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ABSTRACT 
In the last few years, a number of studies have shown that genetically identical cells 

growing under identical conditions still vary greatly in their internal protein 

concentrations. However, most studies have focused on a limited number of genes and 

got inconsistent results and varied conclusions. As a step in the direction of 

deciphering general patterns of genetic noise we measure the cell-to-cell variation of 

several tens of proteins from a library of single-reporter GFP translation fusions in S. 

cerevisiae. These represent four strongly co-expressed sets of genes (modules), whose 

mean expression levels span several orders of magnitude (tens of copies to hundreds 

of thousands). All genes were measured under eleven different conditions, at six 

consecutive time-points. 

 

We show that at low average expression levels, the protein abundance distributions 

were approximately normal, while at higher averages, they were better approximated 

as log-normal. As a general experimental set-up validation step, we found that the 

mean abundance of the proteins is highly depended on their module affiliation, as 

expected. We show a strong correlation between variability and average expression 

level. Strikingly, in all gene modules and in a broad range of expression levels, the 

standard deviation is roughly proportional to the square root of the average. We 

suggest how this effect can be explained by fluctuations in the mRNA abundance. By 

analyzing the deviation from this general shape, we find that the genes cluster in a 

module-specific manner. In particular, for a given average, stress genes appear to be 

significantly noisier than other genes tested. We found that genetic noise has a bottom 

border, and hypothesize that this border originates from the un-equal division of the 

yeast cells. Overall, we show, for the first time, several general noise patterns, which 

affect a broad range of genes and pathways.     
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INTRODUCTION 

Protein, mRNA and DNA molecules are present, in living cells, in a relatively low 

abundance(1-11). The consequences of that are significant stochastic effects that are 

responsible to the variation observed between cells in an isogenic population. Some 

organisms exploit noise in order to introduce diversity into a population, as in the 

cases of phenotypic variation in the lambda phase lysis-lysogenic switch(12), the 

mammalian olfactory neuronal receptor choice(13) or the DNA inversion mechanism 

in bacteria(14). However, in most cases fluctuations in protein abundance present a 

problem the cell must cope with. For example, stability against genetic noise is 

essential in cellular network controlling differentiation in the embryo 

development(15). In other cases stochastic fluctuations can lead to low fidelity in 

cellular behavior(6). 

 

There are several commonly used definitions of noise in protein abundance; all are 

functions of the population mean protein abundance, µ and its standard deviation, σ: 

The coefficient of variation (CV): η= σ/µ; the normalized variance: η2=σ2/µ2; and the 

noise strength: ν=σ2/µ.  The normalized variance is more suitable when one wants to 

add-up several stochastic sources, affecting the same downstream protein. Moreover, 

both the normalized variance and the CV are unit free measurements and hence are 

not affected by the measurements scale. The noise strength, also known as the Fano 

factor, is convenient for size-independent comparison for Poisson processes(7). Those 

processes are characterized in σ2/µ=1, and therefore the noise strength measures 

deviations from Poisson behavior(16).    

 

The variability in the abundance of a specific protein can be attributed to two different 

sources. The protein abundance is influenced by many up-stream cellular entities, 

such as amounts and concentrations of regulatory proteins, ribosomes, polymerases 

and most important the mRNA abundance translated to create the protein. Fluctuation 

in their amount will propagate down-stream to the protein abundance level. Those 

contributions are defined as the extrinsic source(7, 17). However, even in the 

hypothetical situation in which the abundances of all the up-stream elements were 

equal in all the population cells, the random nature of the microscopic events, 

governing the protein production and elimination reactions, will create fluctuations in 
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its abundance. This source of noise is termed intrinsic. However, the exact distinction 

between the intrinsic and the extrinsic noise depends on the experimental set-up and 

on the mathematical framework used. We will use the strict definition of intrinsic 

noise – noise originating from the random births and deats of individual protein 

molecules. Hence, all other sources of noise, including fluctuation of mRNA 

abundance will be regarded as the extrinsic noise of the protein abundance(7). 

Extrinsic noise itself can be viewed as composed of three parts: global noise, 

influencing all cellular proteins, such as cell division and ribosomes or polymerases 

abundance; module related noise, affecting all proteins belonging to a single regulated 

module, which can originates from fluctuations in the common regulators; and gene 

specific (individual) extrinsic noise which is created, for example, by special 

chromatin properties near the gene or by the mRNA level specific for the genes. A 

summary of the discussed noise types is given in figure 1. 

   

      

Figure 1. A summary of the 4 major cellular noise sources: Intrinsic noise, originating from the 

random birth and death events of protein molecules; Gene specific extrinsic noise, which includes 

DNA activation and synthesis and degradation of mRNA molecules; Module related extrinsic noise, 

which usually originates from common transcription regulator and global extrinsic noise, which 

includes, among others, polymerases and ribosomes abundance.   

 

A mathematical theory of noise 

Several mathematical formalisms have been used to model noise pattern of cellular 

proteins. Of those, the most comprehensive, yet simple, one was crated by Johan 
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Paulsson, which approximates both the intrinsic and extrinsic fluctuations in the 

protein abundance(7). Consider a system in which one chemical species X1 affects the 

rate of production, or elimination, of other chemical species X2, but not the other way 

around, such that: 
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where n1 and n2 are the abundances of X1 and X2, respectively. 

And to quote: 

"…X1 provides the randomly fluctuating environment for X2, as mRNA fluctuations 

randomize protein synthesis. To collectively approximate all such processes I use the Ω-

expansion where the first- and second-order terms reproduce the macroscopic rate equations 

and the fluctuation-dissipation theorem respectively. The latter is then interpreted in terms of 

the logarithmic gains Hij=∂ln(Ri
-/Ri

+)/∂ln(nj) that measure how the balance between 

production and elimination of Xi is affected by Xj and can often be estimated directly from 

the reaction rates. For the process described above, using σi for standard deviations, µi for 

averages and τi for average lifetimes, stationary fluctuations around a stable fixed point follow 
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The first term represents the intrinsic noise, which depends on the mean abundance, 

while the second term corresponds to the extrinsic noise. The latter is composed of 

three elements. First is the noise in the upstream species, σ1
2/µ1

2 (which equals 

1/µ1H11 in case X1 does not have its own extrinsic source). The susceptibility factor, 

H21
2/H22

2, is a measurement of the sensitivity of X2 to the changes in abundance of 

X1. This term is related to the slope of the graph connecting the mean abundance of 

X1 to the production or elimination rate of X2. High susceptibility (high slope) means 

that small changes in the abundance of X1 will cause large changes in the abundance 

of X2, therefore creating large fluctuations in X2 in response to small fluctuations in 

X1. The last element, (H22/τ2)/( H11/τ1+ H22/τ2), is  the time averaging effect, which is 

taking into account consecutive changes in X1 that cancel out due to different time 

scale of the two species abundance changes. The use of normalized variance was 

advantageous because extrinsic noise from parallel sources make super-imposable 

contributions to it. It is important to note that the intrinsic noise, as Paulsson defined 

it, is indeed only protein-related. Any fluctuations in the mRNA abundance will result 

in contribution to the extrinsic part of the equation. 
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Deciphering noise patterns – A short overview of experimental set-ups 

Several methods have been used to track the origin of fluctuations and to investigate 

how they depend on average expression levels. One strategy is to measure the 

standard deviation in protein abundance as a function of the it's mean and of the 

transcription and translation rates(16, 18-21). Low-copy fluctuating proteins typically 

display a particular scaling behavior where the standard deviation is proportional to 

the square root of the average. The noise strength, in this case, does not scale both 

with the transcription and translation efficiencies. However, if the noise strength only 

scaled with translation but not with transcription, it has been argued (7, 16, 18) that 

noise probably comes from having few mRNA copies, not from having few protein 

copies. Applying this method to Bacillus subtilis suggested that most noise came from 

transcription and mRNA degradation(16), i.e., from low-copy mRNA fluctuations. 

Applications to Saccharomyces cerevisiae(21, 22) instead suggested that gene specific 

pre-transcription processes dominate under most conditions.  

 

Another strategy is to measure the simultaneous expression of two identically 

regulated reporter genes(17, 19, 20, 23, 24). Each protein then has its own set of genes 

and mRNAs, but share both global and pathway-specific factors with the other 

protein. Because identical reporters should be equally susceptible to any fluctuations, 

this elegant method makes interpretation less model dependent: as long as the two 

reporter systems do not affect each other, the noise contribution from the shared 

environment should equal the covariance between the reporters. Noise specific to each 

reporter consists of intrinsic and gene-specific extrinsic contributions, while the 

shared noise is comprise of module-related and global contributions. An application to 

Escherichia coli(17) showed very little noise from global factors, at least for the genes 

investigated under the conditions used. Some noise was specific to each reporter, 

while the shared noise was largely explained by a pathway-specific repressor. Other 

works(19, 24) in the same organism demonstrated that global factors have a 

significant contribution to the overall noise. Most importantly, the cell-cycle was 

shown to have a dominant contribution to the fluctuation in protein abundance(19). 

Applying the same method to genes in S. cerevisiae(20, 23) showed that most noise 

originates from global factors, rather than pathway or gene-specific ones. 
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In the following sections we will elaborate on the experiments done and the 

conclusions made by their analysis. 

 

Transcription and translation sources of noise in the prokaryote B. subtilis 

The two basic process, directly influencing the protein abundance, are the 

transcription and translation (as well as mRNA and protein degradation). 

Oudenaarden and his group investigated the effect of those processes on the 

fluctuations of protein levels(16, 18). They modeled a simple system, containing 

mRNA molecules that are synthesized at rate of kR from a template DNA strand, 

protein that is translated at a rate of kP of each mRNA molecule and mRNA and 

protein degradation rates of γR and γP, respectively. They used a Master Equation 

technique to model this system and found out that in steady state the mean protein 

level is µ= kRb/γP, while the noise, given as the noise strength, is σ2/µ=(b/(1+c))+1, 

where b=kP/γR is the average number of proteins produced per mRNA transcript and 

c=γP/γR is the ratio of mRNA to protein lifetimes. Generally c<<1 and therefore 

σ2/µ~b+1. Hence they conclude that noise is affected only from translation rate and is 

indifferent to the transcription rate. 

 

In order to validate those conclusions they integrate GFP into the chromosome of B. 

subtilis under the regulation of the LAC operon and changed both transcriptional and 

translational efficiencies. The transcription efficiency was perturbed by using 

different concentration of the IPTG inducer and by creating point mutations in the 

promoter. Translational efficiency was disrupted by generating point mutations in the 

ribosome binding site (RBS) or in the initiation codon of the GFP. Their results 

confirmed that transcriptional efficiency had only minor effect on the noise strength 

while translational efficiency changes it linearly. 

