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Abstract 

I investigated the misincorporation of amino acids during translation errors in human tissues. 

Using a bioinformatics approach, I compared the pattern of translation errors in humans to 

those in other organisms and found differences, indicating that the pattern of mistranslation is 

unique to each organism. 

Furthermore, I observed that there are differences in the rate and types of substitutions 

between different tissues, suggesting that mistranslation is not a uniform process in the human 

body. However, I also discovered that proteins carrying errors tend to appear with errors in 

different tissues, indicating that specific factors contribute to the occurrence of mistranslation 

in these proteins, and that mistranslation is not a random process. 

Consistent with previous research, I found that mistranslation tends to occur in less conserved 

parts of proteins across species, suggesting that there may be evolutionary pressures that allow 

for the occurrence of mistranslation without negatively impacting protein function. 

Finally, I also aimed to create multi-strain RNA vaccine to target multiple variants of the virus 

using synonymous mutations to direct for specific amino acids substitutions to occur and 

activate the immune system against more than one virus strain. This goal still requires further 

development, but I did discover amino acid substitution in RNA vaccine protein product in 

model human cells. 
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Introduction 

Protein translation is a fundamental process for all living organisms and it plays a crucial role in 

maintaining all cellular functions. This process involves the interaction of transfer RNA (tRNA) 

molecules with ribosomes to produce a polypeptide chain according to the genetic code. 

However, despite the specificity of the genetic code, errors can occur during the translation 

process, resulting in the incorporation of an incorrect amino acid. The phenomenon of codons 

being occasionally translated with a different amino acid than that specified by the codon has 

been previously observed and characterized in researches1–3, including systematic research in 

Escherichia coli (E. Coli) in our laboratory4. Interestingly, this research has shown that different 

codons may have varying tendencies to be translated wrongly to different amino acids, and that 

these substitutions are more frequent in non-conserved regions of proteins. This observation 

raises important questions about the nature of these substitutions and whether they result only 

in deleterious effects on cells or if they may provide an advantage. At the heart of this question 

is the trade-off between the cost of proofreading and the potential benefit of tolerating these 

errors. It is possible that these substitutions are simply the result of errors, and the cell 

tolerates them because the cost of proofreading is too high. Alternatively, it could be a directed 

process that provides the cell with an advantage in specific contexts, such as under stress 

conditions as was occasionally demonstrated5–8. 

Previous studies showed that translation errors occur much more frequently than mutations or 

errors in transcription. Ernest et al. was the first to systematically measure error rate across all 

E. coli proteins. The values he measured varied between 10-3-10-4, i.e. one mis-incorporation for 

1,000-10,000 amino acids, other estimations for translation error rate were conducted over 

specific codons or proteins, using different methods and across species. Overall, translation 

error rate varies between 10−3-5×10-6 for all mentioned variables1,3,9,10. 

As mentioned before, codons, also for same amino acid, may have different tendency to result 

in translation error toward each amino acid1. It has been shown that even the same codon 

within the same open reading frame (ORF) can have a different tendency to result in non-
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cognate amino acid11. This hints that the chemical properties of the codon and its surroundings 

can influence the frequency and the destination of the translation error.  

The main objective of this study is to enhance our comprehension of translational errors and 

investigate their occurrence within the human context. To achieve this goal, I examined Liquid 

Chromatography-Mass Spectrometry (LC-MS) data from 29 diverse human tissues that were 

obtained from the Human Proteome Atlas (HPA)12. My laboratory's tools were utilized, with 

adjustments made to accommodate human data, and new branches of the pipeline were 

created to analyze more portions of the data. However, I faced difficulties when trying to apply 

the pipeline designed for E. coli to human data. A significant challenge arose from the fact that 

human cells are diploid (except for the germ line cells, which were not analyzed here). As a 

result, mutations can be detected as translational errors because reference proteomes do not 

account for these mutations. To resolve this, I compared the translational errors discovered to 

mutations identified in the same sample to estimate the proportion of results that were due to 

mutations. This allowed me to estimate the frequency and characterize the pattern of 

translation errors and compare them to what is known in literature. I also explored whether 

these errors occurred randomly or in specific proteins and sites. To do this, I examined the 

identity of proteins with translation errors across different tissues and evaluated the 

conservation of positions with translation errors. The findings suggested that certain proteins 

and sites were more prone to errors than others. 

In a more applied aspect of the project, I examined the possibility to harness knowledge on 

translation error patters to design a new version of the SARS-CoV-2vaccine that will provide 

immunity towards several strains of the virus at once. Specifically, I was aiming to design a 

single sequence of a vaccine that can be translated to several Spike protein variants with 

substitutions similar to virus mutations can cover many variants of the virus at once. The 

emergence of the COVID-19 pandemic caused by the SARS-CoV-2 virus and the subsequent 

development of a vaccine, which uses mRNA coding for the virus Spike protein, presented a 

unique opportunity for investigation. One of the characteristics of the SARS-CoV-2 is it has 

variants of concern (VOC), meaning potentially dangerous mutants of the virus. This could make 

it harder to target the virus with a single vaccine.  
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In past research1 it was found that different codons can have different rates of translation 

errors, which result in different amino acids being incorporated into the final protein. By 

designing the RNA sequence to include synonymous mutations for codons with specific profile 

of translation errors, the resulting protein could potentially contain multiple variants of the 

virus, exposing the immune system to a wider range of potential mutations that could arise in 

the future. By introducing these potential mutations, the mRNA vaccine could offer better 

protection against a wider range of viral variants, improving its overall efficacy against the virus.  

Here I focused on mRNA vaccines for COVID-19. Two different vaccines were developed 

separately by Pfizer-BioNTech and Moderna, and they work by introducing the genetic 

sequence for the spike protein of SARS-CoV-2 into the body, which then instructs the cells to 

produce the protein. This triggers an immune response, where the immune systems create 

antibodies against the spike protein, preparing it to fight against the actual virus upon future 

exposure.  

Peptidomics is a powerful tool for analyzing the presentation of peptides (short chains of amino 

acids) on major histocompatibility complex (MHC) molecules, which are central to the immune 

response. When a virus infects a human cell, its proteins are often processed into peptides and 

presented on the surface of the cell, bound to MHC molecules. These peptide-MHC complexes 

serve as the target of the immune system, which recognizes them as foreign and generates an 

immune response. 

In the context of a vaccine, the goal is to elicit an immune response to a specific viral peptide. 

By using peptidomics to analyze the presentation of viral peptides on MHC molecules, I could 

gain insight into which peptides are likely to be most immunogenic and therefore effective 

targets for a vaccine. In this case, detecting translation errors in peptides presented on the 

MHC can help identify peptides generated with translation errors. By targeting these peptides, 

a vaccine may be able to elicit a more robust immune response that covers a wider range of 

viral strains. 
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Goals 

 Comprehensively explore the landscape of translation errors in humans by identifying 

the specific types of amino acid substitutions that occur during translation, their 

frequency, and their distribution across different tissues. 

 Compare the patterns of translation errors observed in humans with those seen in other 

organisms to gain insight into the evolutionary conservation of translational fidelity. 

 Determine whether translation errors occur randomly throughout the proteome or if 

there are specific proteins and sites that are more susceptible to misincorporation. 

 Use predictions of translation errors to design RNA vaccine that could target multiple 

strains of SARS-CoV-2, enhance the immune system response to various targets, and 

even the immune system response power. 
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Results 

Quantifying translation errors in human and comparing to other organisms 

I analyzed proteomics data (see Methods) from 29 different human tissues that were taken 

from different healthy participants12. I found 10,375 candidates for translation errors across all 

the tissues studied. Out of these candidates, I was able to identify 5,510 unique instances of 

translation errors, meaning that I found unique instances of codon to amino acid substitution 

within specific positions of the proteins in question. 

