection using the Integrative
Genomics Viewer (Robinson et al. 2011) to exclude signal stem-
ming from the edges of reads or low-complexity regions (mononu-
cleotide regions). We also aimed to identify edited sites below 3%
(butmore than 1%). Therefore, after establishing that tadAwas the
mediating enzyme, we searched for sites shared between the two
WT strains and the tadA overexpressing strain that display an A-
to-I editing level of at least 1% in the WT and harbor a tadA recog-
nitionmotif. Three additional siteswere detected, demonstrating a
dramatic increase in editing levels when tadA was overexpressed
(Fig. 1A,D; Supplemental Table S1). In addition, BLAST analysis ex-
cluded that the RNA editing signal (a mixture of nucleotides at the
identified edited sites) stems from paralogous regions in the E. coli
genome (Supplemental Table S10). BLAST was performed by
searching against the E. coli genome with a 101-bp fragment en-
compassing the edited site plus 50 bases upstream of and down-
stream from it. Finally, we examined and compared the final
editing sites between all four RNA-seq and two DNA-seq data
setswe obtained (some did not pass the initial thresholds). RNA ex-
pression analysis was performed by using python/2.7.6 HTSeq
(Anders et al. 2015) for read count per gene. FPKM values were cal-
culated manually.

Multiplex automated genome engineering
In order to create a mutation in tadA (T2697699G, D64E) that was
previously shown to reduce its activity (Wolf et al. 2002), we used
the E. coli strain MG1655-EcM2.1 (a specially designed strain for
high MAGE efficiency) to carry out one successive MAGE cycle
as previously described (Wang et al. 2009; Bar-Yaacov et al.
2016). We used 77-bp single-strand oligonucleotides to target
the lagging strand in the tadA gene: G∗A∗TAATTTTGCATCACC
AGACCACCCTGCCGCAGGGCCATGATTTCTGCATGTGCGGTG
GGCTCATGGCGACCAA∗T∗C. Similarly, we usedMAGE to recode
hokB gene sequence once into a TGCCys codon (T1491986C)mim-
icking constitutive editing and once into a noneditable TAT Tyr co-
don (C1491985T, synonymous Tyr mutation). We used the
following 90-bp single-strand oligonucleotides to target the lag-
ging strand in the hokB gene: A∗T∗CTGCATTACGATTCTGACA
TTCACACTCCTGACCCGACAAACGCTCTGCGAACTGCGGTTC
CGGGACGGTGATAAGGAGGTTGCTG∗C∗G (for T1491986C)

and A∗T∗CTGCATTACGATTCTGACATTCACACTCCTGACCCGA
CAAACGCTCTATGAACTGCGGTTCCGGGACGGTGATAAGGAG
GTTGCTG∗C∗G (for C1491985T). Themutated base is underlined,
and asterisks represent phosphorothioate bonds. Briefly, cells were
grown overnight at 30°C. Then, 30 µL of the saturated culture were
transferred into fresh 3 mL of LBL (10 g of tryptone, 5 g of NaCl,
and 5 g of yeast extract per liter) medium until reaching an OD
= 0.4 (measured in a 1-cm cuvette in this section) and then moved
to a shaking water bath (350 RPM) at 42°C for 15 min, after which
it was moved immediately to ice. Next, 1 mL was transferred to an
Eppendorf tube and cells were washed twice with double-distilled
water (DDW) at a centrifuge speed of 13,000g for 30 sec. Next, the
bacterial pellet was dissolved in 50 µL of DDW containing 2 µM of
SS-DNA oligo and transferred into a cuvette. Electroporation was
performed at 1.78 kV, 200 ohms, 25 µF. After electroporation,
the bacteria were transferred into 2 mL of fresh LBL and incubated
at 34°C until reaching anOD= 0.8, diluted in 1:10−4 and 1:10−5 ra-
tios, and seeded on LB+ampicillin agar plates (100 µg/mL). To
identify positive MAGE colonies (referred to as bacterial strains
throughout the text), we PCR-amplified fragments encompassing
the E. coli genomic region with primers corresponding to the mu-
tated and WT form (differing in one base in their 3′ end – PCR3).
Successful PCR amplification implies successful MAGE mutagene-
sis. To verify this interpretation, we amplified a second fragment
encompassing the mutated position in tadA (PCR4) and Sanger se-
quenced it. Similarly, we used PCR5 (to identify colonies) and
PCR6 (to validate the colonies using Sanger sequencing) to validate
MAGEmutagenesis in hokB. The sequences were aligned and visu-
alized using SnapGene Viewer 3.1.2 (GSL Biotech LLC).