 

However, these results are misleading(7). The burst term b does not come from the 

randomness to translation, but from the fluctuation in mRNA abundance. Eliminating 

those fluctuations will abolish that term. Looking at the normalized variance, and 

implementing Paulsson's models, under the same assumptions, we get 

σp
2/µp

2=1/µp+(τR/τP)/µR=1/µp+kPτR/µp=1/µp+b/µp, where τR and τP are the averaged life 
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time of mRNA and protein molecules, respectively. Therefore the b term indeed 

represents the extrinsic source of noise. Plotting σp
2/µp

2 as a function of 1/µp gave, as 

expected, a straight line with a small displacement. 

 

The conclusion that translation rate, but not transcription rate, influences the noise 

strength has an interesting evolutionary consequence. If a protein is needed in a 

certain cellular abundance it could be produced by using poor efficiency transcription 

followed by high efficiency translation or by high efficiency transcription followed by 

poor efficiency translation. The second mechanism is much more expansive, but will 

lead to less noisy output, and the interplay between those two considerations will 

create a selective pressure. Essential genes or genes that work in a complex are among 

the genes that the cell might want the keep at low fluctuations level. Fraser et al. 

found that those genes are indeed characterized in relatively high ratio of translation 

rate to transcription rate(25).    

 

Intrinsic and extrinsic noise measurement in E. coli using two reporters 

In order to differentiate between the two main sources noise Elowitz et al. constructed 

strains of E. coli, incorporating CFP and YFP in the chromosome(17). In each strain 

the two reporter genes were controlled by identical promoters and were integrated at 

loci, equidistant from the origin of replication. Difference in the fluorescence of the 

two reporters, in the same cell, was considered to be a measure of the intrinsic noise, 

while the overall correlated fluorescence difference between different cells represent 

the extrinsic noise. This use of definitions makes a non-trivial distinction between 

system and environment(7) and is not consistent with the general scheme we 

presented. The measured intrinsic noise in these experiments includes also some of 

the gene specific extrinsic noise, as we defined above, most importantly the mRNA 

abundance. 

 

The measured 'intrinsic' noise behaved almost like the total noise in the B. subtilis 

experiment(7): σp
2/µp

2~1/µp+C. However the extrinsic contribution was dominant in 

almost all cases, which contradict the former study. A possible explanation to this 

pattern is the noisy nature of the lacI repressor they used to control their reporters, 

which was incorporated into a plasmid or under oscillating control. 



 10 

 

Unsurprisingly, the authors found out that strong induction lowered both the intrinsic 

and the extrinsic noise while oscillating regulator abundance increased protein 

fluctuation. One interesting finding was that a deletion of RecA, which acts to rescue 

stalled replication forks, doubles the noise level. Hence, it was suggested that 

increased noise may arise from transient copy number differences between different 

parts of the chromosome.    

 

Transcription effect on noise strength is yeast 

Blake et al. turn their focus to the eukaryotic S. cerevisiae yeast(22). The authors built 

an artificial genetic network, in which the repressor TetR is regulates by a galactose 

responsive promoter. The expression of GFP is under the control of the repressor 

TetR; a repression that was tuned by the concentration of the inducer ATc. Varying 

the concentration of glactose or ATc affects the expression rate of the reporter gene. 

 

In contrast to noise strength in prokaryotic bacteria, which was insensitive to 

transcription efficiency, the noise strength in the yeast changed non-monotonically 

with transcription rate – having a peak at partial expression induction and decreasing 

both at low or full induction. This phenomenon was attributed to eukaryotic unique 

mechanisms, such as chromatin remodeling and the formation of pre-initiation 

complex. Additionally, translation rate has the largest effect on the noise strength also 

at partial induction. The reason for this pattern is probably the fact that translation 

efficiency just amplifies the upstream noise. Hence, the translation effect on noise 

strength is maximal when the upstream transcription process has its maximum effect 

on stochasticity. 

 

Two reporters experiments in S. cerevisiae 

Raser et al. used the two reporters experiment to explore the pattern of extrinsic and 

intrinsic noise in S. cerevisiae(23). There first important finding was that extrinsic 

noise dominate the total protein fluctuations. Intrinsic noise was only 2% to 20% of 

the overall noise. Moreover, in an attempt to differentiate between gene specific 

extrinsic noise and global extrinsic noise they attached the two reporters to the 

promoters of different genes, not even belonging to the same module (in one case they 
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used the promoters of PHO84 and GAL1 and in anther case the promoters were of the 

genes PHO84 and ADH1). The correlation between the two fluorescence level was 

very high (R2 of 0.88 and 0.93, respectively). Therefore, they concluded that the 

majority of extrinsic noise is from a global origin. 

 

The authors also found that although the extrinsic noise of two of the examined genes 

(GAL1 and PHO85) behave according to the model proposed by Thattai et al. (that is, 

transcription had no effect on intrinsic noise strength)(16, 18), one gene (PHO5) 

behaved differently. Decreasing PHO5 rate of expression more than doubled the 

intrinsic noise strength. In order to explain this unexpected pattern a model was 

created. The model took into consideration also the activation of the DNA, by 

chromatin remodeling, apart from the transcription and translation. Three different 

kinetic mechanisms were proposed to explain different behaviors of intrinsic noise, as 

shown in figure 2. In the first mechanism, which corresponds to the behavior of 

PHO5, the activation of the DNA is infrequent, but stable (that is slow inactivation). 

The noise strength, assuming this model, will increase both with transcription and 

translation efficiencies but will decrease with higher DNA activation rate. The second 

mechanism is characterized with slow and un-stable DNA activation. In this case 

noise strength will still increase with transcriptional and translational efficiencies, but 

will remain relatively unchanged by increased DNA activation rate. The last 

mechanism, which corresponds to that of Thattai et al, assumes high activation and in-

activation rates. Hence, as compared to the more slow transcription event, those 

processes are averaged and do not contribute to the noise strength. As in Thattai et al 

model the only effect on the intrinsic noise strength will be that of changing the 

translation efficiency. 

 

 

Figure 2. (taken from Raser et al). A. An extended model of protein production, including DNA 

activation and inactivation. B. Three different cases of relationships between the reactions rates can 

produced different intrinsic noise strength pattern, as described in the text.  
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In order to validate the first mechanism, the authors created mutations in the PHO5 

upstream activating sequences UAS1 and UAS2 and deleted several component of the 

chromatin remodeling complexes. In all these cases an increase in the intrinsic noise 

strength was observed, as the model predicted. Damaging the TATA sequence, which 

is required for efficient transcription but dispensable for chromatin remodeling, 

resulted in an opposite trend of noise reduction, again as predicted.   

 

Fluctuations in the gene regulation function, in E. coli 

Rosenfeld et al. took a whole different approach of measuring cellular variation(19). 

They used a two reporter system, in which a repressor bound to YFP regulates the 

production of CFP. Before experiment start the production of the repressor is induced 

and at t=0 its production stopped, so it is diluted continually across cell divisions. The 

concentration of YFP slowly decreases, while CFP concentration rises along the 

progenies. The authors tried to calculate the mean function that describes the relation 

between the repressor (YFP) concentration and the YFP production rate, and the 

characteristic deviation of single cells from it.  

 

It was found that the partition of YFP between the two daughter cells, upon cell 

division follows a binomial rule, therefore creating a source of noise that is 

proportional to the square root of the total abundance. The CFP production was 

strongly correlated to the cell cycle phase – cells just before division produce double 

the amount of CFP than expected by the amount of the repressor. 

 

The origin of the remaining noise (deviation from the expected function) was tested 

by placing the two different reporters under the control of the same promoter, 

regulated by the above repressor. It was found that intrinsic noise capture only 20% of 

that remaining noise. Moreover, the authors found that intrinsic noise tends to 

fluctuate very rapidly, so it is being averaged out in the life period of a single cell. 

Extrinsic noise, which was much more dominant, was characterized in a time scale of 

cell cycle period, and therefore creates a real individuality between single cells. In 

addition, because noise here was a measure relative to the concentration of the 

repressor, the extrinsic noise was related to mostly global factors. 
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Noise propagation in a cascade 

Differentiating between different sources of extrinsic noise is very important in order 

to reveal the dominant noise contributor in the cellular environment. Pedraza et al. 

used E. coli and incorporated in it a cascade that consists of the three elements(24). 

The repressor LacI was regulating the expression of the repressor tetR, which was 

attached to CFP. The reporter YFP, in turn, was regulated by the tetR. In addition the 

reporter RFP was placed under the regulation of constitutive, un-regulated, promoter. 

Both the repressions of LacI and of tetR were tunable using the inducers IPTG and 

ATC, respectively. 

 

By measuring the auto- and cross-correlation of the fluorescence of the three reporters 

and by implementing Langevin modeling approach(26, 27) the authors separated both 

the intrinsic from the extrinsic noise and also the cascade propagated extrinsic noise 

from the global extrinsic noise. As in the other experimental work, intrinsic noise was 

found to constitute only a minor fraction of the overall noise. The propagated noise 

and the global noise, both have a dominant role in determining the reporters' 

fluctuation. The importance of the susceptibility factor was demonstrated. The 

contribution of the propagated noise raised more than 4 fold in the region in which the 

sensitivity of the regulated reporter to the repressor was maximal. In this region the 

propagated noise becomes the most important fluctuations source, shadowing all 

others. 

 

The pattern of global noise was also examined. Because this source is affecting 

protein abundance both directly and indirectly through the upstream genes in the 

cascade, its contribution is not constant and strongly depends on the genetic circuit 

properties. Giving the effect of the susceptibility factor and that of the varying 

contribution of the global noise, even in a network where all components have low 

intrinsic noise, fluctuations can be substantial. However, those results should be taken 

with a grain of salt. The cascade built by the authors was placed on a plasmid, rather 

than incorporated into the chromosome. Therefore, the global extrinsic noise probably 

includes a significant factor of plasmid copy number fluctuations.        
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The effect of gene activation and chromosomal positioning on noise 

One of the major problems in measuring the noise level in protein abundance is the 

high background fluorescence level, which prevents us from measuring the exact 

fluorescence level of low abundance reporter genes. In order to solve that problem 

Becskei et al. devised a genetic circuit for noise amplification(21). The potent 

transcriptional activator rtTA was placed under the control of the investigated 

promoter. When rtTA was bound to the inducer, doxycyline, it drives the expression 

of YFP. The amplification originated from two mechanisms. First, low abundant rtTA 

resulted in high abundant and measurable amount of YFP. In addition, embedding 

several rtTA binding sites in the YFP promoter led to increased cooperativity and 

therefore to high susceptibility factor. Hence, small fluctuations in the abundance of 

rtTA were multiplied in the elevated susceptibility factor to create significant and 

easily measured noise in the YFP. 

 

Using this amplification devise, the authors measured noise in low abundant cell cycle 

proteins. Several of them were very noisy, which was considered to be an outcome of 

low mRNA copy. However, gene duplication did not dump that noise, as expected if 

noise were indeed intrinsic in origin. It was found out that the dominant noise source 

originated from random events of gene activation. These events are largely influenced 

from chromosomal positioning and indeed repositioning of noisy promoters on 

different chromosomal locations dumped the noise level considerably. Moreover, the 

fluctuations of reporters that were located in proximity on the chromosome were 

significantly correlated. The high fluctuating genes regulate other down stream genes 

and transmit their noise further in the cascade, eventually spreading it throughout the 

genetic network. 