Quantification of proteins in LC-MS 

Protein quantification in LC-MS poses significant challenges due to several factors. The limited 

dynamic range of LC-MS makes it difficult to detect proteins present at low or high 

concentrations accurately. Additionally, proteins ionize differently depending on their 

physicochemical properties, leading to varying ionization efficiencies that can affect 

quantification. Co-elution of proteins during chromatographic separation, complex mixtures of 

biological samples, and post-translational modifications further complicate the quantification of 

individual proteins. These challenges make it difficult to compare protein abundance between 

different samples accurately in label free quantification (LFQ)13. 

To quantify errors in proteins and understand what their abundance is, I wanted to ask first 

which way is best to quantify proteins. Spectral counting and intensity-based approaches are 

two label-free quantification methods used in LC-MS to estimate the abundance of proteins in a 

sample. Spectral counting estimates protein abundance by counting the number of MS/MS 

spectra matching peptides from a protein, while intensity-based approaches use the intensity 

of the MS signal for identified peptides. To test which one fits better to our pipeline, I ran the 

pipeline on proteomics raw files from A375 cells from Yardena Samuels’ Lab. Then for each 

peptide detected I added annotation whether it is closer to C or N terminal of the protein. If 

there are no biases, the amount of C terminal of a protein should be equal to the amount of N 

terminal. I then chose only peptides that were uniquely assigned to one protein only – 695 

proteins in total. Then for each terminus I estimated the amount of protein by different 

approaches: spectra count, max intensity, or sum intensity. For spectra count, I counted the 
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number of spectra mapped to each protein terminus. For max intensity I used the value of 

intensity of the spectra with the highest intensity. The rationale is that if peptide were found 

with specific intensity, it could be underestimated but not overestimated, so the peptide with 

the highest intensity would be the best estimator of the protein's abundance. Lastly, sum of 

intensities of all peptides would give an estimator that incorporates both the intensities and the 

count of spectra per terminus of protein. 

Out of the three approaches, quantifying by spectra showed the best match between the 

termini of the protein, with slope coefficient of 0.6, and Pearson correlation of 0.59. The sum of 

the intensities had worse correlation between the termini, but visually it seems that it is more 

accurate the higher the values are.  

   

Figure 1: Counting spectra of protein is a better way to quantify than taking the sum or the max of intensities. 
Regression plots show each protein as a dot, with the values of spectra count (A), sum intensities (B) or max 
intensities (C) for N and C terminus of the protein in axes X and Y respectively. 695 proteins in total in each plot. 
Blue line is the linear regression model fit. Black line is x=y line. 

Keeping this result in mind, I still used different approaches to quantify translation errors. 

DP/BP intensity ratios of peptides with translation errors are different than in other organisms 

An estimator for the substitution rate for each translation error detected is the ratio of intensity 

of base peptide (BP) and the intensity of the dependent peptide (DP) that can be written as 

IntensityDP/IntensityBP. This estimator can be biased because of potential difference in 

ionization efficiency between peptides that are composed of different amino acids. The 

ionization efficiency of a peptide can vary depending on its composition, and differences in 

ionization efficiency can range from as much as one order of magnitude between completely 

different tryptic peptides14 to less for peptides that differ by a single amino acid. This difference 

in ionization efficiency can impact the accuracy of the estimator for the substitution rate by 

(A) (B) (C) 
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affecting the intensity of the peptides in question. For example, if the ionization efficiency of a 

peptide containing a translation error is significantly lower than that of the corresponding 

peptide without the error, the estimator will underestimate the frequency of the error in the 

population. However, we considered this bias when we analyzed the results. 

I used proteomics data from various sources to compare the translation error rate between E. 

coli4, S. pombe15, 2 different strains of S. cerevisiae – BY474115 and SK116 – and substitutions 

observed in all 29 human tissues – see Figure 2. See Methods for intensity ratios calculation.  

The distribution of the DP/BP intensity ratio in human is bimodal and has the highest mode 

among all species studied. The observed ratio of DP to BP intensity in many human translation 

errors is slightly lower than 1, which is highly unusual based on current knowledge of 

translation errors and raises suspicion. This may be due to variations between alleles caused by 

mismatch SNPs or mutations. The second highest mode is observed in diploid yeast, which also 

support this explanation. Ionization efficiency cannot fully explain the orders of magnitude 

difference between humans and haploid organisms, nor can it account for why the high peak in 

the human data is slightly below 1. Additionally, there is no apparent reason ionization 

efficiency would vary between humans and other species, or why the DP intensity is 

consistently lower than the BP intensity. 

Figure 2: Distributions of the DP/BP 
intensity ratio, as measured by 
proteomics data, across E. coli, S. 
pombe, different strains of S. 
cerevisiae, and 29 human tissues. The 
x-axis represents each source, while 
the y-axis shows the frequency of each 
log10 ratio in the dataset. 
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To determine if the substantial increase in human data is due heterozygosity in homologous 

chromosomes, I examined the coincidence of translation error sites with SNP sites. The list of 

SNPs found in tonsil tissue obtained through exome sequencing, which was obtained from the 

same source as the mass spectrometry (MS) data, was published alongside the MS data (there 

was no such data on SNPs for the other 28 tissues and organs). 

 

Out of 9,847 mismatched SNP sites, 50 coincided with translation errors detected by our 

pipeline in both position and resulting amino acid change (Figure 3).  In the original analysis of 

this data, the detected SNPs were included in the reference proteome, and 724 of these SNPs 

were identified through proteomics. The discrepancy in detection rates is due to the "open 

search" approach employed in our analysis, which enables the identification of any substitution 

at any position but increases the false discovery rate (FDR) compared to the "close search" 

method that targets specific substitutions. 

The difference between the two distributions is significant, as indicated by the Mann-Whitney 

U test (p-value = 1.7e-07). Even after filtering for SNPs, the remaining translation error 

candidates still show a bimodal distribution with a high median value. 

To see if wider SNPs annotations would explain the SNPs unseen with the annotation of SNPs 

from exome sequencing, I looked also on the overlap between the translation errors candidates 

to all SNPs in dbSNP17 (Figure 4). Another use of this approach is that it can be applied to all 

tissues and samples from humans and would not require matched exome sequencing. 

Figure 3: Substitutions in SNP sites have a 
higher DB/BP intensity ratio than all other 
substitutions. Y axis is log10 DP/BP intensity 
ratio values in tonsil tissue. Blue: substitutions 
that were identified and overlapped with SNPs 
found in exome sequencing of the same 
individual. Orange: all other substitutions 
identified in the same individual. P –value by 
Mann–Whitney U test, ****: p <= 1.00e-04 

 



   
 

 
 

13 

 

Figure 4: Substitutions in SNP sites according to dbSNP 
have a higher DB/BP intensity ratio than all other 
substitutions, but not as significant as for SNPs detected in 
exome sequencing of the same sample. Y axis is log10 
DP/BP intensity ratio values in tonsil tissue. Blue: 
substitutions that were identified and overlapped with 
from dbSNP. Orange: all other substitutions identified in 
the same individual. P –value by Mann–Whitney U test, *: 
1.00e-02 < p <= 5.00e-02 

Here too, the DB/BP intensity ratio was higher among the sites that overlap with SNPs, 

suggesting again that some of the high ratios might result from heterozygosity and not from 

translation errors. Yet, in this analysis the difference between the distributions (p-value: 4.1e-

02) is less significant. There are less matches between the MS observed substitutions to the 

SNP data than in the date that was acquired from the exome sequencing. Because it poorly 

explains the high error rate and not necessarily means that a heterozygous SNP was in the 

donor DNA sequence, I decided to keep the substitutions that overlap with SNPs from dbSNP 

for further translation error related analysis, keeping in mind that some percent of the data is 

from allele’s variation. 