Plasmid construction and transformation
In order to examine the functional role of RNA editing in hokB, we
utilized the plasmid previously used to examine hokB’s activity
(Verstraeten et al. 2015) and constructed two additional plasmids
(also harboring an ampicillin resistance cassette): pBAD-mCherry-
linker-hokB(WT)—a generous gift from Prof. Jan Michiels from KU
Leuven–University of Leuven—pBAD-mCherry-linker-hokB(Cys29),
and pBAD-mCherry-linker-hokB(Tyr29). By using PCR7 and
PCR8, we mutated the TAC codon corresponding to position 29
in hokB into a TGC (Tyr>Cys) and TAT (editable Tyr>noneditable
Tyr) codons, respectively. All three plasmids were transformed
into a Top10-ΔhokB strain (another generous gift from Prof. Jan
Michiels) (Verstraeten et al. 2015).

We also constructed a pBAD-mCherry-linker-tadA(WT) plas-
mid. Specifically, we amplified the tadA gene and the plasmid
backbone with overlapping (∼20 nt) tails using PCR9 and
PCR10. These fragments were subjected for NEB-assembly (New
England Biolabs) according to the manufacturer’s protocol. The
plasmid was transformed into a Top10WT strain, and single colo-
nies were isolated, grown, and frozen (−80°C) for future assays.

PCR and Sanger sequence of hokB
PCR11 was performed to sequence the hokB gene/transcript from
corresponding DNA and RNA samples from the WT strain
(MG1655-EcM2.1) as well as RNA from the tadA mutant.

Liquid growth measurements
Cultures were grown at 30°C and 37°C for the genomic (MG1655-
EcM2.1)- and plasmid (Top10-ΔhokB)-encoded hokB versions for
48 h in LB medium, back diluted in a 1:100 ratio, and dispensed
on 96-well plates containing LB medium supplemented with 100
µg/mL ampicillin (150 µL perwell) and eitherwith arabinose (final
concentration of 0.2% (Fig. 3C,E) or without arabinose (no hokB
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expression; control) (Fig. 3B,D). Wells were measured for optical
density at OD600 andmCherry fluorescence levels at 575 nm (exci-
tation) and 620 nm (emission) wavelengths. Measurements were
taken at 15-min intervals. Growth comparisons were performed
using 96-well plates (Thermo Scientific). For each strain harboring
a different version of hokB, a growth curve was obtained by averag-
ing over well-dispersed 14 wells. The 96-well plate was divided as
following: 12 wells are blank control and the remaining 84 wells
were divided between the bacterial stains harboring the plasmid
encoding for the three different hokB versions, with and without
induction; thus, 84/6 = 14. Measurements for Figure 3A were con-
ducted in a 1-cm cuvette, and values were divided by 2 for qualita-
tive presentation purposes and comparison to the measurements
shown in the growth curves (Fig. 3B,C).

Detecting mRNA editing in hokB of Yersinia enterocolitica
and Klebsiella pneumoniae
RNA-seq data sets were downloaded from the SRA database (https
://www.be-md.ncbi.nlm.nih.gov/sra). Accession numbers and pa-
rameters (e.g., coverage per base) of samples with identified
mRNA editing in hokB are found in Supplemental Table S5 (K.
pneumoniae) and S6 (Y. enterocolitica). We analyzed 46 Y. enterocoli-
tica and 338 K. pneuomoniae samples and detected editing in 32
and 37 samples, respectively. Alignment and file manipulation
were performed as described above. Notably, the rest of the species
in Figure 2B were not assessed for their editing level since they did
not meet the criteria of having a sufficient number of RNA reads
(>10×) that cover hokB or did not have publicly available RNA-
seq data sets.

Identifying tadA’s motif
We used weblogo at http://weblogo.berkeley.edu/logo.cgi to iden-
tify the conserved, four-base motif which is identical to the tadA
recognition motif.

RNA secondary structure prediction
In order to examine the RNA secondary structure, we extracted the
RNA sequence 25 bases upstream of and downstream from the ed-
ited site (inclusive). We then used this sequence in the Vienna
RNA Websuite (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/
RNAfold.cgi) to predict the RNA secondary structure with mini-
mum free energy.

hok proteins 3D structure prediction
We used the RaptorX (Källberg et al. 2012) package at http://
raptorx.uchicago.edu/StructurePrediction/predict/ to predict the
3D structure of hokA, B, C, D, and E (using default parameters).

Analysis of hokB orthologs in other bacterial species
In order to examine the amino acid composition at positions 29
and 46 of hokB, we downloaded hokB gene sequence from organ-
ismswith annotated hokB from theNCBI nucleotidewebsite (https
://www.ncbi.nlm.nih.gov/nuccore/). We constructed a nonredun-
dant set of orthologs with one hokB sequence (gene and protein)
per species (Supplemental Table S4). The sequence identities at po-
sitions 29 and 46 are presented in Figure 2B.

