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Abstract 

In recent years, cancer-bacteriome interactions are gaining focus in research. However, 

cancer-associated fungi have rarely been examined. Histological staining for fungi of 

tissue microarrays revealed the presence of intratumoral fungi, frequently with spatial 

association with cancer cells and macrophages. This led us to comprehensively 

characterize the cancer mycobiome (fungal component of the microbiome) within 

~1200 human tumors, normal adjacent tissues and normal tissues from a wide range of 

cancer types, from breast the most common cancer in women to rare cancer types such 

as glioblastoma. We focused on eight solid tumor types: breast, lung, melanoma, ovary, 

colon, glioblastoma, pancreas and bone tissues. In addition, we analyzed fungal 

presence in three additional cohorts including the TCGA dataset of 15,512 sequenced 

tissue, and blood samples. Together we examined 17,401 samples across 35 cancer 

types. Fungi are ubiquitous though lowly abundant across all major human cancers, 

with cancer type-specific compositions. The cancer types differed in their fungal 

richness as well as fungal load and specific fungal taxa present in the tumors. Fungal 

profiles were more similar between tumor and normal adjacent tissue of the same tissue 

source as compared to between tumor types. It is yet to be established whether the fungi 

detected in the tumors originated in the normal tissue prior to tumor formation or 

whether the fungi in the normal adjacent tissue originate from the tumor itself. 

Clinically-focused assessments suggested prognostic and diagnostic capacities of the 

tissue and plasma mycobiomes. For example, Malassezia globosa and 

Phaeosphaeriaceae were significantly correlated with worse prognosis in either breast 

or ovarian cancer respectively. We were also able to use the blood fungal compositions 

to predict accurately cancer patients vs. healthy individuals, even at stage one cancers, 

indicating a large, still untapped, diagnostic potential of the mycobiome. In addition, 

comparing intratumoral fungal communities with matched bacteriomes revealed co-

occurring, bi-domain ecologies, often with permissive, rather than competitive 

microenvironments.  
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Introduction 

In recent years the interactions between the human body and the abundance of 

microorganisms inhabiting it has become a prominent field of research. The human 

body is a host to many types of microorganisms including bacteria (main component), 

fungi, viruses and archaea. These organisms can be naïve “bystanders” or play key roles 

in human health. Research in the field of the bacterial microbiome has undergone a 

huge leap in recent years (1–7), demonstrating that commensal bacteria have many 

effects on human health and disease. In addition, recent reports identified 

metabolically-active, immunoreactive, intracellular, cancer type-specific communities 

of bacteria and viruses living within tumor tissues (8–20). Many of these bacteria can 

render cancer therapies nonfunctional or efficacious (8–10, 14, 15, 17, 19). 

In contrast, research into the other microorganisms inhabiting the human body is 

lagging behind (21). Amongst these are the fungi, estimated to be less abundant in the 

human body than bacteria, with a 1:1000 ratio in the human gut (22, 23). Fungi 

represent understudied, but critical commensals and opportunistic pathogens that shape 

host immunity, commonly infecting immunocompromised populations including 

cancer patients (24–28). Recent papers describe the fungal population, or 

“mycobiome”, in different locations of the healthy human body (29), including gut (30–

33), skin (34, 35), oral cavity (36–38), and lungs (39, 40). Most of this research is 

descriptive, characterizing the fungal genera inhabiting these sites in the healthy 

individual.  

In addition, there is accumulating evidence for the role of fungi in disease states. 

Dysbiosis of the mycobiome was characterized in the gut mycobiome after antibiotic 

use (41), in inflammatory bowel disease (IBD) (24), asthma (41), in 

neurodevelopmental disorders (autism and Rett syndrome) (21), and in cancer (42, 43). 

In addition, dysbiosis occurs in HIV patients in the oral cavity, and in cystic fibrosis 

patients in the lung (41). The effects of fungal dysbiosis are not always clear. However, 

it has been associated with disease severity in IBD patients (24). In addition, commensal 

fungi can modulate the immune system (44) demonstrating possible routes by which 

fungi may affect the diseased states.  

To date there are only a handful of papers exploring the tumor mycobiome in several 

tumor types including colorectal (42), breast (45, 46), ovarian (47), prostate (48) and 
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pancreatic (49) tumors. In all of these papers, fungi were detected in the tumor tissue. 

In addition, in many cases differences were observed between normal adjacent tissue 

and tumor tissue, and even between different tumor stages. Most of these studies were 

done on human samples using a chip array that had probes for only a subset of fungi 

with pathogenic activity (45–48). Next generation sequencing focused on fungal 

sequencing could expand the characterization of fungi within these tumors.  

Two papers demonstrate that fungi can promote tumor growth and progression (49, 50). 

Zhu et al. (2017) showed, in a mouse model, that chronic fungal infection in the 

esophagus could promote esophageal squamous cell carcinoma (ESCC). Furthermore, 

alleviating the fungal infection by antifungal treatment prevented ESCC development 

(50). Aykut et al (2019) demonstrated, in a mouse model, that fungi move from the gut 

to the pancreas and that the Malassezia genera of fungus specifically promotes 

pancreatic ductal adenocarcinoma (PDAC). The depletion of fungi from the mouse 

prevented tumor growth (49). In addition, fungal load was significantly higher in PDAC 

in both mice and humans compared to the normal pancreatic tissue. Finally, Malassezia 

was also shown to be one of the dominant species in human PDAC. The mechanism by 

which fungi promote pancreatic tumor development is through the complement cascade 

activation (49). In addition, Ramirez-Garcia et al. (2016) discussed the mechanisms by 

which Candida albicans may promote tumor development and progression (51). 

In contrast, fungi may also have anti-tumor activity. Glucans are a major component of 

the fungal cell wall. Several glucans extracted from fungi were shown to have anti-

tumor activity by immune cell activation in mice (52, 53). Hence, fungi in tumors may 

both promote or inhibit tumor progression.  

Whether fungi can act the same way as bacteria and affect different characteristics and 

stages in tumor progression is mainly unknown, motivating broad characterization of 

the existence and diversity of the cancer mycobiome. Symbiotic and antagonistic 

relationships between fungi and bacteria (54–56) also motivate studying their 

interactions in tumors. Herein, we present a comprehensive characterization of the 

cancer mycobiome in tissues and blood, explore fungal utility in clinically important 

prognostic and diagnostic cases, and compare fungal communities to matched 

bacteriomes. 
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Results 

Fungi are detected by multiple staining methods in human tumors 

To explore the presence of fungi in human tumors we stained tissue microarrays of 

melanoma, pancreas, breast, lung, and ovarian cancers (Figures 1, 2). Since no single 

staining method can detect all fungi in tissues, we used four staining methods: (1) a 

fungal cell wall-specific anti-β-glucan antibody, whose main caveat is a high false 

negative rate (the antibody was repurposed from ELISA to IF) (Figure 3), (2) an anti-

Aspergillus antibody that also binds several additional fungal species (Figure 3), (3) 

fluorescence in-situ hybridization (FISH) against three conserved fungal 28S rRNA 

sequences (57) but with selective sensitivity for yeast over hyphal morphologies due to 

lower hyphae probe penetration (Figures 3C, 4A), and (4) fungal cell wall-specific 

Gomori methenamine silver (GMS) stain but with high false positive background 

staining in tissues. Numerous negative controls helped exclude the possibility of false 

positives (Figures 1, 2). Overall, Anti-Aspergillus was the most common stain detected 

in tumors with breast, ovary and PDAC tumors having the highest levels of positive 

tumors, 33%, 25.3% and 15.7%, respectively (Figures 1, 2, 3A). In addition, 21.8% of 

melanoma tumors and 18.7% of pancreas tumors showed positive β-glucan staining 

(Figures 1, 2, 3A), while less than 1% of breast, lung, and ovarian tumors were positive 

for β-glucan staining (Figure 3A). FISH was detected in 12% of PDAC tumors, but was 

much less abundant in other cancer types (Figures 1A-B, 2D, 3A). GMS staining was 

difficult to interpret due to high background staining except for rare cases where 

canonical fungal cells were identified (Figure 4B).  

Interestingly, we found a different localization pattern for fungal staining between 

PDAC and melanoma tumors. In pancreatic tumors, fungal staining (anti- β-glucan & 

FISH) was mainly evident within cancer cells, whereas melanoma tumors showed 

macrophage-localized fungal staining (anti- β-glucan and anti-Aspergillus) (Figure 1). 

In rare cases where canonical fungal cells were identified, they were extracellular 

(Figure 4).  

Overall, with these staining methods we visualized fungi in human tumors; detecting 

fungal RNA (FISH), cell wall polysaccharides (β-glucan) and proteins (anti-

Aspergillus). Yet better methods are needed to overcome the current high false-negative 

detection rates and to better understand their spatial distribution. We next turned to 
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exploring the presence and identity of fungal DNA and RNA by qPCR and sequencing 

methods. 

 Figure 1. Visualization of fungi in human tumors. (A-D) Consecutive slides from a tumor microarray of 
human pancreatic adenocarcinoma (A, B) or Melanoma (C, D) were stained with hematoxylin and eosin 
(H&E), or antibodies against β-glucan, Aspergillus, CD45, CD68 or by fluorescence in situ hybridization 
(FISH) probes against fungal 28S rRNA (see Methods). Slides were also stained with only secondary 
antibodies as a negative control. Two representative cores of each tumor type are presented: PDAC- A12 
and F8 (A, B), melanoma- E6 and F5 (C, D). Scale bar for low magnification: 200μm. Square demarcates 
the area presented at higher magnification. Scale bar for higher magnification: 50μm. 
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Figure 2. Visualization of fungi in human tumors. (A-D) Consecutive slides from representative cores 
from tumor microarrays of human breast cancer (A), ovarian cancer (B), lung cancer (C)  and pancreatic 
adenocarcinoma (D) were stained with hematoxylin and eosin (H&E), antibodies against β-glucan, CD45, 
CD68, Aspergillus, or by fluorescence in situ hybridization (FISH) probes against fungal 28S rRNA (see 
Methods). Slides were also stained with only secondary antibodies as a negative control. Note that in (D) 
the core used to evaluate fluorescence negative control is missing from this slide. Scale bar for low 
magnification: 200μm. Square demarcates the area presented at higher magnification. Scale bar for higher 
magnification: 50μm. 
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Figure 3. Fungal staining rates and validation of fungal staining methods on positive control slides. 
(A) Table summarizing positive fungal staining rates (percent of cores with positive staining) of anti- β-
glucan, anti-Aspergillus and FISH probes in the tumor microarrays from five cancer tissue types. (B) FFPE 
slides from tissues infected with Histoplasma (upper panel),  Aspergillus (middle panel) and Candida 
(lower panel), were stained with antibodies against β-glucan, Aspergillus (two antibodies), and Candida. 
Slide 1 was stained with antibodies against both β-glucan (red) and Aspergillus (green); slides 2 and 3 were 
stained with anti-Aspergillus and anti-Candida, respectively. Upper panel scale bar 20μm, middle and 
lower panels scale bar 50μm. (C) Consecutive slides from a FFPE tumor block that was found to be 
contaminated with fungi in the paraffin (and not the tissue) were stained with hematoxylin and eosin 
(H&E), antibodies against Aspergillus and β-glucan, or with fluorescence in situ hybridization (FISH) using 
probes against fungal 28S rRNA. The hyphae were only detected by the anti-Aspergillus antibody. 
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Figure 4. Detection of canonical fungal cells in tumors. (A) Fluorescence in situ hybridization (FISH) 
of a human ovarian tumor in FFPE block using 3 probes against fungal 28S rRNA (upper panel) or 3 
scrambled probes (lower panel) (see Methods). ITS2 sequencing identified Vishniacozyma victoriae in this 
tissue sample. Scale bar in the first column is 200μm. Squares demarcates the areas presented at higher 
magnification in the next two columns in which the scale bar is 20μm. (B) A human lung tumor in FFPE 
block was stained with hematoxylin and eosin (H&E), Gomori methenamine silver stain (GMS), or 
fluorescence in situ hybridization (FISH) using the same probes as in (A). ITS2 sequencing identified 
Fusarium keratoplasticum and Aspergillus tardicrescens in this tissue sample. Scale bar in the first column 
is 50μm. Square demarcates the area presented at higher magnification in next two columns in which scale 
bar is 10μm. 
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Fungal nucleic acids exist in many human cancer types 

Encouraged by our staining results we continued to explore fungal presence in human 

tumors by qPCR and NGS. 

Our cohort (named Weizmann (WIS)) comprised 1,183 samples, previously examined 

for bacteria (17), of tumor, normal adjacent tissue (NAT; often paired) and normal 

tissue from eight tissue types (bone, breast, colon, GBM, lung, melanoma, ovary and 

pancreas), which were profiled for fungi using internal transcribed spacer 2 (ITS2) 

amplicon sequencing (Table 1, tables S1-S5). Since we expect fungal DNA in tumors 

to be low biomass as is in bacteria (17), the potential of sample contamination to 

overcome the signal is substantial. To account for potential contamination by 

environmental fungi or fungal DNA introduced during sample handling and processing, 

104 paraffin-only controls and 191 DNA-extraction negative controls were included. 

The paraffin only controls are negative controls for center (hospital) contaminations, 

made by sampling paraffin only (without tissue) from a subset of the study paraffin 

blocks; the DNA-extraction controls are negative controls for contaminations 

introduced during lab processing, made by performing DNA extractions on empty tubes 

(with DDW only) in parallel to sample DNA extraction. These controls enabled the 

detection and removal of fungal contaminants and delineation of signal versus noise in 

the ITS2 data (See section “Negative control samples enabled data clean up and 

decontamination” and Methods). The ITS2 sequencing pipeline was rigorously 

validated and optimized prior to analysis. These steps will be described in detail in 

section “ITS2 sequencing optimization and validation in the WIS cohort” in the results. 

Tissue Sample size 
(# Centers) Normal NAT Tumor 

Breast 458 (3) 82 135 241 
Lung 373 (3) - 180 193 
Melanoma 134 (3) - - 134 
Ovary 57 (2) - - 57 
Colon 44 (1) - 22 22 
GBM 40 (2) - - 40 
Bone 39 (2) - - 39 
PDAC 38 (1) - - 38 
Total 1183 
DNA extraction controls 191 
Paraffin controls 104 (4) 
Table 1. Detailed breakdown of samples in the WIS cohort 

 



15 
 

To quantify fungal DNA load in our cohort (WIS), we used quantitative polymerase 

chain reaction (qPCR) of the conserved fungal 5.8S ribosomal gene in a random subset 

comprising 230 tumor samples and 102 negative controls. We found that all tumor types 

tested had on average a higher fungal load than negative controls, and fungal load 

differed among tumor types (Figure 5A). Fungal and bacterial load correlated across 

tumor types (Figure 5B), with GBM deviating from this correlation. In addition, breast 

cancer samples were highest in both fungal (Figure 5A) and bacterial (17) DNA load, 

suggesting tumors are polymicrobial, potentially indicating that they are more 

permissive to microbes and that the intratumoral microbial interactions may be more 

mutualistic in nature than competitive. 

We then subjected all of our cohorts samples to ITS2 amplification and sequencing to 

characterize fungi. This analysis also found more fungal reads in samples from all 

cancer types than in negative controls (Figure 5C), detecting intratumoral fungi in all 

of the eight major human cancer types that were studied. In addition, fungal load (qPCR 

results) and the number of fungal reads per sample significantly correlated in tumor 

samples but not in the negative control samples (Figure 5D). 

In collaboration with the Knight lab, we used a second cohort that encompassed whole 

genome sequencing (WGS) and whole-transcriptome sequencing (RNA-Seq) studies 

from The Cancer Genome Atlas (TCGA) (Table 2, table S5). In this cohort, reads that 

did not map to the human genome were aligned against a multi-domain database of 

11,955 microbial (including 320 fungal) genomes (Methods). 15,512 samples (WGS: 

4,736; RNA-Seq: 10,776) passed quality control with non-zero feature counts for any 

microbial taxa, of which 14,495 (93%) contained fungal reads. Of 6.06×1012 total reads 

in these samples, 7.13% did not map to the human genome, and 98.5% of these 

unmapped reads mapped to no organism in our microbial database. Of the remaining 

1.5% of non-human reads that mapped to our microbial database (0.11% of total reads), 

88.1% (0.097% of total) were classified as bacterial, and 2.8% (0.0031% of total) were 

classified as fungal, providing 1.23×108 fungal reads for downstream analyses. 