 

Figure 5: dependent peptide mass difference (DPMD), which is (MassDP – MassBP), shows different trends for 
separate groups of substitutions in tonsil. Blue: substitutions that overlap with SNPs found in exome. All the rest of 
the violins do not include those sites. Orange and green: substitutions with low and high DP/BP intensity ratios, 
respectively. Red and violet: NeCE (near cognate) and NoCE substitutions, respectively. One substitution could be 
assign to more than one group in the plot (but SNPs). P –value by Mann–Whitney U test, **: 1.00e-03 < p <= 1.00e-
02, ***: 1.00e-04 < p <= 1.00e-03. Pairs that were not significantly different from each other were not marked. 
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The use of SNP annotations from exome sequencing of the matching sample was expected to 

support the theory that the high peak of DP/BP intensity was caused by allele variation and to 

eliminate those substitutions from the data. However, the distribution of mass differences 

(Mass DP – Mass BP) for SNPs that were identified as translation errors was found to be 

significantly different (p-value = 2.5e-03) from substitutions with low intensity ratios but not 

from substitutions with high ratios (p-value = 0.16), which may suggest that some mutations or 

SNPs were not detected through exome sequencing, see Figure 5. 

Another explanation for the high intensity ratios is that the substitutions are caused by 

transcription errors, but in this scenario the phenomenon would be less prevalent in human 

humans than in bacteria18,19. 

 

Figure 6: Distribution of log10 DP/BP intensity ratio values in tonsil tissue is different for NeCE, NoCE and 
substitutions sites that overlaps with SNPs. Blue: substitutions that were identified and overlapped with SNPs from 
exome sequencing. Orange and green: NeCE and NoCE substitutions that were identified in the same individual, 
not including substitutions that overlapped with SNPs.  P –value by Mann–Whitney U test, *: 1.00e-02 < p <= 
5.00e-02 

Another method of categorizing translation errors is to differentiate between near-cognate and 

non-cognate substitutions. Our pipeline uses this approach to broadly distinguish between 

errors caused by a mismatch between codon and anti-codon during translation and those 

resulting from misloading errors by tRNA aaRS. Mordret et al. made an assumption that 

substitutions between near-cognate (NeCE) codons results from mispairing while non-cognate 

(NoCE) results from misleading. Mutations leading to amino acid changes would fall under the 

near-cognate category. The lack of significant differences in the distribution of mass shifts 
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between near-cognate and SNPs is therefore reassuring. The high similarity between 

substitutions with high DP/BP intensity ratios to NeCE indicates that NeCE substitutions have 

high intensity ratios. In Figure 6, it does seem that there is a lot of high DP/BP intensity ratios in 

the NeCE distribution, but the NoCE distribution – although it is significantly different - also 

have it. Furthermore, NoCE distribution is not unimodal, therefore indicating that the 

substitutions with high intensities ratio are not SNPs that were missed. 

 

Figure 7: Shorter peptides tend to have larger DP/BP intensity ratio. The scatterplot shows DP/BP Intensity ratios 
of translation errors (Y axis) for each peptide length (X axis). Substitutions that overlapped with SNPs are marked in 
orange. 

The results of plotting the intensity ratio of each translation error candidate as a function of 

peptide length (Figure 7) support the idea that there is some bias from ionization efficiency, as 

peptides of length 7 and 8 amino acids show the highest ratios and avoid low ratios. This may 

suggest that additional factors, such as differences in the chemical properties of the peptides, 

are also contributing to the observed intensity ratios. However, the observation of high 

intensity ratios for translation error candidates in all peptide lengths suggests that this bias 

does not fully explain the bimodal distribution of intensity ratios. Additionally, the absence of 
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SNPs in small peptides may indicate a measurement bias, further highlighting the need to 

consider potential sources of error when interpreting the results.   

 

Figure 8: DP/BP intensity ratio distribution is different for different substitution types. DP/BP intensity ratio for 
each substitution, 20 most frequent substitutions are plotted. The graph displays the distribution of the DP/BP 
intensity ratios for each substitution. 

Analysis of the DP/BP intensity ratio for each type of substitution revealed that some 

substitutions had a high error rate, centered around 0, while others had values centered on 10-

2. The most frequent substitutions, which accounted for 60% of the total substitutions 

observed, were plotted in Figure 8. The substitutions C to S, C to A, and W to D exhibited 

unimodal and low error rate, while T to S, A to T, K to R, and I to V were centered on a very high 

intensity ratio, that would correspond to non-logical error rate of close to 0.5. Notably, A>T, 

T>S, and I>V were the most frequent SNPs observed in the tonsil, accounting for 14 out of 44 

SNPs that overlapped with the translation errors detected. This suggests a possible genetic 

basis for these substitutions. 

Considering what I discovered here, I decided to do further analysis separately for all 

translation errors candidates and for TEL (Translation Error Low intensity ratio). I set the DP/BP 

intensities ratio threshold for TEL to be 1/100, for getting most of the lower peak (Figure 9). In 
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the research on E. coli the median intensity ratio was closer to 1/1000, but in Figure 12 it is 

already visible that that is not the case in all organisms, and particularly eukaryotes may have a 

higher rate of translation error.  

 

Figure 9: Violin plot of 3761 DP/BP intensity ratios found in human tissues. Dashed line separate between TEH – 
above the line – and TEL – below the line. 

Correlation of expression to DP/BP intensities ratio 

In previous work in E. coli it was shown that there is a negative correlation between DP/BP 

intensities ratios and protein or mRNA expression levels. I calculated and compared the mean 

DP/BP intensities and the sum of BP intensity for each protein in each tissue seperatly. The 

correlation between BP intensity to the ratio of DP/BP intensities is negative and high with 

Pearson coefficient of -0.67 (p-value: 10−230, Figure 10A). As BP intensity is the denominator of 

DP/BP intensities, it is not very surprising. 

To reduce this bias, I used the number of peptides assigned to each protein divided by the 

length of the protein as an estimator for protein expression and calculated the partial 

correlation between expression and intensity ratio with control for BP intensity. Most of the 

correlation got lost with the partial correlation, but it is still significant 

(rDP

BP
intensities,peptide count

= −0.22 with  p −

value: 10−21, rDP

BP
intensities,peptide count|BP intensity

= −0.06 with p − value: 0.01 , Figure 10B). 

The same was demonstrated with gene RNA expression data. Each of the tissue samples that 

were analyzed in LC-MS was also measured for RNA expression of genes. I used this data by 

comparing the RNA expression of each gene in each tissue with the mean DP/BP ratio in the 
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same protein in this tissue. Also here I got significant correlation and partial correlation. 

(rDP

BP
intensities,RNA expression

= −0.26 with  p −

value: 10−29, rDP

BP
intensities,RNA expression|BP intensity

= −0.07 with p − value: 10−3 , Figure 10C) 

I saw the same trend of a negative correlation between error rates per protein-to-protein 

expression level when I used the tRNA adaptation index (tAI) as a proxy for protein expression. 

tAI is a measure used to predict the efficiency of translation of a mRNA sequence into a protein, 

based on the abundance and isoacceptor identity of tRNA molecules in the cell20. tAI has been 

shown to correlate with the protein expression levels and with mRNA expression levels in 

various organisms and therefore it can also be used as an estimator for protein abundance21,22. 

I calculated tAI using the tRNA copy number of humans. The results were similar to what I got 

for RNA expression (𝑟𝐷𝑃

𝐵𝑃
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠,𝑡𝐴𝐼

= −0.27 𝑤𝑖𝑡ℎ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 10−32,

𝑟𝐷𝑃

𝐵𝑃
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠,𝑡𝐴𝐼|𝐵𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

= −0.06 with p − value: 10−3, Figure 10D). 

This could indicate that proteins are more expressed less prone to have errors, this even though 

the pipeline is based on LC-MS results and therefore will be biased towards detecting 

substitutions in proteins that are expressed more – and therefore their base peptides would be 

detected more in LC-MS. 