Multiple sequence alignment
MSA was performed by using ClustalW (default parameters) em-
bedded in the MEGA5 package (Tamura et al. 2011) and the
MAFFT server (http://mafft.cbrc.jp/alignment/server/).

Phylogenetic analyses
Weused the 16S ribosomal RNA to build a genus phylogenetic tree
to visualize the amino acid composition inhokB’s positions 29 and
46 in an evolutionary context. We used the 16S ribosomal RNA
from one representative from each genus (Supplemental Table
S11). The evolutionary tree was inferred by using the maximum
likelihood method based on the Tamura–Nei model (Tamura and
Nei 1993). The tree with the highest log likelihood (−4907.0796)
is shown. Initial tree(s) for the heuristic searchwere obtained auto-
matically by applyingNeighbor-Joining and BIONJ algorithms to a
matrix of pairwise distances estimated using the maximum com-
posite likelihood (MCL) approach and then selecting the topology
with superior log likelihood value (Saitou and Nei 1987; Gascuel
1997). The tree is drawn to scale, with branch lengths measured
in the number of substitutions per site. The analysis involved 13-
nt sequences. All positions containing gaps and missing data
were eliminated. There were a total of 1398 positions in the final
data set. Evolutionary analyses were conducted in MEGA5
(Tamura et al. 2011).

Statistical analysis
In order to examine whether the enrichment for recoding a Tyr
into a Cys codon is significant, we performed a test for goodness
of fit. Specifically, we counted how many times TACG occurs in
coding regions and in which frame it occurs, and thus, what is
the amino acid change predicted to occur upon RNA editing. We
then compared it to the distributionwe obtained from sites detect-
ed to be edited (>10%) after overexpressing tadA. See Supplemental
Table S3 for numbers and calculations.

Confocal microscopy
Cells were grown for 3.5 h without arabinose until reaching mid-
logarithmic phase and then induced with 0.2% arabinose (final
concentration) for 1 h. Cells were visualized under a confocal mi-
croscope (LSM 780, Zeiss) to obtain high-resolution images (10
µm). As a control, we used uninduced cells that were taken from
the same culture prior to adding arabinose. Image processing was
performed using FIJI (Schindelin et al. 2012).

Data access
The RNA andDNA sequencing data from this study have been sub-
mitted to theNCBI Sequence Read Archive (SRA; https://www.ncbi
.nlm.nih.gov/sra) under accessionnumber SRP103577. The Sanger
sequences that correspond to the chromatograms in this study
have been submitted to the NCBI GenBank database (https://
www.ncbi.nlm.nih.gov/genbank/) under accession numbers
MF554632–MF554636.
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1 Ionization Efficiency (IE) prediction.

1.1 Notations
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For a refresher concerning maximum likelihood fitting of parameters in the case of simple linear

regression, see this article.

1.3 Data preparation

We selected unmodified peptides of charge 2 to train our model. Using the MQ output file ’evi-

dence.txt’ as our input. Peptides belonging to proteins detected by only one peptide were excluded

from the analysis. The remaining peptides were grouped by sequence, and their intensity was de-

fined as the sum of their intensities across all fractions.

For each peptide, we then computed features capturing their amino acid composition, their length,

and potential mis-cleavage issues (see Table 1)

Features were then centered and reduced to unit variance to create the feature matrix X

1



 

  

  

1.4 Parameter fitting and results

We obtained maximum likelihood estimates for W , B and � by maximizing the log likelihood

described in section 1.2., using the L-BFGS-B implementation of Python’s sklearn module. Figure

1 shows a good agreement between the predicted log10(IE) (defined as

P
k

(w

k

X

i,k

)) and the

observed log10(IE) (defined as y

i

� b

j

), with a Pearson correlation coefficient R = 0.67. In order

to control for over-fitting, we further divided the set of proteins in two equally sized groups, and

fitted the weights W and log10(protein levels) B separately for both groups. We found a very

good agreement between the W vectors in both groups, confirming that we were not over-fitting

the data (Figure 2). We report the value of the fitted W coefficients in Figure 3

2



 

  

 

 
  