Although contamination controls were not included in the TCGA cohort, we 

implemented an in-silico decontamination based on sequencing plate and center (18), 

and cross-referenced all fungal species against the WIS cohort, the Human Microbiome 

Project (HMP)’s gut mycobiome cohort (58), and >100 other publications to obtain a 

final decontaminated list (table S6) (Methods). 
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Figure 5. Fungal nucleic acids exist in human cancers. (A) Fungal DNA abundance in WIS cohort 
quantified by 5.8S qPCR (Methods). Blue bars show medians. Values clipped at 500. P-values from one-
sided T-tests between tumor types and extraction controls (n=54, far left): paraffin controls (n=48), 0.04; 
GBM (n=25), 2.6×10-4; melanoma (n=31), 9.8×10-7; colon (n=14), 3.3×10-4; lung (n=51), 5.2×10-6; ovary 
(n=26), 9.2×10-6; pancreas (n=25), 7.9×10-10; bone (n=25), 0.02; and breast (n=33), 7.5×10-5. (B) Scatter 
plot demonstrating the Pearson correlation between fungal and bacterial load as measured by qPCR across 
seven tumor types and controls from the WIS cohort. Fungal load is represented as rDNA copies since 
fungi contain a wide range of rDNA copies per cell across different species. Regression lines and 
confidence intervals are shown. Pearson correlation coefficient (R) and P-value (p) are presented. (C) 
Violin dot plot of the number of total ITS2 fungal reads (before flooring and normalization) per sample.  
Blue bars represent the median. (D) Scatter plot demonstrating the Spearman correlation between fungal 
load as measured by qPCR and the number of total ITS2 fungal reads sequenced across samples and 
controls from the WIS cohort. Regression lines and confidence intervals are shown. Spearman correlation 
coefficient (ρ) and P-value (p) are presented.  
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Motivated by the existence of ~123 million fungal reads in TCGA, despite small per-

sample counts, we calculated aggregate fungal genome coverage across all WGS and 

RNA-Seq samples (table S7; Methods). This revealed 31 fungi with ≥1% genome 

coverage and several with high or nearly complete coverage, including Saccharomyces 

cerevisiae (99.7% coverage), Malassezia restricta (98.6% coverage), Candida albicans 

(84.1% coverage), Malassezia globosa (40.5% coverage), and Blastomyces gilchristii 

(35.0% coverage). Fungal species from the WIS cohort that overlapped with TCGA 

were significantly more likely to have ≥1% genome coverage than non-WIS-

overlapping species (Fisher exact test: p=1.05×10-8, odds ratio=13.1). 

In the TCGA cohort, we observed in 31 of 32 cancer types that the proportions of 

bacterial reads in primary tumors were significantly higher than fungal reads (Figure 

6A), and all cancer types had significantly higher bacterial proportions after 

normalizing by genome sizes (data not shown). Calculating average relative 

abundances among the bacterial and fungal data in TCGA primary tumors revealed 

86.7% bacterial and 13.3% fungal without normalizing by respective genome sizes, or 

96% bacterial and 4% fungal after normalizing by genome sizes, suggesting that the 

bacteriome constitutes most of the tumor microbiome. Fungal and bacterial read 

proportions had high Spearman correlations (Figure 6B), including primary tumors, 

normal adjacent tissues (NATs), and blood. These data also support a bacterial-

dominated but inherently polymicrobial cancer microbiome. 

 

Cohort Method Sample types Total # cancers Total # samples  

Weizmann 
(WIS) 

ITS2 amplicon 
sequencing  

Tumor, NAT, 
Normal, Controls 8 1183 

(+295 controls) 
The Cancer 

Genome Atlas 
(TCGA) 

WGS, 
RNA-Seq  

Tumor, NAT, 
Blood 33 15,512 

Hopkins 
(Cristiano et al.) WGS Plasma 8 537 

UCSD 
(Poore et al.) Shotgun (WGS) Plasma, Controls 3 169 

(+58 controls) 

Total - - 35 17,401 
(+353 controls) 

Table 2. Table of all cohorts studied 
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Figure 6. Fungal nucleic acids exist in human cancers, TCGA data. (A) Percentage of reads in TCGA 
primary tumors mapped to fungal and bacterial genomes versus total reads. Sample sizes inset in blue and 
vary slightly when samples had non-zero bacterial counts but zero fungal counts. Two-sided Wilcoxon tests 
for each cancer type fungal vs. bacterial comparisons; **** indicates p<0.001, ns=not significant. Box 
plots show median line, 25th and 75th percentiles, and 1.5× interquartile range. (B) Log10-scaled scatter plot 
of the percent of fungal vs. bacterial reads with respect to total reads in the concomitant bam files. Linear 
regression lines are overlaid on the scatter plot, colored by the respective sample type. Non-parametric 
Spearman correlation testing revealed significant associations between proportions of fungal and bacterial 
reads: Primary tumor, ρ=0.76, t=1.7×108, p≈0; blood derived normal, ρ=0.76, t=6.4×1010, p≈0; solid tissue 
normal, ρ=0.84, t=5.1×107, p≈0.  
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Our cohort (WIS) and the TCGA cohort have complementary advantages and 

drawbacks; together they complement each other and strengthen our findings and 

conclusions. Advantages of the WIS cohort include aseptic sample curation and 

processing, using a mechanical shearing step to optimize microbial DNA extraction, 

inclusion of hundreds of experimental contamination controls, complementary tissue 

imaging, and fungal-specific qPCR, which together substantiate confidence in the true 

presence/absence of intratumoral fungi. However, the nature of ITS2 amplicon 

sequencing precludes genome-wide coverage analyses. Conversely, the shotgun 

metagenomic approach taken with the TCGA cohort paired with very large sample sizes 

enables fungal comparison with host information, detection across most human cancer 

types, and represents a scalable approach compatible with historical data; however, due 

to the lack of experimental contamination controls, it relies on in-silico 

decontamination with less confidence in presence/absence calls.  

Metagenomic analyses demonstrate cancer type-specific mycobiomes 

Metagenomic analysis allowed us to characterize the fungal composition within our 

different samples, gain insight into the fungal profile of tumor types as a whole and 

learn about the spread of individual fungi in the different samples. Mycobiome richness 

varied significantly across cancer types (Figure 7A). In addition, the richness of tumor 

samples in our cohort as well as the TCGA cohort was significantly lower for fungi vs. 

bacteria (Figure 7B), similar to previous findings in the gut microbiome (58). Richness 

of both fungi and bacteria was lower in our cohort (WIS) relative to the TCGA cohort 

(shotgun metagenomics), likely due to (i) numerous negative controls in the WIS 

cohort, (ii) flooring of the WIS data to counteract index-hopping sequencing noise (59), 

and (iii) potential read splitting during shotgun metagenomics alignments in the TCGA 

cohort (Methods). Interestingly, 71% (5/7) of cancer types shared by both cohorts 

showed significant positive correlations between intratumoral fungal and bacterial 

richness (Figure 7C). While intratumoral mycobiome α-diversity was low, the β-

diversity was high between tumor samples (Figure 7D), preventing saturation in the 

rarefaction plots (Figure 7E). Nevertheless, we found that samples within cancer types 

clustered together by their mycobiome (data not shown; PERMANOVA: p=0.037). β-

diversity analyses within TCGA sequencing centers similarly revealed cancer-type 

specific mycobiome compositions (data not shown; PERMANOVA: p=0.001).  
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Figure 7. Mycobiome richness varies across cancer types. (A) Box plot of the number of species 
(richness) per WIS sample in different tumor types after data flooring and normalization (Methods). Only 
fungi that passed the filtering steps in any of the tumor types were included in the analysis. Kruskal-Wallis 
test reflects significant richness variation across cancer types. (B) Fungal and bacterial species richness for 
WIS and TCGA cohorts. NC: negative controls. (C) Scatter plot demonstrating Spearman correlations (ρ) 
and concomitant P-values between fungal and bacterial richness across five tumor types shared between 
the WIS and TCGA cohorts. Linear regression lines and 95% confidence intervals shown. (D) Box plot of 
Bray-Curtis dissimilarity scores within tumor type. The asterisks depict the mean. (E) Rarefaction plot of 
the number of species detected in the WIS cohort per tumor type with 100 random subsamples per number 
of samples. Mean and standard deviation shown. Extraction and paraffin controls were grouped together. 
(A, B, D) Box plots show median line, 25

th
 and 75

th
 percentiles, and 1.5× interquartile range.  
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Across the eight cancer types tested in the WIS cohort, Ascomycota and Basidiomycota 

phyla dominated the intratumoral mycobiome (Figure 8A). Ascomycota and 

Basidiomycota are the two main fungal phyla, together comprising over 95% of the 

fungal kingdom. The Ascomycota to Basidiomycota ratio (A/B ratio) was highest in 

colon cancer, due to abundant Saccharomycetes, and lowest in melanoma, due to 

abundant Malasseziomycetes. These differences correspond to known fungal taxa that 

inhabit the gut (58) and skin (34), suggesting partial conservation of normal tissue-

specific ecologies in tumors. Indeed, unsupervised clustering of tumors alongside 

normal and normal adjacent tissue (NAT) samples showed tissue-specific clustering by 

the most prevalent fungi in these tissues by both fungal prevalence and mean relative 

abundance (Figure 8B-C). In addition, both WIS and TCGA cohorts demonstrated co-

clustering of tumor and NAT samples when comparing β-diversity scores, supporting 

similar tumor and NAT compositions (Figure 8D-E). Bray-Curtis dissimilarity between 

tumor and NAT samples from the same patient demonstrated higher similarity vs. non-

matched tumor and NAT samples or tumor sample pairs (Figure 8F). To test whether 

this is the cause for the co-clustering of tumor and NAT in the PCoA, we repeated the 

PCoA analysis without the matched tumor-NAT pairs that originate from the same 

patient. Co-clustering of tumor and NAT profiles still occurred after discarding from 

the analysis pairs of tumor-NAT samples from the same patients (Figure 8G). 

Collectively, these analyses portray ubiquitous, low-abundance, cancer type-specific 

mycobiomes that have ecologies similar to those in normal adjacent tissues. 
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Machine learning analyses demonstrated cancer-type specific mycobiomes 

Since we detected tissue type specific mycobiome profiles in both WIS and TCGA data 

sets we attempted to build a pan-cancer classifier using these profiles. We combined 

mycobiome data from all TCGA sequencing centers and experimental strategies using 

supervised batch correction on 14,495 samples, as previously done with TCGA 

bacteriomes and viromes (18) (Methods). Evaluating one-cancer-type-versus-all-others 

models on the normalized mycobiome data provided strong discriminatory 

performance across 32 cancer types (Figure 9A). In addition, scrambled and shuffled 

negative controls showed null, significantly worse performance for every cancer type 

(Figure 9A). Machine learning (ML) was done by using three feature groups: Fungi in 

the TCGA cohort with high coverage (>1% of genome), fungal species in the TCGA 

cohort overlapping to fungal species detected in our cohort (WIS) and all fungal 

features detected in the TCGA cohort after decontamination. The feature group of fungi 

intersecting with our cohort (WIS) gave results comparable to both other feature groups, 

suggesting that the fungal species detected in our cohort represent a core, clean feature 

Figure 8. Metagenomics analyses demonstrate cancer type-specific mycobiomes. (A) Mean relative 
abundance bar plots at class-level phylotypes across WIS cohort tumor types. Colors correspond to the 
phyla of each class. Blues: Ascomycota; reds: Basidiomycota; pink: Mucoromycota. (B, C) Unsupervised 
hierarchical clustering of fungal (B) prevalence or (C) mean relative abundance in the WIS cohort using 
species that appear in ≥10% of samples in ≥1 condition. Values represent Z-scores per row. u.sp: unknown 
species. (D) Principal coordinate analysis (PCoA) on the Jaccard dissimilarity indexes using fungal species 
across tissues in WIS cohort. (E) Bray-Curtis PCoA of averaged relative abundances on rescaled, Voom-
SNM corrected TCGA WGS and RNA-Seq data (see Methods) on cancer types also found in the WIS 
cohort and with at least 10 tumors and NATs available in TCGA. Sample counts: breast NAT, n=100; 
breast tumor, n=978; colorectal NAT, n=72; colorectal tumor, n=526; Lung NAT, n=194; Lung tumor, 
n=1068; Ovarian NAT, n=10; Ovarian tumor, n=683. Note that “lung” combines TCGA projects LUAD 
and LUSC and that “colorectal” combines TCGA projects COAD and READ. (F) Cumulative Distribution 
Function (CDF) plot of Bray-Curtis dissimilarity scores in the WIS cohort, within tumor samples, within 
NAT samples, between tumor and NAT samples from different patients (“Non-matched tumor-NAT”), and 
between paired tumor and NAT samples from the same patient (“Matched tumor-NAT”). All scores of 
pairs were calculated within a tumor type and included only tissue types for which NAT samples were 
available: breast, lung and colon. Inset: Boxplot of dissimilarity measurements between the matched 
samples group and within tumor samples. (G)  PCoA on the Jaccard dissimilarity indices between species 
profiles of the different tissue types after discarding paired tumor-NAT patient samples in WIS cohort. This 
analysis was done to demonstrate that the tumor-NAT clustering that was observed is not the result of high 
similarity between mycobiomes of samples that originate from the same patients. We have thus removed 
from the analysis either the tumor or the NAT samples (by random) from patients that had both sample 
types. 
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set generalizable to other cohorts. We validated this by testing the performance of equal 

sized feature groups that do not appear in our cohort in ML (Figure 9B), these groups 

showed significantly lower AUROC scores relative to the WIS overlapping feature set. 

Furthermore, combining fungal and bacterial information from our cohort revealed 

synergistic performance benefits (Figure 9C). We then independently batch corrected 

two stratified TCGA halves, separately trained ML models on them, followed by testing 

on each opposing half—this revealed significantly correlated performance between 

primary tumor comparisons (data not shown), suggesting generalizable discriminatory 

performance. 

Evaluating one-cancer-type-versus-all-others models on our data set (WIS) also 

provided discriminatory performance in all cancer types with synergistic performance 

of fungal and bacterial features (Figure 10A). 

Previous bacteriome-centric analyses revealed cancer type-specific, blood-derived 

microbial DNA (18), prompting us to examine fungal DNA in TCGA WGS blood 

samples. Indeed, evaluating models on the batch-corrected dataset showed strong pan-

cancer discriminatory performance (Figure 10B). All controls performed for the tumor 

tissue above were repeated for the blood analysis with similar results (data not shown). 

Collectively, these ML analyses support cancer-type specific tissue and blood 

mycobiomes, which may have clinical utility.  

Compositional similarity between tumor and NAT mycobiome samples (Figure 8B-G) 

indicated that their discrimination may be challenging. Indeed, ML on most TCGA raw 

data subsets (data not shown) and on the WIS data demonstrated weak performance 

(Figure 11A). Nonetheless, the small average effect size between tumor and NAT 

seemed surmountable when re-examining the full, batch corrected TCGA dataset 

(Figure 11B). Affirming the issue of effect size, comparing breast tumors to true normal 

tissue in the WIS cohort revealed more differential fungal prevalences and better ML 

performance (Figure 11C-D). These analyses suggest that tissue mycobiomes may 

distinguish tumor and NAT if studies are sufficiently powered. 
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Figure 9. Machine learning (ML) analyses reveal cancer type-specific mycobiomes in tumor tissues. 
(A) One-cancer-type-versus-all-others predictions using batch-corrected, TCGA primary tumor data 
(n=10,998). Scrambled and shuffled machine learning negative controls were repeated on pan-cancer, 
batch-corrected primary tumor data and compared to performance using biological samples, which included 
224 decontaminated fungal species, 34 WIS-overlapping fungal species, or 31 fungal species with ≥1% 
aggregate coverage. For hypothesis testing, biological data and scrambled/shuffled controls were 
aggregated into two separate groups, and two-sided Wilcox tests were applied per cancer type per 
performance metric (AUROC or AUPR). *: p≤0.05; **: p≤0.01; ***: p≤0.001; ****: p≤0.0001. (B) To test 
whether the 34 WIS-overlapping species provided greater discriminatory performance in TCGA than other 
detected fungi, multi-class machine learning models were built on stratified splits of WGS samples in 
TCGA with 70% training and 30% holdout test sets (Methods) using only the 34 WIS-overlapping species 
or 34 non-WIS-overlapping randomly selected fungi. This process was repeated for 100 iterations, and 
AUROC (left) and AUPR (right) performance was calculated on the 30% holdout test set for each iteration. 
Two-sided Wilcox tests P-values are presented. (C) Multi-class pan-cancer discrimination among TCGA 
WGS tumor samples using WIS-overlapping features across 100 iterations of stratified train-test splits (see 
Methods).  
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Figure 10 . Machine learning (ML) analyses reveal cancer type-specific mycobiomes in WIS tumor 
tissues and in TCGA blood samples. (A) Ten-fold cross-validation ML approach was applied to the WIS 
cohort data, using fungal, bacterial, or fungal and bacterial raw counts to discriminate one cancer type 
versus all others. All filtered fungal hits across all taxa levels (“free rank”) were included. Dots denote 
average performance and error bars denote 95% confidence intervals. Gray horizontal dots denote the null 
AUROC and AUPR values, the latter of which is the prevalence of the positive class (here, each cancer 
type). (B) One-cancer-type-versus-all-others predictions using batch-corrected, TCGA blood data 
(n=1771). “High coverage,” 31 fungal species with ≥1% aggregate genome coverage; “Species ∩ WIS,” 
34 WIS-overlapping fungal species; “decontaminated,” 224 decontaminated fungal species. Horizontal 
lines denote null AUROC or AUPR.  
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Figure 11. Machine learning (ML) analyses for tumor versus NAT discrimination necessitates a large 
sample size. (A) Ten-fold cross-validation machine learning models tested to discriminate tumor versus 
NAT samples using the WIS cohort fungal, bacterial, or fungal and bacterial data comprising raw counts, 
relative abundances, binary presence-absence, or combined counts and presence-absence information. 
Microbial hits at all taxa levels that passed filtering were included (“free rank”). At least 20 samples in 
each class were required to be tested. (B) Ten-fold cross-validation machine learning models tested to 
discriminate TCGA tumor vs. NAT samples using pan-cancer batch corrected data. Feature subsets 
included 224 decontaminated fungal species (red), 31 fungal species with ≥1% aggregate coverage (“high 
coverage”), and 34 fungal species that overlapped with the WIS cohort (“∩ Weizmann (C) Differential 
prevalence testing in the WIS cohort between breast cancer tumor samples and true normal breast tissue 
samples across all taxa levels. Colors represent taxa level and shapes represent FDR cutoff. (D) Ten-fold 
cross-validation ML models built to discriminate WIS breast cancer tumor samples vs. true normal breast 
tissue based on fungi, bacteria, or fungi and bacteria raw counts. Microbial hits at all taxa levels that passed 
filtering were included (“free rank”). (A, B, D) Dots denote average values and error bars denote 95% 
confidence intervals. Horizontal gray/colorful dots denote the null AUROC and AUPR values. Null AUPR 
values vary slightly when subsetting feature sets resulted in zero sum samples that had to be removed prior 
to batch correction and machine learning.  
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Blood mycobiome profiles discriminate between cancer patients and healthy 

individuals 

Blood-derived cancer type specific fungal compositions in TCGA suggest their utility 

as minimally invasive diagnostics, analogous to bacterial counterparts (18). We thus 

sought to validate these findings in two independent, previously published cohorts 

(Hopkins, UCSD), together comprising 330 healthy and 376 cancer-bearing subjects 

(table S5), that underwent low-coverage whole genome plasma sequencing (18, 60). 

