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1 INTRODUCTION 
1.1 DARWIN’S THEORY 

According to the Darwinian theory, evolution is driven by randomly occurring, rare 
changes in the genetic material. A small minority of those mutations are beneficial and confer 
a selective advantage to their bearers. The genotype frequencies in the population are thus 
shifted in favour of adaptive genotypes over evolutionary time. The capacity of a population to 
efficiently explore the available phenotypes and evolve towards the optimal one is known as 
evolvability [1].  

The phenotype is the result of the interaction between the environment and the 
organism’s genome.  

 

1.2 FITNESS LANDSCAPES 
1.2.1 Definition 

A fitness landscape is a function which maps a genotype to a phenotype. Fitness 
landscapes can be plotted on a genotype map, where mutational neighbours are placed next 
to each other. This leads to various geometric patterns which are often described using the 
metaphor of a landscape, describing local fitness maxima as ‘peaks’ and local fitness minima 
as ‘valleys’ [2]. 

 
1.2.2 Biological fitness landscapes 

Biological fitness landscapes are landscapes which usually map a genetic or amino 
acid sequence to an expected fitness. Mapping biological landscapes is often not achievable 
due to their extremely high combinatorial space. Indeed, the alphabet size for biological 
sequences is either 4 (for genetic sequences) or 20 (for amino acid sequences), which leads 

to either 4𝑁  or 20𝑁 possible sequences. These quantities of genotypes quickly become 
impossible to survey as N increases, even if it remains small.  

To bypass the combinatorial problem, studies have either focused on small functional 
sequences, such as transcription factor binding site sequences [3], or on immediate 
neighbours of wild-type sequences [4], [5]. The recent introduction of high throughput 
technologies, such as protein binding microarrays, have made it possible to assign each 
sequence to a phenotype, for example binding affinity, which can then serve as an approximate 
for fitness [6]. Nevertheless, the number of published fitness landscapes remains low.  

 
1.2.3 Artificial fitness landscapes 

Since empirical studies are sparse, it is often difficult to assess which of the models for 
generating fitness landscapes are most representative of the biological reality. The most used 
one in biological simulations is the NK-model [7], [8]. In the NK-model, the K value determines 
the extent of epistasis between the positions of the artificial genome. This in turns regulates 
the ruggedness of the landscape. Epistasis, and by extension ruggedness, has been found to 
be a defining characteristic of the fitness landscape [9]. This is not surprising since nucleotides 
or amino acids rarely perform a function on their own, but rather through interactions with other 
nucleotides or amino acids in the sequence.  

It is also possible to generate landscapes based on partial landscapes present in the 
literature. One approach is to create computationally a complete landscape with a smaller 
number of genotypes which imitate some of the properties known to be specific to fitness 
landscapes, such as variable ruggedness. Other studies have used machine learning methods 
to predict the fitness of genotypes missing from empirical screens [10].  

 

1.3 EVIDENCE FOR MUTATION RATE HETEROGENEITY 
Populations navigate the fitness landscapes by mutating their genotypes. The optimal 

mutation rate reflects a balance between a high extremum and a low extremum and its exact 
level has been the subject of debate within the scientific community [11]–[20].  A 
disproportionately high mutation rate leads to the accumulation of deleterious mutations at a 
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faster pace than natural selection can eliminate them. On the other hand, a very low mutation 
rate prevents the generation of even the beneficial mutations and stalls the adaptive process. 
However, those studies have considered the mutation rate as a fixed parameter: no mutation 
rate inheritance between parent and offspring, which means no mutation rate variation in time; 
and no mutation rate heterogeneity within the population.  
 
1.3.1 Mutation rate inheritance 

Mutation rate depends on the sequence of the DNA polymerase, on the sequence of 
DNA repair enzymes, the regulatory genetic elements that determine their transcription levels, 
and many other factors which are directly inheritable through inheritance of the genetic 
sequence. Therefore, mutation rate differences and evolution between parent and offspring 
are expected. 

A recent paper by [21] has shown that mutation rate could even be inherited 
epigenetically. Ada is a DNA repair enzyme which is present at very low concentrations in E. 
coli. It is also autoregulated. Therefore, it needs to be present of the cell to trigger its own 
production. The offspring’s mutation rate will therefore be dependent on the number of Ada 
copies transmitted by their parent cell.  

 
1.3.2 Mutation rate heterogeneity within the population 

Since mutation rate is inheritable, it follows that it will be heterogenous within the 
population since not all offspring will inherit the same mutation rate from their parents.  
Stochastic fluctuations of DNA repair enzymes, as well as any other protein involved in 
mutation repair, can lead to mutation heterogeneity within the population. Protein binding to 
transcription factor binding sites or to each other to form complexes is also a stochastic process 
and also result in mutation rate variance within the population.  
 
1.3.3 Mutation rate variability in nature 

Variation in mutation rate has been observed in nature [22]. In addition to the Ada 
protein example, mentioned above, examples of stress induced mutagenesis and hyper-
mutators have already been extensively described [23]–[26]. 
Therefore, the mutation rate should not be considered a fixed parameter and would be more 
accurately described by a value sampled from a probability distribution.  
 

1.4 CURRENT WORK ON MUTATION RATE VARIATION PATTERNS 
1.4.1 Evolutionary Biology studies 

Natural variability of the mutation rate has already been suggested to lead to different 
evolutionary dynamics, in particular increased population fitness when compared to studies of 
fixed mutation rates. One reason for this is that variability within the population generates 
subpopulations of organisms with higher than average and lower than average mutation rates. 
Depending on whether it is more advantageous to change or maintain the currently prevailing 
genotype, these subpopulations would display a selective advantage which could increase the 
mean population fitness. A small proportion of the population with higher mutation rates can 
also lead to faster multi-locus adaptation and generally more thorough exploration of the 
sequence space. Inheritable mutation rate favours the accumulation of mutations when multi-
locus adaptation is required through maintaining a subpopulation with slightly higher mutation 
rate, and conversely favours the preservation of the genotype when the fitness optimum is 
already achieved. [22]  

 
1.4.2 Parallel problems in computer science 

The problem studied in this project could be seen as a variation of the multi-armed 
bandit problem in computer science. In this problem, the agent is faced with a set of choices, 
each one of them resulting in a gain sampled from a probability distribution specific to that 
choice. The agent needs to maximise its gain by making the optimal choice at each time point. 
At each time point, the agent can make a decision based on the memories of the choices it 
has already made in the past (‘exploitation’) or make a decision it has not made before, on the 
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gamble that it could bring him more gain than its previous decisions (‘exploration’). The optimal 
balance between those strategies has been the subject of many studies and is generally 
formalised as the probability of exploring a new strategy ε [27]. In biology, the agents are cells 
from the population, that need to decide whether to mutate to increase their fitness 
(‘exploration’) or keep their genotype (‘exploitation’). The mutation rate corresponds to the ε-
factor from the multi-armed bandit, and the fitness corresponds to the gain.  

However, biological evolution differs from the multi-armed bandit problem in that the 
mutation rate (or ε-factor) evolves through repeated cycles of random adjustment and then 
selection of the best performing agents, as opposed to a decision taken by the agent. 
Nevertheless, insights from this problem might prove valuable for understanding adaptation.  

 

1.5 DESCRIPTION OF THE LABORATORY 
The Pilpel laboratory is part of the Weizmann Institute of Science, in Rehovot, Israel. It 

is an evolutionary biology laboratory which is organised around two main axes: the study of 
translation and the study of evolvability, which is the axis most relevant to the present thesis. 
An important project of the laboratory has been the organisation of the Evolthon competition, 
in which participants needed to adapt a provided yeast strain to an environmental challenge 
(low temperature). Each of the participants adopted a slightly different strategy which allowed 
to study the best methods to promote evolvability [28]. 

The laboratory also studied non-genetic mechanisms which aid evolvability. In particular, 
it was the first research group to demonstrate RNA editing of protein coding sequences in 
bacteria [29]. It also investigated the mechanistic process mistakes in translation in E.coli and 
in yeast [30].  