Table 1: Features computed for this analysis

Name Description Length

count

AA

# of occurences of AA in peptide 20

count

RP

# of occurences of the subsequence ’RP’ in peptide 1

count

KP

# of occurences of the subsequence ’KP’ in peptide 1

N

term

Pro 1 if peptide starts with Pro, 0 otherwise 1

-2 is R 1 if the aa in position -2 relative to the N

term

cleavage site is ’R’, 0 otherwise 1

-2 is K 1 if the aa in position -2 relative to the N

term

cleavage site is ’K’, 0 otherwise 1

-1 is R 1 if the aa in position -1 relative to the N

term

cleavage site is ’R’, 0 otherwise 1

-1 is K 1 if the aa in position -1 relative to the N

term

cleavage site is ’K’, 0 otherwise 1

+1 is R 1 if the aa in position +1 relative to the C

term

cleavage site is ’R’, 0 otherwise 1

+1 is K 1 if the aa in position +1 relative to the C

term

cleavage site is ’K’, 0 otherwise 1

+1 is P 1 if the aa in position +1 relative to the C

term

cleavage site is ’P’, 0 otherwise 1

inverse length inverse of the peptide’s length 1

length length of the peptide 1

Total 32

Figure 1: The predicted log10(IE) was computed as

P
k

(w

k

X

i,k

), and the observed

log10(IE) was defined as y

i

� b

j

. Pearson correlation coefficient = 0.69, � = 0.58

3



 

  

Figure 2: Weights of the regression coefficients W, fitted separately on each half of

the dataset, are plotted against one another. Pearson correlation coefficient > 0.999

Figure 3: Weights of the regression coefficients W, fitted on the entire dataset

4



Ernest Mordret – PhD thesis – 2017 

 82 

References: 
1. Machnicka, M. A., Olchowik, A., Grosjean, H. & Bujnicki, J. M. Distribution and 

frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 11, 1619–1629 
(2014). 

2. Dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a 
test for translational selection. doi:10.1093/nar/gkh834 

3. Bullwinkle, T. J. & Ibba, M. Emergence and evolution. Top. Curr. Chem. 344, 43–87 
(2014). 

4. Deusser, E. Heterogeneity of ribosomal populations in Escherichia coli cells grown in 
different media. Mol. Gen. Genet. 119, 249–58 (1972). 

5. Simsek, D. & Barna, M. An emerging role for the ribosome as a nexus for post-
translational modifications. Curr. Opin. Cell Biol. 45, 92–101 (2017). 

6. Laursen, B. S., Sørensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. Initiation of 
protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–23 (2005). 

7. Schmeing, T. M. & Ramakrishnan, V. What recent ribosome structures have revealed 
about the mechanism of translation. Nature 461, 1234–1242 (2009). 

8. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–30 
(1973). 

9. Rooman, M., Dehouck, Y., Kwasigroch, J. M., Biot, C. & Gilis, D. What is Paradoxical 
about Levinthal Paradox? J. Biomol. Struct. Dyn. 20, 327–329 (2002). 

10. Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K. & Sarai, A. ProTherm, version 4.0: 
thermodynamic database for proteins and mutants. Nucleic Acids Res. 32, 120D–121 
(2004). 

11. Jacobs, W. M. & Shakhnovich, E. I. Evidence of evolutionary selection for co-
translational folding. (2017). doi:10.1073/pnas.1705772114 

12. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in 
Escherichia coli. Cell 122, 209–20 (2005). 

13. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Ulrich Hartl, F. Molecular 
Chaperone Functions in Protein Folding and Proteostasis. Annu. Rev. Biochem. 82, 
323–355 (2013). 

14. Alon, U. An introduction to systems biology : design principles of biological circuits. 
(Chapman & Hall/CRC, 2007). 

15. Powers, E. T., Powers, D. L. & Gierasch, L. M. FoldEco: A Model for Proteostasis in 
E. coli. Cell Rep. 1, 265–276 (2012). 

16. Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric 
segregation of protein aggregates is associated with cellular aging and rejuvenation. 
Proc. Natl. Acad. Sci. U. S. A. 105, 3076–81 (2008). 

17. Wallace, E. W. J. et al. Reversible, Specific, Active Aggregates of Endogenous Proteins 
Assemble upon Heat Stress. Cell 162, 1286–1298 (2015). 

18. Santra, M., Farrell, D. W. & Dill, K. A. Bacterial proteostasis balances energy and 
chaperone utilization efficiently. Proc. Natl. Acad. Sci. U. S. A. 114, E2654–E2661 (2017). 

19. Geiler-Samerotte, K. A. et al. Misfolded proteins impose a dosage-dependent fitness 



Ernest Mordret – PhD thesis – 2017 

  

cost and trigger a cytosolic unfolded protein response in yeast. Proc. Natl. Acad. Sci. 
108, 680–685 (2011). 

20. Tsirigotaki, A., De Geyter, J., Šoštaric´, N., Economou, A. & Karamanou, S. Protein export 
through the bacterial Sec pathway. Nat. Rev. Microbiol. 15, 21–36 (2016). 