Notably, the Hopkins cohort concentrated on treatment-naive, early-stage cancers while 

the UCSD cohort focused on treated, late-stage cancers, collectively addressing most 

clinical scenarios across 10 cancer types. 

In the Hopkins cohort, decontaminated fungal species (n=209) provided moderate 

discriminatory performance, and performance with multi-domain feature sets exceeded 

published host-centric approaches including when subsetting to 287 fungal and 

bacterial species overlapping to features from our cohort (WIS) (Figure 12A). ML of 

individual cancer types vs. controls performed similarly (Figure 12B), with the best 

fungal performance in breast cancer. Testing ML models in a one-cancer-type-versus-

all-others manner similarly revealed moderate discrimination for decontaminated fungi 

and strongest discrimination with multi-domain features (Figure 12C). ML across 

individual stages vs. healthy continued this pattern for all stages (Figure 12D), 

suggesting that microbial-augmented liquid biopsies are not dependent on cancer stage. 

UCSD cohort analysis showed similar results (data not shown). Collectively, these 

analyses suggest the clinical utility of multi-domain microbial nucleic acids in plasma 

samples from treatment-naive patients. Furthermore, seeing that the feature set of 

bacteria and fungi that overlaps with the WIS cohort provided nearly equivalent 

discriminatory performance as a multi-domain database 26-fold larger, suggests a 

significant tumor origin of the species from the WIS cohort, generalizable across 

additional cohorts.  

Cancer mycobiome components are associated with patients clinical parameters 

We next explored the diagnostic and prognostic capacities of the cancer mycobiome, 

which were previously established for cancer bacteriomes (17, 18, 61). We tested 

whether disease phenotypes, patient survival, and treatment response were associated 

with fungal biomarkers.  
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Figure 12. Blood mycobiome profiles discriminate between cancer patients and healthy individuals. 
(A) Treatment-naive pan-cancer vs. healthy discrimination in the Hopkins plasma cohort using ten-fold 
cross-validation repeated ten times across all database hits (blue, 7418 features), WIS-overlapping fungi 
and bacteria (red, 287 species), or decontaminated fungi (green, 209 species). Mean performance with 99% 
confidence intervals (colored ribbons) and gray or lightly colored lines each denoting single repeats of ten-
fold cross-validation repeated ten times. (Methods). (B) Per cancer type vs. healthy discrimination in the 
Hopkins cohort with ten-fold cross validation to calculate average performance (dots) and 95% confidence 
intervals (brackets). (C) Each cancer type vs. all others ML performance in the Hopkins plasma cohort. (D) 
Per cancer stage vs. healthy ML performance in the Hopkins plasma cohort.  (B, C, D) Three feature sets 
were used: all microbial hits against the rep200 database (red; 7418 features), only fungal and bacterial 
species overlapping with the WIS cohort (blue; 287 species), decontaminated fungi (209 species), and for 
(B, D) an additional feature set of the top 20 ranked fungal species identified during pan-cancer vs. healthy 
ML (ten-fold cross-validation repeated ten times). Centered dots denote average performance and error 
bars represent 95% confidence intervals. Horizontal, dotted, gray or colored lines represent null AUROC 
and AUPR values, respectively. Null AUPR values may slightly vary between feature sets when subsetting 
resulted in zero-sum samples that had to be removed prior to batch correction and/or ML. 
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In breast cancer, we found the Cladosporium sphaerospermum species and the 

Cladosporium genus, previously reported in breast cancer (62), enriched in tumors of 

patients older than age 50 (Figure 13A). The Cladosporium genus was also found to be 

enriched in HER2 negative tumors (Figure 13B), although known age-HER2-status 

associations complicate causality (63). We also found the class Agaricomycetes 

significantly enriched in triple negative breast cancer vs. hormone receptor (HR) 

positive tumors (Figure 13C). Furthermore, we found significantly shorter overall 

survival (OS) in breast cancer patients with intratumoral Malassezia globosa (Figure 

13D), a common fungus on human skin (34), in breast milk (64), and in pancreatic 

tumors, in which it was shown to have an oncogenic effect (49). Malassezia restricta, 

another highly abundant fungus on human skin that is also present in breast cancer, was 

not correlated with OS (data not shown). In lung cancer, we found higher fungal 

richness and enrichment of the Aspergillus genus and Agaricomycetes class in tumors 

from current smokers compared to those from never smokers (Figure 13E-F). We also 

found three fungal species significantly enriched in stage 3-4 over stage 1-2 lung tumors 

(Figure 13G). In ovarian cancer, patients with intratumoral Phaeosphaeriaceae, or its 

concomitant Phaeosphaeria genus, had significantly shorter progression free survival 

(PFS), shortening median PFS probability from 498 days to 135 days (Figure 13H-I). 

We also examined fungal associations with response to immunotherapy in metastatic 

melanoma. Although fungal richness did not significantly vary (p=0.88, two-sided 

Wilcoxon test), Capnodiales, and its genus, Cladosporium, were significantly enriched 

in non-responders (Figure 13J). 

Figure 13. Fungi in the cancer mycobiome are associated with patients clinical parameters. (A, B, C) 
Differential prevalence of fungal taxa in the WIS breast tumors by age (A) HER2 status (B) or HR+ vs. TN 
(C). (D) Kaplan-Meier survival probability of WIS breast cancer patients positive (n=11) or negative 
(n=69) for Malassezia globosa (P-value from log-rank test). (E) Fungal richness in WIS lung tumors by 
smoking status. Box plot shows median line, 25

th
 and 75

th
 percentiles, and 1.5× interquartile range. (F, G) 

Differential prevalence of fungal taxa in WIS lung tumors by smoking status (F) or stage (G). (H, I) 
Kaplan-Meier plot demonstrating progression free survival (PFS) probability in WIS ovarian patients 
positive (n=9) or negative (n=45) for Phaeosphaeriaceae family (H) or positive (n=8) or negative (n=46) 
for the genus Phaeosphaeria (I) (P-value from log-rank test).  (J) Differential prevalence of fungi in WIS 
melanoma tumors by response to immune checkpoint inhibitors. (A-C, E-G, J) P-values were calculated 
by Fisher’s exact test. Only fungi that appeared in ≥5% and at least twice in one of the groups were included 
in the analysis. All fungi in these plots had FDR corrected values of ≤0.2.  
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Intratumoral mycobiome-bacteriome-immunome interactions 

Fungi commonly interact with bacteria through physical and biochemical mechanisms 

(54), motivating exploration of inter-domain co-occurrences between mycobiome and 

available bacteriome data in tumors (17, 18). We compared presence-absence data at 

different taxonomic levels to shuffled counterparts, to calculate the normalized Mutual 

Information between domains (65) (Methods). Pearson correlations indicated 

synergistic or antagonistic interactions. Significant inter-domain co-occurrences 

presented in breast and lung cancers, which had the most samples, potentially reflecting 

a lack of power in other cancer types (Figure 14, table S8). 93% (132 of 142) of 

significant fungal-bacterial co-occurrences were positive, while most negative co-

occurrences included the fungal family Dipodascaceae or its genus, Yarrowia and 

appeared in lung cancer (Figure 14A). In the breast cancer-specific analysis, Aspergillus 

and Malassezia were hubs for inter-domain co-occurrences (Figure 14B).  

Fungi and bacteria were both demonstrated to elicit unique host immune responses (24–

26, 49, 55, 61, 66, 67), leading us to hypothesize that fungal-bacterial-immune clusters 

exist intratumorally. Because bacteriomes (17, 18), immunomes (68), and mycobiomes 

individually demonstrate cancer type specificity, we reasoned that joined multi-species 

clusters also likely vary across cancer types. The TCGA data represents a unique 

opportunity to compare between the mycobiome, microbiome and host information, 

and so we could test these hypotheses. We compared fungal and bacterial genera 

overlapping from the WIS cohort in the TCGA cohort with concomitant TCGA immune 

cell compositions derived from CIBERSORT (68, 69), using MMvec (microbe–

metabolite vectors), a neural network architecture previously developed to estimate 

microbiome-metabolite co-occurrences (Methods) (70).  

Unsupervised analyses revealed three distinct fungi-bacteria-immune clusters driven by 

fungal co-occurrences, herein named F1 (Malassezia-Ramularia-Trichosporon), F2 

(Aspergillus-Candida), and F3 (multi-genera including Yarrowia) “mycotypes” (Figure 

15) (Methods). These fungal mycotypes show distinct patterns of co-occurrence with 

the bacteria and immune cells within the tumors. F1 and F2 mycotypes comprised fewer 

but more prevalent fungal genera in TCGA. These mycotypes show similar clustering 

of immune cells but differentiated in the bacterial interactions. F3 represents a larger 

number of fungi but with lower prevalence compared to F1 and F2 mycotypes and are 
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associated with higher levels of innate immune cells. Further analysis into these 

interactions is necessary.  

 

  

Figure 14. Establishing cancer specific mycobiome-bacteriome interactions. (A, B) Networks of fungi-
bacteria co-occurrences at different taxonomic levels found in WIS (A) lung tumors or (B) breast tumors 
drawn with Cytoscape (3.8.1). Nodes represent taxa color coded according to phyla. Bacterial nodes are 
organized by phyla in a circle at the bottom. Fungal nodes are labeled with taxonomy preceded by a letter 
representing the taxonomic level (g: genus, f: family, o: order, c: class) and are organized in rainbow fashion 
according to taxonomic level from class (outer layer) to genus (inner). Nodes are grouped on a gradient 
from outer to inner layer based on taxonomic hierarchy. The size of the node corresponds to its taxonomic 
level from class (large) to genus (small). Edges represent co-occurrences between nodes with significant 
Normalized Mutual Information scores (permutation test n=1000, BH-FDR<0.25) (Methods). Color 
represents fungal- bacterial  positive (gray) and negative (black) interactions or positive fungal-fungal 
(pink) interactions.  
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Figure 15. Establishing pan-cancer 
mycotypes through mycobiome-bacteriome-
immunome interactions. Co-occurrence 
analyses of TCGA fungal and immune cell 
compositions (40), and bacterial abundances at 
the genus level using MMvec (42). Only WIS-
overlapping fungal and bacterial genera were 
included (see Methods). Hierarchical clustering 
linkage information identified three distinct 
clusters (“mycotypes”) associated with groups 
of fungal genera: F1, F2, and F3. 
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ITS2 sequencing optimization and validation in the WIS cohort 

Our approach to detecting and characterizing intratumoral fungi was by amplification 

and sequencing of the internal transcribed spacer 2 (ITS2). The ITS2 is a region within 

the fungal rDNA cistron. While this region is transcribed, it is not active within the 

ribosome and is thus much less conserved than the active rDNA sequences (18S, 5.8S, 

28S). Hence, it can be used as a fungal species phylogenetic “barcode” (71), akin to the 

16S sequence in bacteria. However, there are several issues accompanying the use of 

this region as a fungal barcode. First, the region varies in length between different fungi, 

mainly ranging between 200-500 bases (72). This difference in size might cause a bias 

against species with a long ITS2 region, mainly during the sequencing step (73). In 

addition, the rDNA copy number within fungi can vary greatly, with species reported 

to have one copy and others reported to have 200 copies within a single genome (72). 

Fully accounting for this potential bias is difficult as the copy number for most species 

is unknown, and can differ even among strains of the same species and during the life 

cycle of a single strain (74). Hence, many of the analyses we performed were done with 

presence/absence data to avoid the effect of such bias. 

ITS2 sequencing pipeline was extensively optimized and validated prior to WIS tumor 

cohort analysis. This was done by carefully choosing the ITS2 primers by in-silico, in-

vitro and literature based evidence; strict decontamination with negative control 

samples; flooring of reads to increase signal to noise ratio; sequencing validation with 

fungal mock community controls; and triplicate technical repeats of tumor samples to 

test for reproducibility, as described below. 

ITS2 fungal primers capture most of the fungal kingdom 

The primers used were chosen out of the available primers in the literature after in-

silico and in-vitro analysis of several primer pairs (Figure 16). In-silico, these primers 

captured (with up to one mismatch) on average (between different databases) ~80% of 

the fungal kingdom (Table 3). In addition, they captured only 3.3% of the outgroup 

database, which included mainly plants, indicating high specificity for the fungal 

kingdom. Furthermore, PCR testing of these primers on several fungal species spanning 

the two major fungi phyla (Ascomycota and Basidiomycota) gave the best results out 

of the primer pairs tested (Figure 16C). Finally, a study by Beeck et al. (2014) 

demonstrated that these primers are superior to the more commonly used primers in 
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amplifying fungi in soil samples (75), strengthening our results. In our tumor cohort, 

70% of the reads were classified to species level with the ITS2 sequencing and 

classification pipeline (Table 4). This is a great improvement on past classification 

pipelines in which as low as 2.6% of total reads were classified to species level (76). 

A 

B C 

D 

Figure 4. ITS86F-ITS4 primers were tested in-silico and in-vitro. (A) The fungal rDNA region. ITS86F 
– ITS4 primers (black) used for sequencing. ITS3 – ITS86R primers (red) used for qPCR. (B) Multiple 
alignment of the fungal rDNA from many fungal species. Primers are anchored in conserved regions and 
the amplicon spans the less conserved ITS2. (C) The fungi tested span the two main phyla in the fungal 
kingdom. (D) Fungal phylogenetic tree with fungi tested for ITS2 amplification by the primers depicted in 
blue squares. a.f - Aspergillus fumigatus; f.o - Fusarium oxysporum; n.c - Neurospora crassa; c - 
Coprinellus sp.; t.h - Trichoderma harzianum; a.t - Aspergillus tubingensis; p.m - Phoma multirostrata; f.f 
- Flavodon flavus; t - Trichosporon sp.; u.m - Ustilago maydis; t.a - Trichoderma atroviride 
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Primers ITS86F-ITS4R 
Mismatches  0 1 2 3 

Fungal databases 

ISHAM 52.82 75.42 79.24 86.72 
THF 61.45 87.08 89.43 93.74 

FINDLEY 59.67 72.07 75.32 78.67 
RTL 61.38 92.63 95.58 96.7 

SILVA_LSU 69.21 84.94 87.7 91.42 
SILVA_SSU 80 87 96 98 

UNITE 66.15 79.18 82.75 85.78 
Mean 64.38 82.62 86.57 90.15 

Outgroup database SILVA  LSU 0.44 3.3 46.67 61.64 

 

Taxonomic rank # Reads Percent 

Kingdom 59,919,467 100 
Phylum 59,412,527 99.15 
Class 59,200,179 98.8 
Order 59,035,172 98.52 
Family 54,747,190 91.37 
Genus 53,154,728 88.71 
Species 42,155,685 70.35 

 

Negative control samples enabled data clean up and decontamination 

When working with low biomass samples, negative controls are of great importance. In 

low biomass samples, the contamination may be stronger than the signal itself. Hence, 

negative controls allow segregation of the signal from the noise. Our cohort includes 

two types of negative controls (table S5): (1) 191 DNA extraction controls performed 

on empty tubes (with DDW only) in parallel to sample DNA extraction (negative 

controls for contaminations introduced during lab processing) and (2) 104 paraffin 

controls which were made by sampling paraffin only (without tissue) from a subset of 

the study paraffin blocks of tumor tissue (negative controls for center contaminations). 

The 295 negative controls allowed for better understanding of the fungal signal in the 

tissues vs. background noise as can be detected in the negative control samples. The 

Table 3. Percentage of sequences matching the sequencing primers in different fungal databases 

 

Table 4. Number and percent of the fungal reads that were classified to each taxonomic level. All fungal 
reads were included in this analysis before flooring and normalization. 
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histogram of the number of reads per amplicon sequence variant (ASV) per sample as 

well as the number of reads per sample (Figure 17A-B) both presented a bimodal 

distribution with the peaks found on either side of 1000 reads/ASV or 1000 

reads/sample. We found that the chance of an ASV to have more than 1000 reads was 

3 times higher in samples vs controls (21.6% vs 7.1%). We therefore, used such a 

delineation between signal and contamination noise and floored the data such that any 

ASV per sample with <1000 reads was converted to 0 reads. 