 

Noise sources decomposition in the yeast cell-fate decision system 

Another recent attempt to decompose the extrinsic noise into module related and 

global compounds was done by Colman-Lerner et al(20). The authors used the C. 

cerevisiae (of a mating type) pheromone response pathway, responsive to varying 

concentration of α-factor, to decoupled noise from different origins. Two parallel two 

reporters systems were built. The first consists of YFP and CFP, both under the 

regulation of the same α-factor responsive promoter, while in the second the YFP was 
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still under the same regulation, but CFP was under the regulation of a constitutive 

promoter. Using that system three different noise types can be distinguish: the 

intrinsic noise, noise that originate from variability in the α-factor signal transmission 

pathway and global noise, related to the overall protein production capacity of the 

cell. Intrinsic noise was found to explain only about 2% of the overall noise, while the 

dominant source of protein abundance fluctuations was global in origin – about 75% 

of total noise. The latter finding also explain why there was a linear relationship 

between the standard deviation and the mean of the protein abundance distributions, 

and not root square dependency, as expected from Poisson processes, which dominate 

the intrinsic noise. Using a cell cycle arrest experiment, it was shown that variability 

in cell cycle position produce about half of the overall noise. The rest of the global 

noise was attributed to global factors, such as ribosomes, RNA polymerase II 

complexes or cellular energy level. 

  

At lower α-factor concentration, pathway related fluctuation become the dominant 

factor to control noise level – 59% of the total noise. However, the authors discovered 

that at varying level of α-factor, the overall stochasticity remain rather constant, 

despite the increase in the pathway related noise. Hence, there seems to be a rather 

mysterious anti-correlation between the global and the pathway related noise factors. 

However, this buffering interpretation depends on the assumption that global noise 

affects the α-factor responsive promoter equally across varying pheromone level, an 

assumption that might be incorrect(28). 

 

Motivation for the current work 

By nature of the analysis, most studies have focused on a limited number of genes, 

many of which are highly expressed. Expression levels have also been tuned either by 

mutation or by varying the amounts of activators and repressors, sometimes using 

genes that are synthetically engineered. This is well motivated when analyzing any 

particular mechanism in detail, but because the results have varied from study to study 

and from condition to condition, it remains to be seen how generally the conclusions 

apply. As a step in that direction we here measure the cell-to-cell variation of 38 

proteins from a library of single-reporter GFP translation fusions in S. cerevisiae. 

These represent four strongly co-expressed sets of genes (modules), whose mean 
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expression levels span several orders of magnitude (tens of copies to hundreds of 

thousands). As in previous studies, one purpose of the present work is to correlate 

noise and average expression levels. However, rather than tuning the expression of a 

particular gene by varying transcription or translation rates, we instead compare genes 

that naturally have different expression levels under the same external conditions.  

 

We measured the noise level, of all genes, at six consecutive time points, in 11 

different conditions. These extended datasets help us determines the relative effect of 

module affiliation and environmental conditions on noise, by evaluating the similarity 

of noise level patterns between genes from the same module. Also we wanted to 

check whether there are distinguished patterns, of noise in time, for each of the 

modules and conditions. 
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METHODS 

Strains and growth conditions 

We used 43 strains from the yeast GFP clone collection(29), bought from Invitrogen. 

The genotype of the parent haploid S. cerevisiae strain, ATCC 201388, is MATa 

his3Δ1 leu2Δ0 met15Δ0 ura3Δ0. A construct containing GFP and a HIS marker was 

incorporated into the 3'UTR of the chosen genes, therefore creating a mature protein 

which has a GFP attached to its terminus.  

We chose 43 genes belonging to 4 distinct modules: stress (12 genes), proteasome 

(10), ergosterol (10) and rRNA processing (11). The genes are given in table 1. 

 

Table 1: The genes chosen for the experiments. 
 

Synthetic complete medium (SC) was prepared by dissolving 6.7g of Bacto YNB 

without amino acids (Difco), 20g of D-Glucose and 1.6g of full drop-out, containing 

all needed amino-acids and amino-bases, in 1L of DDW. Cells were inoculated to SC 

media from YPD agar plates. After growth in an incubator at 30oc for about 6 hours 

they were diluted to fresh SC media and grown overnight in the Unimax1010 

Incubator Shaker (Heidolph), at 30oc, to reach an OD of ~0.2 before experiment start 

next morning. Along side the tested genes we have measured the background 

Internal 

Numbering 
Gene Yname Module Affiliation 

Internal 

Numbering 
Gene Yname Module Affiliation 

1 TPS2 YDR074W Stress 23 ERG10 YPL028W Ergosterol 

2 HSP104 YLL026W Stress 24 CIC1 YHR052W rRNA Processing 

3 HSP78 YDR258C Stress 25 HSP42 YDR171W Stress 

4 SSE2 YBR169C Stress 26 AAH1 YNL141W rRNA Processing 

5 NOC2 YOR206W rRNA Processing 27 PRS4 YBL068W rRNA Processing 

6 GSY2 YLR258W Stress 28 RPN8 YOR261C Proteasome 
7 ACS2 YLR153C Ergosterol 29 PRE10 YOR362C Proteasome 
8 SSA4 YER103W Stress 30 BRX1 YOL077C rRNA Processing 

9 ARX1 YDR101C rRNA Processing 31 RPN12 YFR052W Proteasome 
10 PWP1 YLR196W rRNA Processing 32 PRE4 YFR050C Proteasome 
11 URA7 YBL039C rRNA Processing 33 PRE9 YGR135W Proteasome 
12 PGM2 YMR105C Stress 34 PUP2 YGR253C Proteasome 
13 ERG5 YMR015C Ergosterol 35 SCL1 YGL011C Proteasome 
14 RPN3 YER021W Proteasome 36 HSP26 YBR072W Stress 

15 DBP3 YGL078C rRNA Processing 37 APT1 YML022W rRNA Processing 

16 HXK1 YFR053C Stress 38 CYB5 YNL111C Ergosterol 

17 TPS1 YBR126C Stress 39 HSP12 YFL014W Stress 

18 ERG13 YML126C Ergosterol 40 ERG1 YGR175C Ergosterol 

19 PRS1 YKL181W rRNA Processing 41 ERG11 YHR007C Ergosterol 
20 RPN7 YPR108W Proteasome 42 ERG6 YML008C Ergosterol 
21 RPN6 YDL097C Proteasome 43 ERG3 YLR056W Ergosterol 

22 MVD1 YNR043W Ergosterol     
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fluorescence by using, in each condition, two control types. Both controls used the 

same S. cerevisiae strain, lacking the GFP. The first, termed 'C' was treated with the 

experimental conditions as the rest of the strains while the other, termed 'CC', was 

grown without experimental perturbation. 

 

Experiments 

All experiments were conducted on cells in 10ml media and OD of ~0.2 (unless 

otherwise mentioned). We have carried out 11 experiments. Eight of them are stress 

conditions, with various cellular effects, while the other three conditions are stress 

relaxation. The concentrations of the stress reagents were determine by conducting 

growth rate experiments using a wild range of concentrations. We pick up the 

concentrations with a mediocre effect on the growth rate. The list of conditions is 

given in table 2. 

 

Stress Conditions 

Condition Concentration Reagent cellular effect Abbreviation 

Diamide 1.5mM Oxidative agent DMD 

Hydrogen Peroxide 

(H2O2) 

0.3mM Oxidative agent HO 

Methyl Methane-

Sulfonate 

0.04%W/V Mutagen, inferring with and 

causing damage to DNA 

MMS 

Heat Shock 30oc→37oc  HT 

Dithiothreitol 4mM Reducing agent DTT 

Clotrimazole 10μM Inhibitor of the ergosterol 

pathway 

CLT 

Rapamycin 65ng/ml Inhibitor of the TOR 

pathway 

RPM 

Ethanol 3% Non-fermentable carbon 

source 

ETN 

Stress Relaxation Conditions 

Condition Abbreviation 

Nitrogen depletion relaxation NTR 

Stationary phase relaxation STT 

Glycerol growth relaxation by glucose addition GLY 

Table 2: Stress and stress relaxation experiments we conducted. 
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The exact implementations of each condition are given herein. Diamide: 52μl of 

290mM diamide (Sigma-Aldrich) in DDW were added to 10ml of cells in SC media 

to reach a final concentration of 1.5mM. Hydrogen peroxide (H2O2): 34.2μl of 

88mM H2O2 in DDW were added to reach a final concentration of 0.3mM. Methyl 

methane-sulfonate: 40.2μl of 10%W/V MMS (Sigma-Aldrich) in SC were added to 

reach a final concentration of 0.04%W/V. Heat shock 30oc→37oc: Temperature of 

the incubator was elevated to 37oc at the experiment start. Dithiothreitol: 44.2μl of 

0.9M DTT (Sigma-Aldrich) in DDW were added to reach a final concentration of 

4mM. Clotrimazole: 33.5μl of 3mM Clotrimazole (Sigma-Aldrich) in DMSO were 

added to reach a final concentration of 10μM. Rapamycin: 16.3μl of 40μg/ml 

rapamycin (Sigma-Aldrich) in DMSO were added to reach a final concentration of 

65ng/ml. Ethanol: 280μl of pure ethanol were added to 10ml to reach a final 3% 

ethanol. Nitrogen depletion relaxation: SC nitrogen depleted medium was prepared 

by dissolving, in 1L of DDW, 1.7g of Bacto YNB without amino-acids and 

ammonium sulfate (Difco), 20g of D-Glucose and 10ml of a solution containing 1g of 

Uracil, 1g of Methionine, 5g of Leucine and 1/3g of ammonium sulfate per 500 ml. 

Cells were grown over night (at 30oc) in SC nitrogen deplete media and reach an 

OD~0.5 in the morning. At experiment start 128μl of 3M ammonium sulfate in DDW 

were added to 10ml of cells in media to reach a final concentration of 37.8mM, as in 

non-nitrogen-depleted SC media. Stationary phase relaxation: Cells were grown for 

two days (at 30oc) to reach a deep stationary phase. At experiment start 333μl of cells 

were diluted into 10ml, to reach a final OD of ~0.5. Glycerol growth relaxation by 

glucose addition: SC medium with Glycerol as the sole carbon source was prepared 

be dissolving 6.7g of Bacto YNB without amino-acids (Difco), 30ml of Glycerol and 

1.6g of full drop-out containing all amino-acids and amino-bases in 1L of DDW. 

Cells were grown in the above media over night (at 30oc) and reach an OD of ~0.5 at 

morning. At experiment start 256μl of 4M D-Glucose in DDW were added to reach a 

concentration of 0.1M, as in SC media which have D-Glucose as the sole carbon 

source.  
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Flow cytometry measurements 

Flow cytometry experiments were conducted using the Becton-Dickinson FACSAria 

machine. Six measurements were taken, in every 30 minutes, from experiment start: 

0min, 30min, 60min, 90min, 120min and 150min. In every time point the following 

parameters were recorded for 100,000 cells:  1. Forward Scatter Width (FSC-W), 

which corresponds to the time the cells moved in front of the laser beam. 2. Forward 

Scatter Area (FSC-A), corresponds to the size and reflection properties of the cell. 3. 