21. Caufield, J. H., Abreu, M., Wimble, C. & Uetz, P. Protein Complexes in Bacteria. PLoS 
Comput. Biol. 11, 1–23 (2015). 

22. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying Absolute Protein 
Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. (2014). 
doi:10.1016/j.cell.2014.02.033 

23. Guharoy, M. & Chakrabarti, P. Conserved residue clusters at protein-protein interfaces 
and their use in binding site identification. BMC Bioinformatics 11, 286 (2010). 

24. Reiner, W. & Veitia, A. Exploring the Molecular Etiology of Dominant-Negative 
Mutations. doi:10.1105/tpc.107.055053 

25. Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the 
edge of supramolecular self-assembly. Nature 548, 244 (2017). 

26. Bürger, R., Willensdorfer, M. & Nowak, M. A. Why Are Phenotypic Mutation Rates Much 
Higher Than Genotypic Mutation Rates? doi:10.1534/genetics.105.046599 

27. Creecy, J. P. & Conway, T. Quantitative bacterial transcriptomics with RNA-seq. Curr. 
Opin. Microbiol. 23, 133–40 (2015). 

28. Traverse, C. C. & Ochman, H. Conserved rates and patterns of transcription errors 
across bacterial growth states and lifestyles. Proc. Natl. Acad. Sci. 113, E4257–E4258 
(2016). 

29. Acevedo, A. & Andino, R. Library preparation for highly accurate population 
sequencing of RNA viruses. Nat. Protoc. 9, 1760–1769 (2014). 

30. Traverse, C. C. & Ochman, H. Genome-Wide Spectra of Transcription Insertions and 
Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity. 
doi:10.1128/mBio.01230-17 

31. Mellenius, H. & Ehrenberg, A. Transcriptional accuracy modeling suggests two-step 
proofreading by RNA polymerase. Nucleic Acids Res. (2017). doi:10.1093/nar/gkx849 

32. Gamba, P. & Zenkin, N. Transcription fidelity and its roles in the cell. Curr. Opin. 
Microbiol. 42, 13–18 (2018). 

33. Gordon, A. J. E., Satory, D., Halliday, J. A. & Herman, C. Heritable Change Caused by 
Transient Transcription Errors. PLoS Genet. 9, e1003595 (2013). 

34. Sekiguchi, M. & Tsuzuki, T. Oxidative nucleotide damage: consequences and 
prevention. Oncogene 21, 8895–8904 (2002). 

35. Sie, C. P. & Maas, S. Conserved recoding RNA editing of vertebrate C1q-related factor 
C1QL1. FEBS Lett. 583, 1171–1174 (2009). 

36. Craigen, W. J. & Caskey, C. T. Expression of peptide chain release factor 2 requires 
high-efficiency frameshift. Nature 322, 273–275 (1986). 

37. Flower, A. M. & McHenry, C. S. The gamma subunit of DNA polymerase III holoenzyme 
of Escherichia coli is produced by ribosomal frameshifting. Proc. Natl. Acad. Sci. U. S. A. 
87, 3713–7 (1990). 

38. Meydan, S. et al. Programmed Ribosomal Frameshifting Generates a Copper 
Transporter and a Copper Chaperone from the Same Gene. Mol. Cell 65, 207–219 
(2017). 

39. Meyerovich, M., Mamou, G. & Ben-Yehuda, S. Visualizing high error levels during gene 
expression in living bacterial cells. Proc. Natl. Acad. Sci. 107, 11543–11548 (2010). 



Ernest Mordret – PhD thesis – 2017 

  

40. Baudin-Baillieu, A. et al. Genome-wide Translational Changes Induced by the Prion 
[PSI+]. CellReports 8, 439–448 (2014). 

41. Richards, J., Sundermeier, T., Svetlanov, A. & Karzai, A. W. Quality control of bacterial 
mRNA decoding and decay. Biochim. Biophys. Acta 1779, 574–82 (2008). 

42. Walczak, R., Westhof, E., Carbon, P. & Krol, A. A novel RNA structural motif in the 
selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2, 367–79 
(1996). 

43. Baggett, N. E., Zhang, Y. & Gross, C. A. Global analysis of translation termination in E. 
coli. PLOS Genet. 13, e1006676 (2017). 

44. Fan, Y. et al. Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and 
Implications for Population Fitness. Mol. Cell 67, 826–836.e5 (2017). 

45. Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. & Weissman, J. S. Ribosome profiling 
reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. 
Elife 2, e01179 (2013). 