The negative control samples were then used to flag potential contaminant species 

(Figure 17C). Out of 456 species detected from 1191 ASV’s in the data, 13 species 

unique to the negative control samples were removed from the dataset (Figure 17D). 

For an additional 63 species that were detected in both negative control samples and 

true samples, statistical testing was applied in two distinct steps using the extraction 

control samples and the paraffin control samples separately (Methods). Forty-two 

species (out of the 63 that were tested) passed both filtering steps in at least one 

condition. All of these 42 species, as well as the 380 species that did not appear in any 

of the 295 controls were considered part of the ‘fungal world’ that was used for all 

downstream analysis of the WIS cohort. The same filtering steps were also performed 

for each of the taxonomic levels (table S4). Note that only fungi and bacteria that passed 

the filtering steps in at least one of the tumor types were included in most of the analysis 

in this work. In total 4.6% (21/456 species) of fungal species detected in our samples 

were determined to be potential contaminations, this is as opposed to 94.3% of bacterial 

species in the same samples (17). This suggests the mycobiome is less prone to 

contaminations relative to the microbiome analysis in low biomass samples such as 

tumors.  

Fungal ITS2 sequencing successfully captures fungi in Mock communities   

A mock community of 17 fungal species was generated to validate the ITS2 

experimental procedure and assess the success of detecting different fungi. Fourteen 

out of the 17 species were detected (Table 5). One of the species that was not detected 

(Flavodon flavus) was wrongly classified to a different family in the same order 

(Polyporales). Overall, 99.89% of the reads belonged to the species included in the 

mock. We repeated the ITS2 amplification and sequencing two more times and reached 

almost identical results, detecting the same fungal species (data not shown). 
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Figure 17. ITS2 sequencing pipeline development. (A) Histograms of the number of reads per ASV per 
sample in control samples (extraction controls and paraffin controls) vs. all other samples. (B) Histograms 
of the total number of fungal reads before flooring and normalization per sample in control samples 
(extraction controls and paraffin controls) vs. all other samples. (C) Schematic illustration of the 
decontamination workflow applied to ITS2 data to flag and remove contaminant species. (D) Venn diagram 
of the overlap between all species before hit calling, as detected in control samples and tissue samples.  
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  Species spiked Detected 
Yes/No 

Taxa level 
classified 

1 A. laibachii Yes Species 
2 C. albicans Yes Species 
3 C. glabrata Yes Species 
4 C. micaceus Yes Species 
5 G. antarctica Yes Species 
6 K. lactis Yes Species 
7 P. prolifica Yes Species 
8 R. arrhizus Yes Species 
9 S. cerevisiae Yes Species 

10 S. pombe Yes Species 
11 A. fumigatus Yes Genus 
12 A. tubingensis Yes Genus 
13 N. crassa Yes Family 
14 P. multirostrata Yes Family 
15 D. hansenii No N/D 
16 F. flavus No N/D (*) 
17 S. bayanus No N/D 

 

Fungal ITS2 sequencing in tumor samples is reproducible 

To assess the reproducibility of our technical and computational pipeline we repeated 

the ITS2 amplification and sequencing three times, for 88 human tumor or NAT 

samples. The number of reads and number of ASV’s received per repeat significantly 

correlated between repeats (see Figure 18A-B for representative figures). For 82 

samples that passed quality control, we compared the Bray-Curtis dissimilarity scores 

between all pairs that belong to the same original sample versus all pairs that belong to 

different samples within the same tissue type. We found that the dissimilarity was 

significantly lower between repeats relative to between samples from the same tissue 

(p-value<2.22×10-16) (Figure 18C). The similarity grew higher (dissimilarity lower) 

when the sample repeats had higher read counts (Figure 18D) but did not differ based 

on the number of ASV’s in the samples (Figure 18E). 

 

Table 5. Fungal species in 
mock samples that were 
detected by the ITS2 
sequencing pipeline. 1.9×10-5 
ng of DNA from each of 17 
fungal species were pooled 
together and spiked into 100 ng 
of human DNA. Detection 
status and taxonomy level of 
classification are depicted in 
the table. *This species was 
wrongly classified by our 
pipeline as Polyporales (o) 
Irpicaceae (f) unknown genus. 
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Figure 18. Fungal ITS2 sequencing in tumor samples is reproducible (A, B) Scatter plot demonstrating 
the Pearson correlation between the number of total ITS2 fungal reads sequenced (A) or the number of 
ASV’s detected (B) in two technical repeats of sample sequencing. Regression lines and confidence 
intervals are shown. Pearson correlation coefficient (R) and P-value (p) are presented. (C) Box plot of 
Bray-Curtis dissimilarity scores comparing the dissimilarity between the fungal composition in pairs of 
samples (both tumor and NAT) from the same tissue type vs. the dissimilarity between the fungal 
compositions in sequencing technical repeats of the same samples. Samples represent breast (tumors, n=17; 
NAT, n=16), colon (tumors, n=4; NAT, n=5) and lung (tumors, n=20; NAT, n=20) tissues. DNA from each 
sample was amplified and sequenced in triplicates. (D, E) Box plots of Bray-Curtis dissimilarity scores 
comparing the dissimilarity between the fungal composition in sequencing technical repeats of the same 
samples divided by the number of reads of the sample (D)  or the number of ASV’s in the sample (E) . (C-
E) Two-sided T-test was performed; P-values are depicted in the plots. The asterisks depict the mean. Box 
plots shows median line, 25

th
 and 75

th
 percentiles, and 1.5× interquartile range.  
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Functional analysis of all microorganisms in tumors 

The above genomics approach focuses on the taxonomy of the microorganisms within 

the tissue. DNA sequencing (shotgun and PCR based) enables the detection and 

identification of the microorganisms that are present within our samples. There is 

accumulating evidence that as the identity of the organisms within different samples 

may greatly differ, as seen in our samples as well (Figure 7D,E), the functional patterns 

or capabilities of these organisms may be more coherent within different test groups 

(1). Where possible, shotgun sequencing provides additional information on the genes 

present within the sample. However, this is not functional information, since it does not 

verify which of the genes detected is expressed. In contrast, RNA sequencing provides 

the functional information for the entire sample, hence sequencing of RNA in such 

metagenomics samples could be very informative. However this approach is not always 

possible due to the higher abundance of host (human) RNA relative to the RNA of 

microorganisms in the tissue. In the TCGA cohort, while many of the samples 

(>10,000) come from RNA sequencing experiments, they suffer from a very low 

number of reads per sample (mean ~150). Hence, functional analysis was not possible 

with this data, affirming the need for a different solution for microorganism functional 

analysis in low biomass samples, such as tumor samples. There have been tools 

developed to predict the functional capacity of the bacteriome based on 16S sequencing 

such as PICRUSt (77). This method relies on comprehensive knowledge of the bacterial 

genomes, knowledge that at the moment, is lacking for most fungi. 

To further our understanding of the function of the fungi and all microorganisms within 

the tumor samples, I am developing a protocol for human RNA depletion from RNA 

samples. The depletion of the human RNA will allow for the detection and sequencing 

of all non-human RNA within low biomass samples, such as human tumors. This will 

allow for a comprehensive viewpoint of the functions of the microorganisms within the 

tumor. Together with the identification of the fungi by ITS2 sequencing, and the 

bacterial identification (17), we will have a better understanding of not only the identity, 

but also the functions of microorganisms within tumors. 

In order to deplete the human RNA before RNA–seq, we optimized the following 

method (Figure 19A): First, total RNA is generated from a human cell line that was 

validated to contain no microorganisms (e.g. mycoplasma) and is fragmented into short 
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oligonucleotides. cDNA is then synthesized from this RNA and hybridized to total 

RNA that was prepared from a tumor sample. After an annealing step, Ribonuclease H 

(RNase H) - a non-sequence-specific endonuclease enzyme that catalyzes the cleavage 

of RNA in  RNA/DNA substrates - is added, to cleave any RNA that hybridized with a 

cDNA. As no RNA from microorganisms is found in the cell line, the RNase H 

preferentially degrades the human RNA, leaving all non-human RNA intact. At this 

stage, DNase 1 is added to degrade the cDNA, leaving behind only non-human RNA. 

This RNA can then be sequenced using standard protocols and the functions of the 

microorganisms within the tumor can then be explored. 

In a preliminary attempt, cDNA probes were prepared from the HS5 human cell line. 

Human RNA was then depleted from a sample containing a mix of the human HS5 cell 

line, the fungal S. cerevisiae and the bacterial E.coli RNAs that were mixed at a ratio 

which represents 100:1:1 cells (based on RNA content per cell from bionumbers: 

http://bionumbers.hms.harvard.edu/). Two probe concentrations and a no probe 

negative control were used. Depletion efficiency was tested by qPCR of four genes – 

human 18S, S. cerevisiae 18S, E. coli 16S and human PABPC1. For the first three 

genes, an additional control was performed to estimate the efficiency of DNA 

degradation during RNA extraction. For this purpose, qPCR was performed directly on 

the RNA (before cDNA synthesis step). 

Based on the human 18S qPCR performed on the RNA samples, we found that the 

degradation of the cDNA probes was not successful in our preliminary experiments 

(Figure 19B). The remaining cDNA probes thus affected the levels of human 18S 

detected in the cDNA samples, and skewed the estimation of human RNA depletion. 

The majority of the human 18S signal seems to originate from the non-degraded DNA 

probes and not from human RNA left un-degraded in the sample of interest. Taking this 

into consideration it seems like the depletion of the human 18S gene was successful 

without any effect on yeast and bacterial RNA. The PABPC1 results are not clear, since 

the RNA qPCR control was not performed. We will further calibrate the method to 

optimize probe degradation. The method will then be used on RNA from human tumors 

to characterize the functions of the microorganisms within the samples. These 

experiments will complement the data from 16S and ITS2 sequencing characterizing 

the bacterial and fungal species within the samples. 
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Figure 19. Human RNA depletion. (A) Outline of the human depletion protocol. Human RNA in tumor 
samples is depleted by cDNA probes. These probes are prepared from human cell line total RNA. The 
specific degradation of human RNA elevates the concentration of microorganism RNA. Following this 
protocol, the microorganism RNA can be sequenced and the functions of the microorganisms within the 
tumor can be explored. (B) qPCR results from preliminary human depletion experiment. The degradation 
of the cDNA probes was not successful. The cDNA probes remaining affected the levels of human 18S 
detected in the cDNA samples, and skewed the estimation of human RNA depletion. The majority of the 
human 18S signal seems to originate from the non-degraded DNA probes and not from human RNA left 
un-degraded in the sample of interest. Taking this into consideration it seems like the depletion of human 
18S gene was successful without any effect on yeast and bacterial RNA. 
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Discussion 

Here we strived to create a pan-cancer atlas of the fungal composition across multiple 

human cancer types. We characterized the mycobiomes of 17,401 tissue and blood 

samples in four independent cohorts and 35 cancer types with complementary 

strategies. Fungal DNA (qPCR, ITS2 sequencing, TCGA WGS), RNA (FISH, TCGA 

sequencing data), polysaccharides and proteins (Stainings) were detected in human 

tumors. Fungi were detected mainly intracellularly in either cancer or immune cells. In 

addition, our different data modalities revealed ubiquitous, cancer type-specific fungal 

ecologies with lower diversities and abundances than matched bacteriomes. The 

cancer-type specific fungal profiles were similar to the profiles detected in the NAT of 

the same corresponding tissue or organ. Furthermore, we found that tumor and NAT 

from the same patient were more similar than samples from different patients with the 

same cancer type, suggesting within patient specific mycobiome profiles. These 

profiles were used to discriminate between cancer patients based on tumor type as well 

as between cancer patients and healthy individuals even when using fungal profiles 

from the blood. We found significant association between fungi and clinical patient 

data suggesting fungi may be used as clinical biomarkers for breast subtype, response 

to therapy and prognosis. Finally, we also detected significant co-occurrences between 

fungal and bacterial taxa in the different tumor types. This analysis provides a 

comprehensive characterization of the tumor mycobiome in many tumor types and 

leads to many open questions that now remain to be answered with further research. 

Our study has several technical caveats. While intratumoral fungal presence was 

demonstrated by four different staining methods, and revealed tumor-specific 

localization patterns, fungal staining in tissues proved challenging, with sensitivity and 

specificity of the four distinct methods varying across cancer types. Further work is 

necessary to elucidate fully the fungal localization within the tumors. In addition, our 

analysis does not inform whether the detected fungal components in the tumors 

correspond to live or dead fungi. With the exception of a few rare cases where fungal 

cells were visualized, the majority of fungal staining detected within the tumors was 

intracellular and lacked fungal cell morphology. There is evidence of fungi living 

within human macrophages after phagocytosis (78, 79). Whether the fungal stains we 

detect here are due to live fungal internalization and degradation by the human cells 
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remains to be explored. Furthermore, thus far we only rarely cultivated fungi from 

tumor tissue. We are currently optimizing our protocols for fungal tissue cultivation.  

We focused on ITS2 sequencing to determine the fungal species within our tumor 

samples. However, recent debate within the mycology community suggests that 

different fungal barcodes result in detection of different fungal profiles within samples 

(80). Furthermore, the variance in ITS2 length and copy number per fungal species (72, 

73) can bias our estimation of the relative abundance of fungal content. In particular, 

the abundance of fungi with more copies of the ITS region may be overestimated, while 

fungi with very long ITS2 regions may be underestimated since their ITS region may 

be less efficiently PCR amplified and sequenced. To overcome these difficulties we 

intend to re-sequence our samples using additional fungal barcodes such as the ITS1 

and 18S to get a more balanced and reliable picture of the fungal profiles within the 

tumors.  

In our ITS2 sequencing, we detected a bimodal distribution of the number of reads per 

sample, with 66.26% of control samples having under 1000 reads and 74.83% of true 

samples having over 1000 reads. A close look at the reads per ASV revealed that this 

bimodality is mainly due to index-hoping during sequencing. To test this hypothesis 

and overcome it, we can use dual indexes per sample in future experiments. This should 

potentially eliminate the index-hoping and remove the need for the significant flooring 

of read counts that we performed in this analysis. Finally, fungal amplicon sequencing 

proved less prone to contaminations relative to bacterial sequencing. Only 4.6% of 

fungal species were removed as potential contaminations, relative to 94.3% of bacterial 

species in the same samples (17). The difference between the levels of contaminants 

may stem from several reasons. Fungi are estimated to have at least two orders of 

magnitude less cells per cubic meter of air relative to bacterial cells (81). In addition, 

many enzymes used during experimental procedures are derived from bacterial cells, 

giving rise to specific bacterial contaminations from laboratory materials that are used 

during sample processing. 

In addition to the ITS2 sequencing in the WIS cohort, our study also used data from 

existing cohorts, mainly the TCGA. The different cohorts used in this study strengthen 

the results described above. However, distinct differences in the data also emerge. The 

richness within samples is at least an order of magnitude higher in the TCGA data 
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relative to the WIS data. This is most likely due to careful curation of the WIS cohort 

using negative controls as well as to read splitting during shotgun metagenomic 

alignments in the TCGA cohort, which potentially inflates the number of species 

detected per sample. In addition, the number of overlapping species between the cohorts 

was small, likely due to the difference in fungal content in the databases used for 

classification. Despite this, tumor-derived species from our cohort (WIS) provided 

nearly equivalent discriminatory performance as a multi-domain database 26-fold 

larger, suggesting a significant tumor origin, generalizable across additional cohorts 

from different continents. The approach used on the TCGA data has a great advantage 

in that comparisons to human data within the samples are possible. In addition, this 

method could be used on any available WGS/RNA-seq dataset. However, the datasets 

used must have sequenced each sample deep enough to receive a significant number of 

fungal reads that will enable proper analysis. Furthermore, these datasets do not include 

negative controls and so decontaminations can only be performed by bioinformatic and 

statistical methods. Finally, sample-processing starting from sample collection to 

nucleic acid extraction were not performed with microorganisms in mind and so these 

datasets are more prone to contaminations and likely give a partial picture of the sample 

mycobiome due to non-ideal nucleic acids extraction methods and low read count per 

sample.  

Many interesting questions arise from this analysis and demand further research. The 

cancer-type specific fungal profiles were similar to the profiles detected in NAT, raising 

the question of the source of the tumor mycobiome. The lack of enough true normal 

tissues in our cohorts limited our ability to determine if the source of intratumoral fungi 

is their surrounding normal tissue or if fungi found in tumor-adjacent normal tissue 

originate from the tumor fungal community.  However, the detection of specific fungal 

species in tumors that are known to exist in the normal tissue of the same organ as well 

as the clustering of breast normal samples with breast NAT and tumor samples in our 

data, point towards the source of the tumor mycobiome being, at least in part, in the 

normal resident tissue. Further research is needed to fully elucidate the source of the 

tumor mycobiome in the different tumor types.  

While broadening the cancer microbiome landscape, our findings do not inform if there 

are fungi that causally impact or complicitly aid carcinogenesis. The fungi detected may 

have an active role and effect on the tumor, or they may be hitchhikers of the lower 
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immune surveillance in most tumors. In both cases, they may be used as biomarkers for 

the cancerous state. While evidence of the tumor promoting or inhibiting functions of 

fungi or fungal components already exists (49, 50, 82), further research is necessary to 

better understand their effects in different tumor types. Malassezia globosa, which we 

found to be significantly enriched in breast tumors with worse overall survival, was 

previously shown to have oncogenic effects in PDAC in mice (49). In addition, higher 

levels of Malassezia were detected in colorectal cancer vs. healthy individuals (42). 