(A)                        (B)    (C)     (D)  

   
Figure 10: Significant correlation between estimators of protein expression to DP/BP intensity ratio. The 
scatterplots compares DP/BP intensity ratio (y-axis) to different estimators of protein expression (x-axis). Each 
dot represent the values of the peptide with the maximum intensity from protein that has at least one error. 
Number of proteins: 1,526. (A) Scatterplot of DP/BP intensity ratio compared to BP intensity. (B) Scatterplot of 
DP/BP intensity ratio compared to peptide count (C) Scatterplot of DP/BP intensity ratio compared to RNA 
expression of the protein in the same tissue. (D) Scatterplot of DP/BP intensity ratio compared to tAI calculated 
over copy number of tRNAs and RNA expression from each tissue. 
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Comparing pattern of substitutions between tissues and organisms 

Another way to quantify the amount of translation errors is to count how many different 

translation errors were detected – meaning translation errors in unique site in a protein that 

occurred towards distinct amino acid. As in Mordret et al. 2019, I made heat map matrix of 

substitution identifications – see Figure 11. The substitution identification matrix is comprised 

of 1,884 entries for E. coli, 249 for S. cerevisiae, and 5,510 entries for humans. 

The analysis shows that the types of translation errors in humans are more diverse compared to 

E. coli and S. cerevisiae. This could be attributed to the larger and more diverse dataset of 

human tissues, which includes several cell types for each tissue and 29 different tissues, as 

opposed to the smaller and more homogeneous dataset of E. coli. 

As noted in Mordret et al. in 2019, one of the most prevalent translation errors in yeast 

(A)  (B) (C)   

 Figure 11: The substitution identification matrix for E. coli (A), S. cerevisiae (B), and 29 tissues from humans (C). Each entry 
represents a unique translation error, indicating the codon that was mistranslated into a specific amino acid in a particular 
site in the coding sequence. The color indicates log10 of how many times this translation error was found. Grey cells denote 
cognate amino acids or translation errors that have the same mass as known PTMs, while blue dots within the cells indicate 
near-cognate substitutions. 
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involves the conversion of cysteine to alanine, from both codons of cys. However, these 

substitutions are not observed in E. coli. This observation was explained by Sun et al. (2016) by 

demonstrating that the eukaryotic alanyl-tRNA synthetase (AlaRS) tends to mischarge tRNACys 

with alanine, while prokaryotic AlaRS does not exhibit this tendency. Consistently with that, we 

see those substitutions in human as well. 

Due to the high diversity of translation errors in humans, it is noticeable that the codon rows 

for arginine and lysine have fewer entries compared to other amino acids. This trend is 

consistent across the three organisms studied. The relatively empty rows of arginine and lysine 

codons observed in both organisms are likely due to a “blind spot” in our detection pipeline. 

The pipeline assumes trypsin digestion during the MS preparation, which is an enzyme that 

cleaves after every arginine or lysine. The algorithm used to detect peptides in the MS data 

looks for peptides that end with K or R. If a substitution occurs in those amino acids, it would be 

difficult for the algorithm to detect it. The algorithm can tolerate some miscleavage events, but 

it would be challenging to find both base and dependent peptides in those cases.  

High correlation error patterns in different tissues but not between the organisms 

I created vectors of translation errors pattern, where each element represents the number of 

different positions that were observed with the same substitution type – meaning specific 

codon to specific amino acid. Then I computed Pearson, Spearman correlation and Jaccard 

score between each pair of samples (here only Spearman is shown, Figure 12).  

Data from various sources, including publications 2,4,6,11, our own experiments, and 

collaborations with Yardena Samuels Lab (A375 cells), were compiled for analysis. By their 

statistical properties, Pearson correlation tends to emphasize the similarity of values, including 

the influence of extreme values, while Jaccard score emphasizes the agreement of patterns, 

with equal weight given to each entry. Spearman correlation falls somewhere in between these 

two measures, as it is less influenced by extreme values but also takes into account the 

magnitude of differences between elements in the vectors, not just their presence or absence. 

The Pearson correlations are higher in general, with mean correlation of 0.43, higher than mean 

correlation of 0.30 for Spearman. This indicates that a lot of the similarity between the matrices 

is contributed from elements in the substitution matrix that have extreme values.  Strong 
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correlations were observed between most tissues. Except for bone marrow, all the tissues 

clustered together in Spearman correlation and Jaccard score heat maps. Cell lines from human 

source and S. cerevisiae have not clustered with the human tissues. E. coli clustered with 

human tissues in the heat maps of Jaccard and Spearman but not in Pearson. High correlations 

were observed also between experiments using the same cell type, such as B cells with 

Figure 12: Correlation between tissues is high relatively to other organisms or cell lines. Each entry in the heat map 
is Spearman correlation between pair of datasets, with clustering (UPGMA method) with the Euclidean distances 
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Moderna-redesigned plasmid or Expi293F cells that was transfected either with Moderna-

redesigned or Wuhan plasmid. Interestingly, the Pearson correlation of HEK293 and A549 cells 

infected with SARS-CoV-2 to each other (r = 0.63) was higher than the correlation of each of 

them to the same cell type uninfected – (r=0.61, r=0.47 for HEK293 and A549 cells, 

respectively). The Spearman and Jaccard score showed the opposite trend but still 

demonstrated higher correlations than those observed between HEK293 infected or uninfected 

cells and Expi293F cells, which are derived from HEK293 cells. This suggests that the virus 

infection has influenced the translation error pattern. 

 Spearman correlation between substitution is higher in near cognate compared to non-cognate 

codons 

I then compared the Pearson, Spearman and Jaccard scores between NeCE and NoCE cells of 

substitution matrices of tissues only. I did the same for TEL only.   

   

 

 

Figure 13: Higher similarity between NoCE substitutions than NeCE for Pearson coefficient, but 
the opposite for Spearman and Jaccard coefficients. Boxplots shows the distribution of 
Pearson (A), Spearman (B) and Jaccard coefficients separately for all substitutions (blue), NoCE 
(light turquoise), or NeCE (orange) . ). P –value by Mann–Whitney U test, **: 1.00e-03 < p <= 
1.00e-02, ***: 1.00e-04 < p <= 1.00e-03, ****: p <= 1.00e-04. 

  

In all methods, TEL were less correlated than translation errors with all the range of DP/BP 

intensity ratios (Figure 13). This observation could imply that either translation errors that 

occur frequently are also common between tissues, or that the substitutions with high DP/BP 

intensity ratio are the outcome of a process that is more consistent in the cell than translation 

errors. It is important to note that since the tissues were obtained from different individuals, 

this consistency does not necessarily suggest genomic variation. 

(A) (B) (C) 
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The Pearson correlation displays different trends compared to Spearman correlation and 

Jaccard score. Specifically, for NoCE, there are higher values for Pearson correlation than for 

NeCE, while the opposite is true in Spearman and Jaccard scores. This suggests that for NoCE, 

the cells with extreme values tend to repeat themselves between tissues, which may be caused 

by aaRS misloading errors that occur frequently and similarly across different tissues. One 

example of such a misloading event is the substitution of cysteine with alanine, which is a 

common translation error that occurs due to aaRS misloading. On the other hand, the opposite 

trend in Spearman and Jaccard scores indicates that the types of errors resulting from ribosome 

mismatching would repeat themselves to some extent across different tissues. 

Identity of proteins errors overlaps between tissues 

To investigate whether translation errors and the tendency to make them are a characteristic of 

a protein, I analyzed the Jaccard coefficient for proteins with errors in each tissue (Figure 14). 