46. Yanagida, H. et al. The Evolutionary Potential of Phenotypic Mutations. (2015). 
doi:10.1371/journal.pgen.1005445 

47. Gilchrist, M. A., Shah, P. & Zaretzki, R. Measuring and Detecting Molecular Adaptation in 
Codon Usage Against Nonsense Errors During Protein Translation. 
doi:10.1534/genetics.109.108209 

48. Sin, C., Chiarugi, D. & Valleriani, A. Quantitative assessment of ribosome drop-off in E. 
coli. Nucleic Acids Res. 44, 2528–37 (2016). 

49. Zaher, H. S. & Green, R. A Primary Role for Release Factor 3 in Quality Control during 
Translation Elongation in Escherichia coli. Cell 147, 396–408 (2011). 

50. Subramaniam, A. R., Zid, B. M. & O’Shea, E. K. An integrated approach reveals 
regulatory controls on bacterial translation elongation. Cell 159, 1200–1211 (2014). 

51. Elf, J. Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage. 
Science (80-. ). 300, 1718–1722 (2003). 

52. Subramaniam, A. R., Pan, T. & Cluzel, P. Environmental perturbations lift the degeneracy 
of the genetic code to regulate protein levels in bacteria. Proc. Natl. Acad. Sci. 110, 
2419–2424 (2013). 

53. Edelmann, P. & Gallant, J. Mistranslation in E. coli. Cell 10, 131–7 (1977). 
54. Toth, M. J., Murgola, E. J. & Schimmel, P. Evidence for a unique first position codon-

anticodon mismatch in vivo. J. Mol. Biol. 201, 451–4 (1988). 
55. Loftfield, R. B. & Vanderjagt, D. The frequency of errors in protein biosynthesis. 

Biochem. J. 128, 1353–6 (1972). 
56. Parker, J., Johnston, T. C. & Borgia, P. T. Mistranslation in cells infected with the 

bacteriophage MS2: direct evidence of Lys for Asn substitution. Mol. Gen. Genet. 180, 
275–81 (1980). 

57. Khazaie, K., Buchanan, J. H. & Rosenberger, R. F. The accuracy of Q beta RNA 
translation. 1. Errors during the synthesis of Q beta proteins by intact Escherichia coli 
cells. Eur. J. Biochem. 144, 485–9 (1984). 

58. Kramer, E. B. & Farabaugh, P. J. The frequency of translational misreading errors in E. 
coli is largely determined by tRNA competition. RNA 13, 87–96 (2006). 

59. Zhang, Z., Shah, B. & Bondarenko, P. V. G/U and Certain Wobble Position Mismatches 
as Possible Main Causes of Amino Acid Misincorporations. Biochemistry 52, 8165–8176 
(2013). 

60. Zaher, H. S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. 



Ernest Mordret – PhD thesis – 2017 

  

Cell 136, 746–62 (2009). 
61. Miranda, I. et al. Candida albicans CUG mistranslation is a mechanism to create cell 

surface variation. MBio 4, e00285-13 (2013). 
62. Jones, T. E., Alexander, R. W. & Pan, T. Misacylation of specific nonmethionyl tRNAs by a 

bacterial methionyl-tRNA synthetase. Proc. Natl. Acad. Sci. U. S. A. 108, 6933–8 (2011). 
63. Wiltrout, E., Goodenbour, J. M., Fré Chin, M. & Pan, T. Misacylation of tRNA with 

methionine in Saccharomyces cerevisiae. doi:10.1093/nar/gks805 
64. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies 

translational fidelity. Nature 462, 522–526 (2009). 
65. Ling, J. & Söll, D. Severe oxidative stress induces protein mistranslation through 

impairment of an aminoacyl-tRNA synthetase editing site. Proc. Natl. Acad. Sci. U. S. A. 
107, 4028–33 (2010). 

66. Pan, T. Adaptive Translation as a Mechanism of Stress Response and Adaptation. Annu. 
Rev. Genet. 47, 121–137 (2013). 

67. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in 
biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U. S. A. 71, 
4135–9 (1974). 

68. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975). 
69. Wohlgemuth, I., Pohl, C. & Rodnina, M. V. Optimization of speed and accuracy of 

decoding in translation. EMBO J. 29, 3701–3709 (2010). 
70. Johansson, M., Zhang, J. & Ehrenberg, M. Genetic code translation displays a linear 

trade-off between efficiency and accuracy of tRNA selection. Proc. Natl. Acad. Sci. U. S. 
A. 109, 131–6 (2012). 

71. Hussain, T., Kamarthapu, V., Kruparani, S. P., Deshmukh, M. V & Sankaranarayanan, R. 
Mechanistic insights into cognate substrate discrimination during proofreading in 
translation. Proc. Natl. Acad. Sci. U. S. A. 107, 22117–21 (2010). 