Whether it has a similar effect in breast cancer demands further research. Another 

interesting finding was the enrichment of Cladosporium in melanoma tumors from 

patients that did not respond to ICI. It is important to validate these results using another 

non-related cohort as well as to find if this fungus plays a causal role in the response of 

a patient to the treatment.  

We also provide an analysis of plasma microbiomes in treatment-naive, early-stage 

cancers, suggesting the use of microbial nucleic acids in the plasma as an early 

biomarker for cancer detection. Microbial profiles from cell free DNA in patients' blood 

could potentially be used to diagnose cancer and cancer type in individuals. The 

robustness of microbial-augmented liquid biopsies in other cohorts and among 

diseased, non-cancer-bearing or infected hosts remains to be characterized. 

The tumor can be regarded as an ecological niche. Strong positive correlations between 

fungal and bacterial richness, abundances, and co-occurrences across many cancer 

types portray the tumor microenvironment (TME) as a non-competitive space for 

microbial colonization. This situation differs from the gut, where competitive 

interactions often dominate, especially under anti-cancer or antibiotic therapies (55, 

83). It remains unclear whether this permissive phenotype is passively allowed by 

immunosuppressed TMEs (84), or represents an active pursuit for greater ecosystem 

multifunctionality (85) or selection advantages for tumors (8, 9, 49). We revealed many 

significant fungal-bacterial co-occurrences, many of which merit additional study to 

understand fully the fungal-bacterial relationship. 

Finally, whereas our study comprehensively characterizes the fungal species within 

tumor tissue we are mostly blind to the functions these fungi perform in the tumor 

setting. As we detected high fungal diversity between tumor samples from the same 

tissue it is of great interest to test whether the functions they perform may show higher 
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levels of similarity. To this end, I am developing a protocol for host RNA depletion that 

will enable us to focus on the functions the microorganisms perform within the tumor. 

The tumor mycobiome is a new and exciting field in tumor microbiome research. This 

first pan-cancer mycobiome atlas informs future directions of study while 

characterizing a new layer of information in cancer. The full potential of the tumor 

mycobiome as a diagnostic and prognostic tool as well as the effects it may have on 

tumor progression and response to treatment demand further endeavors. 

 

Materials and methods 

Weizmann cohort 

Sample collection 

The samples of the ITS2 cohort were collected from nine medical centers, and their 

DNA extraction as well bacterial characterization were reported by Nejman et al, 2020 

(17). For ITS2 profiling, 1183 samples of this original cohort were used (Table 1; table 

S5). Samples include tumor, normal adjacent tissue (NAT) and normal tissue from eight 

tumor types for a total of 12 conditions (condition is defined by the tissue type and the 

tumor/NAT/normal status) (Table 1). Samples included both formalin fixed paraffin 

embedded (FFPE) and snap frozen samples. To account for potential contamination by 

fungi or fungal DNA during sample handling and processing, our cohort also included 

two types of negative controls: 104 paraffin-only controls which were made by 

sampling paraffin only (without tissue) from the study FFPE blocks and 191 DNA-

extraction negative controls in which only sterile DDW was introduced at the beginning 

of the DNA-extraction pipeline. These controls enabled detection of potential fungal 

contaminants and delineation of signal versus noise allowing for appropriate processing 

of the data prior to analysis (see below). Note that matching bacterial data of the same 

samples that was used in this study, was generated by us and published in Nejman et 

al. (17). 

ITS2 amplification and sequencing 

ITS2 sequencing was used for fungal identification in all samples. PCR was performed 

on 100ng of DNA per sample (or the maximum available). For extraction controls a 
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volume of 5ul per sample was used, and for empty paraffin controls a volume equal to 

the volume taken for the matching sample was used. Forward primer ITS86F 5’-

GTGAATCATCGAATCTTTGAA-3’ and reverse primer ITS4 with rd2 Illumina 

adaptor 5’-AGACGTGTGCTCTTCCGATCT - TCCTCCGCTTATTGATATGC-3’ 

were used for the first PCR amplification. PCR mix per sample contained 5ul sample 

DNA, 0.2uM per primer (primers purchased from sigma), 0.02unit/ul of Phusion Hot 

Start II DNA Polymerase (Thermo Scientific F549), 10ul of X5 Phusion HS HF buffer, 

0.2mM dNTPs (Larova GmbH), 31.5ul ultra pure water, for a total reaction volume of 

50ul. PCR conditions used were 98°C 2min, (98°C 10 sec, 55°C 15 sec, 72°C 35sec) X 

35, 72°C 5 min. A second PCR was performed to attach Illumina adaptors and barcode 

per sample for 6 additional cycles. Samples from 1st PCR were diluted 10 fold and 

added to the PCR mix as described above. Primers of second PCR included: forward 

primer P5-rd1-ITS86F 5’ - AATGATACGGCGACCACCGAGATCT - 

ACACTCTTTCCCTACACGACGCTCTTCCGATCT - 

GTGAATCATCGAATCTTTGAA-3’, and reverse primer 5’- 

CAAGCAGAAGACGGCATACGAGAT - NNNNNNNN - 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’. Every 96 samples were 

combined for a single Mix by adding 14ul from each. Before mixing, an aliquot from 

each of the samples was run on an agarose gel. In cases where the amplified bands were 

very strong, samples were diluted between 5 and 20-fold before they were added to the 

mix (table S3). Each sample mix was cleaned with Qiaquick PCR purification kit 

(Qiagen, catalog number 28104). Four cleaned sample mixes were then combined into 

a single mix of 384 samples, and size selection was performed with Agencourt AMPure 

XP beads (Beckman Coulter #A63881) to remove any excess primers. Beads to sample 

ratio was 0.85 to 1. Samples were then run on the Miseq v3 600 cycles paired end with 

30% PhiX. Overall, six runs of Miseq were performed for this study. 

ITS2 sequencing analysis  

ITS2 read classification pipeline 

The ITS2 classification pipeline was built with python 3.6. For each sequencing library, 

paired end reads were joined using PEAR (version 0.9.10) followed by filtering of 

merged reads by minimum length of 80bp and trimming of primers from both ends with 

cutadapt (version 1.17). Within the QIIME 2 environment (version 2018.8), Dada2 was 
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used to create amplicon sequence variants (ASV’s), then ITSx (version 1.1b1) was used 

to delineate ASVs to ITS2 regions (removing preceding 5.8S and trailing 28S 

sequences). A taxonomic naive bayesian classifier was trained on  the UNITE database 

(version 8, dynamic, sh_taxonomy_qiime_ver8_dynamic_04.02.2020.txt) and used to 

classify the processed ASVs. ASVs were filtered by the ITSx and UNITE 

classifications to include fungal reads only. Any ASVs that were classified by ITSx as 

fungi were included in the downstream analysis. Any ASVs that were classified by 

ITSx as non-fungal, were included in the downstream analysis only if their 

classification as fungi reached a class or lower phylogenetic level by UNITE. Seventy 

percent of ASV reads that were included in the downstream analysis were classified to 

species level (Table 4). The other 30% of ASV reads were classified to higher 

taxonomic levels.  

ITS2 data flooring and normalization 

The histogram of the number of reads per ASV per sample as well as the number of 

reads per sample (Figure 17A-B) both presented a bimodal distribution with the peaks 

found on either side of 1000 reads/ASV or 1000 reads/sample. We found that the chance 

of an ASV to have more than 1000 reads was 3 times higher in samples vs controls 

(21.6% vs 7.1%)We therefore floored the data such as any ASV per sample with <1000 

reads was converted to 0 reads.Next, we introduced two types of data normalization: 

(1) Library normalization: samples were normalized to account for the difference in the 

average number of reads/sample per library. A factor was assigned to each of the six 

sequencing libraries to reflect the fold change of the mean number of reads/sample in 

the library as compared to the mean number of reads/sample in all samples across all 

six libraries. Then the number of reads for each ASV in each sample was corrected by 

this factor. (2) Dilution normalization: as a subset of the samples were diluted before 

sequencing based on the amplification levels as detected on agarose gel (see above) 

their ASV reads were multiplied by the dilution factor per sample to reflect their true 

original load. Table S2 presents the number of reads per ASV per sample after both 

data flooring and normalization. 

Next, ASVs were aggregated based on UNITE classification, to species level when 

possible. ASVs that could not be classified to species level, were grouped together by 

the lowest known phylogenetic level and labeled “Other”. Lastly, data were bubbled up 
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by summing up all reads in each taxonomic level to the taxonomies in the level above 

it (Table S3). 

Decontamination 

The negative control samples were then used to flag potential contaminant species 

(Figure 17C). Out of 456 species detected in the data (after flooring and normalization), 

13 species unique to the negative control samples were removed from the dataset 

(Figure 17D). For an additional 63 species that were detected in both negative control 

samples and true samples, statistical testing was applied: (1) Fisher’s exact test (on the 

floored normalized data converted to present/absent) was applied to check if a species 

was more prevalent in a specific condition versus the 191 extraction control samples. 

(2) Wilcoxon test (on the number of reads, without flooring, with library and dilution 

factor normalization) was applied to check if a species was more abundant in a specific 

condition versus the 191 extraction control samples. A species that had a p-value≤0.05 

and FDR≤0.2 in at least one of these tests passed this filtering step for the condition. 

Next, the same tests were performed against the 104 paraffin control samples. Forty-

two species (out of the 63 that were tested) passed both filtering steps in at least one 

condition. All of these 42 species, as well as the 380 species that did not appear in any 

of the 295 controls were considered part of the ‘fungal world’ that was used for all 

downstream analysis. The same filtering steps were also performed for each of the 

taxonomic levels (table S4). Note that only fungi and bacteria that passed the filtering 

steps in at least one of the tumor types were included in most of the analysis in this 

work. 

Mock community 

A mock community of 17 fungal species was generated to validate the ITS2 

experimental procedure and assess the success of detecting different fungi (Table 5). 

DNA from all fungi was extracted using MasterPure Yeast DNA Purification Kit 

(Epicentre, MPY 80200). Equal amounts of DNA from each of the fungal species were 

mixed together and then 0.00032ng DNA of the mix was spiked into 100ng of human 

DNA (extracted from the HS-5 human fibroblast cell line (ATCC# CRL-11882)). ITS2 

amplification and sequencing was done as described above.  
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Technical repeats of tumor and NAT samples 

To assess the reproducibility of our technical and computational pipeline we repeated 

the ITS2 amplification and sequencing three times, for 88 human tumor or NAT 

samples. Samples were chosen to represent both high read samples and low read 

samples. ITS2 amplification and sequencing was done as described above. Only one 

sequencing result from each triplicate (the one with the highest amount of reads) was 

used for all other analyses that were subsequently done. 

Construction and analysis of the multi-domain interaction networks 

The following analysis was performed with MATLAB version 2019b with the Statistics 

and Machine Learning Toolbox. To construct the network, we first chose a taxonomic 

level for the fungi and bacteria. We then construct three different networks of 

interaction for each tumor type, fungus-to-fungus (FF) network, bacteria-to-bacteria 

(BB) network, and fungus-to-bacteria (FB), independently.  

The relationship between each pair of taxa was calculated based on the 

presence/absence data, using the normalized mutual information (NMI) measure, which 

has been shown to perform as good or better than other ecological indicators of co-

occurrence (37) 

Given two vectors, X and Y, each with M discrete elements (corresponding to M 

samples), x_i and y_i (i=1…M) which can be equal to either 0 or 1, the NMI between 

them is defined as 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋,𝑌𝑌) =
𝑁𝑁(𝑋𝑋,𝑌𝑌)

�𝐻𝐻(𝑋𝑋)𝐻𝐻(𝑌𝑌)
 , 

where 𝑁𝑁(𝑋𝑋,𝑌𝑌) = 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑋𝑋,𝑌𝑌) is the mutual information between X and Y, 

H(X) and H(Y) are the Shannon entropies of X and Y respectively, and H(X,Y) is the 

joint entropy of X and Y, i.e.,  

𝐻𝐻(𝑋𝑋) =  −𝑃𝑃(𝑥𝑥 = 0) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑥𝑥 = 0) − 𝑃𝑃(𝑥𝑥 = 1) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑥𝑥 = 1)  , 

𝐻𝐻(𝑌𝑌) =  −𝑃𝑃(𝑦𝑦 = 0) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑦𝑦 = 0) − 𝑃𝑃(𝑦𝑦 = 1) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑦𝑦 = 1)  , 

and 
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𝐻𝐻(𝑋𝑋,𝑌𝑌) =  − �
𝑥𝑥𝑖𝑖∈(1,0)

�
𝑦𝑦𝑖𝑖∈(1,0)

𝑃𝑃(𝑥𝑥,𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑥𝑥,𝑦𝑦) . 

The NMI is bounded between 0 and 1, where 0 indicates no relationship between the 

presence/absence of taxon X and Y and 1 indicates maximal relationship (can mean 

that both always appear together or never appear together, i.e., it does not distinguish 

the sign of the relationship). 

The p-value is calculated as the fraction of times a random reshuffling process of the 

taxon had outputted greater or equal NMI value to the original samples 

𝑝𝑝 =
#𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ,𝑌𝑌𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) ≥ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋,𝑌𝑌)

#𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑢𝑢 𝑟𝑟𝑢𝑢𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟
. 

To fairly compare the NMI values of random realizations, the shuffling is done in a 

weighted manner which preserves the total number of observed taxa in each sample. 

The weight w_i of each sample i is defined as 

𝑤𝑤𝑗𝑗 =  
#𝑂𝑂𝑂𝑂𝑟𝑟𝑢𝑢𝑟𝑟𝑂𝑂𝑢𝑢𝑂𝑂 𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟 𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑙𝑙𝑢𝑢 𝑟𝑟

#𝑇𝑇𝑙𝑙𝑟𝑟𝑟𝑟𝑙𝑙 𝑙𝑙𝑂𝑂𝑟𝑟𝑢𝑢𝑟𝑟𝑂𝑂𝑢𝑢𝑂𝑂 𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟 𝑟𝑟𝑟𝑟 𝑟𝑟𝑙𝑙𝑙𝑙 𝑟𝑟ℎ𝑢𝑢 𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑙𝑙𝑢𝑢𝑟𝑟
 

Then, the presence/absence of species X is randomly shuffled between the samples, 

with probability corresponding to the weight of each sample (i.e. the total number of 

fungi and the total number of bacteria present in each tumor was always kept as in the 

original data). The process is repeated 1000 times to calculate the p-value. We then 

perform BH FDR multiple comparison analysis on the p-values list of each tissue type 

and interaction type (FF, BB, and FB). Finally, a positive or negative sign of interaction 

was given to each pair of taxa according to a simple Pearson correlation. Only pairs 

with FDR≤0.25 were used in the figures (Figure 14). 

5.8S real-time quantitative PCR (RT-qPCR) 

RT-qPCR was performed on the 5.8S region of the fungal rDNA. The following primers 

were used: Forward primer (ITS3) - 5’-GCATCGATGAAGAACGCAGC-3’ and 

reverse primer (ITS86R) -  5’- TTCAAAGATTCGATGATTCAC-3’. qPCR was 

performed on 40ng of DNA per sample (or the maximum available in 5ul). For 

extraction controls a volume of 5ul per sample was used. For empty paraffin controls a 

volume equal to the volume taken for the matching sample from the same block was 
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used. The PCR mix included 0.2uM of each primer, 5ul Kapa SYBR FAST qPCR 

Master Mix (2X) (Kapa Biosystems, #KK4605) and ultra pure water to a total volume 

of 10ul. PCR conditions used were 95°C 3min, (95°C 3sec, 58°C 20sec, 72°C 30sec) 

X40 cycles and included a dissociation curve at the end. ViiA 7 Real-Time PCR System 

(Applied Biosystems) was used for the qPCR. qPCR was performed in triplicates per 

sample and results were averaged across repeats. Fungal load was estimated by 

comparison to a standard curve created with Saccharomyces cerevisiae DNA that was 

spiked into human DNA. 

Staining methods 

Human tumor tissue microarrays (TMAs) were purchased from US Biomax and 

included over 400 cores representing the following tumor types: breast, lung, 

melanoma, ovary and PDAC. All TMA’s were stained by H&E using standard protocol 

and serial sections from the same TMAs were used for the different stains (Figure 3A). 

All fungal antibodies were tested and their protocols calibrated on TMAs with known 

fungi in them that served as positive controls (Bio SB #BSB-0335-CS) (Figure 3B). 