Side Scatter Area (SSC-A), corresponds to the granularity and other reflection 

properties of the cell. 4. The 515–545nm detector of the blue laser (GFP-A), which 

measures the fluorescence in the wave length of the GFP emission. The experiments 

of each condition were divided to two days – in the first genes 1-21 were examined, 

while genes 22-43 were test in the second day. The two types of controls, 'C' and 'CC', 

were measured in each of these days anew.  

Figure 3 demonstrates the temporal evolution, of three of the above parameters, of a 

certain gene in a specific condition. 

 

 

Figure 3: Evolution of three of the record 

parameters in time. Blue, green, red, turquoise, 

magenta and yellow dots represents parameters 

distributions of the gene PGM2, in 0, 30, 60, 

90, 120 and 150 minutes after addition of the 

oxidative reagent diamide, respectively. 

Horizontal lines in the bottom of the figure 

correspond to the mean and standard deviation 

of the above distributions, with matching 

colors. 
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Pre-analysis of the flow cytometry results 

The raw data recorded by the FACSAria comes from cells with different 

physiological properties, such as cell sizes or positions in the cell cycle. This can 

obscure the analysis, as the variability in protein abundance then may reflect the 

distribution of 'cell types' measured rather than the expression noise in any given type. 

We therefore select a small but homogenous part of the population by implementing 

several sequential filters: 1. FSC-W filter. The usual FSC-A distribution contained 

two peaks (populations), where the small, high-fluorescence, one is created by cells 

with buds or by cells in aggregates. The peak value of FSC-W distribution (the left, 

low-fluorescence, peak) was calculated and the 50% of the cells with the closest FSC-

W to that value passed the filter. This filtration eliminated the second peak and 

therefore discarded most cells with buds and cells in aggregates. 2. FSC-A filter. The 

peak value of FSC-A distribution was calculated and the 40% of the cells with the 

closest FSC-A to that value passed the filter. This filtration created a population of 

cells that are relatively synchronized with respect to their cell cycle phase, have a 

comparative cell size and are mostly viable. 3. GFP-A filter. The 4% cells with the 

lowest GFP-A values and the 3.5% cells with the highest GFP-A were cut. This filter 

has two purposes. Some of the GFP-A value recorded are negative, and cutting 4% 

from the values on the right threw the negative values in all the distributions 

examined and therefore let us avoid the un-reasonable values. In addition, some of the 

distributions have distinct outlier, which correspond to dead cells or minor 

contaminations. Cutting the few percents from both sides eliminates the outlier 

without changing the main distribution properties. After implementing those three 

filters we were left with 18,500 recorded cells – fluorescence values.  

 

Normality test of the fluorescence distribution 

We used two methods to evaluate the normality of the fluorescence distribution as 

well as of the distribution of the logarithmically transformed fluorescence values. 

First we calculated the skewness i.e., the third central moment of the distribution 

divided by the cube of the standard deviation. Positive and negative skewness indicate 

long tail to the right and to the left, respectively, while Normal distributions have zero 

skewness. In addition we created histograms with 1024 bins and used MATLAB's 



 22 

Curve Fitting Toolbox to fit a Gaussian function to those histograms. Higher order 

moments, like kurtosis, were not tested. 

       

Calculating the mean, relative mean and standard deviation values 

Using the filtered fluorescence distributions we have created three types of data set:  

1. Mean values. For each combination of gene, condition and time point we 

calculated the mean of fluorescence (GFP-A) of the 18,500 cells who past the three 

filters. Altogether we have (43 genes + ['C'+'CC'] X 2 days) X (11 conditions) X (6 

time points per condition) mean values. Only 38 of those 43 genes had sufficiently 

higher fluorescence, above the auto-fluorescence background. Those genes were 

taken for the next steps of the analysis. The discarded genes were RPN3, PRS1, 

RPN7, HSP26 and CYB5. The matrix containing the relative means is shown in 

figure 5.  

 

2. Relative mean values. We calculated the mean of every distribution and subtracted 

from each mean value the mean of the control 'C' measured for the same condition 

and time point. For each gene we subtracted the mean of the control measured in the 

day it was measured. Next we took the log of the ratio between the mean of each 

time-point and the first time point, therefore having (43 genes) X (11 conditions) X (5 

time points) relative mean values. This process is very similar to the one implemented 

in micro array analysis.  

 

3. Standard deviation values. We repeated the same procedure as with the mean 

values, but with the standard deviation of fluorescence instead of the mean, to create 

(43 genes + ['C'+'CC'] X 2 days) X (11 conditions) X (6 time points per condition) 

STD values  

 

Noise and noise residuals  

We used three definition of noise: η2= σ2/µ2, the normalized variance; η= σ/µ, the 

coefficient of variation and ν=σ 2/µ, the noise strength, where µ represents the 

fluorescence mean and σ represents its STD. From those we focused on the first 

definition. Figure 11 shows that the dependency between σ2/µ2 and the mean has three 

distinct regimes: a σ2/µ2~1/µ2 regime, a σ2/µ2~1/µ regime and a σ2/µ2~C regime.  
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In order to find the trend lines we needed to throw the outliers points from the fitting 

analysis. To exclude these outliers systematically we had preformed an iterative 

procedure that consists of two steps. At the first step we calculated the best linear 

fitting using the existing exclusion rule (initialized with no excluded points). This 

linear fitting was conducted using a fixed slope (-2 or -1, depending on the regime in 

the log-log graph). At the second step we calculated the vertical distance, of each 

point, from the trend line and took for our new exclusion rule all points having that 

distance bigger than 0.5. The process ended upon convergence – no change in the 

exclusion rule. 

 

To validate the more problematic σ2/µ2~1/µ dependency we fitted a linear line, across 

all genes, for each time point of each condition, at the middle regime. In this fitting 

procedure the slop was not pre-fixed. In all the 11·6 cases the slope, in the log-log 

graph, was between -0.7 to -1.4, with the average of -1.09. No significant trend was 

observed across the different time points. Therefore we concluded that the actual 

slope is indeed -1, with the addition of some experimental noise. The σ2/µ2~1/µ2 

dependency was very clear and hold for each condition and time point. 

 

Every choice of the separation line between the σ2/µ2~1/µ2 regime and the σ2/µ2~1/µ 

affect the fitting curve on both of its sides and therefore also determines the 

intersection points of those curves with itself. We chose the separation line which 

makes those intersection points coincide. This border point, log(mean)=6.75, is very 

close to the median of the log(mean) values of the points for which the background 

noise is equal or higher than the GFP noise: 6.7742, which strengthen the validity of 

this border. The separation line between the σ2/µ2~1/µ regime and the σ2/µ2~C was 

chosen visually. 

 

The vertical distance of the points form the fitted line (each point from the line in the 

regime it is located in) was defined as the noise residuals. We have (43 genes) X (11 

conditions) X (6 time points) noise values. The relative noise residuals were 

calculated by subtracting from each noise residual of a specific time point the noise 

residual of the time point 0. Overall there are (43 genes) X (11 conditions) X (5 time 

points) relative noise values. 
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Fluorescence per molecule 

The means and standard deviations were measured in units of fluorescence, not in 

absolute numbers of proteins. Here we assume a proportionality between the two, 

γP=F, where P is the protein abundance, γ is the fluorescence per molecule, and F is 

total fluorescence. The normalized variance is then independent of the normalizing 

factor γ because σF
2/µF

2=(γσP)2/( γµP)2 = σP
2/µP

2, while the means are proportional, µF 

= γµP. In order to estimate the values of γ, we calculated, for each gene, two values. 

The first was the gene's averaged fluorescence, across the first time points of all the 

stress conditions, while the second was its protein abundance as measures by 

Ghaemmaghami et al(29). The mean of the ratio of those values, across all genes, is 

the estimated γ = 0.16. 

  

Correlations and dendograms 

Dendograms were plotted using the hierarchical clustering algorithm implemented in 

MATLAB statistical toolbox, using the average linkage option. Distances between 

entities (genes or time points of conditions) were defined as 1-Pearson correlation 

across mean, relative mean, noise residuals or relative noise residuals. Dendograms 

were rendered using the dendogram function in MATLAB.  

  

Expression coherence of motifs 

The expression coherence (EC) of a motif is a measurement for the extent to which 

the co-regulation of genes having that motifs is higher than the co-regulation of those 

genes with genes that do not have the motif. First, we calculated the Pearson 

correlation values between genes according to their mean, relative mean or noise 

residuals or relative noise residuals. We created two value sets. The first contained the 

correlation values calculated between genes that share the motif and the second 

contained the correlation values calculated between genes that have the motif and 

genes that do not have it. The EC was defined as the log10 of the P-value (using a 

rank-sum test) of the hypothesis that both value sets have the same median. 
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RESULTS 

Shape of fluorescence distributions 

Distributions of protein abundance of 43 of S. cerevisiae genes was created using 

different yeast strains, each having a GFP fused to a 3'UTR of a different protein. 

From these GFP strains only 38 had sufficient fluorescence intensity above the 

background. Using flow cytometry, fluorescence of single cells was measured, for 

each of those strains, in 11 different conditions. From the eleven conditions 8 were 

stressful while the others were stress relaxation (see Methods). Every gene, at each 

condition, was measured in 6 time points, during 150 minutes. 

 

The shape of the protein abundance distribution is very informative of the molecular 

processes that created it. If the final protein abundance was the summation of several 

random variables (each corresponds to a different up-stream process) we would 

expect it to have a normal distribution (the central limit theorem). A log-normal 

distribution will be indicative of a multiplication of several random variables. If one, 

Gaussian, up-stream process has a significantly higher variance than all the other 

processes, the resulting distribution will be normal, both if it originated from 

summation or multiplication of random variables.        

 

The fluorescence distributions possessed both normal and log-normal characteristics. 

We checked the skewness (defined as the third central moment divided by the cubic 

standard deviation) of the linear and the logarithmic transformed fluorescence values, 

in all genes, conditions and time points. Skewness is a measure of the asymmetry of a 

distribution: skewness<1 is indicative for a long distribution tail to the left, while 

skewness>1 is characteristic of distributions with a long left tail. Gaussian distribution 

is characterized in skewness of 0. The average skewness, of linear and log 

fluorescence values of different genes, across all conditions and time points, are given 

in figure 4(top, right and left).  

 

There is a clear dependence between the mean abundance of a gene and the average 

skewness of its linear and log fluorescence values. Low abundant genes tend to have 

normal distribution –  skewness near 0 of their linear fluorescence values and high 

skewness of their log fluorescence values, indicative of a long tail to the left. High 
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abundant genes present the opposite trend, having a log-normal distribution – 

skewness near 0 of their log fluorescence values and low skewness of their linear 

fluorescence values, which indicate a long tail to the left. Therefore it seems that the 

higher the protein abundance, the fluorescence distribution becomes more log-normal 

and less normal. The shift from the normal to the log-normal pattern is continuous: 

the difference between the logarithmic and the linear skewness is a monotonously 

decreasing function with the mean abundance, as shown in figure 4(bottom, left). 