72. Moras, D. Proofreading in translation: Dynamics of the double-sieve model. 
doi:10.1073/pnas.1016083107 

73. LaRiviere, F. J., Wolfson, A. D. & Uhlenbeck, O. C. Uniform binding of aminoacyl-tRNAs 
to elongation factor Tu by thermodynamic compensation. Science 294, 165–8 (2001). 

74. Freeland, S. J. & Hurst, L. D. The Genetic Code Is One in a Million. 
75. Koonin, E. V. & Novozhilov, A. S. Origin and evolution of the genetic code: The 

universal enigma. IUBMB Life 61, 99–111 (2009). 
76. Caetano-Anollé, G., Wang, M., Caetano-Anollé, D. & Maga, G. Structural Phylogenomics 

Retrodicts the Origin of the Genetic Code and Uncovers the Evolutionary Impact of 
Protein Flexibility. PLoS One 8, (2013). 

77. Shah, P. & Gilchrist, M. A. Explaining complex codon usage patterns with selection for 
translational efficiency, mutation bias, and genetic drift. Proc. Natl. Acad. Sci. U. S. A. 
108, 10231–6 (2011). 

78. Wallace, E. W. J., Airoldi, E. M., Drummond, D. A. & Mcdonald, J. H. Estimating 
Selection on Synonymous Codon Usage from Noisy Experimental Data. 
doi:10.1093/molbev/mst051 

79. Drummond, D. A. & Wilke, C. O. Mistranslation-Induced Protein Misfolding as a 
Dominant Constraint on Coding-Sequence Evolution. Cell 134, 341–352 (2008). 

80. Yang, J.-R., Chen, X. & Zhang, J. Codon-by-Codon Modulation of Translational Speed 
and Accuracy Via mRNA Folding. PLoS Biol. 12, e1001910 (2014). 

81. Naville, M., Gautheret, D., Naville, M. & Gautheret, D. Transcription attenuation in 



Ernest Mordret – PhD thesis – 2017 

  

bacteria: theme and variations. Brief. Funct. Genomics 9, 178–189 (2010). 
82. Scott, M., Klumpp, S., Mateescu, E. M. & Hwa, T. Emergence of robust growth laws from 

optimal regulation of ribosome synthesis. Mol. Syst. Biol. 10, 747 (2014). 
83. Sørensen, M. a. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) 

strains during amino acid starvation: a simple model for the effect of ppGpp on 
translational accuracy. J. Mol. Biol. 307, 785–98 (2001). 

84. Yona, A. H. et al. tRNA genes rapidly change in evolution to meet novel translational 
demands. Elife 2, (2013). 

85. Rogers, H. H. & Griffiths-Jones, S. tRNA anticodon shifts in eukaryotic genomes. RNA 
20, 269–81 (2014). 

86. Whitehead, D. J., Wilke, C. O., Vernazobres, D. & Bornberg-Bauer, E. The look-ahead 
effect of phenotypic mutations. doi:10.1186/1745-6150-3-18 

87. Bratulic, S., Gerber, F. & Wagner, A. Mistranslation drives the evolution of robustness in 
TEM-1 β-lactamase. Proc. Natl. Acad. Sci. 112, 12758–12763 (2015). 

88. Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate 
and spectrum in yeast. Proc. Natl. Acad. Sci. U. S. A. 111, E2310-8 (2014). 

89. Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of 
spontaneous mutations in the bacterium Escherichia coli as determined by whole-
genome sequencing. Proc. Natl. Acad. Sci. U. S. A. 109, E2774-83 (2012). 

90. Wong, F., Amir, A. & Gunawardena, J. An energy-speed-accuracy relation in complex 
networks for biological discrimination. 

91. Banerjee, K., Kolomeisky, A. B. & Igoshin, O. A. Elucidating interplay of speed and 
accuracy in biological error correction. Proc. Natl. Acad. Sci. U. S. A. 114, 5183–5188 
(2017). 

92. Schimmel, P. Mistranslation and its control by tRNA synthetases. Philos. Trans. R. Soc. 
Lond. B. Biol. Sci. 366, 2965–71 (2011). 

93. Allan Drummond, D. & Wilke, C. O. The evolutionary consequences of erroneous 
protein synthesis. Nat. Rev. Genet. 10, 715–724 (2009). 

94. Mohler, K. & Ibba, M. Translational fidelity and mistranslation in the cellular response to 
stress. Nat. Microbiol. 2, 17117 (2017). 

95. Bratulic, S., Toll-Riera, M., Wagner, A., Marx, C. J. & Tawfik, D. S. Mistranslation can 
enhance fitness through purging of deleterious mutations. Nat. Commun. 8, 15410 
(2017). 