Surprisingly, the TEL proteins had a higher Jaccard score, ranging from 0.03 to 0.39 with an 

average of 0.18, compared to all proteins with errors which had a range of 0.05 to 0.24 and an 

average of 0.15. This is unexpected because TEL had a smaller group size (mean group size = 50) 

compared to all proteins with errors (mean group size = 229). As sample size decreases, the 

probability of overlap decreases. This observation could indicate a difference between TEL and 

Jaccard
 co

efficien
t 

Figure 14: Jaccard coefficient for 
proteins with errors for each pair 
of tissues is higher for TEL. Upper 
orange triangle is for all errors, 
lower purple triangle is for TEL 
only.  
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TEH, aside from the obvious difference in DP/BP intensity ratio. Alternatively, it may be due to 

the high correlation between DP/BP intensity ratio and BP intensity. This suggests that peptides 

from the TEL group have high BP intensity, indicating strong expression of the protein. This may 

explain why groups of TEL protein have a higher Jaccard index between them, as many house-

keeping genes are expressed highly and evenly between tissues23.  

To further ask if translation error tend to significantly reoccur in the same proteins rather than 

randomly across genes, I calculated hypergeometric cumulative distribution function (CDF) for 

each pair of tissues, as described in Methods (Figure 15). In short, I used the formula: 

𝑝(𝑘, 𝑀, 𝑛, 𝑁) =
(𝑛

𝑘)(𝑀−𝑛
𝑁−𝑘)

(𝑀
𝑁)

, with n and N is the sizes of the protein group in each tissue, k is the 

proteins that overlaps, and M is the population size. The entire population size was all the 

proteins detected in both tissues. All the results were significant: 10-136-10-8 with a mean of 10-

53 for TEL and 10-240-10-28 with a mean of 10-97 for all translation errors. This indicates that 

indeed, errors tend to happen in the same proteins. However, one challenge of this analysis is 

selecting the entire population size (M in the formula). Using all the proteins detected assumes 

that translation errors would be detected in each protein if they exist. In reality, there are 

properties of the protein that will affect the rate of detection of translation error. To address 

this issue, I calculated the hypergeometric CDF between each pair of tissues with population 

size that includes only the proteins that were detected with errors across all tissues. This 

Figure 15: hypergeometric CDF of overlap 
between tissues is mostly significant. Each 
entry color represents -log10 of 
hypergeometric CDF between each pair of 
tissues, with population size of all proteins with 
errors for the group. Gray entries are for non-
significant hypergeometric CDF. In orange 
upper triangle is for group of all translation 
errors, and in purple lower triangle it’s only for 
TEL. 
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ensures that only proteins that could have been detected with errors are considered for the p-

value. This also shows the significance of similarity between proteins with errors between 

tissues. 

Out of 406 comparisons, one pair (pituitary and esophagus) did not pass the α family-wise error 

rate (FWER) threshold that was calculated using Bonferroni correction (see Methods). This 

occurred in all translation errors data, and there were more pairs that did not pass in TEL data, 

mainly in pancreas and tonsil. In general, the significance of the overlaps of TEL were lower 

than in all translation errors, as opposed to the Jaccard score. Most of the pairs had significant 

overlaps between themselves, emphasizing that errors tend to occur at the same proteins. 

Different tissues have different rates of translation errors 

Counting translation errors by site and destination, rather than intensity enables a comparison 

between the amount of peptides that were detected with errors and those without. The 

findings revealed that the rate of translation errors varied by almost an order of magnitude 

across tissues (Figure 16A, C). It is noteworthy that the ranking of the tissues was different for 

the ratio (peptides with errors) / (peptides detected) than for the median of DP/BP intensity 

ratio that the peptides with errors received in each tissue. The ranking of the tissues was not 

kept. Also, the ranking of tissues is preserved to some low extent between all substitutions and 

TEL for the ratio of peptides, but not for the ratio of intensities.  

The equation: 
𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑟𝑟𝑜𝑟𝑠

𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠
× 𝑀𝑒𝑑𝑖𝑎𝑛(

𝐷𝑃

𝐵𝑃
 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜) can be calculated to estimate 

the error rate for cells (Figure 16B, D).  For all translation errors, this value ranges between 10-4 

for colon to 10-3 for appendix, liver and stomach. For TEL only, it ranges between 1×10-6 for 

pituitary gland, to almost 8×10-6 for fat and pancreas. Overall, it means that the range detected 

is between 10-6-10-3. This is in line with other estimations of translation error rate in the 

literature3. Reanalysis of E. coli translation errors data shows that ratio of peptides with errors 

compared to peptides detected in LC-MS is 7×10-3, this number is similar to the ratios from TEL. 
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Comparing phenotype to genotype variation 

I next turned to study the relationship between translation errors and mutations that fixate at 

the DNA level of orthologous genes. The main objective of this part of the study was to 

compare the extent of translation errors as “phenotypic mutation” at various proteins and sites 

to the rate at which the genotype evolves at such sites. I have done this by calculating the 

evolution rate score of each position in human proteins in comparison to their orthologues 

across vertebrate species. The rate of evolution score of each position in each protein was 

calculated using the rate4site score (in short R4S)24 on the multiple sequence alignment (MSA) 

of each protein in the human proteome, each aligned to its orthologues in 100 vertebrate 

species (see Methods). The R4S score is inversely related to conservation of a position in the 

alignment, i.e. if conservation is low the position is more rapidly evolving.  

  All translation errors       TEL      

 

                    

         

Figure 16: proportion of peptides with translation errors compared to peptides without translation errors. (A) 
Left y-axis is median DP/BP intensity ratios, and right y-axis is ratio of peptides with errors to peptides without 
errors, for each tissue on x-axis. (B) Same as C but only for TEL. (C) Y-axis is the ratio of peptides with errors to 
peptides without errors times the ratio of DP/BP intensity ratio for each tissue on x-axis. (D) Same as A, but 
only for TEL. 

 

(B) 

(A) 

(D) 

(C) 
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To begin the analysis, I compared the R4S scores for all human proteins with MSA alignment, all 

proteins detected in LC-MS of tissues, and all peptides detected in LC-MS of tissues. If a specific 

position in a protein was included in more than one peptide, it was counted only once. Proteins 

from the entire human proteome that had MSA had the highest mean, which is reasonable 

given that proteins that are detected are typically highly expressed. Generally, highly expressed 

proteins evolve more slowly20. The gap between MS-detected proteins and MS-detected 

peptides was smaller but could represent the same phenomena. Proteins that exhibit higher 

expression levels are more likely to be detected through LC-MS, and as a result, have a greater 

representation in the group of detected peptides. To correct for this bias, I randomly chose one 

peptide per protein in the peptide groups. This correction resulted in the proteins and peptides 

detected being equal, confirming that the difference was due to this bias. 

The correlation between expression and conservation of protein could also explain why 

proteins that were detected with errors have R4S score that is similar to MS detected peptides 

and even lower. Although there is negative correlation between DP/BP intensity ratios to 

expression, the pipeline used to detect errors may be more likely to identify errors in highly 

expressed proteins due to the higher representation of their peptides in MS spectra. Peptides 

Figure 17: sites of errors are less conserved than the protein it is coming 
from or from the group of peptides that it is found at. Each dot represents 
on the y-axis the mean R4S for each group on the x axis. The black line 
around each dot is the standard error of the mean (SEM). Red dashed line 
represents the mean of all translation errors, with red area around it 
marking the SEM of it. Blue dashed line and blue area around it is the 
same but only for TEL. 

(A) (B) 
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with errors have higher R4S scores than proteins with (Figure 17A), both for all translation 

errors and for TEL. However, when only one peptide per protein is considered, the trend is 

reversed (Figure 17B), indicating that proteins with multiple errors are less conserved. It is 

difficult to determine from this whether the immediate environment of the translation error is 

more or less conserved than the rest of the protein. 

Finally, I observed that the average of all translation error sites, both for all translation errors 

and for TEL, was more evolutionarily diverse than the peptides or the proteins that carry errors, 

with and without correction. This finding further supports the notion that translation errors 

tend to occur at sites that have a high rate of evolution, which is consistent with previous 

findings4, and also indicate that translation errors occurs in specific sites and not at random. 

Then I compared the mean and median R4S scores of positions with translation error with the 

positions around it (Figure 18, Figure 19).  