Modified Gomori Methenamine-Silver (GMS) Nitrate Stain 

GMS (abcam #ab150671) was used for staining. Slides were deparaffinized and 

rehydrated as described above. Next they were washed in distilled water twice and 

incubated in chromic acid solution for 20 minutes. Slides were rinsed in tap water, and 

then washed in distilled water twice. Slides were then incubated in sodium bisulfite 

solution for 1 minute and then rinsed as before (1 tap water, 2 distilled water). Next 

slides were incubated in a pre-warmed GMS solution for 7 minutes at 60°C after which 

they were rinsed 4 times in distilled water and incubated in gold chloride solution for 

30 seconds. Four additional distilled water rinses were performed followed by 

incubation in sodium thiosulfate solution for 2 minutes. Slides were next rinsed in tap 

water and 2 changes of distilled water. Next slides were stained with light-green 

solution for 2 minutes. Finally, slides were rinsed in absolute alcohol 3 times, left to 

dry and mounted with synthetic resin. For GMS protocol all tools used were plastic or 

glass (no metal-containing tools were used). 
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28S fungal fluorescence in-situ hybridization (FISH) 

28S fungal FISH was performed with a mix of three fungal probes. ‘D-205’ probe: 5’- 

ATTCCCAAACAACTCGAC-3’; ‘D-223’ probe: 5’-CCACCCACTTAGAGCTGC-

3’; and ‘D-260’ probe: 5’-TCGGTCTCTCGCCAATATT-3’ (57), all conjugated to cy5 

at the 5’ end (IDT). Non-specific complement probes for each of the three probes as 

well as a mix of all probes together were tested on positive control tissues that were 

known to contain fungi in them, and found to have no background fluorescence (Figure 

4A). For staining: slides were deparaffinized and rehydrated (Xylene for 10 minutes, 

Xylene for 5 minutes, 100% ethanol for 10 minutes X2, 96% ethanol for 10 minutes, 

70% ethanol for 2-12 hours at 4°C). Slides were next rinsed in RNAse-free 2X SSC 

(Ambion #AM9765) for 10 minutes and proteinase K solution (10µg/ml in 2X SSC, 

Ambion #AM2546), pre-heated to 50°C was added to the slides. Slides were incubated 

for 10 minutes at 42°C. Slides were then rinsed twice with 2X SSC for 5 minutes each, 

followed by 2 rinses in wash buffer (2X SSC, 15% formamide (Ambion #AM9342)) 

for 5 minutes each. Next, slides were incubated overnight at 30ºC with a probe mix of 

1 uM per probe in hybridization buffer (10% Dextran sulfate (Sigma #D8906), 

15%formamide, 1mg/ml EcolitRNA (Sigma #R4251), 2X SSC, 0.02%BSA (Ambion 

#AM2616), 2mM vanadyl ribonucleoside (New England Biolabs #S1402S)). Slides 

were rinsed in wash buffer for 30 minutes at 30ºC followed by incubation in wash buffer 

with DAPI with a final concentration of 1ug/ml. Finally, slides were washed in 2XSSC, 

10mM TRIS pH8 and 0.4% glucose and mounted with ProLong Gold Antifade 

Mountant (Life technologies #P36930). 

Immunofluorescent staining  

Slides were deparaffinized and rehydrated using the following protocol: Xylene for 10 

minutes X 2, 100% ethanol for 5 minutes, 96% ethanol for 5 minutes, 70% ethanol for 

5 minutes and 3 washes in PBS for 2 minutes each. Next endogenous peroxidase 

quenching was performed  (1% H2O2, 0.185% HCl) for 30 min,  followed by antigen 

retrieval using citric acid buffer (pH 6) for 10 minutes at 95ºC. slides were left to cool 

at room temperature and then washed 3 times in PBS. Blocking was done with 1% BSA 

and 0.2% Triton in PBS for 60 minutes at R/T. Slides were incubated with primary 

antibodies that were diluted using a staining buffer (2% horse serum, 0.2% Triton in 

PBS) overnight at 4ºC. The following antibodies were used: anti-1-3 b-glucan (abcam 



57 
 

#ab233743; 1:50), anti-CD45 (eBioscience #14-0459-82; 1:100), anti-CD68 

(Invitrogen #MA5-12407; 1:50), anti-Aspergillus (Abcam ab20419; 1:100), anti-

Dectin1 (Abcam ab140039; 1:200), anti-EFTU (Abcam ab90813; 1:300). Slides were 

washed in PBS for 2 minutes and secondary antibodies and DAPI (1ug/ml) diluted in 

staining buffer were added for 30 minutes at room temperature. The following 

secondary antibodies were used: Goat anti-Mouse IgG2b Cross-Adsorbed Secondary 

Antibody with Alexa Fluor 555 (Invitrogen #A21147; 1:200), Goat anti-Mouse IgG1 

Cross-Adsorbed Secondary Antibody with Alexa Fluor 647 (Invitrogen #A21240; 

1:200), Goat anti-Mouse IgG3 Cross-Adsorbed Secondary Antibody with Alexa Fluor 

488 (Invitrogen #A21151, 1:200) and Donkey anti-Rabbit IgG (H+L) Cross-Adsorbed 

Secondary Antibody with DyLight 755 (Invitrogen #SA5-10043, 1:100). Slides were 

washed twice in PBS and mounted with ProLong Gold Antifade Mountant (Life 

technologies #P36930). 

Immunohistochemistry 

Slides were stained by anti-fungal 1-3 β-glucan (abcam #ab233743; 1:100) and anti-

bacterial LPS (Lipopolysaccharide Core, mAb WN1 222-5, 20 HycultBiotech 

#HM6011; 1:1000) or no primary antibody (negative control) with the automated slide 

stainer BOND RXm (Leica Biosystems) using the Bond polymer refine detection kit 

(Leica Biosystems #DS9800), according to the manufacturer's instructions. Acidic 

antigen retrieval was done by a 20 min heating step with the epitope retrieval solution 

1 (Leica Biosystems #AR9961).  

Imaging 

Slides stained in all staining methods (IHC/IF/FISH/GMS/CFW) were scanned with 

the Pannoramic SCAN II automated slide scanner (3D HISTECH) at 40X. 

Statistical analyses 

Most of the downstream analysis and plots were performed with R version 4.03. 

Packages used in analysis include phyloseq 1.34.0, ggplot2 3.3.4, ggbeeswarm 0.6.0, 

ggrepel 0.9.1. VennDiagram 1.6.20, pheatmap 1.0.12, ggforce 0.3.3, ggpubr 0.4.0, 

RColorBrewer 1.1-2, proxy 0.4-26, reshape2 1.4.4, stringr 1.4.0, dplyr 1.0.7, purrr 

0.3.4, readr 1.4.0, tidyr 1.1.3, tidyverse 1.3.1. Note that P values less than 2.2×10−16 



58 
 

are not reported by ggpubr, so P values less than this are listed as <2.2×10−16; it is not 

a range of P values. 

Human RNA depletion protocol 

Sample preparation 

To test the depletion protocol mixes of human, fungal and bacterial RNA were used. 

Human HS5 cells were cultured in DMEM medium supplemented with xx ng/ml 

Amphotericin B (Sigma, A2942-20ML) to ensure no fungal contaminations and xx 

ng/ml pen/strep  to ensure no bacterial contamination. RNA was extracted with the 

Perfect pure RNA cultured cell kit (5 prime, FP2302340) according to manufacturer’s 

protocol. Fungal RNA was extracted from Saccharomyces cerevisiae grown over night 

in YPD suspension and bacterial RNA was extracted from Escherichia coli grown 

overnight in LB suspension to an OD of 0.5-1 with GeneJET RNA purification kit 

(Thermo Fisher, K0731) according to manufacturer’s protocol. Human, fungal and 

bacterial RNA were mixed at a ratio of 100:1:1 cells respectively (based on RNA 

content per cell from bionumbers: http://bionumbers.hms.harvard.edu/).  

Probe preparation  

Probes were prepared from human HS5 cells. HS5 cells were grown and RNA was 

extracted as described above. RNA was fragmented using 4ul FastAP buffer (10x) 

(Thermo Scientific, EF0651) and 1µg of RNA in a total of 20µl. Mix was incubated for 

4 minutes at 94°C in a pre-heated thermal cycler. Next samples were placed on ice. 

Sample was cleaned and size selection was performed by RNAClean XP beads 

(Beckman Coulter, A63987). Beads were resuspended by vortexing and X2 volume of 

beads was added and mixed with sample by pipetting. Beads and RNA were incubated 

at room temperature for 15 minutes and placed on a magnet for 5 minutes until solution 

was clear, solution was discarded and 200µl of fresh 75% ethanol was added for 30 

seconds X2 repeats. Solution was discarded and beads were left to dry for ~5 minutes. 

Tube was removed from the magnet and RNA was eluted by adding 32µl of nuclease 

free water. Mixed well by pipetting 10 times and incubated for 2 minutes at room 

temperature. Tube was then placed on the magnet and after 5 minutes, solution was 

transferred to a clean tube. 
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cDNA was prepared from the RNA mix using MultiScribe Reverse Transcriptase 

(Thermo Fisher, 4311235) according to manufacturer’s protocol. 

After cDNA synthesis RNA was degraded by adding 10% reaction volume of 1N NaOH 

and incubation at 70°C for 12 minutes. Reaction was neutralized with 20% of initial 

volume of 0.5M acetic acid. 

Reaction was cleaned with RNAClean XP beads as described above but with 70% 

ethanol and final elution in 22µl. Samples were tested for quality by Tapestation after 

each stage of the process.  

Depletion protocol 

For depletion testing 500ng of RNA mix (human:yeast:bacteria) was used. RNA was 

first degraded using FastAP (10X) and cleaned up in the same way as performed for 

probe fragmentation but for 3 minutes. Next probes were hybridized to the RNA mix. 

Since there was a problem with the quantification of the probe concentration, two 

concentration were tested. Max concentration in which the maximum volume of probe 

was used (12µl) and Min concentration in which half of it was used (6µl), an additional 

NC (negative control) with no probe was performed. Depletion reaction was performed 

as follows: 1ul of RNA (10ng/µl) was mixed with 2ul probe hybridization buffer 

(100mM Tris-HCL, 200mM NaCl, pH 7.4), ultra pure water and probes at a final 

volume of 15µl. Depletion mix was incubated in a PCR machine with 2 ramp steps: for 

95°C for 2 minutes, 95-80°C for 2 minutes and 3 seconds lowering the temperature by 

0.1°C/second, 80-37°C for 35 minutes and 50 seconds lowering the temperature by 

0.02°C/second, 37°C for 5 minutes. Samples were spun down and placed on ice. Next 

RNA in RNA-cDNA strands was digested with RNase H. RNase mix was prepared on 

ice: 2µl of NEBNext RNase H (NEB, M0297S), 2µl of RNase H Reaction Buffer, 1µl 

of nuclease free water per reaction. RNase mix was added to the sample and mixed by 

pipetting. Mix was spun down and incubated at 37°C for 60 minutes. Mix was spun 

down and placed on ice. Next cDNA was digested by DNase I. DNase mix was prepared 

on ice: 2.5µl of DNase I (RNase-free) (NEB, M0303S), 5µl of DNase I Reaction Buffer, 

and 22.5 nuclease free water per reaction. DNase mix was added to the sample and 

mixed by pipetting. Mix was spun down and incubated at 37°C for 60 minutes. Mix 

was spun down and placed on ice. Next samples were cleaned with RNA Clean XP 
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beads as described above but with 85% ethanol and eluted in 18ul. Samples were tested 

for quality by tapestation after several steps. 

Depleted RNA samples were next used for cDNA synthesis using MultiScribe Reverse 

Transcriptase (Thermo Fisher, 4311235) according to manufacturer’s protocol. 

qPCR testing of depletion successes 

To test depletion protocol success qPCR was performed. Primers used are in the table 

6 below: 

Gene Organism Primer name Sequence (5' -> 3') 

RNA18S Human rt-c-18S-F CATTCGTATTGCGCCGCTA 

rt-c-18S-R CGACGGTATCTGATCGTCT 

18S S. 

Cerevisiae 

ySC-18S-F TGGCGAACCAGGACTTTTAC 

ySC-18S-R CCGACCGTCCCTATTAATCAT 

16S E. Coli bEC-16S-F ACCCACTCCCATGGTGTGA 

bEC-16S-R GAATGCCACGGTGAATACGTT 

PABPC1 Human PABPC1-F GCACAAGTTTCTTTTCATGGTCC 

PABPC1-R AGTCACTCCGTTCTAAGGTTGA 

 

qPCR was performed on RNA and cDNA samples after depletion. RNA samples were 

used to test if cDNA probe degradation was complete. qPCR was performed with 

KAPA SYBR FAST qPCR  Master Mix (2X) Kit (KAPA Biosystems, KM4103) 

according to manufacturors protocol, in a total volume of 10µl. qPCR conditions used 

were 95°C for 3 minutes, (95°C for 3 seconds, 60°C for 30 seconds)X40, 72°C for 30 

seconds.  

TCGA, Hopkins and UCSD cohort methods 

TCGA cohort: Data accession 

All TCGA sequence data were accessed via the Cancer Genomics Cloud (CGC) as 

sponsored by SevenBridges (https://cgc.sbgenomics.com) (86) after obtaining data 

access from the TCGA Data Access Committee through dbGaP 

(https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login). Details of how TCGA 

samples were acquired and processed are comprehensively described elsewhere (87), 

and SOPs for TCGA sample processing are available in the NCI Biospecimen Research 

Database (https://brd.nci.nih.gov/brd/sop-compendium/show/701). Metadata for these 

https://cgc.sbgenomics.com/
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
https://brd.nci.nih.gov/brd/sop-compendium/show/701
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patients were previously published and originally compiled using SevenBridges’s 

metadata ontology (18). 

Hopkins and UCSD cohorts: Data accessions 

Raw BAM files for the Hopkins plasma cohort were accessed through the European 

Genome-Phenome Archive (EGA) under Study ID EGAS00001003611 with prior data 

access approval. These files were previously analyzed for host-centric, fragmentomic 

cancer diagnostics by Cristiano et al. (60). Raw BAM files for the UCSD cohort were 

internally available after Poore and Kopylova et al. (18) previously published them 

using bacterial-centric analyses, and host-depleted versions of the files are publicly 

available on European Nucleotide Archive (ENA) with the following accession IDs: 

ERP119598 (UCSD HIV-negative controls), ERP119596 (UCSD prostate cancer), and 

ERP119597 (UCSD lung cancer and melanoma).  

TCGA, Hopkins, and UCSD cohorts: Library preparation and sequencing 

Library preparation and sequencing methods of TCGA were described in detail by 

Hoadley et al. (87), and primarily employed QIAGEN products for multi-analyte 

(DNA, RNA) extraction and Illumina platform sequencing. Sample processing and 

sequencing of the Hopkins cohort was described in detail by Cristiano et al. (60), and, 

briefly, performed cell-free plasma DNA extraction using the Qiagen Circulating 

Nucleic Acids Kit, non-fragmented library preparation using a modified protocol of the 

NEBNext DNA Library Prep Kit for Illumina, and sequencing with 100-bp paired-end 

runs on the Illumina HiSeq machines (60). Sample processing and sequencing of the 

UCSD cohort was described in detail by Poore and Kopylova et al. (18), and, briefly, 

performed cell-free DNA extraction using the Qiagen Circulating Nucleic Acids Kit, 

library preparation using the KAPA HyperPlus Kit (Kapa Biosystems), and paired-end 

2×150-bp sequencing on an Illumina NovaSeq 6000 instrument (S4 flow cell). 

TCGA, Hopkins, and UCSD cohorts: Bioinformatic processing 

Determining read counts in TCGA 

Total and mapped read counts were calculated using SAMtools’s idxstats function (v. 

1.11) (88), which was wrapped in a Docker container and applied to all available TCGA 

BAM files on the CGC as an “app.” The app was then run in parallel across files using 
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Amazon Web Services (AWS) as a backend using 8 cores per file. Total read counts 

were extracted from the resultant idxstats output files using awk '{s+=$3+$4} END 

{print s}' and mapped read counts were extracted using awk '{s+=$3} END {print s}'. 

Unmapped read counts were determined via the subtraction of mapped from total. 

Microbial read counts were derived by summing all genome-level microbial hits against 

the “rep200” database (see below for more details). Similarly, fungal-specific or 

bacterial-specific counts were determined by summing all genome-level microbial hits 

against the rep200 database within those domains. 

Host depletion of WGS and RNA-Seq data 

Previous efforts to mine host genomic or transcriptomic information for microbial 

nucleic acids relied on extracting unaligned, “non-human” reads from pre-aligned 

BAM files, followed by mapping those reads against a database of microbial genomes 

(18) Since TCGA samples were collected during a decade (2006-2016), the human 

genome references used for BAM file generation changed over time, and uniform 

realignments were not performed until very recently (89). Although this was not 

detected to be a problem by Poore and Kopylova et al. (18) for bacterial-centric 

analyses, we wanted to uniformly host deplete and further quality control all TCGA 

files prior to multi-domain mapping and metagenome assembly. Thus we designed, 

optimized (for speed), and Dockerized a uniform host depletion pipeline using a 

combination of SAMtools (v. 1.11) (88), Minimap2 (v. 2.17-r941) (90), and fastp (91) 

capable of being run on any high performance compute system. 

Read pairs were subsequently discarded if either mate mapped to the GRCh38.p7 

human genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.33/) or the 

Phi X 174 viral genome. Reads were also discarded if less than 45 base pairs in length 

or if they exhibited poor base quality (using fastp default parameters). Specifically, the 

following command was run, where $cpus and $db denote the number of compute cores 

and a precomputed Minimap2 reference database (as a .mmi file), respectively: 

samtools view -f 4 -O BAM $in_dir/$filename | 

samtools bam2fq - | 

fastp -l 45 --stdin -w $cpus --stdout --interleaved_in | 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.33/
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minimap2 -ax sr -t $cpus $db - | 

samtools fastq -@ $cpus -f 12 -F 256 - -1 $out_dir/$base_name.R1.trimmed.fastq.gz -

2 $out_dir/$base_name.R2.trimmed.fastq.gz 

The final line outputs forward (“R1”) and reverse (“R2”) fastq files. Sometimes, due to 

cloud computing constraints, the first line of the command (samtools -f 4) was done 

separately from the remaining lines, which were consistently run together. Typical 

compute time per file for the host depletion and read extraction ranged from several 

minutes to a few hours using 8-16 cores and ~100 GB of RAM. 