Moreover, genes that are induced in the time course of a condition shift slowly from 

normal to log-normal distribution (not shown).  

 

10
3

10
4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

S
k
e
w

n
e
s
s
 (

lo
g
 v

a
lu

e
s
)

10
3

10
4

0.2

0.4

0.6

0.8

1

S
k
e
w

n
e
s
s
 (

lin
e
a
r 

v
a
lu

e
s
)

10
3

10
4

-0.5

0

0.5

1

S
k
e
w

n
e
s
s
 l
o
g
 -

 S
k
e
w

n
e
s
s
 l
in

e
a
r

Mean Abundance

10
3

10
4

-0.2

-0.1

0

0.1

R
2
 l
o
g
 -

 R
2
 l
in

e
a
r

Mean Abundance

 

Figure 4. Top left. Mean abundance and skewness of linear fluorescence values, of different genes. 

Top right. Mean abundance and skewness of log fluorescence values, of different genes. Bottom left. 

Mean abundance and difference between skewness of log fluorescence values and skewness of linear 

fluorescence values. Bottom right. Mean abundance and difference between the R2 of log fluorescence 

fitting to normal distribution and the R2 of linear fluorescence fitting to normal distribution. Genes are 

represented as solid squares and colored according to their module affiliation: red – stress, magenta – 

proteasome, green – ergosterol, blue – rRNA processing and black – control. 

 

To validate this conclusion we fitted each linear and logarithmic distribution to a 

normal one, using MATLAB's Curve Fitting Toolbox, and calculated the difference 

between the R2 of the logarithmic fitting and the R2 of the linear fitting, as shown in 
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figure 4(bottom, right). The results validate our hypothesis: higher abundance indicate 

better fitting to log-normal than to normal distribution. Interestingly, most stress 

genes seem to have higher skewness of fluorescence values on the linear scale, as 

compared to genes from other modules. 

  

Analysis of the mean protein abundance  

The mean values of the fluorescence distribution are shown in figure 5.  
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Figure 5: The log of the average fluorescence of the 38 genes analyzed. Each row represents different 

gene, while the columns correspond to the 11 conditions, each in 6 time points (0, 30, 60, 90, 120 & 

150 minutes). Time points of the same condition are ordered consecutively. The genes are clustered in 

their module affiliation order, from top to bottom: stress, proteasome, ergosterol and rRNA processing. 

The conditions are given in their abbreviations, as given in the Methods. 

 

We also calculated the relative mean values, corresponding to the log-ratio between 

the mean in a certain time point and the first time point, after subtracting the 

background given by the control (see Methods). 
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Gene clustering and PCA using the mean abundances 

The analyzed genes were deliberately chosen from four distinct modules: stress, 

proteasome, ergosterol and rRNA processing. As the first step we would like to check 

whether the mean of the protein abundance cluster according to the genes module 

affiliation. For this purpose we calculated the Pearson correlation of all the genes, 

across all conditions and time points, using the relative mean values, and preformed 

average linkage clustering, as shown in figure 6.  
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Figure 6: Dendogram of the genes using Pearson Correlation on the relative mean values and 

clustering by average linkage method. Numbers represent the internal numbering of genes (see 

Methods). Color of leafs represents the genes module affiliation: red – stress, magenta – proteasome, 

green – ergosterol and blue – rRNA processing. The bottom panel shows the values of each gene in the 

last time point of each condition, normalized to all the values of that gene.     
 

As seen, genes largely cluster according to their known module affiliation. The rRNA 

processing genes are separated from the stress and proteasome ones and the latter two 

modules are generally located in different clusters. However, there are several 

expectations. First, several stress genes are clustered with the proteasome genes. 

Second, the ergosterol genes are divided between the proteasome and the rRNA 

genes. The second phenomenon is also observed when clustering using the mean 

values, instead of the relative mean values, or when using single or complete instead 
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of average linkage. The patterns of the different modules fit the known behaviors of 

the different modules: The rRNA processing in repressed in stress conditions and 

induced in stress relaxation conditions while the other module, especially the stress 

one, display the opposite trend.  

 

Cases in which clustering is inconsist with the module affiliation could result, at least 

in part, from sensitivity of clustering algorithms to experimental noise. In order to 

analyze further the effect of module affiliation on the mean protein abundance we 

preformed a principal component analysis (PCA), which is less sensitive to noisy 

data. The PCA, which was preformed using the relative mean values, shows a clear 

separation between the clusters, with some of ergosterol genes in the rRNA 

proceesing genes era, as seen in figure 7. 
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Figure 7: PCA of the genes using the relative mean values. Color coding as in figure 6. The first two 

principal components capture 90% of the overall variance.   
 

It is interesting to note that the order of the genes on the inverted U shape arc is in 

correlation with their known response to stress conditions: the stress genes having the 

largest induction, proteasome genes showing only moderate induction, ergosterol 

genes moderately repressed and rRNA processing genes being highly repressed.  
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Comparing these results with the micro array results of Gasch et al., who used similar 

stressful conditions, reveals that the ergosterol genes tend to cluster just between the 

proteasome and rRNA processing, as in our results(30). For every pair of genes we 

could compare their correlation as calculated by the micro array experiment and as 

calculated by our data set, hence we can compute the correlation between the 

correlations (CorrBtCorrs). When using the mean values as our data set we get 

CorBtCorrs=0.51. CorrBtCorrs jumps to 0.65 if our correlation is calculated using the 

relative mean values (which correspond to the fact the mRNA values are also 

relative).  

 

Another measurement of the effect of module affiliation on is DiffCorrs: the 

difference between the mean correlation between genes from the same module and the 

mean correlation between genes from different modules. For the mRNA data we get 

DiffCorrs=0.82 (using the same 38 genes) and using the relative mean values of our 

data set we get DiffCorrs=0.58. Those are indeed comparable values, though our data 

suggest less module affiliation effect. 
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Noise analysis 

We measured noise as the normalized variance, σ2/µ2, where µ and σ are the mean 

and STD of the fluorescence distribution. The noise levels of all the genes in all the 

conditions and time points are given in figure 8. 
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Figure 8: The log of the noise level of the 38 genes analyzed. Each row represents different gene, 

while the columns correspond to the 11 conditions, each in 6 time points (0, 30, 60, 90, 120 & 150 

minutes). Time points of the same condition are ordered consecutively. The genes are clustered in their 

module affiliation order, from top to bottom: stress, proteasome, ergosterol and rRNA processing. The 

conditions are given in their abbreviations, as given in the Methods. 
 

Analytical perspective 

To try and understand the mechanisms underlying the relationships between noise 

strength and protein abundance, we analyzed theoretically the expected behavior for 

several stochastic processes which control protein abundance. For simplicity, we 

consider each noise source separately, focusing first on stochastic processes effecting 

protein expression and second on stochastic protein partition during cell division. 

Notably, processes which are independent contribute to the noise strength in an 

additive manner(7). Although this assumption does not always hold (e.g. global noise 

tends to influence several upstream factors, hence creating some dependency between 

them, see Pedraza et al(24)), such correlation will typically have only second-order 
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effect on noise strength. Finally, following previous studies, we assume that the 

different processes involved in transcription and translation are poissonian. 

 

Stochasticity in protein expression 

We tried to understand different noise patterns using the mathematical framework of 

Johan Paulsson(7) (see Introduction). The mean and normalized variance of a certain 

protein P, which has a dominant extrinsic noise source S, will follow: µ(P)~fS,P(<S>), 

σ(P)2/µ(P)2~aS,P/<S>. We will try to explain how this simple model can create 

different dependencies between the normalized variance and the mean. 

 

A σ2/µ2~C dependency: Let us suppose that for all proteins the dominant source of 

noise is a global entity, such as ribosomes, polymerases or proteasomes abundance.  

The mean of the protein abundance will not be equal for different proteins, because of 

the distinct fS,P function attributed to each of them. However, there is no reason to 

assume any dependency between the coefficients aS,P the mean abundance, and hence 

σ2/µ2~C (figure 9a). Moreover, if the prime source of noise would be the fluctuation 

in the abundance of regulators, such as transcriptions factors, common to all genes in 

a certain module, that regulator should be treated as a global source – all genes belong 

to that module will have a σ2/µ2 which is not dependent on µ, when measured under 

the same condition (figure 9b).  

 

A σ2/µ2~1/µ dependency: There are several stochasticity mechanisms that can create 

this dependency. The trivial one is the intrinsic noise, originating form the Poission 

process, describing the production and elimination of the protein (figure 9c). Second 

is a mechanism opposite for the one described for creating the σ2/µ2~C dependency. 

Assume that main extrinsic noise contributor is of the same type for all genes such 

that each gene has different mean abundance of that entity, but roughly the same 

proportionality coefficients aS,P. That is, the mean protein abundance is proportional 

to the mean abundance of that entity, across all proteins: µ(P)~C·<S>, where C is a 

constant, or at least random variable with relatively small variance. A good example 

to such scenario will be the mRNA abundance – genes produce diverse abundance of 

mRNA but, apart from less common post transcriptional regulation, there are 
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comparable proportionalities between the mRNA levels and the protein levels. In this 

case the normalized variance follows: σ(P)2/µ(P)2~aS/<S>= aS·C/µ(P) (figure 9d).  

 

 

Figure 9. The expected dependencies between the noise and the mean of protein abundance 

(fluorescence), considering different stochasticity sources. All graphs were simulated using MATLAB. 

In a,c-d we show 200 genes with various protein abundances – selected randomly on the logarithmic x-

axis. In c we show 4 modules, each containing 50 genes, whose mean abundances are distributed 

normally (on the logarithmic x-axis) around a certain center.  The noise level was calculated using the 

formulas given below, where the parameter 'c' was randomly chosen, for each gene, from the 

distributions given below. a. Global extrinsic noise of genes with various protein abundances, obeying 

σ2/µ2~c/<G>, where c~N(1,1) and <G>=30. b. nodule extrinsic noise of genes belonging to different 

modules, obeying σ2/µ2~c/<R>, where c~N(1,1/3) and <R> is equal to 5 ('X' signs), 50 (triangles), 300 

(circles), and 5000 ('+' signs). c. Protein intrinsic noise of genes with various protein abundances, 

obeying σ2/µ2~1/µ. d. mRNA intrinsic noise of genes with various protein abundances, obeying 

σ2/µ2~c/µ, where c~N(190,95).  