                 All translation errors          TEL   

It was found that both mean and median of the positions with translation error were 

significantly higher than the positions around it (two sides t-test p-value: 9.0e-7, two sides 

MWU test p-value: 8.7e-8, Figure 19A, C). The results were statistically significant even when 

the scores were normalized for each gene by calculating the z-score of R4S for all gene positions 

(two sides t-test p-value: 1.4e-3, two sides MWU test p-value: 7.3e-3, Figure 19B, D). When 

Figure 18: R4S distribution of translation errors sites (in orange) and positions around it (in blue). Results 
for all errors are represented in panels A, B while C, D show the results for TEL exclusively. (A), (C) shows 
the distribution of R4S scores. (B), (D) shows the distribution of z-score of R4S score calculated for each 
gene. 

(A) (C) 

(D) (B) 
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analyzed separately, only brain, kidney, pituitary gland, and spleen had significantly higher R4S 

score for evolutionary rate for translation error position compared to the other positions in the 

proteins that harbor them. 

     All translation errors      TEL   

Interestingly, there was no significance for the same analyses for TEL only (Figure 19F-J). 

Positions with errors in TEL had lower R4S score. This indicates that the TEL group is different 

(A) (F) 

(B) (G) 

(H) 

(D) (I) 

(J) 

(C) 

(E) 

Figure 19: Significantly higher divergence across species for AA sites with errors compared to sites around it. 
Barplots shows R4S scores surrounding the site of translation errors, with all errors being aligned. The x-axis 
represents the distance of each amino acid from the site of the translation error, with position 0 being the 
error site itself. The R4S scores were calculated solely for amino acids in the CDS, with no consideration given 
to positions before the start codon or after the end codon. Results for all errors are represented in panels A, B, 
C, D, and E, while panels F, G, H, I, and J show the results for TEL exclusively. (A), (F) y-axis is mean of R4S. (B), 
(G) y-axis is mean of z-score of R4S score calculated for each gene. (C), (H) y-axis is median of R4S. (D), (I) y-axis 
is median of z-score of R4S score calculated for each gene. (E, J) y-axis is the number of positions over which 
the y-axis values were calculated. 
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from the rest of the translation errors identifications not only in DP/BP intensity ratio. Previous 

research conducted in our lab on E. coli4 also could not find a significant difference between 

sites of translation error to the protein it came from. However, it was significant only when 

compared to positions with the same codon or amino acid as the translation error site. It seems 

that most of the positions in E. coli had a lower R4S score than positions with errors. This could 

imply that TEL is not necessarily more reliable translation errors than TEH, or that the 

mechanism, including the genotype, of translation errors in E. coli and human is very different.  

Design multipotential RNA vaccine 

To create an RNA vaccine that targets multiple strains by leveraging translation errors, I 

obtained peptidomics data from human B cells infected with SARS-CoV-2 or virus proteins2. B 

cells, also known as B lymphocytes, play a critical role in the adaptive immune response by 

producing antibodies that specifically recognize and neutralize pathogens. When a virus infects 

a human, the virus proteins can be processed into peptides and presented on the surface of 

infected B cells, bound to MHC molecules. Because B cells are central to the antibody response, 

they are a useful model for studying the presentation of viral peptides on MHC molecules. 

Translation errors can also alter the level of presentation of a peptide on MHC, which is 

important for determining its potential immunogenicity. Therefore, it is crucial to understand 

which translation errors result in presentation on MHC to assess the resulting peptide's ability 

to elicit an immune response. By applying translation error detection pipeline (as described in 

the Methods section) on the peptidomics data that was either from infected with SARS-CoV-2 

or virus proteins or from control group, I gained insight into the pattern of viral peptide 

presentation on MHC molecules in the context of an actual viral infection and without infection 

(Figure 20). 

While peptidomics provides valuable information on the presentation of viral peptides on MHC 

molecules, it is a relatively low-throughput method compared to proteomics. This, coupled with 

the fact that translation errors make up a small fraction of total protein products and are 

difficult to detect in open searches, results in limited detection of translation errors in 

peptidomics data from B cells. I was able to identify 83 unique translation errors, representing 

sites in proteins that were altered to produce a different amino acid (Figure 20). To supplement 
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the limited data obtained from human B cells, I utilized tables of translation errors from 

previous research on E. coli and S. cerevisiae (Figure 9).  

 I employed Pfizer-BioNTech and Moderna's published vaccine sequences as the foundation for 

the vaccine design, and redesigned it with synonymous mutations, such that the mutated 

codons will have different translation error patterns and will result in different variants of the 

Spike protein (See Methods). The goal was to introduce diversity into the vaccine sequence, 

such that the vaccine will provide protection against multiple variants of the virus. To make 

informed decisions on which codons to use in the vaccine design, I considered peptidomics data 

from human B cells infected with SARS-CoV-2 or virus proteins, as well as previous research on 

translation errors in E. coli and S. cerevisiae. The selection of codons was also influenced by the 

existing codon usage in the published vaccine sequences from Pfizer-BioNTech, Moderna and 

original sequence of Wuhan strain. Using an algorithm described in method, I chose 

synonymous codons in 37 specific sites along the sequence and designed and ordered the 

synthesis of 6 plasmid sequences: Moderna, Moderna-redesigned, Pfizer, Pfizer-redesigned, 

Figure 20: The substitution identification matrix for combined 
peptidomics results from B cells that were infected with SARS-CoV-2 or 
virus proteins or without infection. Each entry represents a unique 
translation error, indicating the codon that was mistranslated into a 
specific amino acid in a particular site in the coding sequence. The color 
indicates log10 of how many times this translation error was found. Grey 
cells denote cognate amino acids or translation errors that have the same 
mass as known PTMs, while blue dots within the cells indicate near-
cognate substitutions. 
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Wuhan, and construct with GFP. All the sequences ended with Twin-Strep-tag® (TST)25 for 

immunoprecipitation after. 

To verify the expression of the GFP plasmid and the Moderna-redesigned construct, we 

performed FACS analysis using Streptactin fused to GFP. Figure 21 depicts the distribution of 

fluorescence intensity in cells. Interestingly, a small right indentation was observed in cells with 

the plasmid, indicating the expression of the protein. However, the indentation was barely 

visible, raising concerns about the reliability of this observation. One possible explanation for 

the low detection sensitivity could be that the Spike protein is a membrane protein, and the 

strep tag is located in a small cytoplasmic portion. This could contribute to the difficulty in 

detecting its expression. 

  

Figure 21: Distribution of fluorescence intensity in cells that were transfected with Moderna-redesigned construct 
and tagged with Streptactin (anti-strep antibody) fused to GFP, measured by FACS, contains higher values than in 
control group. The blue color represents cells without infection, while the red and green colors represent two 
repetitions of cells transfected with the Moderna-redesigned plasmid, using 2nd generation lentiviral plasmids and 
3rd generation, respectively. The cells with the plasmid exhibit a small right indentation, indicating the expression 
of the protein.  

Considering the low expression observed in B cells, we utilized Expi293F cells, which are derived 

from HEK 293 cells and are well-known for their suitability as a model for protein expression, in 

collaboration with the Life Sciences Core Facilities. The results of the western blot analysis 

performed using Streptactin showed the presence of bands corresponding to the Spike protein 

and its cleaved form in all plasmids except for the Moderna-original plasmid. 

Analysis was carried out on both B cells infected with the Moderna-redesigned vaccine and 

Expi293F cells infected with the Moderna-redesigned and Wuhan plasmids, using LC-MS at the 

Life Sciences Core Facilities.  
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Figure 22: Expi293F cells expressed better the Spike protein, and the Wuhan sequence were expressed better than 
the redesigned vaccine of Moderna. Peptide coverage of the Spike protein by LC-MS. Y axis describes each sample, 
and x axis is AA positions in the Spike protein. 