We note that this additional host depletion reduced the number of total files available 

for the TCGA mycobiome analysis when files resulted in 0 non-human reads. 

Specifically, 77 WGS files and 2530 RNA-Seq files had 0 non-human reads after 

additional host depletion and could not be used for shotgun metagenomic or 

metatranscriptomic microbial assignments. Another 16 files repeatedly failed the host 

depletion pipeline and could not be used. Overall, this reduced the number of files 

available for the TCGA mycobiome analysis compared to our previous bacteriome-

centric analysis (18). 

Shotgun metagenomic and metatranscriptomic microbial assignments 

Host depleted and quality controlled output fastq files were then uploaded to Qiita web 

server (92) for per-sample metagenomic or metatranscriptomic microbial classification. 

Qiita offers a graphical user interface that facilitates shotgun metatranscriptomic and/or 

metagenomic analyses using direct genome alignments based on Woltka v0.1.1 

(https://github.com/qiyunzhu/woltka) (93) against Qiita’s concomitant “rep200” multi-

domain database. “Rep200” corresponds to RefSeq release 200 (built as of May 14, 

2020), which comprises 11,955 genomes with the following taxa: 419 archaea; 11,080 

bacteria; 320 fungi; 88 protozoa; 48 viruses 

(https://qiita.ucsd.edu/static/doc/html/processingdata/processing-

recommendations.html#reference-databases). We note that the only other database used 

for Qiita metagenomics or metatranscriptomics (Web of Life, WoL) does not include 

fungi. Direct genome alignments against rep200 were run using Bowtie2 v2.4.1 (94) as 

the backend. This process is equivalent to a Bowtie2 run with the following parameters:  

https://github.com/qiyunzhu/woltka
https://qiita.ucsd.edu/static/doc/html/processingdata/processing-recommendations.html#reference-databases
https://qiita.ucsd.edu/static/doc/html/processingdata/processing-recommendations.html#reference-databases
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--very-sensitive -k 16 --np 1 --mp “1,1” --rdg “0,1” --rfg “0,1” --score-min “L,0,-

0.05” 

The sequence alignment is treated as a mapping from queries (sequencing data) to 

subjects (microbial reference genomes). Reads mapped to a microbial reference 

genome are counted as hits, such that the resultant feature table comprises samples 

(rows) by microbial genome IDs (columns) and concomitant abundances. These 

microbial genome IDs (named “operational genomic units” or OGUs) provide a 

shotgun metagenomic equivalent to ASVs in 16S rRNA gene amplicon sequencing data 

(93). Of note, in the case that one sequence is mapped to multiple genomes by Bowtie2 

(up to 16), each genome is counted 1 / k times, where k is the number of genomes to 

which this sequence is mapped. The frequencies of individual genomes were then 

summed after the entire alignment was processed, and rounded to the nearest even 

integer, thereby making the sum of OGU frequencies per sample is nearly equal 

(considering rounding) to the number of aligned sequences in the dataset. The resultant 

count matrix was saved as a biom file for downstream analyses. This process was 

repeated for the TCGA, Hopkins, and UCSD cohorts, with separate Qiita projects under 

the following study IDs: 4736 (TCGA WGS), 13767 (TCGA RNA-Seq), 13984 

(Hopkins), 12667 (UCSD HIV-free controls); 12691 (UCSD prostate cancer); 12692 

(UCSD lung cancer and melanoma). 

TCGA cohort: α and β diversity calculations 

Alpha diversity calculations 

Raw fungal count data from primary tumors was subset to each TCGA WGS 

sequencing center and processed using QIIME 2 (version qiime2-2020.2) (95) calculate 

richness and shannon alpha diversity per center. Rarefaction amounts were determined 

by the fungal read count distribution per TCGA sequencing center, and a common value 

of 5000 reads/sample was identified among 4 of the 5 WGS sequencing centers as being 

approximately the first quartile of reads/sample—Broad Institute WGS samples 

excepted, and 2000 reads/sample approximately represented the first quartile and was 

used.  
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Alpha diversity fungi-bacteria correlations 

Multi-domain TCGA alpha diversity was calculated using the following procedure: (1) 

Subset to WGS primary tumor samples; (2) rarefy the entire WGS rep200 table to 

130,000 reads/sample (approximately the first quartile of the read/sample distribution) 

using phyloseq (v. 1.38.0) (96); (3) separate fungal and bacterial features into two 

separate tables; (4) calculate richness among both fungal and bacterial rarefied tables; 

(5) correlate, using Spearman correlations, the paired fungal and bacterial richnesses 

(Figure 7C). We also attempted this procedure with the modification that fungal and 

bacterial feature tables were independently rarefied, but we found that this version 

caused microbial richness to weakly but still significantly, positively correlate with the 

sample library sizes (data not shown), so it was discarded in favor of the ‘global’ table 

rarefaction. 

β-diversity calculations 

Given the limited fungal reads/sample, we desired to perform β-diversity without 

rarefying using a method we previously published named robust Aitchison PCA 

(RPCA, also called DEICODE) (97) (https://library.qiime2.org/plugins/deicode/19/). 

DEICODE has a QIIME 2 plugin that was used on the raw fungal count data in primary 

tumors subset to each TCGA WGS sequencing center with the following parameters: 

{--p-min-feature-count 10, --p-min-sample-count 500}. The resultant biplots were 

visualized using EMPeror (98) and the QIIME 2 plugin for ADONIS (i.e., 

PERMANOVA) was used to estimate the significance and explained R2 of cancer type 

with the DEICODE distance matrix. 

To compare tumor vs. NAT samples in TCGA, we performed the following analyses:  

Analysis #1: (1) Rescale Voom-SNM batch corrected pan-cancer data into counts using 

a scalar of 104; (2) calculate relative abundances using the batch corrected counts; (3) 

average fungal relative abundances across disease type-sample type groups (e.g., 

“Breast Invasive Carcinoma NAT”); (4) calculate Bray-Curtis dissimilarity on the 

averaged relative abundances; (5) plot using a principal coordinates analysis using 

cancer types also found in the Weizmann cohort and with at least 10 tumors and NATs 

available in TCGA. Sample counts: breast NAT, n=100; breast tumor, n=978; 

colorectal NAT, n=72; colorectal tumor, n=526; Lung NAT, n=194; Lung tumor, 

https://library.qiime2.org/plugins/deicode/19/
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n=1068; Ovarian NAT, n=10; Ovarian tumor, n=683. Note that “lung” combines 

TCGA projects LUAD and LUSC and that “colorectal” combines TCGA projects 

COAD and READ." (Figure 8E).  

Analysis #2: We performed a PERMANOVA analysis within each disease type for 

sample-type for both Aitchison and Bray-Curtis distances on the full sample set of 

relative abundances and found that no disease type significantly differs between tumor 

and NAT after accounting for multiple testing correction (table S9). 

TCGA, Hopkins, and UCSD cohorts: Decontamination 

TCGA decontamination 

Although TCGA protocols did not include contamination controls during the 

processing of their samples, we showed that in silico methods could be used to 

decontaminate the TCGA bacteriome (18). The fundamental principle of these methods 

is that consistent negative correlations exist for external (e.g., reagent, environmental) 

contaminating taxa between their read fractions and analyte (DNA or RNA) 

concentrations (99). A published tool named decontam 

(https://github.com/benjjneb/decontam) (version 1.14.0) (99) wraps the method into an 

R package and function based on two underlying mathematical assumptions: (i) the 

contaminants are added in uniform amounts across samples; and (ii) the amount of 

contaminant DNA or RNA is small relative to the true sample DNA or RNA (microbial 

or host). Since per-sample DNA and RNA concentrations are available in TCGA 

metadata, they can be used to indicate putative contaminating taxa. Importantly, though, 

our past analyses (18) demonstrated that too stringent of an in silico decontamination 

threshold actually removes flora known to be associated with a given body site (e.g., 

too stringent decontamination of NAT colon tissues in TCGA dissociates it from 

normally-associated fecal material). Additionally, there are difficulties of strict filtering 

with taxa that are known commensals and/or pathogens but also can be contaminants 

in certain contexts, even at the species level (e.g., Malassezia restricta, a skin fungus). 

Thus, in our mycobiome analyses, we sought a balance between strict filtering, 

allowance of known commensals/pathogens, inclusion of WIS-identified (this study) or 

HMP-identified (58) fungi, and inclusion of fungi of unknown significance that may be 

related to cancer biology. 

https://github.com/benjjneb/decontam
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Decontamination was thus broken into two steps: (i) Statistical decontamination via 

decontam using per-sample DNA or RNA concentrations and read fractions across 

plate-center batches (see below); and (ii) manual curation, comparison against WIS-

identified and HMP-identified fungi, and literature review prior to making final 

determinations.  

Step #1: TCGA sample identifiers (e.g., “TCGA-02-0001-01C-01D-0182-01”) denoted 

the sequencing center and plate within that center upon which the sample was run (for 

details, see https://docs.gdc.cancer.gov/Encyclopedia/pages/ TCGA_Barcode/). These 

barcodes were used to extract all sequencing plate-center combinations using the last 

two sets of integers (e.g., “0182-01” is plate 182 from center 1). We previously found 

the plate-center method to work well on TCGA bacterial data, as it removed many likely 

contaminants while retaining several known commensals and pathogens (18). Since 

decontam effectively performs a regression analysis to determine if a taxon is a 

contaminant, we required ≥10 samples per plate-center batch, retaining 325 total plate-

center batches among samples positive for fungi. Decontam was then run in 

“frequency” mode, identifying putative contaminants using TCGA sample aliquot 

concentrations, a default P* stringency threshold of 0.1, and the default 

batch.combine=“minimum” parameter, such that a taxon was removed if identified in 

any one of the 325 plate-center batches as a contaminant. This analysis identified 71 

putative contaminants out of 319 total fungi with ≥1 reads identified during direct 

genome alignments. Table S6 summarizes the decontam output and contaminant 

predictions. 

Step #2: All 319 fungal taxa found in TCGA were cross-referenced against species 

identified in the WIS tumor mycobiome cohort (this study), the HMP gut mycobiome 

cohort (58), and 131 other papers in the literature (table S6). This comprehensive 

literature survey informed the final decontamination decisions. Specifically, the 

following decision making process was applied: (i) Any fungal specie identified in the 

WIS tumor mycobiome cohort or HMP gut mycobiome cohort was retained; (ii) any 

fungal specie known in the literature to have caused a clinically pathogenic infection or 

be a human commensal was retained; (iii) any fungal specie with evidence of no known 

human association was discarded; (iv) any specie that had little evidence for or against 

human associations (i.e., “unknown” human associations) had their fate decided by the 

plate-center decontam predictions. This process ultimately discarded 95 species (29.8% 
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of total)  as contaminants, comprising 2.2% of total reads, and retained 224 species as 

non-contaminants (table S6). 

Hopkins cohort decontamination 

The Hopkins plasma cohort was originally collected to examine host-centric 

fragmentomic diagnostics (60) and did not employ contamination control samples. 

Since the TCGA contamination analysis thoroughly covered 319 out of 320 total fungi 

in the rep200 database, the contamination decisions from TCGA based on the WIS 

cohort, HMP gut mycobiome cohort (58), and 131 other papers were applied to the 

Hopkins cohort. The Hopkins cohort began with 296 identified fungal species and after 

decontamination retained 209 fungal species (29.4% removed). 

UCSD cohort decontamination 

The UCSD plasma cohort was designed to include positive and negative contamination 

control samples (18). Positive controls included 26 samples of serially diluted Aliivibrio 

fischeri (bacteria), which were previously analyzed (18), while negative controls 

included 15 blank DNA extraction samples and 11 blank library preparation samples. 

All control and biological samples were run on a single sequencing plate at a single 

time, as described previously (18). Decontamination was performed using decontam in 

(i) “prevalence” mode with P*=0.5 among blanks and biological samples, and in (ii) 

“frequency” mode using the default P*=0.1 (also used in TCGA) with DNA 

concentrations. Importantly, for “prevalence” mode, P*=0.5 will flag taxa as 

contaminants if they are more prevalent in negative controls than in biological samples. 

These were run separately because several of the blanks had zero or otherwise 

undetectable DNA concentrations, which are compatible with “prevalence” filtering but 

not “frequency” filtering. “Prevalence” filtering flagged 30 out of 227 (13.2%) 

identified fungi while “frequency” filtering identified 4 out of 227 identified fungi 

(1.8%), or 32 unique total fungi (14.1%). These putative contaminants were then 

compared against the comprehensive TCGA decontamination analysis and guided the 

decision of any “unknown” human associated fungi. As with TCGA and the Hopkins 

cohorts, fungi matching the WIS cohort, HMP gut mycobiome cohort (58), or with 

known pathogenic/commensal associations were retained whereas those with evidence 
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against human associations were removed. This ultimately left 215 decontaminated 

fungi for analysis in the UCSD cohort. 

TCGA cohort: Co-occurrence analyses with MMvec 

In order to explore the fungal genera identified in the controlled amplicon based 

sequencing at a large scale, the TCGA metagenomic dataset count table was group 

summed to the genus level and matched to genera in the WIS amplicon data. This 

process was then repeated for the bacterial data, so that both tables were operating at 

the same taxonomic level and only contained WIS-overlapping features (table S10). 

TCGA immune compositions were obtained from Thorsson et al. (40), who derived 

them using CIBERSORT (69) on TCGA RNA-Seq samples. Note that TCGA 

performed combined RNA-Seq and WGS on many samples, enabling usage of the 

WGS data to inform microbial composition and paired RNA-Seq data to inform 

immune cell composition. RNA-Seq data was not used for co-occurrence analyses due 

to (i) much lower read microbial depths and (ii) bias in the bacterial data due to polyA 

selection as noted in TCGA SOPs. In this case, TCGA patient identifiers published by 

Thorsson et al. (68) were used to match immune cell compositions to microbial data.  

MMvec (v. 1.0.6) (70) was optimized between each data modality (i.e., bacteria, fungi, 

and immune cell composition) within each submission center (Harvard Medical School, 

Baylor College of Medicine, and MD Anderson) to (i) avoid center effects and (ii) 

produce a minimized cross-validation (CV) error, log-loss, and a maximized Q-squared 

(1 − model coefficient of variation [CV] / null model CV) values. Note that a Q-squared 

value > 0 ensures a good model fit. Training and test labels were produced across all 

tables stratified by cancer type. Each model had the following optimized parameters: 

2e3 to 5e3 iterations, batch size of one fourth the training tables numbed of features, 

number of epochs as (# of iterations * batch size) / total reads in the training table, latent 

dimension of 3, and all other parameters were set to default. The null model operated 

on the exact same training/test set and parameters with the exception of the latent 

dimension set to zero. All models produced between all data modalities and submission 

centers had Q-squared values greater than zero, verifying their fits.  

To explore co-occurrence clusters between all data modalities, MMvec conditional 

probabilities were z-score transformed along the first axis (i.e., across columns of the 
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MMvec output, as done elsewhere (100)). In order to minimize the effect of the TCGA 

submission center, we explored only those features with consistent co-occurrences 

across TCGA submission centers—defined as features whose median co-occurrence 

values were less than the standard mean error (SEM) of their co-occurrence values 

across centers. Next, the median of these filtered features were taken across all 

submission centers. To explore the co-occurrence clustering and define subtypes across 

modalities, hierarchical clustering was performed through Scipy’s (v. 1.3.0) hierarchy 

linkage function (101) via Seaborn’s (v. 0.11.2) (102) clustermap plotting function. 

Three fungi-driven “mycotypes,” or subtypes, were identified across the highest 

partition of linkages on the immune co-occurrences. These subtypes were defined as 

follows: F1 (Malassezia, Ramularia, and Trichosporon), F2 (Candida, Aspergillus), 

and F3 (Tilletiopsis, Penicillium, Cryptococcus, Puccinia, Agaricus, Alternaria, 

Phialocephala, Fusarium, Hyphopichia, Exophiala, Stereum, Colletotrichum, 

Dissoconium, Aureobasidium, Talaromyces, Cutaneotrichosporon, Yarrowia, and 

Trichoderma). The immune cells and bacterial genera associated with each mycotype 

were then defined by their within-linkage-cluster maximum co-occurrences.  

TCGA and UCSD cohorts: Batch correction 

TCGA data was collected across a decade at multiple sequencing centers, sequencing 

platforms, and experimental strategies (WGS vs. RNA-Seq) among other technical 

variables. Fortunately, strict SOPs limited other forms of variation between centers. 

Our previous analyses on the TCGA bacteriome suggested that the largest technical 

factors were (in order from most to least) experimental strategy, sequencing center, and 

sequencing platform. Collectively, these factors explained 95.9% of the variability in 

bacterial data (18, 103) using principal variance components analysis (PVCA) and 

necessitated batch correction prior to pan-cancer analyses. We found a similar effect 

within the fungal data, which motivated subsetting all samples to Illumina HiSeq 

platform, comprising 97% of samples (see Supplementary Note), and performing batch 

correction on the experimental strategy and sequencing center, which explained 49% 

and 30% of variance, respectively, using PVCA (data not shown). Batch correction was 

applied using the combination of Voom and SNM, as done previously (18, 103, 104). 