  

The combination of two sources can create more complex trends. If the two major 

origins of noise are the mRNA level and a global factor, such as the ribosome or the 

polymerases abundance, the mean and normalized variance will follow: 

µ(P)~C·<M(P)> ·<G> or µ(P)~C·<M(P)>, σ(P)2/µ(P)2~aM(P)/<M(P)>+ aG,P/<G>, 

where M and G represent the mRNA and the global factor abundances, respectively 

and C represent the fixed (or low variance) proportionality coefficient. <G> is fixed 

for all genes, while <M(P)> is generally different. In proteins, which have low mRNA 

abundance (low abundant proteins) the dominant noise factor will be the mRNA 
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abundance and hence the plot will have a dependency of σ2/µ2~1/µ. Proteins which 

have high mRNA abundance (high abundant) will have the global factor (ribosomes 

or polymerases abundance) as the main source of noise and the dependency will 

become σ2/µ2~C. 

 

A σ2/µ2~1/µ2 dependency: Having a constant standard deviation for all the genes, 

regardless their mean will create this dependency. 

 

Stochasticity in protein partition during cell division 

The process of cell division, followed by protein partition between the daughter cells, 

can create a significant noise level. There are two types of noise it can produce: a 

binomial partition noise and noise originate from un-equal division.    

 

First we will assume a perfect division to equal size daughter cells. In this case there 

will be only a binomial partition noise. The protein abundance in each of those cells 

will follow a binomial distribution, with partition coefficient p=0.5; hence µ=np=0.5n, 

σ2/µ2=np(1-p)/n2p2=(p(1-p)/p2)/n=1/n=1/2µ, therefore creating a dependency of 

σ2/µ2~1/µ. 

 

However, several cells, as the budding yeast, does not split evenly – the daughter cell 

is smaller the mother one. Therefore, the partition coefficient p will be smaller than 

0.5 (or higher, depending on the point of view). In this case their will be an additional 

noise contribution, equal to 4·(0.5-p)2. The extrinsic noise will be even higher if we 

assume stochasticity in the division process itself, which will result in p as a random 

variable. The most simple way to take this effect into account, is by assuming 

p~N(µprob,σprob), where partition coefficient mean, µprob, can range from 0 to 0.5 and 

the partition coefficient STD, σprob, is determined by the extent of fluctuations in the 

cell division. Higher σprob will create higher the extrinsic noise. The un-equal division 

noise as a function of µprob and σprob, calculated using stimulations of cell division and 

proteins partition between daughter cells, is giving is figure 10(left). This noise, 

behaving different from the binomial partition one, does not depend on the mean 

protein abundance. As a result the total noise from protein partition will behave as 
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σ2/µ2~1/µ at low protein abundance and as σ2/µ2~C at high protein abundance, as 

shown in figure 10(right). 

 

There is relationship between the two type of protein partition noise and the intrinsic 

and extrinsic sources of noise, as defined for the two reporter experiments. The 

binomial partition noise will be measured as intrinsic noise, while the un-equal 

division noise will be measured as extrinsic one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Left. The un-equal division noise as function of µprob and σprob. For each combination of 

µprob and σprob, the partitions of various amounts of protein were simulated for 2500 cells. The intrinsic 

and extrinsic contributions to the overall noise were calculated using the formula described at Raser et 

al(23). The un-equal division noise (extrinsic noise) did not depend on the total amount of proteins. 

Red curve corresponds to extrinsic noise of 0.0334, which was the lower bound measured 

experimentally in the σ2/µ2~C dependency regime, as explained in the text below. Right. Binomial 

(Intrinsic), un-equal division (extrinsic) and total noise simulated for µprob and σprob values located at 

both ends of the red curve (solid and dashed lines). Notice that the noise patterns are identical – not 

only the extrinsic contribution, but also the intrinsic one. In all cases the partition of n (varying on the 

X-axis) proteins was simulated for 2500 cells.  
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Noise patterns in the experimental data  

The dependencies between of the normalized variance and the noise strength on the 

mean abundance, for all genes in all conditions and time points, are given in figure 11.  

   

 

 

 

 

 

 

 

 

 

 

Figure 11. The dependencies of the normalized variance (left) and noise strength (right) on the mean. 

Green line separates the three regimes of dependencies, as explained in the text. Red lines are the fitted 

trends in each regime. Points colored with magenta are ones who were excluded from the fitting, see 

Methods. 

 

There are three distinct regimes of dependencies between the noise and the mean. The 

decision of regimes border was made as described in the Methods. In each regime the 

noise is dominated by different factor and therefore its dependency on the mean is 

different, as given in table 3. 

 Regime Dependencies Slop in the normalized 

variance log-log graph 

Slop in the noise 

strength log-log graph 

Right σ2/µ2~1/µ2 -2 -1 

Middle σ2/µ2~1/µ -1 0 

Left σ2/µ2~C 0 1 

Table 3. The different dependencies and slopes, existing in the distinct regimes.  

 

The total measured noise can be decomposed into the following terms: 

 

where σbackground is the standard deviation of the constant background fluorescence, 

η2
up represent the extrinsic noise from factors up-stream to the mRNA abundance and 
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η2
down corresponds to extrinsic noise from factors down-stream to the mRNA 

abundance. All other signs are as in Paulsson's basic equation, where P and M 

represent protein and mRNA, respectively. We will assume the biologically 

reasonable HP,P
2=HP,M

2=HM,M
2=1. 

 

The measured mean and standard deviation was that of the fluorescence and not of the 

protein abundance. We compared the published protein abundance data set(29) to our 

fluorescence measurements and found out that the fluorescence of a single GFP is 

approximately 0.16 arbitrary units (see Methods).   

 

The σ2/µ2~1/µ2 dependency: The fluorescence width of low abundant proteins, 

populating the right regime, is highly affected by the background fluorescence. 

Therefore, the first term in the equation above is the dominant one in that regime, 

creating the σ2/µ2~1/µ2 dependency. The intersection point of the fitted line, in that 

regime, with the Y-axis should correspond to the log value of σbackground
2. The average 

of the background fluorescence was 131,530, which corresponds to expected 

intersection point of 11.79, while the actual intersection was 11.97. Indeed, a very 

good match. This experimental noise source decay rapidly with the mean abundance 

and becomes negligible for protein with higher abundance. 

 

The σ2/µ2~1/µ dependency: The middle trend cannot originate from global, module or 

un-equal division sources because those sources create a dependency of σ2/µ2~C. 

Moreover, neither protein intrinsic noise, nor binomial partition noise, can explain the 

observed results, although both create a σ2/µ2~1/µ dependency: The intersection of 

the fitted curve, in this regime, with the Y-axis is 5.237. Therefore, the coefficient of 

the 1/<fluorescence> term is exp(5.237)=188. Converting this value to protein 

number, the coefficient of 1/<protein> is 188/0.16=1175. If protein intrinsic noise 

were the primary noise source we would expect a coefficient of ~1 by the Possion 

process model. The binomial partition model will give such high coefficient only if p 

would be equal to 1/1176, which is unreasonable.  

 

The only plausible origin of the σ2/µ2~1/µ dependency is the effect of mRNA 

abundance, as explained above. In order to validate this hypothesis we calculated the 

expected coefficient and compare it to the observed one. The expected coefficient is 
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the multiplication of the proportionality between mRNA and protein abundance and 

the time averaging factor. We estimated that proportionality by using the protein and 

mRNA abundances published by Ghaemmaghami et al.(29) end Greenbaum et al(31), 

respectively. In order to calculate the time averaging factor, we used the mRNA decay 

rate data set, published by Wang et al.(32) and assumed that protein life-time is 

dominated by the cell-cycle period; hence we estimated it as 100 minutes. The 

expected coefficient (averaged for all genes) is: 

(µprotein/µmRNA)·(1/τprotein)/(1/τmRNA+1/τprotein)=1105,  

which is very close to the measured coefficient – 1175. 

 

However, the hypothesis that mRNA intrinsic noise is the origin of the σ2/µ2~1/µ 

dependency does not fit the experimental finding of previous works, which 

demonstrated that the processes down-stream to the promoter activation (that is, 

transcription process, mRNA degradation, translation process and protein 

degradation) contributes only few percent up to less than 50% of the overall noise(17, 

19, 20, 23, 24). Moreover, Raser et al. demonstrated that the correlation between the 

abundance of proteins, express from different promoters, is considerably high, 

indicating that a global source of noise has a dominant role in determining the noise 

level(23). 

 

The σ2/µ2~C dependency: The left trend can originate from three different sources: 

global, module and un-equal division noise, all creating the σ2/µ2~C dependency. If 

module affiliation was playing a major role in determining noise level we would 

expect proteins belonging to the same module to display no dependency between 

σ2/µ2 and µ. As shown in figure 12 this does not hold – genes within a module share 

the σ2/µ2~1/µ and the σ2/µ2~1/µ2 dependencies. Hence we can conclude that module 

affiliation has only a secondary effect on the noise level of a protein and is not 

responsible for the observed trend. 
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Figure 12. Proteins belonging to the same module do not have a σ2/µ2~C dependency, as expected if 

module affiliation was to play a major role as noise source. 

 

The existence of dominant global factor, such as polymerases, ribosomes and 

proteasomes can account for this dependency. The global factor can affect the protein 

abundance directly, down-stream or parallel to the mRNA abundance, or indirectly 

through the mRNA contribution, being up-stream element in its cascade. In the latter 

case, the averaging factor attributed to the mRNA source of noise will dump also the 

up-stream factors. The σ2/µ2 lower bound in that regime is 0.0334. That value 

corresponds to the stochasticity expected by having several dozens copies of the 

'mRNA down-stream' global factor or only several copies of 'mRNA up-stream' 

global factor (about 29 and 4, respectively, if neglecting the susceptibility and time 

averaging of that global factor). RNA polymerases, being up-stream to the mRNA 

abundance, is not a good candidate because cells have more than several of those 

complexes. Ribosomes and proteasome complexes are located down-stream to the 

effect of the mRNA. However, ribosomes are clearly present in more than several 

dozens of copies. Because we analyzed relatively small number of genes, and there 

are only few genes at the actual lower bound of the σ2/µ2~C regime, it could be that 

the bound is determined by a low abundant transcription factor that regulates those 
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genes. This hypothetical transcription factor, being an up-stream element to mRNA 

abundance, should be present in no more than several copies.  

 

Another explanation, for the σ2/µ2~C dependency, could be the extrinsic noise 

originates in cell division, as described in the partition model above. The solid curve 

in Figure 10 (right) represent combination of µprob and σprob values, which create an 

extrinsic noise of exp(-3.4)=0.0334, as the measured lower bound. The expected 

values of µprob (0.4 to 0.5) and σprob (0 to 0.1) are the biologically reasonable. 

Obviously, the contribution of low abundant global entity and un-equal cell division is 

additive and the observed lower bound can be a function of both. 
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The noise residuals and their dependency on module affiliation  

We hypothesized that the secondary effect of module affiliation may be hidden in the 

difference between the actual σ2/µ2 of certain protein abundance and the value 

predicted by the trend line, given the mean protein abundance. We term those 

differences noise residuals. The noise residuals were calculated using the log values 

of both the mean and the normalized variance. Subtracting from each such noise 

residual the noise residual of the same protein, in the same condition, at time point 0 

gave the relative noise residuals. 