More peptides of the Spike were detected in Expi293F cells than in B cells, indicating that the 

expression of the Spike protein in Expi293F cells was better (Figure 22). One peptide in Wuhan 

strain covers positions 988-995. The only non-synonymous mutations in the vaccines compared 

to the Wuhan sequence are found at positions 986-987, where the amino acids K986 and V987 

were replaced with prolines. There was no coverage of those positions in Expi293F cells 

transfected with Moderna-redesigned and also no peptide indicating mixed population in 

Wuhan transfected cells, so it is not clear if somehow the cells that were supposed to be 

transfected with Wuhan strain got transfected with Moderna-redesign, if Wuhan sample got 

contaminated with moderna-redesign cell population, or if the names of the samples were 

mixed along the way. It is safe to say at least that there are cells infected with Moderna-

redesigned or other vaccine-based plasmid in the sample of Expi293F Wuhan. 

To specifically detect translation errors, our translation error detection pipeline was applied 

(see Methods), and for the Expi293F cells a basic proteomics analysis was also conducted. The 

reference proteome was expanded by incorporating sequences that could result from 

translation errors in any of the 37 sites that were mutated. No translation errors were found 

using the general translation error detection pipeline. However, one substitution was found in a 

position that was mutated – Q957 has substituted with E. The modified peptide – 

‘LQDVVNQNAEALNTLVK’ - was only found in Wuhan sample, while the unmodified peptide – 

‘LQDVVNQNAQALNTLVK’ was detected in both samples. The intensity ratio of the 
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modified/unmodified in Wuhan sample is 0.03. This site was targeted by us because of a Q957R 

mutation in the Spike that occurs in some of Iota (B.1.526) strains. While it is possible that this 

change is due to spontaneous deamination of glutamine, which is a well-known 

phenomenon26,27, it is unlikely because the rate of deamination for glutamine in pentapeptides 

ranges from 500 to 17,000 days (about 46 and a half years), and the rate of deamidation in 

proteins is estimated to be even slower26, while the duration of our experiment with the Spike 

protein, which involved expressing the protein and conducting LC-MS analysis, was only a few 

months. months. 

Both RNA vaccines (Moderna’s and Pfizer’s) carry the RNA modification of N1-

Methylpseudouridine (m1Ψ) in each uracil (U) across the sequence. There are hints that this 

modification could lead to different patterns of translation error – in terms of frequency and 

destination amino acid. To check that, and to make our experiment more like the current 

vaccines, I also analyzed RNA spike sequence that were expressed by Noam Stern-Ginossar Lab 

and were processed in LC-MS by Tamar Gaiger Lab. They expressed the sequence directly from 

RNA in HEK293 cells. For investigating the influence of modifications on translation errors, they 

had the sequence with m1Ψ modification, its related modification pseudouridine (Ψ), and 

without modifications as control. Out of 48 peptides found, none of them were found with 

errors in the dependent peptides pipeline. To further investigate the presence of errors, I 

utilized a targeted approach. I introduced potential errors into the reference sequence of the 

Spike by converting U bases to A, G, or C, based on the genetic code, in every position of the 

Spike that were detected by MS. This resulted in the detection of seven modified peptides, with 

two representing simple amino acid replacements and five resulting in deduced substitutions 

into K or R and a shortened peptide length. The errors found were: L84 to R, L368 to R, L387 to 

V, N394 to K, F541 to Y, L560 to R, and I770 to K\R (Table 1). Out of it, some overlapped 

between the samples and some has not. In total, 5 were found in m1Ψ, 5 in Ψ, and 4 in sample 

with unmodified U. Those numbers can not indicate whether there is difference in the tendency 

of each of those modified uridines to have errors.  By the nature of this search, all substitutions 

found were NeCE. The near cognate codons that could explain this mismatch were with a 

change of uracil to either adenine (A) or guanine (G), meaning that there was a 
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misincorporation of tRNA that matched in 2 positions to the codon, but carried uracil or 

cytosine (C) instead of adenine in the position that couples with uracil in the RNA codon. The 

generation of multiple hypotheses through this targeted approach may have implications for 

the accuracy of our findings. To address this, negative control experiment should be conducted 

where translation errors that will caused by mismatch of adenine, cytosine and guanine should 

be looked for. 

 

Table 1: substitutions found in samples with RNA of wuhan strain Spike. 

Methods 

Vaccines redesign algorithm 

Utilizing information from multiple sources, 44 targeted mutations in the Spike protein that 

were identified in variants of concern were collected. These variants of SARS-CoV2 were 

particularly monitored due to their prevalence in widespread strains or due to their higher 

virulence. Of the 44 mutations, 39 occurred at distinct sites, while some of the mutations in 

different strains were found at the same location. Additionally, two of the mutations involved 

the amino acid tryptophan, which has a single codon and therefore could not be altered to 

synonymous codons. The mutations identified was: 

L5F, S13I, T19R, A67V, V70F, D80A, D80G, T95I, G142D, E154K, F157S, R158G, D215G, A222V, 

D253G, K417T, K417N, L452R, S477N, T478K, E484K, E484Q, S494P, N501Y, F565L, A570D, 

Sequence substituion 

position

substitution original 

codon

nucleotide 

substitution

Sum 

Intensity

Intensity 

N1M

Intensity 

PseudoTP

Intensity 

UTP

AVEQDKNTQEVFA

QVK

770 I to K\R AUA U -> A/G 2.04E+06 0 1.17E+06 8.69E+05

CVNYNFNGLTGTG

VLTESNKK

541 F to Y UUC U -> A 5.2E+07 3E+07 1.5E+07 1E+07

PFNDGVYFASTEK 84 L to R CUA U -> G 1.41E+06 1E+06 0 0

PFQQFGR 560 L to R CUG U -> G 9.9E+07 4E+07 3.5E+07 2.1E+07

VNDLCFTNVYADSF

VIRGDEVR

387 L to V UUA U -> G 3.55E+06 0 3.55E+06 0

VYADSFVIRGDEVR 394 N to K AAU U -> A/G 1.2E+07 1E+07 0 0

YNSASFSTFK 368 L to R CUA U -> G 5.1E+07 3E+07 1.5E+07 6.77E+06
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D614G, Q677H, P681R, P681H, A701V, T716I, T859N, F888L, D950N, D950H, Q957R, S982A, 

Q1071H, D1118H, V1176F, K1191N 

Because this is a first-of-its-kind experiment done on humans, we wanted to create as wide a 

variety of sequences as possible. For each of the mutation's sites, if its cognate amino acid had 

only two codons, for the redesigned version of the vaccine the codon that is not in use in the 

original vaccine was chosen. All the mutations that appeared in common sites with other 

mutations (sites number: 80, 417, 484, 681, and 950) belonged to this group. If there were 

more than two codons but up to four, and Moderna\Pfizer vaccines had different codons at this 

site, we incorporated different codons for each of the plasmids: Pfizer, Moderna, Pfizer-

redesigned and Moderna-redesigned. If Pfizer and Moderna had the same codon or if the 

cognate amino acid has 6 codons, the codons for the redesigned vaccines were chosen based 

on translation errors scores. The codon with the highest score that were not the original 

sequences of the vaccines were assigned randomly to either Moderna’s or Pfizer’s redesigned 

version, and then the second best were assigned to the other. The scores were calculated as 

follows: 

Substitutions matrices from B cell peptidomics, S. cerevisiae and E. coli were taken into 

account. To normalize the amount of translation errors found in each organism, each cell in the 

matrix was divided by the sum of all cells in the matrix. Then, the score of a specific substitution 

was the sum of the values in the normalized substitution matrix for the specific substitution 

desired.  

To avoid having restrictions sites of BamHI, 879G>A mutation was introduced to Moderna and 

Moderna-redesigned sequences, 1734T>C for Pfizer and Pfizer-redesigned, and 3753A>C, 

3754T>A and 3755C>G in Wuhan strain. All those mutations are synonymous and were 

observed in the other sequences.  