Ongoing projects related to the study of evolvability, and more closely related to the present 
study, include: 

- The analysis of tRNA landscapes in order to understand why the preponderant tRNA 
genotype does not correspond to the fitness landscape optimum. In reality, it 
corresponds to the ‘flattest’ sequence, which is the sequence whose fitness is the most 
robust to mutations.  

- Simulation of cell populations in order to explore whether the numbers of mutational 
neighbours of a sequence in the fitness landscape is evolutionarily advantageous 

- Search for ‘evolvability’ genes – genes which, when present in yeast, result in higher 
rates of evolvability 

-  

1.6 WORK PERFORMED 
In this project, we focused on four mutation rate variation patterns:   
- Fixed mutation rate, which represents the most commonly used model for mutation 

rate in the current literature 

- Randomly variable mutation rate, which models stochastic fluctuations in DNA repair 
proteins concentrations and fluctuations in DNA polymerase efficiency 

- ‘Perfectly’ inheritable mutation rate, which models the inheritance of genetic 
sequences coding for DNA polymerases and DNA repair proteins 

- ‘Noisily’ inheritable mutation rate, which models the epigenetic inheritance of factors 
impacting the mutation rate, such as DNA repair protein concentrations 

We studied the evolution of the adaptive process on three different landscapes: the ‘steps’ 
landscapes, which is a set of simplified landscapes which allow us to study all possible 
trajectories from the initial genotype to a target genotype; transcription factor binding site 
fitness landscapes, taken from [3]; and an artificial protein fitness landscape, which we 
modelled from information provided by [4] and [31]. This allowed us to contrast the influence 
of the four mutation rate variation patterns on the adaptive process in different landscape 
geometries.  

We used two approaches: an analytical, deterministic model, and a computational 
simulation. Those two approaches each come with their advantages and disadvantages and 
gave complementary insights.  
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We found that the noisily inheritable mutation rate performs better than the other three 
strategies in terms of achieving the target genotype and mean population fitness. This is 
consistent with existing literature on the optimal exploration/exploitation setting in the multi-
armed bandit problem. 

The analytical model has shown that the mutation variation patterns involving inheritance 
have the potential of being stuck in local optima. However, they achieve high mean population 
fitness by leading to a reduction of the mean population mutation rate once an optimum is 
reached.  

 

2 METHODS 
The analytical approach considers the population as infinite. It therefore avoids stochastic 

noise inherently present when studying a finite population. However, taking into account 
genetic drift models more closely biological reality. The analytical approach is less 
computationally expensive, but the exploration of all possible genotypes can be prohibitive for 
larger fitness landscapes.  

 

2.1 MUTATION RATE VARIATION PATTERNS 
We investigated four mutation rate variation patterns: 
- The fixed mutation rate, which represents the default mutation rate variation pattern 

used in theoretical studies [11]–[20]. Under this pattern, the mutation rate is set as a 
constant parameter and does not vary between individuals in the population or between 
generations. 

- The randomly variable mutation rate, which models random fluctuations in DNA 
repair enzymes concentrations as well as other stochastic events which can affect the 
mutation rate, without memory between the parent and the offspring: each cell samples 
its mutation rate from a probabilistic distribution independently from its parent cell.  

- The perfectly inheritable mutation rate, which models the inheritance of biological 
sequences that code for any protein that can affect the mutation rate. There is variation 
between individuals in the population at the initial time point, but each cell then inherits 
its parent’s mutation rate.  

- The noisily inheritable mutation rate, which models epigenetic inheritance, that is 
inheritance through any other means than the transmittance of genetic sequences. The 
offspring’s mutation rate is sampled from a probability distribution whose parameters 
are dependent on the parent’s mutation rate. This allows for evolution of the mutation 
rate along generations.  

We show a schematic representation of each mutation rate pattern as implemented in the 
simulation approach in 2.4.  

 

2.2 FITNESS LANDSCAPES 
The choice of a fitness landscape is crucial for studying the progression of the 

evolutionary process. The geometry of the fitness landscape around the initial genotype can 
determine the probability of events such as clonal interference or getting stuck in a local fitness 
optimum.  

In this study, we first worked with a simplified ‘step landscape’ which allowed us to study 
the influence of the neighbourhood of the initial genotype on the evolutionary process for each 
of the four mutation rate variation patterns.  

Then, we moved to more biologically realistic mutational landscapes: first; we used 
landscapes of transcription factor binding sites established by [3]. Then, we attempted to 
construct a protein fitness landscape based on studies by [4] and [31].  

Studying both a DNA binding site and a protein fitness landscape was important since 
the relationship between fitness and genotype is very different in those two cases. For DNA 
binding sites, the function depends on the physical shape of the binding site sequence. This 
explains why similar sequences have similar binding affinities, which leads to “small world” 
networks described by [3].  
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Protein sequences are different since their function mainly depends on their correct 
folding during translation and possible allosteric changes for enzymatic activities. Therefore, 
even very similar sequences can have vastly different fitness if the mutated residues are 
necessary for acquiring and maintaining the correct structure. On the other hand, very different 
structures can have similar fitness if the residues through which they differ are structural and 
with similar physicochemical properties to that of the wild-type sequence. This leads to a 
‘threshold model’ proposed by [4] where the protein fitness tolerates some mutations before 
abruptly decreasing if the changes are such that the protein overall stability is compromised.  

  
2.2.1 Step Fitness Landscapes 

We designed simplified landscapes in order to study the effect of the geometry of the 
landscape on the performance of each strategy. In biological conditions, the ensemble of 
possible fitness landscapes is infinite. We applied several simplifications to this ensemble in 
order to obtain a set of landscapes that would be both possible to explore computationally and 
representative of all possible landscape geometries.  

The first simplification was to consider the landscape as a linear vector, with each 
genotype having only two neighbours instead of the 3𝑛 neighbour genotypes (with n the length 
of the genome) possible neighbours it would have under real biological conditions. In order to 
avoid “sink” genotypes, the landscape “wraps around” itself, with the first genotype of the 
sequence being the neighbour of the last genotype of the sequence.  
The second simplification was to discretise the space of possible fitness values. In biological 
conditions, the fitness value of each genotype can take any value. Here, we fix a parameter k, 
the set of possible fitness values being all strictly positive integers lower than or equal to k+1. 
Moreover, the target genotype has the strictly maximal fitness value, which is equal to k+1.  

The fitness landscape is then constructed as a collage of three parts: an initial 
genotype; a target genotype; and a sequence of genotypes, a ‘gap’ which separate them. In 
this case, we are only interested in studying one path leading from the initial genotype to the 
target genotype at a time. This requires the path leading from the initial genotype to the target 
genotype to be identical regardless of which of its two neighbours is explored first. Thus, the 
‘gap’ sequence needs to be symmetrical around the initial genotype.  

All these considerations led us to establish the following method to generate the simplified 
landscapes for a given parameter k: 

1) Generate all 𝑘𝑘 possible combinations of integers between 1 and k included. Those will 
be the ‘gap’ sequences. 

2) For each possible fitness value of the initial genotype (integers between 1 and k 
included), set the initial genotype as the central value; then for each ‘gap’ sequence, 
add the sequence from both sides of the initial genotype so that it is a symmetry axis 

3) Complete the landscape by adding the target genotype with a fitness value of k+1 
For this simulation, we used k = 3 which gave us 81 landscapes with fitness values between 

1 and 4. A schematic representation of the building of a landscape is shown in Figure 1. 81 is 
the largest number of landscapes which we can study while still being able to easily visualise 
the results. The generated landscapes are shown in Figure 2.  
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Figure 1: The composition of a step landscape, for k = 3. This method of generating simplified 
landscapes allows for the exhaustive study of all possible trajectories between the initial and the target 
genotype. 

 

 
Figure 2: All step landscapes generated for k = 3. A k-parameter at 3 resulted in 81 landscapes, which 
is a number sufficiently small to be easily visualisable.  