   

In order to check whether module effects are indeed hidden at the residuals values we 

averaged, for each gene, the noise residuals it exhibited in each condition and time 

point. The results are given in figure 13. 
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Figure 13: The gene average of mean and noise residuals. Genes are represented as solid squares and 

colored according to their module affiliation: red – stress, magenta – proteasome, green – ergosterol 

and blue – rRNA processing. Circled squares are the genes TPS1 and TPS2, see Discussion. The '+' 

signs represent the averages of a module – averaging on all the conditions, time points and genes 

belonging to the same module. 
 

The stress genes have high noise residuals, while the proteasome genes are less noisy 

than the other, although both have relatively the same average of means. Both trends 
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are highly significance (see table 4), even if controlling for multiple hypothesis using 

the Bonferroni method. The ergosterol and rRNA processing genes have the same 

range of noise residuals, despite having very different average of means. 

 

 Stress Proteasome Ergosterol rRNA Processing 

Stress  10-140 10-118 10-119 

Proteasome   10-24 10-16 

Ergosterol    0.34 

Table 4. P values, obtained by Rank-Sum tests, of the hypothesis that the median of the noise residuals 

of two modules is equal.   

 

These results demonstrate the significance of module affiliation in determining the 

noise residuals. We also tested the correlation of the genes average of noise residuals 

and other genetic and genomic properties: 

 Chromatin properties such as nucleosome occupancy, acetylation and 

methylation, taken from pokholok et al.(33) and from sequence-based 

prediction of nucleosome occupancy (Eran Segal, personal communication). 

 Chromosomal location – chromosome affiliation and distance from the 

centromers and the telomers. 

 Connectivity in the protein-protein interaction graph, taken from von Mering 

et al.(34) 

 Predicted expression level based on tRNA adaptation index – in S. cerevisia 

and across eight of the ascomycotic species taken from Orna Man (personal 

communication) and from dos reis et al.(35) 

 Number of promoter motifs regulating each gene – experimental, taken from 

Harbison et al. and computational, taken from Kafri et al.(36) and from Michal 

Lapidot (personal communication)  

 Phylogenetic distance of each gene from S. cerevisiae to the last common 

ancestor with Candida glabrata, taken from Amir Mitchell (personal 

communication) 

 Expression divergence for each genes across several yeast species, taken from 

Itai Tirosh (personal communication) 

 Presence of TATA motif in the promoter, taken from Basehoar et al.(37) 

 Fitness of the gene deleted strain, taken from Steinmetz et al.(38) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&term=%22von+Mering+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&term=%22von+Mering+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&term=%22Basehoar+AD%22%5BAuthor%5D
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 mRNA decay rate, taken from Wang et al.(32) 

 

In all those case no correlation could be established. This may be attributed to the 

relatively small number of genes analyzed. Examining correlation is even more 

problematic in our data set because of the large effect of module affiliation on noise 

residuals – the correlations should be checked separately in each module to avoid 

module affiliation acting as a confounding variable in a specific correlation found. 

One example to the above issue is the correlation found between the existence of 

TATA sequence in a promoter of a gene and its high noise residual. It turns out that 

all, but one, of our stress genes contain that sequence while only 6 genes from other 

modules include it, therefore creating a biased and misleading correlation. Another 

example is the finding that dispensable genes have much higher noise residuals than 

essential ones. However, this trend originates from the fact the all our chosen stress 

genes were dispensable, while all, but one, of our chosen proteasome genes were 

essential. 

 

Gene clustering and PCA using the noise residuals  

An alternative way of measuring the effect of module affiliation on the noise residual 

is by checking whether the genes' clustering using those values is consistent with the 

module affiliation. First, we preformed a PCA on the relative noise residuals, as 

shown in figure 14. 

 

Module affiliation seems to have a significant effect on the values of the second 

principal component. Modules are ordered linearly, on this component axis, according 

to induction by the stress conditions – increasing values correspond to increased 

induction. However, the noise residuals seem to have a non-module-related 

component(s) which is responsible for the overlap between the regimes of each 

module. The module mixing effect of this component is visual when plotting the 

hierarchical dendogram of the genes, using the average linkage method, as shown in 

figure 15. The basic module affiliation is clearly visible, but the clustering reveals 

large distortions from the module-related structure. 
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Figure 14. PCA of the genes using the relative noise residuals values. Color coding as in figure 13. The 

first two principal components capture 79% of the overall variance. 

 

The lesser effect of module affiliation on noise residuals, as compare to its effect on 

the mean abundance, can be seen in another two factors. Using Gasch et al. data 

set(30) and the relative noise residuals we get a non-significant CorrBtCorrs (see 

above) of 0.13 (or 0.14 when using the noise residuals). CorrBtCorrs=0.2 when using 

the relative mean values and the relative noise residuals values.  

 

In addition, there is a small DiffCorrs (see above) when using the relative noise 

residuals: 0.16. This DiffCorrs value is much smaller than the ones found using Gasch 

et al. mRNA data or the relative protein abundance. However, randomizing the 

module affiliation labels for the genes, for 1,000,000 times, and calculating DiffCorrs 

did not give a value higher than 0.15, indicating that after all the module affiliation 

has a dominants contribution to the noise residuals. 
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Figure 15: Dendogram of the genes using Pearson Correlation on the relative noise residuals values 

and clustering by average linkage method. Numbers represent the internal numbering of genes (see 

Methods Color coding as in figure 13. The bottom panel shows the values of each gene in the last time 

point of each condition, normalized to all the values of that gene.  
 

Noise change across time points 

After establishing the dominant role of module affiliation in determining noise 

residuals we can ask whether the noise residuals of different modules behave 

differently in time, when they are perturbed with different conditions. The changes in 

mean and residuals, across time, for all modules and conditions are given in figure 16, 

after normalizing to the first time point. 

 

The pattern of mean and noise residuals in time is very diverse. For some conditions, 

such as heat-shock, nitrogen depletion, glycerol and ethanol all modules seem to share 

the same general noise residual pattern, although having significantly different mean 

values pattern. Other conditions, as diamide, MMS and clotrimazole, create different, 

or even opposite, noise residuals patterns, for different modules. The variety of 

behaviors in time presented by these conditions emphasizes the fact that the response 

of the mean of the protein abundance itself is not sufficiently describing the full effect 

of a perturbation – the behavior of noise in time provides independent information on 
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each condition. In the nitrogen depletion and stationary condition the noise residuals, 

of all modules, seem not to change significantly. 
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Figure 16: The time points' average of the normalized mean and noise residuals, given in error-bars. 

Modules are colored as in figure 13. 

 

The overall patterns of the means fit the well known behaviors of the different 

modules. In the stress conditions the stress module is highly induced, the proteasome 

is mildly induced, the ergosterol in mildly repressed and the rRNA processing is 

highly repressed. In the stress relaxation conditions the modules display the opposite 

patterns.  
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Conditions clustering using the mean values and the noise residuals 

Clustering the conditions, as we did with the genes, can be very informative for the 

understanding of their influence on the cell. Using the relative mean values we created 

the dendogram shown in figure 17. 
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Figure 17: Dendogram of the time points and conditions using Pearson Correlation on the relative 

mean values and clustering by average linkage method. Numbers represent the time point – starting 

from 2 because all values are compared to the first time point (see Methods). Leafs color corresponds 

to the condition as written, in abbreviations (see Methods), in the upper left part of the graph. The lines 

color corresponds to the three clustered seen, see detailed in text.   

 

As seen, all the stress relaxation conditions are clustered together (black cluster), and 

sub-cluster to the specific conditions. The pink cluster corresponds to all the second 

time points of the stress conditions together with the Clotrimazole condition. This 

cluster represents the fact that no significant changed occurred in the first 30 minutes. 

The Clotrimazole is clustered with this 'null change' cluster because there was no 

significant protein abundance change in any of the genes in this condition. The stress 

genes, from time point 3 and above are clustered together (green cluster) and sub-

cluster to their conditions. Overall this clustering is according to expectation, divides 

the condition accurately and teaches us that 30 minutes are not enough for protein 

abundance significant change in response to environmental perturbations. Only from 
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the third time point, which corresponds to one hour, there seems to be a noticeable 

effect of the condition. 

 

Using the correlation between the noise residuals we get the dendogram in figure 18. 
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Figure 18: Dendogram of the time points and conditions using Pearson Correlation on the noise values 

and clustering by average linkage method. Numbers and coloring as in figure 17.  
 

As in the clustering of the relative mean values the time points of specific conditions 

are generally clustered together. The differentiation between the stress and the stress 

relaxation conditions remains significant. The early time point's cluster seems to 

break to two sub-clusters, as the late time points, although the early ones are still 

distinct. Here again, clotrimazole seems not to produce much of noise residuals 

change.  
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Clustering of genes in conditions 

In order to get insight on the relative effect of module vs. condition affiliation we 

preformed a clustering of the genes and the conditions together. We created a list of 

38·11 vectors vG,C. Each such vector contains the five relative mean values 

corresponding to all the time points (but the first, which we used to normalize the 

relative values) of gene G in condition C. We clustered those vectors using the 

average linkage clustering methods. The dendogram we got has a strong division into 

two clusters (not shown). The separation of the vectors into those clusters is shown in 

figure 19. 
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Figure 19: Upper left. The division of the 'gene-in-condition' time points vectors to the two distinct 

clusters, using the relative mean values. Green bars – vectors that belong to the first cluster, blue bars – 

vectors that belong to the second cluster (white bars correspond to no data – experimental failures). 

Upper right. Histogram according to the genes. For each gene, the number of conditions in which its 

pattern clustered with each profile. Bottom left. Histogram according to the conditions. For each 

condition, the number of genes that their pattern clustered with each profile. Bottom right. The 

normalized and centered average profile of each cluster.  

 

As seen from the bottom right sub figure, the two clusters have unique profiles of 

change in time, one increasing, while the other decreasing. Both the module and the 

condition affiliation have an important role in determining to which cluster each 

vector will belong to. For example, stress genes tend to be enriched in the increasing 
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cluster while the decreasing cluster contains primarily ergosterol and rRNA 

processing genes. It is interesting to note the heat shock tends to produce a decreasing 

profile, in contrary to most other stress conditions (apart from the stress genes that are 

still induced under that condition). 

 

The same analysis was preformed using the noise values. Here we got five distinct 

clusters, as shown is figure 20. 
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Figure 20. Dendogram of the genes in conditions using Pearson Correlation on the relative noise 

residuals values and clustering by average linkage method. The common roots of the 5 clusters are 

marked with colored horizontal line.  
 