The stability and folding of the mRNA vaccines were evaluated as well as change in tRNA 

adaptation index (tAI) for several human cell lines to ensure that the changes made to the 

codons would not affect the overall expression or structure of the Spike protein. 

Finally, the sequences were ordered from Twist inside pTwist+Lenti+SFFV+Puro+WPRE plasmid. 
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Translation errors detection 

MaxQuant and custom Python code were employed to detect translation errors, as described in 

Mordret et al. 2019. Peptidomics data were analyzed with non-specific digestion parameter and 

a minor change in the python code to allow that, and with protein FDR of 1 instead of 0.01 in 

whole proteome, to allow more detections. Error rate quantification was performed by fetching 

the values from dependentPeptides.txt table. To compare error rates from human source to 

error rates of other organisms (Figure 3), the python script quantify.py from: 

https://github.com/ernestmordret/substitutions/ was used, because it was compared to tables 

from the Mordret et al. that were also analyzed with this code.  

 

Figure 23: High correlation between different methods to quantify DP/BP intensity ratio for different peptides 
quantified by either quantify.py (x axis values) or depedentPeptides.txt (y axis) 

Hypergeometric cumulative distribution function between pairs of tissues and Bonferroni 

correction 

The probability of specific amount of proteins with errors to intersect between tissuei and 

tissuej was calculated using cumulative hypergeometric score using SciPy module for Python28 

with the following parameters: 

P = set of proteins within tissue 

PE = set of proteins with error within tissue 

https://github.com/ernestmordret/substitutions/
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k = length(PEi ∩ PEj) 

M = length(Pi ∪ Pj) 

n = length(PE i) 

N = length(PE j) 

And running the function:  

scipy.stats.hypergeom.logsf(k, M, n, N) 

The same was calculated to explore the significance of identity of proteins with translation 

errors between tissues compared to other tissues, with M being the union of all proteins with 

errors across tissues: 

𝑀 = 𝑙𝑒𝑛𝑔𝑡ℎ (⋃ 𝑇𝑖

𝑛

𝑖=1

) 

p-value threshold were calculated using Bonferroni correction as following: 

m =  number of comparisons between tissues =  
28 × 29

2
= 406 

α = 0.05 

𝛼

𝑚
=

0.05

406
= 3.1 × 10−5 

Evolution score calculation 

The evolution score for each position in the human proteome genes was calculated using 

rate4site. To do this, a proteome sequence alignment of human to 100 vertebrates was 

downloaded from UCSC, along with a tree file that contained data about the phylogenetic 

distances between all organisms in the alignment. Then each gene was separated to different 

fasta file using Python script. The command used to run rate4site was: 

rate4site -s $GENENAME.fasta -o $GENENAME.res -t hg38.100way.nh 

where $GENENAME represented the name of each gene in fasta format. 

For analysis I only took r4s score for positions that had > 80 MSA. 
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Discussion 

Investigating the misincorporation of amino acids during the translation process in human 

tissues is crucial for gaining insights into the underlying mechanisms of protein synthesis and 

identifying the causes of diseases such as neurodegenerative disorders3,29. Translation fidelity is 

also associated with life span30, and understanding of it could improve protein engineering. 

In this study, my main objective was to enhance the comprehension of translational errors and 

investigate their occurrence within the human context. To achieve this goal, I examined LC-MS 

data from 29 diverse human tissues that were obtained from the Human Proteome Atlas (HPA) 

using my laboratory's tools.  

I encountered some difficulties when trying to apply the pipeline designed for E. coli to human 

data. The ratio of peptides that were translated accurately to peptides that carried mistakes 

reached many times close to 1/1, a phenomenon that was never reported before and made me 

suspect that those are not translation errors. Some of it I could attribute to the fact that human 

cells are diploid (except for germ line cells), and mutations can be detected as translational 

errors because reference proteomes do not account for these mutations. In those cases, 

heterozygosity could explain the 1/1 ratios. To overcome this challenge, I compared the 

translational errors I discovered to mutations identified in the same sample to estimate the 

proportion of results that were due to mutations. Indeed, SNPs that were different between 

alleles were detected sometimes as translation errors, but there were still many translation 

errors with 1/1 ratio that were not attributed to SNPs. There is a possibility that in the data I 

had not all the SNPs were mapped because of the high threshold that was used to detect it. 

Another possibility is that there are other events that could happen in the cell that could lead to 

those results. One such event is non-synonymous RNA editing31. Another possibility is that 

there are pseudogenes that are paralogs of genes in the human genome but with changes in 

some of the AA coded, that even if they are not completely translated, some peptides in it 

would be translated32. RNA modifications can also influence translation errors and cause wide 

differences between the rates of it in humans compared to E. coli. To further investigate the 

hypothesis of other processes that will result in detection of substitution of amino acid, there 
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are some approaches that could be applied, separately or together. One is to apply translation 

error detection pipeline on many organisms, species, and cells from many sources and to 

understand how the ratios change and what are the differences and the common for different 

samples. One such sample could be germline cells or studying specifically X chromosomes in 

samples from male, those two are examples of haploid human sources for translation errors 

and could be used as a control. Another approach to understand more about the factors that 

contribute to the high intensities ratio is to harness recent technologies in LC-MS analysis, as 

data independent acquisition (DIA)33, retention time prediction34,35, as well as MS/MS peak 

intensity prediction36,37, to validate that the peptides detected are indeed with substitutions, 

and not the result of something else (e.g., PTMs). I also found out that spectra counts is the 

most appropriate way to quantify proteins in the data I analyzed, and perhaps a more accurate 

way of quantifying translation errors should be thought of, based in this knowledge. 

Through my analysis, I estimated the frequency and characterized the pattern of translation 

errors and compared them to what is known in the literature1,3,9. Although I could not narrow 

down the wide range of rate of translation error, I found out that our results confirm with 

previous estimations. I also explored whether these errors occurred randomly or in specific 

proteins and sites by examining the identity of proteins with translation errors across different 

tissues and evaluating the conservation of positions with translation errors. My findings 

suggested that certain proteins and sites were more prone to errors than others. When I 

compared the proteins that have errors between tissues, I found out that there are proteins 

that tend to have errors in many tissues. As suggested in other researchs4,11, this emphasizes 

that translation errors are dependent on their context and do not occur randomly. 

Furthermore, the analysis of the evolutionary conservation of the sites of translation errors 

suggests that these sites tend to be more variable across species. Taken together, this suggests 

that the tendency to have errors is genetically encoded. Moreover, the fact that these errors 

tend to occur at protein spots that are less sensitive to amino acid substitutions across 

evolution indicates that they may not necessarily be harmful to the overall protein structure or 

function. It suggests that the cell has mechanisms in place to prevent translation errors from 

occurring, but these mechanisms may not be perfect and may allow errors to occur at less 
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important sites without significant consequences. It also supports the idea that translation 

errors may have a role in evolution by introducing genetic diversity without harmful effects. 

In more applicative approach, I used the results of the lab’s translation errors detection pipeline 

to generate sequences of SARS-Cov2 Spike protein that will produce products with errors. Such 

sequence could be used for designing vaccine that will target multiple strains, and possibly 

enhance immune reaction. The current pipeline could not find translation errors in the 

redesigned sequence that was expressed as DNA in human cell line, nor in the original 

sequence of the Spike (Wuhan strain) that were expressed either as DNA or RNA. However, 

some errors were found using a more targeted approach rather than the pipeline’s open 

search. The information that was achieved was not sufficient to indicate whether the 

redesigned sequence is more error prone than the original sequence, but it showed that errors 

can occur during the translation of the Spike protein. 

Overall, my study contributes to our understanding of translational errors in the human context 

and highlights the importance of considering the diploid nature of human cells when analyzing 

data. The findings may have implications for future research on translational errors in human 

tissues and may inform strategies to minimize or utilize these errors. 
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