 
2.2.2 Transcription Factor binding sites fitness landscapes 

Transcription binding sites are short in sequence (6-8 nucleotides) and therefore it is 
possible to survey all possible binding sites experimentally. In particular, [6] have analyzed 
1180 transcription factor binding sites from species spanning all three kingdoms of life.  
The raw data used by [6] consisted of binding affinities of a transcription factor to each of the 
32,896 possible binding sequence motifs of length 8, as measured by protein binding 
microarrays. 1180 transcription factors were surveyed, of which we eliminated 13 because 
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they bound less than 20 sequences, which we considered too low to construct a landscape. 
For each transcription factor, they first asked which of the sequences bound specifically to the 
transcription factor by applying a cutoff to the measured binding affinities. This eliminated most 
sequences for all transcription factors: the maximal number of sequences retained for a 
transcription factor was 2361. In general, there was a strong preference towards a small (< 
500) number of retained sequences.  The distribution of the numbers of sequences with binding 
phenotype for all transcription factors are shown in Figure 3.  
 

 
Figure 3: The distribution of the number of sequences with a binding phenotype for all landscapes 
analyzed by [3]. Most of the fitness landscapes contained a very small proportion of all possible 
sequences. 
 

Next, [6] constructed networks from the remaining sequences. Nodes were sequences 
that were linked by an edge if they differed by one base pair.  
In this study, we made the strong assumption that the fitness of each sequence could be 
approximated by its binding affinity to the transcription factor. The sequences that did not have 
a binding phenotype were assigned a fitness equal to 10-50. For each landscape, we set the 
initial sequence to be the sequence with the minimal fitness that still exhibited a binding 
phenotype.  
 
2.2.3 Protein Fitness Landscapes 

Protein landscapes are much trickier to obtain due to their larger sequence size as well 
as the larger alphabet – 20 possibilities per site instead of 4 per site for DNA sequences. 
Therefore, the fitness landscape studies have focused on small subsequences of the protein 
which are inherently biased since they are all neighbors of the wild-type sequence.  
Nevertheless, some attempts have been made to characterize protein fitness landscapes. 
Computational machine learning methods have been suggested in order to characterize the 
fitness landscape by inferring the fitness from sequences for a number of sequences, 
neighbors of the wild-type sequence or chimeric constructions from known proteins [32], [33]. 
Statistical methods for predicting the fitness of artificial sequences have given promising 
results. Experimental methods have tried to characterize the fitness landscape by focusing on 
positions in the active site [34] or by generating a large amount of random mutations around 
the wild-type sequence [4], [5].  

We used two studies to create a landscape as similar as possible to the real GFP 
fitness landscape.  

 
2.2.3.1 Number of genotypes 

When constructing our fitness landscape, we assumed that each genotype has only 5 
possible neighbors instead of the 20**N neighbors of a real amino acid sequence of length N. 
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This was necessary since it is not possible to construct a landscape with this number of 
genotypes.  

First, we set an initial genotype as a first, central genotype. Then, we progressively 
added neighbor genotypes: 5 1-neighbours, each of whom had 5 neighbors, which where thus 
2-neighbors of the initial genotype, etc. until reaching 4 neighbors of the initial genotype. 
This resulted in 781 genotypes in that step, which corresponds to the sum: 
 

# 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠 = ∑ 5𝑛
4

𝑛=0
 

 
A decision which we had to take was whether k-neighbors of the same order were 

neighbors of each other, and how many genotypes from the k+1-neighbour set were neighbors 
of a given genotype from the k-neighbor set. 

In biological conditions, this depends on the length of the amino acid sequence: for 
short sequences, k-neighbors are different variations of amino acids at a small number of sites. 
Therefore, two sequences will able to mutate into each other with a small number of mutations. 
For long sequences, it is very improbable that two k-neighbor sequences will differ in the same 
k sites and will need a higher number of mutations to mutate into each other.  

Here, we chose to assume in a first approach that the sequence is long enough that all 
k+1-neighbors have only one k-neighbor, and that none of the k-neighbors are neighbors of 
each other.  

 
2.2.3.2 Setting the fitness of each genotype 

The study by [4] revealed the large role of negative epistasis in the GFP fitness 
landscape. The wild-type sequence was decreasingly robust to mutations as their number 
increased. This led [4] to suggest a threshold model where each mutation leads to a decrease 
in protein stability, until it takes it under a threshold which then results in the complete 
inactivation of the protein. The authors provided fluorescence distributions for each of the 
surveyed k-neighbor for k ranging from 1 to 11 as well as the proportion of non-fluorescent 
proteins.  

For each k-neighbor set, we set approximatively the same proportion of genotypes to 
a null fitness as was observed by [4]. It was not possible to recreate exactly the same 
proportion, since when removing some nodes at random some trajectories in the landscape 
are eliminated, thus removing more nodes. The number of genotypes with a fitness of 0 for 
each k-neighbor set is detailed in Table A.   

 
Table A: Number of effective neighbors compared to theoretical neighbors with phenotype in the GFP 
landscape.  

 
2.2.3.3 Setting the adaptive genotype 

We assumed that the landscape for red fluorescent protein was similar to that of the 
green fluorescent protein.  

We duplicated the landscape, conserving the same geometry. We then linked the two 
landscapes by making 5 random 4-neighbours of each landscape neighbors of each other.  
[31] found that a small number of mutations was necessary to perform the switch from the 
green fluorescent to the red fluorescent protein. They observed that only a few from the eleven 
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mutations were necessary to recapitulate the evolution from green to red fluorescence and the 
rest of the mutations are ‘fine-tuning’ mutations which enhance the newly evolved phenotype.  
This was coherent with our strategy: indeed, our landscape models the need of a small number 
of mutations, and then additional ‘fine-tuning’ mutations to go from the 4-neighbours of the red 
fluorescent genotype to the central node of the red fluorescent network.  

Lastly, to model the fact that the red fluorescent protein is adaptive, we multiplied the 
fitness in one of the halves of the landscapes to be 110% the fitness of the corresponding 
genotype in the other half.  

A schematic representation of the landscape is shown in Figure 4.  
 

 
Figure 4: Schematic representation of the artificial GFP-like landscape. The two local peaks 
corresponding to the green fluorescent phenotype, and the red fluorescent phenotype, surrounded by 
genotypes of similar fitness and some of null fitness, as predicted by the threshold model. Having a 
phenotype means having a non-zero fitness. As established by [4], the loss of phenotype in the GFP 
case is sudden and increasingly likely with as the number of mutations from the wild-type sequence 
increases.  

 

2.3 ANALYTICAL APPROACH 
2.3.1 Fixed mutation rate 

In the analytical approach, we model an infinite population of well-mixed, asexually 
reproducing cells on a given fitness landscape with k genotypes, and for a given mutation rate 
µ, with a system of equations. Each one of these equations corresponds to the frequency of 
one genotype. We perform two steps: a ‘mutation’ step, then a ‘selection’ step.  

At each time point, the frequency of a genotype is composed of an incoming flux, 
corresponding to the cells that mutated to that genotype, and a negative, outgoing flux, 
corresponding to the cells that mutated from that genotype to a different genotype.  

For a genotype g, the incoming flux is the sum of the frequencies of all neighbors of g 
multiplied by the probability that they will mutate to g. This probability is equal to the mutation 
rate µ to the power of their distance from g, from 1 to the maximal distance I. We also need to 
divide it by the number of other neighbors of the genotype which would mutate to g. 
Mathematically, we write: 

 

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑔
𝑡+1 =  ∑

µ𝑖

#𝑁(𝜂𝑔
𝑖 )

𝐼

𝑖
∑ 𝑋

𝜂𝑔
𝑖

𝑡

𝜂𝑔
𝑖
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In this equation, µ is the mutation rate, a parameter; 𝜂𝑔
𝑖  are the neighbors of g at distance i; 

and 𝑋
𝜂𝑔

𝑖
𝑡  is the frequency of 𝜂𝑔

𝑖  at time t. #𝑁(𝜂𝑔
𝑖 ) is the number of neighbors of a neighbor 𝜂𝑔

𝑖 . 

For a genotype g, the outgoing flux is the negative sum of the frequency of genotype g 
multiplied by the probability that it will mutate to a neighbor genotype, from distance 1 to 
maximal distance I.  