96. Kramer, E. B., Vallabhaneni, H., Mayer, L. M. & Farabaugh, P. J. A comprehensive 
analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16, 
1797–808 (2010). 

97. Cvetesic, N. et al. Proteome-wide measurement of non-canonical bacterial 
mistranslation by quantitative mass spectrometry of protein modifications. Sci. Rep. 6, 
28631 (2016). 

98. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized 
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. 
Biotechnol. 26, 1367–1372 (2008). 

99. Rozov, A., Westhof, E., Yusupov, M. & Yusupova, G. The ribosome prohibits the G•U 
wobble geometry at the first position of the codon–anticodon helix. Nucleic Acids Res. 
44, gkw431 (2016). 

100. Rozov, A., Demeshkina, N., Westhof, E., Yusupov, M. & Yusupova, G. New Structural 
Insights into Translational Miscoding. Trends Biochem. Sci. 41, 798–814 (2016). 



Ernest Mordret – PhD thesis – 2017 

  

101. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and 
function. Nature 537, 347–355 (2016). 

102. Tsur, D., Tanner, S., Zandi, E., Bafna, V. & Pevzner, P. A. Identification of post-
translational modifications by blind search of mass spectra. Nat. Biotechnol. 23, 1562–
1567 (2005). 

103. Na, S., Bandeira, N. & Paek, E. Fast multi-blind modification search through tandem 
mass spectrometry. Mol. Cell. Proteomics 11, M111.010199 (2012). 

104. Savitski, M. M., Nielsen, M. L. & Zubarev, R. A. ModifiComb, a New Proteomic Tool for 
Mapping Substoichiometric Post-translational Modifications, Finding Novel Types of 
Modifications, and Fingerprinting Complex Protein Mixtures. Mol. Cell. Proteomics 5, 
935–948 (2006). 

105. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated 
proteomic-sample processing applied to copy-number estimation in eukaryotic cells. 
Nat. Methods 11, 319–324 (2014). 

106. Moruz, L. & Käll, L. Peptide retention time prediction. Mass Spectrom. Rev. 36, 615–623 
(2017). 

107. Sun, L. et al. Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a 
G4:U69 Base Pair. J. Am. Chem. Soc. 138, 12948–12955 (2016). 

108. Gromadski, K. B. & Rodnina, M. V. Streptomycin interferes with conformational coupling 
between codon recognition and GTPase activation on the ribosome. Nat. Struct. Mol. 
Biol. 11, 316–322 (2004). 

109. Banerjee, K., Kolomeisky, A. B. & Igoshin, O. A. Elucidating interplay of speed and 
accuracy in biological error correction. Proc. Natl. Acad. Sci. 114, 5183–5188 (2017). 

110. Zhu, M., Dai, X. & Wang, Y.-P. Real time determination of bacterial in vivo ribosome 
translation elongation speed based on LacZ␣ complementation system. Nucleic Acids 
Res. 44, (2016). 

111. Ingolia, N. T. Ribosome Footprint Profiling of Translation throughout the Genome. Cell 
165, 22–33 (2016). 

112. Pupko, T., Bell, R. E., Mayrose, I., Glaser, F. & Ben-Tal, N. Rate4Site: an algorithmic tool 
for the identification of functional regions in proteins by surface mapping of 
evolutionary determinants within their homologues. Bioinformatics 18 Suppl 1, S71-7 
(2002). 

113. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, 
W382–W388 (2005). 

114. LaRiviere Frederick, Wolfson Alexey D., U. O. C. Uniform Binding of Aminoacyl-tRNAs to 
Elongation Factor Tu by Thermodynamic Compensation. Science (80-. ). 294, 165–168 
(2001). 

115. Khan, Z. et al. Accurate proteome-wide protein quantification from high-resolution 15N 
mass spectra. Genome Biol. 12, R122 (2011). 

116. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation 
method for proteome analysis. Nat. Methods 6, 359–362 (2009). 

117. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and Go Extraction Tips for Matrix-Assisted 
Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in 
Proteomics. Anal. Chem. 75, 663–670 (2003). 

118. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-
scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007). 

119. Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome 



Ernest Mordret – PhD thesis – 2017 

  

coverage and improved protein family annotation in the COG database. Nucleic Acids 
Res. 43, D261–D269 (2015). 

120. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high 
throughput. Nucleic Acids Res. 32, 1792–7 (2004). 

121. Woolstenhulme, C. J., Guydosh, N. R., Green, R. & Buskirk, A. R. High-Precision Analysis 
of Translational Pausing by Ribosome Profiling in Bacteria Lacking EFP. Cell Rep. 11, 
13–21 (2015). 

 
 