Briefly, Voom converts discrete counts to pseudo-normally distributed (“microarray-

like”) data (103), which is then used by SNM to iteratively remove batch effects in a 

supervised manner (104), such that biological signal is not removed while technical 
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variance is removed. PVCA was used before and after batch correction (105), as 

recommended by the National Institute of Environmental Health Sciences (NIEHS) 

(https://www.niehs.nih.gov/research/resources/software/biostatistics/pvca/index.cfm). 

We set the single tunable parameter for PVCA (the percentage of variance explained to 

obtain a number of PCA components) to 80%, based on NIEHS’s recommendation of 

60–90% and our past analyses (18).  

For Voom and SNM, the biological variable was sample type (e.g., tumor, NAT, blood) 

for TCGA and disease type for the UCSD cohort, both as done previously (18). During 

exploratory analyses of immunotherapy response in the UCSD cohort (data not shown), 

the patient treatment response status was included as another biological variable in 

addition to disease type. We briefly but importantly note that SNM was designed for 

all possible biological variables to be included, including those that would later be 

examined using differential expression/abundance testing (104). For technical factors, 

the TCGA cohort used experimental strategy and sequencing center, whereas age and 

sex were used for the UCSD cohort, both also done previously on the same cohorts 

(18). As with bacterial-centric data, PVCA on TCGA before and after batch correction 

on mycobiome data showed remarkable reduction in technical variable variance up to 

20.4-fold while retaining or increasing (i.e., improving the signal-to-noise ratio) 

biological variable variance up to 7.7-fold (data not shown). 

When subsetting feature sets to those with (i) 34 WIS-overlapping fungal species, (ii) 

31 fungal species with ≥1% aggregate genome coverage, (iii) the top 20 Hopkins-

associated fungi (table S11) , or (iv) overlapping WIS fungi and bacteria (approximately 

300 species depending on the intersected dataset), the raw count data were first subset 

followed by Voom-SNM. This means that batch correction occurred independently on 

each smaller feature set prior to downstream machine learning. Performing PVCA on 

each of these feature sets before and after batch correction frequently showed similar 

reductions in technical variable variance and maintenance or increases in biological 

variable variance (data not shown). 

https://www.niehs.nih.gov/research/resources/software/biostatistics/pvca/index.cfm
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All cohorts: Machine learning methods 

Note of caution when interpreting AUROC and AUPR values 

It is common to estimate ML performance using area under ROC (AUROC) and PR 

(AUPR) curves; however, there are important differences between them, as they 

measure different aspects of discrimination and have different null values. Specifically 

AUROC on a model that performs as good as random coin flipping would be 

approximately 50%, and this calculation takes into account both true positives and true 

negatives. However, the AUPR of a model that has null performance would actually 

have differing null areas depending on the underlying prevalence of the positive class, 

and the calculation does not take into account true negatives. For example, TCGA 

contains many more tumor samples than NAT samples, and we model tumor samples 

as the positive class since it represents an active diagnosis of cancerous tissue. A model 

that performs randomly on tumor vs. NAT discrimination would have an AUROC of 

~50% but a much higher AUPR (e.g., in a hypothetical case, if we had 90 tumors and 

10 NAT samples, the null AUPR would be 90%). Furthermore, the calculations of 

precision and recall on the resultant predictions would not take into account how many 

samples were true negatives (i.e., those predicted to be NAT and indeed being NAT). 

Both of these can make interpretation of AUPR difficult, especially when compared to 

one-cancer-type-versus-all-others ML models, where the prevalence of the positive 

class (cancer type of interest), and thus null AUPR, is often in the range of 1-10%. 

Nonetheless, it is common to advocate for measuring AUPR in addition to AUROC 

when classes are imbalanced, since large class imbalances in certain circumstances can 

artificially raise AUROCs. Thus, for these analyses, we have consistently calculated 

both and indicated the null AUROCs and null AUPRs on most ML performance plots, 

and we continue to caution that for analyses where true negatives are important 

AUROCs may be more appropriate to examine. 

ML of individual cancer types versus each other or controls 

We previously published ML on the TCGA bacteriome using stratified 70% training, 

30% holdout testing splits (18) across all cancer types. While suitable for the large 

number of ML models being built and tested within and between cancer types in TCGA, 

this strategy did not provide information of performance error ranges. We thus decided 
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to modify the strategy for the mycobiome analyses in such a way to provide both the 

performance estimate and a confidence interval for that performance across each cancer 

type without largely increasing compute times for each model. Specifically, for each 

model, we performed 10-fold cross validation using gradient boosting models (GBMs) 

with ten stratified 10% holdouts (i.e., the prediction class proportions are similar in 

train/test, such that if the entire dataset was 10 positive class and 90 negative class, then 

each kth holdout would have 1 positive class sample and 9 negative class samples). ROC 

and PR curves and areas were calculated for each 10% holdout test set, such that ten 

sets of two-class discriminatory performance—effectively ten sets of 90% training-

10% testing—were obtained for each model. These performance estimates were then 

aggregated for each model to calculate the 95% confidence intervals of performance. 

One other key difference between this and our previous approach (18) is that the 

hyperparameter grid search was removed in favor of a fixed GBM grid with the 

following parameters: {n.trees=150, interaction.depth=3, shrinkage=0.1, 

n.minobsinnode=1}. We note that these parameters were possible in our past TCGA 

analysis (18) and were equal to those used in the host-centric analyses of the Hopkins 

cohort (60) (https://github.com/cancer-genomics/delfi_scripts/blob/master/06-

gbm_full.r). Equal to our last approach (18), we also up-sampled the minority class in 

cases of class imbalance while requiring ≥20 samples in the minority class to help the 

model generalize. We also centered and scaled the data prior to ML model building 

when using Voom-SNM batch corrected data; however, when using raw count data, we 

only removed zero variance features prior to the ML model building. This approach of 

the ML was then rapidly iterated on TCGA, WIS, Hopkins, and UCSD cohorts, 

collectively representing hundreds of models and thousands of train-test splits. We also 

note that in the case of WIS data, all filtered fungal or bacterial hits were used regardless 

of taxonomic rank (i.e., “free rank” data), based on empirical performance benefits, 

whereas ML in TCGA, UCSD, or Hopkins was performed with data summarized to a 

single taxonomic level (e.g., species, genus). 

Multi-class ML in TCGA using raw data 

During validation analyses on raw TCGA count data (see Supplementary Note), we 

noticed that independently training ML models on two stratified TCGA halves and 

subsequently testing on the other half provided highly concordant performance (data 

https://github.com/cancer-genomics/delfi_scripts/blob/master/06-gbm_full.r
https://github.com/cancer-genomics/delfi_scripts/blob/master/06-gbm_full.r
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not shown). (Note that stratified samples were based on sequencing center, sample type, 

and disease type and that experimental strategy was covered since 7 of 8 sequencing 

centers only performed WGS or RNA-Seq, and the one that did both [Broad] processed 

83% of samples with WGS only.) This motivated testing whether multi-class machine 

learning was possible using stratified train-test splits, again by sequencing center and 

disease type. Since experimental strategy had the largest batch effect (see “TCGA 

cohort: Batch correction” section above), we conservatively used WGS-only samples 

to ensure that multi-class ML performance would not be affected by WGS vs. RNA-

Seq variability while continuing to stratify splits by sequencing center, sample type, 

and disease type. This type of ML came up in two circumstances: (1) Comparing the 

pan-cancer ML performance in TCGA of WIS-overlapping fungal species vs. equal 

sized feature sets of non-WIS-overlapping features in tumor tissue and blood, and (2) 

comparing the relative pan-cancer performance in TCGA of WIS-overlapping fungi, 

bacteria, or both. Details of these are provided below, and as above, we note that up-

sampling the minority class and removing zero variance samples were continued here. 

Case #1: A total of 34 fungal species overlapped between TCGA and WIS cohorts. To 

test whether these features were more informative when discriminating between cancer 

types versus similarly sized feature sets, we did the following: (1) Randomly sample 

34 non-WIS-overlapping fungal species; (2) create stratified 70% train-30% holdout 

test sets among WGS samples; (3) train two pan-cancer ML models using multi-class 

classification on the 70% stratified training set, one using WIS fungi and another using 

non-WIS fungi; (4) test both trained models on the holdout 30% stratified test set; (5) 

calculate average performance (AUROC, AUPR) across all one-cancer-type-versus-all-

others comparisons after applying each model to the test set; (6) repeat steps 1-6 for a 

total of 100 times; (7) repeat for both primary tumor and blood derived normal samples. 

The resultant performance indeed suggested that WIS-overlapping fungi provided 

better pan-cancer discriminatory performance (Figure 9B). 

Case #2: To test whether adding fungal to bacterial information would improve pan-

cancer discrimination, we did the same procedure as Case #1 with the following 

differences: (1) Three feature sets were used, consisting of WIS-overlapping fungi, 

WIS-overlapping bacteria, and both WIS-overlapping fungi and bacteria; (2) all three 

feature sets were used to train and test ML models based on the stratified 70% training 

and 30% holdout test sets. We note that WIS-overlapping features were used for these 
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analyses because they represented the most confident species calls identified in two 

international cohorts. The resultant performance indeed suggested that combining 

fungal and bacterial information synergistically provided better pan-cancer 

discriminatory performance (Figure 9C). 

Hopkins and UCSD pan-cancer analyses 

Cristiano et al. (60) originally benchmarked the performance of host-centric, 

fragmentomic, pan-cancer diagnostics using GBM ML models based on 10-fold cross-

validation repeated 10 times using the following model hyperparameters: {n.trees=150, 

interaction.depth=3, shrinkage=0.1, n.minobsinnode=1}. Notably, the only major ML 

difference between their method and ours (described above) was that we did not repeat 

the 10-fold cross validation ten-times. Thus, to directly compare our pan-cancer 

performance on the Hopkins cohort with their previously published results, we 

implemented an approach to repeat the 10-fold cross-validation ten-times, such that the 

ten iterations of performance measurement were done on the aggregated predictions. In 

other words, the first iteration of this method created 10 sets of predictions of equal 

dimensions to the input data that were aggregated into a single prediction vector prior 

to AUROC/AUPR performance measurement, rather than having 10 separate 

predictions per iteration each with AUROC and AUPR measurements. Collectively, 

this procedure left 10 AUROC and 10 AUPR values, one for each repeat of the 10-fold 

cross-validation. These ten values were used to estimate the 99% confidence intervals 

of performance and were overlaid on plots with the average performance and 

confidence interval ribbons (Figure 12A). 

Regarding plotting, we adapted an approach from the scikit-learn python package 

(https://scikit-

learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html) in R to 

estimate the average AUROC and AUPR curves among their 10 repeated iterations. 

This can be a challenging task because the specificity breaks of the ten model iterations 

are not always equivalent to each other, requiring interpolation. Specifically, to obtain 

the average performance lines, we performed linear interpolation using the approx() 

base R function of each ROC and PR curve across 1000 equally spaced points between 

0 and 1, also ensuring that each average curve begins and ends at the corners of the 

plots. The 1000 interpolated y-values between x=0 and x=1 were then used to calculate 

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html
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the average ROC and PR curve and its concomitant 99% confidence interval at each 

point. Overlaying these average performance lines with 99% confidence interval 

ribbons showed good concordance (Figure 12A). 

Immunotherapy response predictions 

A small number of  patients with melanoma and lung cancer in the UCSD cohort had 

clinical immunotherapy response information available. Due to small sample sizes, 

machine learning on these patients was done using nested leave-one-out cross-

validation, such that each kth patient was iteratively left out and a model was built on 

the k-1 patients (tuned using internal four-fold cross-validation) to make a prediction 

about the immunotherapy response of the kth patient. After iterating through all k 

patients, the list of predicted responses and known responses were compared to 

calculate ROC and PR curves and their respective areas. Using WIS-overlapping fungi, 

moderate discrimination between responders and non-responders was observed in 

patients with melanoma (data not shown) but not in lung cancer (data not shown). 

Scrambled and shuffled control analyses 

In addition to comparing ML model performances to null AUROC and AUPR values, 

we wanted to implement additional negative control analyses. These were done in two 

independent ways just prior to ML model building: (1) scrambling metadata of 

prediction labels and (2) shuffling the sample IDs in the count data. We note that the 

scrambling and shuffling can occur globally (i.e., once before all ML models are built 

and tested) or dynamically (i.e., just prior to ML model building but after data 

subsetting and labelling). For example, when discriminating one cancer type versus all 

others, global scrambling would randomly sample all disease type labels among all 

sample types, whereas dynamic scrambling would happen only after subsetting to 

primary tumors and relabeling the disease types to two classes (i.e., the cancer type of 

interest and “Others”). We tested both of these approaches and found that both 

generally worked; however, the dynamic scrambling and shuffling yielded more 

consistent results (less variance) and showed greater agreement with known null values 

(i.e., 50% AUROC and positive class prevalence for AUPR). Hence, we used dynamic 

scrambling and shuffling as negative controls when comparing performance to actual 

samples. 
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Taxonomic generalizability 

To test taxonomic generalizability, we aggregated raw read counts based on the 

decontaminated fungal data up the taxonomic levels (species through phylum) prior to 

ML using the phyloseq R package (v. 1.38.0) (96). Aggregated counts were then 

inputted into the same ten-fold cross-validation models (repeated once) described above 

to estimate performance and concomitant 95% confidence intervals (data not shown). 

Stratified halves validation analyses 

As another control, we split raw TCGA count data into two stratified halves using 

sequencing center, sample type, and disease type metadata information. We again note 

that experimental strategy was covered in this stratification since 7 of 8 sequencing 

centers only performed WGS or RNA-Seq, and the one that did both [Broad] processed 

83% of samples with WGS only. We then used both of these stratified halves to 

iteratively train ML models employing ten-fold cross-validation (repeated once) 

predicting one cancer type versus all others; each trained model was then immediately 

applied to the data of the other stratified half to discriminate that particular cancer type. 

The ML performance from testing each model on the corresponding half was then 

compared, revealing highly concordant values (data not shown). This process was 

repeated using Voom-SNM normalization as well with the same procedure except that 

Voom-SNM normalization occurred independently on each half after stratification but 

prior to ML model building/testing. This additional analysis showed highly concordant 

performance among TCGA primary tumors (data not shown). 

TCGA, Hopkins, and UCSD cohorts: Statistical analyses 

Downstream analyses and plots were generated with either R version 4.03 or 4.1.1. 

Common R packages used include phyloseq (v. 1.38.0), vegan (v.2.5-7), microbiome 

(v. 1.16.0), doMC (1.3.7), dplyr (v. 1.0.7), reshape2 (v. 1.4.4), ggpubr (0.4.0), ggsci (v. 

2.9), rstatix (v. 0.7.0), ggrepel (v. 0.9.1), tibble (3.1.6), caret (6.0-90), gbm (v. 2.1.8), 

xgboost (v. 1.5.0.1), MLmetrics (v. 1.1.1), PRROC (v. 1.3.1), e1071 (v. 1.7-9), gmodels 

(v. 2.18.1), ANCOMBC (v. 1.4.0), decontam (v. 1.14.0), limma (v. 3.50.0), edgeR (v. 

3.36.0), snm (v. 1.42.0), biomformat (v. 1.22.0), and Rhdf5lib (v. 1.16.0). The rstatix 

package corrected for multiple hypothesis testing where applicable. Sample sizes were 

not estimated in advance and power calculations were not performed. The gbm package 
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was used for two-class gradient boosting ML and the xgboost package was used for 

multi-class gradient boosting ML. AUROC and AUPR were calculated using the 

PRROC package. 

 

Appendices 

Supplementary Tables (S1-S11) 

Available at: 
https://docs.google.com/spreadsheets/d/1qQIg3cEmyHCcyDPhRhE9K7w_7Apv4lgf/edit?usp
=sharing&ouid=108555372942146520552&rtpof=true&sd=true 

Table S1. Raw read counts of ASVs per sample in WIS cohort 

Table S2. Floored, normalized read counts of ASVs per sample in WIS cohort 

Table S3. Floored, normalized reads of all samples agglomerated to each taxonomic 

level. Table includes clinical data. 

Table S4. Taxonomic classification and contamination filter status of ASVs in WIS 

cohort 

Table S5. Detailed breakdown of sample cohorts 

Table S6. In-depth contamination analysis for TCGA fungal calls 

Table S7. Pan-TCGA fungal genome coverages 

Table S8. WIS fungi-bacteria network analysis results with FDR less than 0.25 

Table S9. PERMANOVA analysis within each disease type for sample-type for both 

Aitchison and Bray-Curtis distances to compare tumor vs. NAT 

Table S10. WIS-overlapping fungal and bacterial genera used in TCGA MMvec co-

occurrence analyses 

https://docs.google.com/spreadsheets/d/1qQIg3cEmyHCcyDPhRhE9K7w_7Apv4lgf/edit?usp=sharing&ouid=108555372942146520552&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1qQIg3cEmyHCcyDPhRhE9K7w_7Apv4lgf/edit?usp=sharing&ouid=108555372942146520552&rtpof=true&sd=true
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Table S11. Top 20 fungi in Hopkins cohort discriminating pan-cancer vs. healthy in 

10-fold CV repeated 10-times models 
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