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑔
𝑡+1 =  ∑ 𝜇𝑖

𝐼

𝑖
∗ 𝑋𝑔

𝑡   

 
In this equation, µ is the mutation rate, and 𝑋𝑔

𝑡 is the frequency of genotype g at time t.  

The final equation which gives the frequency of a genotype g at time t+1, given the 
frequencies of all genotypes at time t is therefore:  

 

𝑋𝑔
𝑡+1 =  𝑋𝑔

𝑡 +  𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑔
𝑡+1 − 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑔

𝑡+1 

 
Once we have calculated the above equation for each of the possible genotypes given 

the landscape, we have completed the ‘mutation’ step of the analytical approach. We now 
perform the ‘selection’ step, in which we multiply each frequency by its fitness, and normalize 
the population size to 1. We calculate this for each genotype, until convergence, that is no 
difference between all the values at time t to time t+1. 

 
2.3.2 Randomly variable mutation rate 

For variable mutation rate, we subdivide the population into four categories, 
corresponding to mutation rates 𝜇1, 𝜇2, 𝜇3, 𝜇4. We chose to consider four categories because 
it is the minimal number of categories to model a binomial distribution of mutation rates. Indeed, 
if we set 𝜇2 =  𝜇3, we can set the values of 𝜇𝑖 in such a way that at the initial state, half of the 
population will have a given mutation rate, a quarter a mutation rate inferior by a standard 
deviation, and a quarter a mutation rate superior by a standard deviation.  

The basic reasoning behind the equations presented above remains the same. 
However, we now have four times as many equations since each genotype is now subdivided 
into cells with each of the possible mutation rates.  

The equation for the incoming factor, for a genotype g and mutation rate m, is the sum 
of the contributions of the neighbors of g, but now it also takes into account variable 
contributions from neighbors of different mutation rates.  

 

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑔,𝑚
𝑡+1 =  ∑ ∑

𝜇𝑚
𝑖

#𝑁(𝜂𝑔
𝑖 )

𝐼

𝑖
∑ 𝑋

𝜂𝑔,𝑚
𝑖

𝑡

𝜂𝑔,𝑚
𝑖

𝑚

  

 

In this equation, µ is the mutation rate, a parameter; 𝜂𝑔
𝑖  are the neighbors of g at 

distance i; and 𝑋
𝜂𝑔

𝑖
𝑡  is the frequency of 𝜂𝑔

𝑖  at time t. #𝑁(𝜂𝑔
𝑖 ) is the number of neighbors of a 

neighbor 𝜂𝑔
𝑖 . 

The equation for the outgoing factor is almost identical except for an added 
dependence on the mutation rate category m: 

 

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑔,𝑚
𝑡+1 =  ∑ 𝜇𝑚

𝑖
𝐼

𝑖
∗ 𝑋𝑔,𝑚

𝑡   

 
The final equation is still:  

𝑋𝑔,𝑚
𝑡+1 =  𝑋𝑔,𝑚

𝑡 +  𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑔,𝑚
𝑡+1 −  𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑔,𝑚

𝑡+1 

 
Since for this mutation rate variation pattern there is no memory of the mutation rate 

category for the new generations, for each time t, before proceeding with the ‘selection’ step, 

we sum 𝑋𝑔
𝑡+1  for all four m, which we then redistribute equally into each 𝑋𝑔,𝑚

𝑡+1. Mathematically: 
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𝑋𝑔,𝑚
𝑡+1 =  

1

4
∗  ∑ 𝑋𝑔,𝑀

𝑡+1

𝑀
 

 
For the ‘selection’ step, we proceed as with the fixed mutation rate variation pattern.  
 

2.3.3 Inheritable mutation rate 
For the inheritable mutation rate, we still have heterogeneity in the population, therefore 

we still have four times as many equations as in the fixed mutation rate model. The framework 
is very similar to the randomly mutation rate variation pattern, described above. We simply do 
not perform the redistribution step done at the end of the ‘mutation’ step of the variable 
mutation rate model. 

 
2.3.4 Inheritable mutation rate with noise 

For the ‘noisily’ inheritable mutation rate, the framework is similar to the inheritable 
mutation rate model. However, we introduce a parameter, called ‘noise’, which is the proportion 
of cells which do not mutate to the same m category as they originate from. For the incoming 
factor, the category for genotype g and mutation rate category m receives contributions mainly 
from the same mutate rate category (multiply the frequency by 1-noise) but also from other 
mutation rate categories (whose frequency contributions will be multiplied by noise/3, since 3 
is the number of mutation rate categories different than their own). 
The incoming factor’s equation is now:  
 

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑔,𝑚
𝑡+1 = (1 − 𝑛𝑜𝑖𝑠𝑒) ∗ ∑

µ𝑖

#𝑁(𝜂𝑔,𝑚
𝑖 )

𝐼

𝑖
∑ 𝑋

𝜂𝑔,𝑚
𝑖

𝑡

𝜂𝑔,𝑚
𝑖

 

+ 𝑛𝑜𝑖𝑠𝑒 ∗  ∑ ∑
µ𝑖

#𝑁(𝜂𝑔,ℳ
𝑖 )

𝐼

𝑖
∑ 𝑋

𝜂𝑔,ℳ
𝑖

𝑡

𝜂𝑔,ℳ
𝑖ℳ!=𝑚

 

 
The second term of this equation represents the contributions of the terms that are not 

from mutation category m. Here the ‘noise’ factor is in front of the operator, hence it does not 
need to be divided by three.  

The outgoing term is composed of the cells that mutate from genotype g to reach a 
neighbor genotype, but with the same mutation category m (those will be multiplied by a 1-
noise factor) and cells that mutate from genotype g to reach a neighbor genotype, but with a 
different m (each one of those will be multiplied by a factor of noise/3). The outgoing term’s 
equation is now:  

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑔,𝑚
𝑡+1 = (1 − 𝑛𝑜𝑖𝑠𝑒) ∗ ∑ 𝜇𝑚

𝑖
𝐼

𝑖
∗ 𝑋𝑔,𝑚

𝑡 + 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑋𝑔,𝑚
𝑡  

The final equation is thus: 

𝑋𝑔,𝑚
𝑡+1 = (1 − 𝑛𝑜𝑖𝑠𝑒) ∗ 𝑋𝑔,𝑚

𝑡 + 𝑛𝑜𝑖𝑠𝑒 ∗ ∑ 𝑋𝑔,𝑀
𝑡+1

ℳ!=𝑚
+ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑔,𝑚

𝑡+1 − 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑔,𝑚
𝑡+1 

 
2.3.5 Computational Implementation 

For the computational implementation, it is possible to implement only the noisily 
inheritable mutation rate and obtain the other mutation rate variation patterns by adjusting 
parameters as follows: 

- For fixed mutation rate, we set all the mutation rates in all categories to the same 
level 

- For randomly variable mutation rate, we set the noise level to 0.75: this way, each 
generation, the probability of remaining with the parent mutation rate is equal to the 
probability of migrating to another mutation rate level category 

- For inheritable mutation rate, we set the noise level to 0. 
This avoids for artifacts in results from different structure of the simulation. For examples, 

rounding in very small values could give rise to different results for fixed mutation rate (where 
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there only one frequency value for each genotype) and the variation patterns where there is 
heterogeneity in the population (where we have four frequencies for each genotype).  

 

2.4 SIMULATION APPROACH 
The population consists of N cells, each of them represented by its genotype. Each 

generation, we calculate the fitness of each cell according to its genotype and given the 
prevailing fitness landscape. We then perform a sampling with replacement of cells according 
to their fitness such the higher fitness cells are more likely to reproduce. 