 The separation of the vectors into those clusters is shown in figure 21. Of the five 

clusters, three present interesting, non-overlapping profiles in time. Those profiles are 

displayed by all genes, at some conditions, and in almost all conditions, by some 

genes. Module affiliation seems to play a lesser role than condition. It is interesting to 

note that in two conditions, glycerol growth relaxation and ethanol, there is only one 

dominant noise residuals profile, which is probably indicative to the effect of that 

conditions. 
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Figure 21: Upper left. The division of the 'gene-in-condition' time points vectors to the five distinct 

clusters, using the noise values. Colors represent the cluster root in the dendogram presented in figure 

20. White bars correspond to no data. Upper right, Bottom left and Bottom right as in figure 19. 
 

Noise residuals and promoter motifs 

The importance of promoter motifs and transcription factors (TFs) for controlling the 

transcription rate and hence the mean protein abundance is well established. We 

wanted the check whether they have an influence on the noise residuals as well. Each 

of our chosen modules has few TFs binding to several of the chosen genes belonging 

to it. Table 5 summarizes those TFs/regulatory motifs (PAC and mRRPE are not yet 

known to be bound by TFs). 

 

In order to quantify the effect of those motifs on the mean and noise of the protein 

abundance we created a novel definition of expression coherence (EC). The EC score 

is a measurement of the extent to which the correlation between the set of genes 

having the motif is higher than the correlation between those genes and other, which 

do not have that motif (see Methods). The EC score was calculated for the above 

motifs using the mean, relative mean, noise residuals and relative noise residuals 

values. The results are summarized in figure 22. 
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TF 

Regulated Module 

(total genes from our 

chosen genes) 

Form our 38 analyzed genes, 

number of regulated genes form: 

The regulated module Other modules 

HSE Stress (11) 5 0 

MSN4 Stress (11) 5 0 

HSF1 Stress (11) 4 0 

MSN2 Stress (11) 5 1 

RPN4 Proteasome (8) 7 0 

HAP1 Ergosterol (9) 5 0 

PAC rRNA Processing (10) 7 0 

mRRPE rRNA Processing (10) 7 2 

   Table 5: Summary of the major TFs/regulatory motifs regulating the different modules. 
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Figure 22: EC score (see text and Methods) of the major motifs using the mean, the relative mean 

(RM), the noise residuals (NR) and the relative noise residuals (RNR) values. Lower EC score mean 

higher relative correlation of the genes containing the motif. 

 

Most motifs have better EC score for the mean values than for the noise residuals, 

which suggest that transcription regulation has less significance in determining the 

noise than in influencing the mean protein abundance. One interesting expectation is 
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mRRPE, which has lower (i.e. more significant) EC score using the noise residuals, 

although this trend does not hold using the relative noise residuals. 
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DISCUSSION 
We have tested the mean and the noise of protein abundance of 43 different S. 

cerevisiae genes, using a fused GFP reporter. The genes belong to 4 distinct 

expression modules – stress, proteasome, ergosterol and rRNA processing. The 

fluorescence distributions were obtained for 11 different environmental perturbations, 

each measured in six consecutive time points.   

 

The shapes of the fluorescence distributions present interesting patterns. We found a 

strong correlation between the mean abundance of a protein and its distribution's 

resemblance to normal or log-normal distribution. High abundant proteins are 

characterized in log-normal distributions, while low abundant ones display normal 

distributions. The origin of both types of distributions is different: normal 

distributions are usually created by the summation of random variables (the central 

limit theorem), while log-normal distribution can originate from the multiplication of 

such variables. However, there is no apparent reason for why high abundant protein 

will be a product of variables, while low abundant ones will be their summation. The 

background fluorescence displays a clear normal distribution, and its effect might play 

a non-negligible role at determining the fluorescence pattern of the proteins with the 

lowest abundance, although it is not reasonable to assume it has an effect on protein 

with mid-range and high abundance. Most stress genes are characterized with relative 

high skewness of linear fluorescence values, as compared to the skewness of genes 

from other modules and as expected by their mean expression (even mediocre express 

stress genes have a relative high skewness). This finding could indicate the existence 

of some unique, non-Gaussian, variable(s) or factor(s) influencing the expression of 

those proteins and shifting their distributions more to the log-normal pattern.         

 

The observed mean abundances of the proteins agreed both with the published mRNA 

data and with the module affiliation of the tested genes. The deviation from the 

accordance could be explained by experimental noise, originate from the relatively 

high background fluorescence, or biological mechanism such as post-transcriptional 

regulation. Much of the clustering inconsistency with the module affiliation can be 

attributed to the agglomerative hierarchical nature of the average linkage clustering 

method. Indeed, the PCA show a very nice elongated structure, on which the modules 
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are ordered consecutively in accordance with their expected reaction to stressful 

conditions (stress genes being highly induces, proteasome mildly induced, ergosterol 

mildly repressed and rRNA processing highly repressed).    

 

The observed noise in protein abundance presents several strong dependencies on the 

mean abundance, at different regimes. While the σ2/µ2~1/µ2 dependency was easy to 

decipher, as a trend that originates from the non-negligible background fluorescence, 

the others were more elusive. The σ2/µ2~1/µ dependency was consistent in all 

conditions and time points and covering the regime of the low proteins abundance 

(that were still above the background fluorescence). Our interpretation for this 

dependency as the contribution of low abundant mRNA seems to fit the data in the 

best way. However, experimental framework of previous publications found that the 

measured intrinsic noise (which includes the mRNA noise, in their experimental set-

up) has only a negligible contribution to the overall noise. This is a central 

discrepancy. This inconsistency is even more problematic if considering two works 

that showed that the dominant source of stochasticity comes from global factors. 

Raser et al.(23) demonstrated a very high correlation between the abundance of 

reporters, derived from different promoters, and Colman-Lerner et al.(20) separated 

pathway related from global factors and discovered that the latter ones have the 

primary role. Yet, our analytical analysis clearly shows that global contributors will 

not create a σ2/µ2~1/µ dependency, but rather a σ2/µ2~C dependency. A possible 

resolution of the discrepancy is that many of the published experiments were done in 

high abundant proteins, which are indeed located at the σ2/µ2~C regime that fit the 

global dominance hypothesis. However, some of the measured reporters were 

relatively low abundant, and derived from week promoters and still have low 

'intrinsic' noise. The final conclusion of this issue will have to be postponed to latter 

experiments. 

 

The σ2/µ2~C dependency that is observed for high abundant proteins may come from 

low abundant global factor. However, there is no such trivial factor, which is present 

in the right number of copies. Alternatively un-equal cell division can create the 

σ2/µ2~C dependency. The calculated partition coefficient mean and STD values that 

mach the measured global extrinsic contribution are indeed in the reasonable 
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biological range – a mean partition coefficient between 0.4 to 0.5 and a STD between 

0 to 0.1.    

 

Many genes have noise level much higher than expected by the trend lines, giving 

their mean. We termed those deviations noise residuals. The noise residuals are 

probably composed from several components; some are module related, while others 

are gene specific, such as chromatin arrangement near the gene. We have showed that 

module affiliation, although not responsible for the primary effect on the general 

trends, plays a dominant role in determining the noise residuals. Stress genes are 

highly significant noisier than others, while proteasome genes are characterized in 

small noise residuals.       

 

The most reasonable mechanism by which module affiliation affects stochasticity in 

protein abundance is the common regulators, shared by the module genes. MSN2 and 

MSN4, the common regulators of the stress module are indeed thought to be low 

abundant. MSN4, especially, is considered to be present in few dozens copies only. 

Because both those transcription factors regulate hundreds of genes, there are too little 

copies of them to occupy all promoters. Hence, MSN4 and MSN2 might 'jump' from 

one promoter to other, creating an additional noise in gene expression.  

 

Other factors that can be important to the module related noise could be a shared 

selective pressure applied to all the module genes. For example, Fraser et al.(25) 

hypothesized that essential genes and genes that work in a complex will be 

characterized in low noise level. Our data do support those evolutionary 

considerations – proteasome genes, which work in a complex and are all, but on, 

essential are the with smallest noise residuals, while the stress genes, which are all 

dispensable, have the highest noise residuals. Two of the stress genes: TPS1 and 

TPS2 (circled in figure 13) also work in a complex. Their noise residuals (8 and 9.4, 

respectively) are among the less noisy half of the stress genes, thought they are not 

with the lowest noise residuals among them. An intriguing possibility is that for some 

genes (as the stress genes), in some conditions, enhanced noise may even be 

beneficial at the population level. It remains to be understood whether the enhanced 

noise observed here in stress genes could have been selected for by evolution or is it a 

mere result of lack of constraint on the expression of such genes. 
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Because module affiliation indicates, in many situations, the upstream motifs 

composition of a gene, we tried to correlate their presence with the noise residuals. 

Generally, the effect of motifs on noise residuals coherence was much less profound 

than there effect of protein abundance coherence. One rRNA processing motif, 

mRRPE, seems to work better on noise residuals than on mean abundance, but this 

finding can be a result of the noisy data originating from the small number of genes 

the motif is regulating. It will be interesting to try and seek out noise specialized 

motifs, but it will require much larger gene set.       

 

Chromatin remodeling was expected to play a significant role in determining the noise 

level, as indicated by several works(21-23). However, we did not find any indications 

that strengthen that hypothesis when we used both experimental and computational 

data regarding chromatin properties. Even if this effect do exists, it was overshadowed 

by the module affiliation. A nice example to this pattern is given by the genes HXK1, 

RPN12 and PRE4. The distance between the stress gene HXK1 to the proteasome 

genes RPN12 and PRE4 is only 263 and 5183 base pairs, respectively; so it is 

reasonable they share roughly the same chromatin properties. Yet, HXK1 is one of the 

highly fluctuating proteins, while RPN12 and PRE4 have very small noise residuals. 

It is possible that having more genes to analyze would reveal a correlation that is 

hidden in the relatively small gene set, comprising our current research. 

               

Clustering the time points of the different conditions according the mean abundance 

of the noise residuals reveals several patterns. First, a clear separation is observed 

between the stress conditions and the stress relaxation ones. Second, the clustering 

together of first time points of all conditions, for both mean and noise residuals 

values, is an indication that a significant genetic response to perturbations does not 

occur in the first 30 minutes of the experiment. Lastly, one condition, Clotrimazole, 

cluster together with the first time points, which is a sign that it has only minor 

influence on protein abundance – both mean and noise.     

 

Analytical calculations, together with some experimental works have claimed that 

noise level should arise when the protein level is not in its steady state(s). The protein 

abundance in our experiments can be viewed as a system that is going through a 
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disruption – leaving an old steady state and stabilizing on a new one. Therefore we 

had expected the average profile of noise level across time to have an inverted U 

shape – initially noise will increase, which corresponds to exiting the first steady 

state, and than it will decrease, after reaching the second steady state. Fitting the noise 

data to the mean abundance, from all the genes, for each time point of each condition 

showed no significant change of the trend line between early and late time points. 

Moreover, the noise residuals do not have single response pattern to perturbations. On 

the contrary, the response pattern changed dramatically both between the different 

modules and across the conditions. The entire possible patterns spectrum was 

observed – monotonically decreasing residuals, monotonic increasing residual, U-

shape behavior, inverted-U-shape behavior and inconsistent pattern. This finding is 

even more interesting because, in most cases, there was a pattern consistency among 

genes of the same module, in the same condition. High consistency patterns within 

condition and module, but very low one across conditions or modules is indeed a non 

trivial finding. More research effort should be invested in to this direction in the 

future. 
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