The formula giving the expected number of offspring X of cell of fitness f given a 
generation G of N cells is: 
 

𝐸(𝑋) =  
𝑓

∑ 𝑓𝑖𝑖∈𝐺
∗ 𝑁 

 
For each cell in the draw, we adjust the mutation rate according to the strategy of the 

simulation run. In this study, we assume that the mutation rate is inversely, linearly determined 
by the concentration in the cell, m of a certain DNA repair protein. This protein is assumed to 
be distributed according to a Poisson distribution, similarly to Ada [21]. The mutation rate μ is 
calculated according to:  

 

𝜇 =  1 −  
𝑚

100
 

 
The manner of adjusting the mutation rate according to the mutation rate variation pattern 

is as follows: 
- Fixed mutation rate: m is equal to 𝑚𝑖𝑛𝑝𝑢𝑡 for each cell and throughout the duration of 

the simulation 
- Randomly variable mutation rate: for each cell division, m is sampled from a Poisson 

distribution of parameter 𝑚𝑖𝑛𝑝𝑢𝑡 

- Perfectly inheritable mutation rate: for the initial population, m for each cell is 
sampled from a Poisson distribution of parameter 𝑚𝑖𝑛𝑝𝑢𝑡. For each subsequent cell 

division, m is inherited from the parent cell.  
- Imperfectly inheritable mutation rate: for the initial population, m for each cell is 

sampled from a Poisson distribution of parameter 𝑚𝑖𝑛𝑝𝑢𝑡. For each subsequent cell 

division, m is sampled from a Poisson distribution of parameter calculated according 
to: 

𝑚 =   100 ∗  (1 − 𝜇𝑝𝑎𝑟𝑒𝑛𝑡) 

 
For each position in the genome, we compare m with a decision variable sampled from 

a uniform distribution; if this variable is smaller than the mutation rate, this position mutates. A 
schematic representation of the four mutation rate variation patterns in shown in Figure 5.  
The simulation is then iterated for an ngen number of generations.  
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Figure 5: Schematic representation of the four studied mutation rate variation patterns as implemented 
in the simulation approach.  

 

2.5 PARAMETERS 
2.5.1 Mutation rate level 

According to the quasi-species theory, an evolving system will aim to balance 
convergence to a robust genotype, that is a genotype whose neighbors have similar fitness to 
itself, and a fit genotype, which is the genotype with optimal fitness, even if the genotype is 
surrounded by less fit genotypes.  

If we consider a landscape containing two peaks, a ‘flat’ peak – corresponding to the 
robust genotype, and a ‘fit’ peak – corresponding to the fittest genotype, theoretical predictions 
postulate that the population will converge to the flat peak if the mutation rate is higher than 
the ‘quasi-species threshold’ which can be approximated by: 

 

𝜇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
1

𝐿
 

where L is the length of the genome.  
 
Out of the four studied landscapes, only two had ‘genomes’ with a defined “length”: the 

NK landscape and the transcription factor binding sites landscapes. For those landscapes, a 
low mutation rate, below the quasi-species threshold, at 0.01 and a high mutation rate, above 
the quasi-species threshold, at 0.2.  

We found that for the step landscapes, this level of mutation was also reasonable: the 
step landscapes required the same amount of mutations to reach the target genotypes from 
the initial genotypes as for the transcription factor binding sites landscapes (approximately 3.7 
[3]).  

Lastly, for the protein fitness landscape, twice as many mutations are needed in order 
to reach the target genotype from the initial genotype. However, since the number of 
trajectories is more limited, we chose to use the same mutation rate levels.  

 
2.5.2 Distribution of mutation rate level 

As discussed before, we chose to model the distribution of the mutation rate with a 
Poisson distribution for the simulation approach because it represented more closely a 
biological example of a DNA repair protein, Ada. [21]  

For the analytical approach, we set the four mutation rates in such a manner that the 
distribution of the frequencies for each mutation rate was 0.25 – 0.5 – 0.25, which corresponds 
to a binomial distribution. We also set it that the variation between the lower and the 
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intermediate mutation rate was equal to the variation between the intermediate and the higher 
mutation rate, and that the mean of all mutation rates was equal to the fixed mutation rate.  
Therefore, the mutation rates for low levels were calculated according to: 

{

𝑚1 = 0
𝑚2 = 0.01
𝑚3 = 0.01
𝑚4 = 0.02

 

And for high levels: 

{

𝑚1 = 0
𝑚2 = 0.2
𝑚3 = 0.2
𝑚4 = 0.4

 

2.5.3 Initial genotype 
For the step landscapes and the protein fitness landscape, the initial genotypes were 

obvious as per the construction of the landscape.  
For the transcription factor binding sites landscapes, we set the initial genotype as the 

genotype with minimal fitness that is higher than 0. The number of sequences with null fitness 
was very large; we decided to start with a sequence that already has a binding phenotype to 
avoid many generations of populations evolving neutrally over genotypes with identical, null 
fitness.  

 
2.5.4 Number of mutations per cell division 

We were confronted with the choice on whether to allow multi-locus mutations in our 
model and simulations. On the one hand, theoretical studies have shown that some 
evolutionary dynamics might only be observable when multi-locus mutations were allowed. 
Indeed, those were necessary in order to fully reveal the effect of population mutation rate 
heterogeneity. On the other hand, biological sequences are sufficiently short on a genome 
scale, and mutation rates so small that multi-locus mutations remain improbable.  

We also faced a problem of computational complexity: for the analytical model, 
considering k-neighbors of a sequence of length 8 with an alphabet of 4 required simplifications 
of the model. In the end, we settled multi-locus mutations. 

The number of allowed mutations per approach and per landscape is detailed in Table 
B. For each case, we sought to allow the maximal number of mutations per cell division.  

 

Landscape 
Maximal number of 

mutations per cycle in 
simulation 

Maximal number of 
mutations per cycle in 

analytical model 

Steps 4 3 

TF binding site 8 3 

GFP-like 4 3 

Table B: Maximal number of mutations for each approach and each landscape.  

 
2.5.5 Other parameters 
The number of cells in the population was 200 for the simulation, and the number of 
generations for which the simulation was iterated was 200. For each simulation setup, we ran 
50 runs in order to limit the effect of stochasticity on the results.  
 



17 
 

3 RESULTS 
3.1 STEP LANDSCAPES 
3.1.1 Simulation Approach 

For each of the step landscapes, we plotted the distribution of frequencies of the target 
genotype after 200 generations for 50 runs. We binned the results into categories of range 20. 
These distributions were then used as an input for hierarchical clustering, which allowed us to 
determine the number of groups of landscapes with similar behaviours. The dendrograms 
obtained from the hierarchical clustering of results for high and low mutation rate are shown in 
Supplementary Materials (S1 and S2). The target genotype histograms along with the 
landscapes coloured by their cluster are shown in Figure 6 for high mutation rate.  

The main result we obtain is the superior performance of the noisily inherited mutation 
rate for all landscapes. More than 90% of cells in all simulation runs have reached the target 
genotype for all landscapes for this mode of mutation. For inheritable mutation rate variation 
pattern, on most landscapes, we observe a normal distribution of the target genotype around 
the category where 50-60% of cells have reached the target genotype.  

Inheritable mutation rate simulation runs have all performed similarly for landscapes in 
the ‘orange’ cluster. They reached intermediate target genotype frequencies, with a large 
difference between the runs where it performed the best and the runs where it performed the 
worst. It is possible that this result is due to drift, and a different mutation rate distribution was 
selected at each different simulation run. In the landscapes from the ‘green’ clusters and the 
‘blue’ clusters, inheritable mutation rate simulations have performed worse than the other 
mutation rate variation patterns, with the lowest performances in landscapes from the ‘green’ 
cluster. These landscapes were characterised by a high initial fitness followed by a sudden 
drop and a fitness valley before the target genotype. Arguably, these were due to the selection 
of a smaller mutation rate at the beginning of the simulation, which made the crossing of the 
valley more difficult. This hypothesis is strengthened by the fact that the lowest performances 
of the inheritable mutation rate were seen in landscapes 2, 29, 11 and 5 which had the deepest 
valleys.  
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Figure 6: Target genotype frequency distributions for high mutation rate (top) and corresponding 
landscapes coloured by clusters obtained through hierarchical clustering (bottom).  

 
Fixed and randomly variable mutation rate variation patterns performed very similarly 

for all landscapes, achieving low to intermediate frequencies of the target genotype at the end 
of the simulation.  

For low mutation rate, we proceeded in the same manner as for the high mutation rate. 
The target genotype histograms along with the landscapes coloured by their cluster are shown 
in Figure 7. 
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Figure 7: Target genotype frequency distributions for low mutation rate (top) and corresponding 
landscapes coloured by clusters obtained through hierarchical clustering (bottom). 

 
Once again, simulation with noisily inherited mutation rate fared the best of the four 

mutation rate variation patterns. Only on a handful of landscapes (such as 2,29,5, see Figure 
8) with very deep valleys the proportion of runs achieving more than 0.9 target genotype 
frequency was at 0.5-0.6 instead of 1. 

For low mutation rate, the neighbourhood of the target genotype seemed to be more 
important than the neighbourhood of the initial genotype. Landscapes from the ‘blue’ cluster, 
on which fixed mutation rate performed well, achieving 0.7-0.8 target genotype frequency and 
medium performance from inheritance and randomly variable rates, were characterised by 
high fitness around the target genotype.  

A difference with high mutation rate was that fixed mutation rate and randomly variable 
mutation rate variation patterns no longer performed at the same level. This could be due to 
multi-locus adaptation that can be achieved by randomly variable mutation rate [22] for 
landscapes 53, 54, 63, 64 which allows those populations to ‘jump’ over the valley.  

As for the high mutation rate, we see a poor performance of the inheritable mutation 
rate for landscapes with high initial fitness followed by a deep fitness valley before the target 
genotype.  

 
3.1.2 Analytical Approach 

We ran our analytical model for high and low mutation rate levels. For 50 generations, 
we plotted the frequency of the target genotype (Figure 8). For the other 4 genotypes from the 
landscape, the corresponding plots are shown in Supplementary Materials (S3 and S4).  
Results from the analytical model corresponded roughly to the results from the simulation.  

For high mutation rate, we can see the poor performance of the inheritable mutation 
rate in landscapes from the third column and landscapes from the sixth column of the 
landscape grid. We can also see the near perfect performance of noisily inherited mutation 
rate for all landscapes, as well as the similar, intermediate performance of fixed and randomly 
variable mutation rate variation strategies.  
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Figure 8: Evolution of the frequency of the target genotype along 50 generations, as calculated by the 
analytical model. Results for high mutation rate are shown at the top, results for low mutation rate are 
shown at the bottom. 

 
We also observe that in some landscapes, especially from the third and ninth column 

of the landscape grid, the randomly variable and fixed mutation rate variation patterns result in 
faster convergence to the target genotype, even though they plateau at lower frequencies than 
the slower noisy inheritance mutation rate variation pattern.  
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For low mutation rate, we observe similar performance of the inheritable, noisily 
inheritable and randomly variable mutation rates.  

 

3.2 TRANSCRIPTION FACTOR BINDING SITES LANDSCAPES 
3.2.1 Simulation approach 

The transcription factor binding site landscape set consisted of 1,167 landscapes from 
all kingdoms of life [3]. Each of these landscapes consisted of 65,536 genotypes. Due to this 
large number, we are unable to present the results in the same form as we did for step 
landscapes, with detailed accounts of the frequencies for each genotype and their evolution 
along generations. Moreover, inspection of individual simulation runs has revealed that the 
simulations rarely converge to the target genotype, but rather reach an equilibrium at the fitter 
genotypes of the population.  

Therefore, we decided to consider the mean population fitness at the final generation 
for each fitness landscape. For each pair of strategies, we used a two-sided two-sample t-test 
to compare the mean fitness of each strategy at the final generation (200). This was possible 
because we assumed that the fitness distributions for each strategy would be normally 
distributed. The variances of the fitness distributions could not be assumed to be equal; 
however, the t-test is robust to unequal variances between two samples if the sample size is 
equal [35], which is the case here. We used a stringent significance threshold of 0.01, to which 
we applied a Bonferroni correction for multiple testing, which gave us a significance threshold 
of 1.4*10e-6.  

The number of landscapes, along with the significance of the comparison between 
each pair of strategies, is shown in Table C.  

 

Number of 
genotypes 

Fixed 
vs. 

Random 

Fixed 
vs. 

Inheritable 

Fixed 
vs. 

Noisily 
Inheritable 

Random 
vs. 

Inheritable 

Random 
vs. 

Noisily 
Inheritable 

Inheritable 
vs. 

Noisily 
Inheritable 

1033 No (0.49) No (0.49) Yes (6.2e-9) No (0.49) Yes (5.3e-9) Yes (7.9e-9) 

111 No (0.49) No (0.51) No (0.16) No (0.51) No (0.15) No (0.15) 

6 No (0.54) No (0.20) No (6.8e-5) No (0.25) No (4.6e-3) Yes (5.7e-7) 

4 No (0.27) No (0.21) Yes (5.2e-7) No (0.65) No (9.7e-5) No (3.1e-5) 

4 No (0.67) No (0.46) No (1.1e-5) No (0.47) Yes (7.0e-7) No (4.8e-6) 

4 No (0.66) No (0.75) Yes (8.7e-7) No (0.61) No (2.2e-6) Yes (5.5e-7) 

3 No (0.77) No (0.35) Yes (5.8e-7) No (0.43) Yes (7.5e-7) No (9.4e-6) 

2 No (0.36) No (0.28) No (1.6e-6) No (0.80) Yes (3.6e-7) Yes (4.2e-7) 
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Number of 
genotypes 

Fixed 
vs. 

Random 

Fixed 
vs. 

Inheritable 

Fixed 
vs. 

Noisily 
Inheritable 

Random 
vs. 

Inheritable 

Random 
vs. 

Noisily 
Inheritable 

Inheritable 
vs. 

Noisily 
Inheritable 

751 No (0.21) No (0.49) No (0.41) No (0.23) No (0.25) No (0.43) 

175 Yes (4.3e-8) No (0.51) No (0.17) Yes (3.8e-8) Yes (2.8e-8) No (0.16) 

46 Yes (1.1e-7) No (0.50) No (0.40) Yes (1.2e-7) No (8.7e-2) No (0.41) 

45 No (7.7e-3) No (0.58) No (0.14) No (8.5e-3) Yes (1.3e-7) No (0.19) 

45 No (0.04) No (0.27) No (0.46) Yes (2.1e-7) No (0.13) No (0.41) 

43 Yes (2.6e-7) No (0.27) No (0.35) No (2.7e-2) No (0.13) No (0.50) 

29 No (1.0e-2) No (0.29) No (0.15) Yes (9.8e-8) Yes (1.4e-7) No (0.33) 

29 Yes (3.1e-7) No (0.36) No (0.30) No (4.7e-3) Yes (1.1e-7) No (0.12) 

2 Yes (2.7e-7) No (0.27) No (0.35) No (2.6e-2) No (0.13) No (0.50) 

2 Yes (5.6e-10) No (5.8e-2) Yes (1.5e-7) Yes (8.4e-11) Yes (2.5e-14) No (1.6e-3) 

Table C: Number of landscapes for which each pair of the studied mutation rate variation patterns 
exhibited significant differences, with α = 1.4*10e-6, for high mutation rate (top) and low mutation rate 
(bottom). The mean p-value is indicated between parentheses in each case.  
 

A representative histogram from the two major categories for each mutation rate level 
is shown in Supplementary Materials (S5 and S6), along with the time evolution of mean 
population fitness.  
F or high mutation rate, we observe that the noisily inheritable mutation rate is 
significantly different than the three other strategies for almost all the surveyed landscapes 
(1033 out of 1,167, about 90%), while the other pairs of strategies were comparable. We further 
investigated to see whether the effect was a higher population fitness or a lower population 
fitness: it was higher for all 1033 landscapes. This was consistent with results from the step 
landscapes. For 111 landscapes, all four of the strategies performed equivalently.  

For low mutation rate, we observe that for more than half (751 out of 1,167 landscapes, 
that is 64%) landscapes all the mutation rate variation patterns performed equivalently. The 
random mutation rate variation pattern seemed to differentiate itself from the other patterns the 
most, since all the other categories were different combinations of at least one significantly 
different pair involving the randomly variable mutation rate variation pattern. This could be due 
to the heterogeneity of the mutation rate, leading to a heterogeneity of genotypes in the 
population around the fitness peak. The other patterns would have fixed mutation rates by that 
point in the simulation. 

 
3.2.2 Analytical Approach 

We ran the analytical model on one representative landscape from each of the two 
major mutation rate categories for each mutation rate level.  

Evolution of mean population fitness for high mutation rate is shown in Figure 9. The 
results were consistent with results obtained through the simulation: noisily inheritable 
mutation rate resulted in higher mean population fitness. Fixed and inheritable mutation rate 
resulted in the same mean population fitness: in the simulation approach also, we never 
observed any significant difference between fixed and inheritable mutation rate variation 
patterns. The only difference between the simulation approach and the analytical approach 
was the lower performance of the randomly variable mutation rate variation pattern in the 
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analytical approach. In the simulation approach, it performed slightly better than 
inheritable/fixed mutation rates.  

 

 
Figure 9: Evolution of mean population fitness over 50 generations for high mutation rate in analytical 
approach. The two plots each correspond to a different landscape, representative of the two major 
categories of behaviours determined by the simulation approach. Left corresponds to category with 1033 
landscapes (see Table C), right to the category with 111 landscapes. 

 
For low mutation rate, the behaviours were more similar between mutation rate 

variation patterns (see Figure 10). Except for a slight underperformance of the inheritable 
mutation rate, the four mutation rate convergence patterns were almost confounded. 

 

 

 
Figure 10: Evolution of mean population fitness over 50 generations for low mutation rate in analytical 
approach. The two plots each correspond to a different landscape, representative of the two main 
categories of behaviours determined by the simulation approach. Left corresponds to category with 751 
landscapes (see Table C), right to the category with 175 landscapes. 

 

3.3 ARTIFICIAL PROTEIN LANDSCAPE 
3.3.1 Simulation Approach 

We ran 50 runs of the simulation, with 200 cells and for 200 generations, for high and 
low mutation rate levels. We plotted the evolution of the mean population fitness along 
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generations as well as the distribution of final mean population fitness. Results are shown in 
Figure 11.   

 
Figure 11: Evolution of mean population fitness (left) and distribution of final mean population fitness 
(right) for GFP landscape, at high mutation rate. 
 

 
 

Pair of mutation rate variation pattern T-test statistic P-value Significance 

Fixed vs. Random 2.23 0.02 Not significant 

Fixed 
vs. Inheritable 

-10.09 1.44e-19 Very Significant 

Fixed 
vs. Noisily Inheritable 

-29.83 3.54e-75 Very Significant 

Random 
vs. Inheritable 

-11.58 5.25e-24 Very Significant 

Random 
vs. Noisily Inheritable 

-31.62 2.51e-79 Very Significant 

Inheritable 
vs. Noisily Inheritable 

-7.14 1.74e-11 Very Significant 

Table D: Comparison of mean population fitness distributions at final simulation time point, for high 
mutation rate and GFP landscape. The α-threshold for significance was set at 8.3e-3 (0.05 Bonferroni 
corrected for multiple testing). When the t-test statistic is negative and the corresponding p-value is 
significant, this means that the second mutation rate variation pattern performed better.   

 
For high mutation rate, we observed no significant difference between the final mean 

population fitness distributions for fixed and randomly mutation rate variation patterns (two-
tailed t-test, statistic = 2.23, p = 0.02). However, there was a significant difference between the 
noisily inheritable mutation rate final mean population fitness distributions and all the other 
mutation rate variation patterns. P-values for t-tests, for all pair of mutation rate variation 
patterns are shown in Table D.  

The noisily mutation rate performed the best out of the four mutation rate variation 
patterns, followed by the perfectly inheritable mutation rate variation patterns. However, the 
latter had very variable performance. These results are consistent with the results obtained for 
steps landscapes, especially landscapes such as 63 or 64 (see Figure 6) which represent a 



25 
 

progressive fitness decrease to a deep valley, before a higher target genotype fitness, which 
corresponds to our landscape.  

For low mutation rate, the evolution of mean population fitness is shown in Figure 12, 
along with the distributions of mean population fitness and their comparison in Table E. All the 
strategy pairs were significantly different. The randomly variable mutation rate performed 
worst, followed by the fixed mutation rate. It seems like the perfectly inheritable mutation rate 
performed the best.  

We also observe a decrease in fitness at the initial generations of the noisily inheritable 
mutation rate, possibly due to getting stuck in local optima before genotypes with null fitness. 
This is consistent with step landscapes, where randomly variable/fixed mutation rate variation 
patterns performed better in the initial generations than the other mutation rate variation 
patterns.  
 

 
Figure 12: Evolution of mean population fitness (left) and distribution of final mean population fitness 
(right) for GFP landscape, at high mutation rate. 
 
 

Pair of mutation rate variation pattern T-test statistic P-value Significance 

Fixed vs. Random 9.79 1.03e-18 Very Significant 

Fixed 
vs. Inheritable 

-38.15 3.41e-93 Very Significant 

Fixed 
vs. Noisily Inheritable 

-28.12 4.56e-71 Very Significant 

Random 
vs. Inheritable 

-19.68 1.73e-48 Very Significant 

Random 
vs. Noisily Inheritable 

-18.37 1.12e-44 Very Significant 

Inheritable 
vs. Noisily Inheritable 

6.14 4.32e-09 Very Significant 

Table E: Comparison of mean population fitness distributions at final simulation time point, for low 
mutation rate and GFP landscape. The α-threshold for significance was set at 8.3e-03 (0.05 Bonferroni 
corrected for multiple testing). 

 
3.3.2 Analytical Approach 

For the analytical approach, we plotted the mean population fitness for high and low 
mutation levels, shown in Figure 13, and distributions of genotypes in the half of the fitness 
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landscape corresponding to the ‘wild-type’ genotype and the half corresponding to the 
‘adaptive’ genotype, in Figure 14, along with their frequency evolution along generations.  
 
 
 

 
Figure 13: Evolution of the mean population fitness for GFP landscape, low mutation rate (left) and high 
mutation rate (right). 
 

 
The fixed mutation rate was faster and reached higher mean population fitness than 

the three other mutation rate variation patterns, which performed similarly.  
For high mutation rate, the inheritable mutation rate variation rate pattern failed to adapt and 
converged to the wild-type genotype. Similarly, the noisily inheritable mutation rate variation 
resulted in longer persistence of the wild-type genotype. However, it also resulted in highest 
frequencies of the target genotype while the other mutation rate variation patterns were split 
into a multitude of small peaks over the adaptive part of the landscape.  

For fixed mutation rate, the frequency of wild-type genotype decreased immediately 
and exponentially. For the other mutation rate variation patterns, the wild-type frequency 
plateaued for 200 generations (high mutation rate) or 400 generations (low mutation rate) 
before decreasing.  

It thus seems like the heterogeneity of mutation rate can lead to persistence of the wild-
type genotype for longer, and leads to binary-like population dynamics, where the population 
switches from one genotype to the other at high frequency.  
For low mutation rate levels, we again see a dynamic where a switch seems to take place 
between the ‘wild-type’ half of the landscape and the ‘adaptive’ part of the landscape for the 
inheritable/inheritable with noise mutation rate variation patterns. For the fixed/randomly 
variable mutation rate variation patterns, we observe the same dynamic, but again, less 
marked.  
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Figure 14: Evolution of genotype frequencies from the wild-type part of the fitness landscape (left) to 
adaptive part of the fitness landscape (right) for low mutation rate (top) and high mutation (bottom).  

 
The apparent discrepancy between the simulation approach and the analytical approach 

can be explained by the stochasticity of the simulation. In the GFP landscape, there are a lot 
of null fitness genotypes which are all taken into account in the analytical approach. In the 
simulation, however, only some of them will actually occur, which leads to higher mean fitness 
of one neighbours of a genotype, which can rescue the adaptation in some cases.   

 

4 DISCUSSION 
We found that the noisily inheritable mutation rate results in enhanced adaptation process 

on several landscapes. The behaviour of all four of the mutation rate variation patterns has 
demonstrated the high dependency of the landscape on the adaptive process.  

 

4.1 ENHANCED PERFORMANCE OF THE NOISILY INHERITABLE MUTATION RATE 

AND LINK WITH THE MULTI-ARMED BANDIT PROBLEM 
We have found that the noisily inheritable mutation rate variation pattern leads to higher 

mean population fitness for transcription factor binding sites fitness landscapes and higher 
frequencies of target genotype for step landscapes, as well as an artificial protein landscape 
in the simulation approach.  

We also plotted the mean population mutation rate for transcription factor binding sites 
and the protein landscapes. We found that the mean mutation rate increased, then decreased 
(see Figure 15) consistently with optimal methods of adjusting ε in order to optimize the 
exploration/exploitation balance. Indeed, the excellent performance of the noisily inherited 
mutation rate can be understood intuitively: when fitness is low, cells with high mutation rate 
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are selected for since they are more likely to have acquired fitter genotypes. This enhances 
‘exploration’ and makes it more likely that some cells will find the target genotype. On the other 
hand, once the target genotype is reached, cells with low mutation rate will be selected for 
since they will be more likely to have kept the fitter genotype. This in turn enhances the 
‘exploitation’ mechanism.  

 

 
Figure 15: Evolution of the mean population mutation rate as a function of time. Consistently with the 
optimal methods of adjusting ε, the mutation rate increases during the adaptive process then decreases 
once a target genotype has been reached. 
 

We will now discuss additional evidence for this proposed mechanism of better 
performance of the noisily inheritable mutation rate. If the noisily inheritance of mutation rate 
enhances the exploration/exploitation transition, we should see an increase of mean 
population mutation rate corresponding to the ‘exploration’ phase, followed by a decrease 
corresponding to the ‘exploitation’ phase. This was discussed above. We would also need to 
a higher number of genotypes in the population vs. the other mutation rate variation patterns, 
followed by a smaller number of genotypes; and a correlation between mean population 
mutation rate and mean population fitness.  

 
4.1.1 Correlation between mean population mutation rate and mean population 

fitness 
We plotted the mean population mutation rate against the mean population fitness in 

Figure 16, for one transcription factor binding site landscape and the GFP landscape.  
We observed very strong negative correlation between the mean population fitness and 

the mean population mutation rate, for the noisily inherited mutation rate variation pattern. This 
is also consistent with the methods to adjust ε in the multi-armed bandit problem. When the 
mean population fitness against the mean population mutation rate, we found a very strong 
negative correlation for both inheritable and noisily inheritable mutation rate variation patterns.  
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Figure 16: Correlation between mutation rate and mean population fitness for high mutation 
rate level (top) and low mutation rate level (bottom), for perfect inheritance mutation rate 
variation pattern (left) and noisy inheritance mutation rate variation pattern (right). The scatter 
dots are coloured according to generation time.  
 
4.1.2 Population heterogeneity along evolutionary time 

If the noisily inherited mutation rate leads to increased exploration, then we should see 
more genotypes in the population for the noisily inherited mutation variation pattern than for 
the other mutation rate variation patterns. This we only observed for low mutation rates (see 
Figure 17). For high mutation rate, it seems like the exploration does not need to be enhanced: 
we see no difference between the number of genotypes for noisily inherited mutation rate and 
the other variation patterns, and the mutation rate starts decreasing immediately (see Figure 
17).  
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Figure 17: Number of genotypes as a function of time, for high mutation rate (left) and for low mutation 
rate (right), for GFP landscape (top) and for a transcription factor binding site (bottom).  

The noisily inherited mutation rate variation pattern did not result in even higher 
numbers of genotypes for high mutation rate (‘exploration’ phase) but resulted in lower number 
of genotypes for both levels of mutation rate (‘exploitation’ phase).  

On the other hand, the ‘exploitation’ part seems to be enhanced for both high and low 
mutation rates. The number of genotypes decreases sharply once the population has found 
some fitter peaks and is lower for both levels of mutation and for both types of landscapes than 
any other mutation rate variation pattern.  
 

4.2 DIFFERENCES IN BEHAVIOUR OF THE FOUR MUTATION RATE STRATEGIES 

DEPENDING ON THE LANDSCAPES 
In this project, we showed that the optimal mutation rate variation pattern is dependent 

on the fitness landscape. For the GFP landscape, we have found that the optimal mutation 
rate variation pattern did not correspond to the optimal mutation rate variation pattern of the 
transcription factor binding sites landscapes. If we suppose that biological organisms can 
evolve their mutation rate variation pattern, we must first think about which fitness landscape 
is the most representative of the biological reality.  

Mutations can be neutral, deleterious or advantageous. Kimura postulated in 1968 [36] 

that most of the mutations are neutral or quasi-neutral. However, it is also the fact that 
biological landscapes are very sparse: out of the near infinity of possible sequences, only a 
few of can give rise to functional sequences.  

It thus seems that our GFP landscape was the most representative of biological reality, 
and thus the fixed mutation rate could be the optimal mutation rate in biological systems. The 
noisily inheritance rate, however, can still be beneficial in this setup since it leads to very fast 
switching between the adaptive and the wild-type genotypes, while the other mutation rate 
variation patterns seem to lead to a multitude of local peaks. This could be important for the 
evolution of interactions with other components of the genome.  

 

4.3 FUTURE DIRECTIONS 
We will continue the analytical study of the impact of the landscape geometry on the 

optimal mutation rate variation pattern and try to translate it to biological reality. In this project, 
we considered the three non-fixed mutation rate variation patterns as distinct strategies. In 
reality, they can be all summarised as a noisily inheritable mutation rate pattern, with noise set 
to 0 to model perfectly inheritable mutation rate and noise set to infinity to model randomly 
variable mutation rate. Future work will consist to find general features of fitness landscapes 
in order to determine which mutation rate variation pattern is optimal for each.  

We will also try and uncover evidence for noisily variation in the mutation rate. In 
biological systems, we assume that mutations are random. Therefore, a potential noise would 
have to cater to all possible fitness landscapes that are being explored by the organism. It is 
hence possible that the mutation rate noise that has evolved in nature is suboptimal, but more 
versatile.  

Here, due to space constraints, we only considered noise in genetic mutation rate, that is 
the rate of modification of DNA sequences. However, phenotypic mutations, such as errors in 
transcription and translation, have been shown to have an important role in evolution [2]. Again, 
the optimal level of phenotypic mutation rate and its evolution can be determined through an 
approach very similar to what we presented in this work and represent a major future direction 
in this study.  
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6 SUPPLEMENTARY MATERIALS 

 

S1: Dendrogram resulting from hierarchical clustering of simulation results for step 

landscapes, high mutation rate. Leaf labels are landscape identification numbers from Figure 

2 in the main text.  

 

S2: Dendrogram resulting from hierarchical clustering of simulation results for step 

landscapes, low mutation rate. Leaf labels are landscape identification numbers from Figure 

2 in the main text.  
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S3: From top to bottom, evolution of genotype frequencies: the initial genotype; k1 genotype; k2 

genotype and k3 genotype, for the four studied mutation rate variation patterns and high mutation rate.  
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S4: From top to bottom, evolution of genotype frequencies: the initial genotype; k1 genotype; k2 

genotype and k3 genotype, for the four studied mutation rate variation patterns and low mutation rate.  
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S5: Mean population fitness evolution along evolutionary time, and mean population fitness 

distribution at the final generation for the four studied mutation rate variation patterns, high 

mutation rate. On the left, for a representative landscape from the category with 1033 

landscapes; on the right, for a representative landscape from the category with 111 

landscapes. (see main text, section 3.2.1) 
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S6: Mean population fitness evolution along evolutionary time, and mean population fitness 

distribution at the final generation for the four studied mutation rate variation patterns, low 

mutation rate. On the left, for a representative landscape from the category with 751 

landscapes; on the right, for a representative landscape from the category with 175 

landscapes. (see main text, section 3.2.1) 

 


