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1 Abstract 

The base of protein production is the translation process in which the codon sequence 

is decoded into amino acids by tRNAs. The actual codons used for a certain protein 

can influence different aspects of its gene expression. Codon choices were shown to 

influence protein levels and folding, mRNA stability and even the host fitness. In my 

research I focused on how codon usage affects different aspects of gene expression. 

My research includes a combination of three projects meant to better understand the 

sequence effects on the gene’s translation on one hand, and its mRNA stability on the 

other.  

In my first project I examine how the distribution of codons along the mRNA affects 

the protein levels. Here I reanalyzed data from two experiments in Escherichia coli, 

examining how regions with “slow codons”, i.e. codons which take longer to be 

translated, influence the translation rate and its efficiency. I found that localizing the 

slowest codons in the 5’-end results in higher protein levels and the slower this region 

is the higher the protein levels.  

A major parameter which affects the codon’s translational speed is the availability of 

the tRNA which translates it. In my second project we studied the tRNA pool of S. 

cerevisiae through a comprehensive deletion library of tRNAs. We found extensive 

backup between the tRNA copies and differential contribution to the cell’s fitness of 

identical tRNA copies. In addition, we found up-regulation of RNA Polymerase III 

genes in some deletion strains all suggesting additional levels of regulation of the 

tRNA transcription. 

In my third project I studied the mRNA degradation in Escherichia coli and its 

coupling to the translation process. By combining mapping of 5’ RNA fragments with 

ribosome profiling data, I studied the relationship between the gene’s translation and 

degradation properties. I suggest that the ribosomes play a dual role in mRNA 

degradation: on one hand they enhance cleavage of the transcript in its local vicinity, 

immediately up stream to its attenuation site, yet globally on the transcript they protect 

it from degradation.  

Together my studies shed light on some of the forces behind codon usage. My studies 

show how codons can attenuate ribosome elongation and reveal that ribosome 

attenuation is also coupled with the mRNA degradation process. 
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 תקציר 2

הבסיס של ייצור חלבון הוא תהליך התרגום שבו רצף קודונים מפוענח לחומצות אמינו על ידי 

(. הקודונים הספציפיים לקידוד החלבון יכולים להשפיע על היבטים שונים tRNAמוביל ) -רנ"א

שליח ואפילו -רמות חלבון וקיפולו, יציבות הרנ"אשל ביטוי הגן. נמצא כי הקודונים משפיעים על 

כשירות התא. במחקר שלי התמקדתי בשאלה כיצד הקודונים משפיעים על ההיבטים שונים של 

ביטוי גנים. המחקר שלי הינו שילוב של שלושה פרויקטים אשר אמורים לשפוך אור על השפעות 

 א שלו מצד שני.רצף הקודונים על תרגומו של הגן מצד אחד, ויציבות הרנ"

בפרויקט הראשון שלי בחנתי כיצד פיזור הקודונים לאורך הרנ"א משפיע על רמות החלבון. 

בפרוייקט ניתחתי נתונים משני ניסויים באשריכיה קולי ובחנתי כיצד אזורים עם "קודונים 

איטיים", כלומר קודונים אשר לוקחים זמן רב יותר כדי להיות מתורגמים, משפיעים על קצב 

' הינו במתאם עם 5התרגום והיעילות שלו. מצאתי כי מיקום של הקודונים האיטיים ביותר בקצה ה

 רמות חלבון גבוהות יותר וככל שהאיזור איטי יותר רמות החלבון גבוהות יותר.

שמתרגם אותו.  tRNAפרמטר מרכזי שמשפיע על מהירות התרגום של קודון הוא זמינות של ה

דרך ספריית מחיקה  .cerevisiae Sבשמר   של tRNAsאת מאגר ה בפרויקט השני שלי חקרנו

לכשירות  השונים וכן השפעה שונה tRNAעותקי  . מצאנו גיבוי נרחב ביןtRNAs -של גני ה 

 IIIפולימראז  RNAזהים. בנוסף, מצאנו עליה של גנים הקשורים  tRNAהתא של מחיקת עותקי 

ובפרט רגולציה על  tRNAsבמספר זנים. כל אלה מצביעים כי יתכן וקיימת רגולציה על מאגר ה

 .tRNAשעתוק ה

קולי והצימוד שלו -שליח בחיידק אי-בפרויקט השלישי שלי חקרתי את תהליך הפירוק של רנ"א

 לתהליך התרגום. על ידי שילוב של מידע על מיקומי חלקי רנ"א בתא עם פרופילי תרגום של

ריבוזומים,  בחנתי את הקשר בין מאפייני התרגום והפירוק של הגן. מן התוצאות משתמע כי 

הריבוזומים משחקים תפקיד כפול בפירוק הרנ"א: מחד הם מגבירים את הסיכוי לחיתוך של הרנ"א 

 מידית במעלה הרצף, ומצד שני, באופן גלובלי, הריבוזומים מגנים על הרנ"א מפני פירוק.

ים השונים של המחקר שלי שופכים אור על גורמים המשפיעים על השימוש בקודונים יחדיו החלק

השונים. המחקרים שלי מראים כי קודונים יכולים להשפיע על תנועת הריבוזום וחושפים קשר בין 

 שליח.-תהליך התרגום לתהליך פירוק של רנ"א
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3 Introduction 

3.1 Codon Usage and Bias 

During the translation process the nucleotide sequence of a gene is translated 

into the amino acid sequence of a protein. For translation, the nucleotides are 

grouped into triplets, resulting in 64 codons; these codons are commonly 

translated to 20 amino acids and stop codons. As a result, 18 out of the 20 

amino-acids are translated by two to six different codons, called synonymous 

codons.  

Although translated into the same amino acid, synonymous codons are not 

perceived the same by the translation system. Commonly across various 

genomes, there are around 40 different tRNA types per species. Some codons 

are translated by a fully matching tRNA while others are translated by non-fully 

matched ones, through the wobble interactions, originally described by Crick 

(Crick, 1966). According to the wobble hypothesis only the first two positions of 

a triplet codon need to be precisely paired with the tRNA anti-codon, while the 

pairing of the third nucleotide position of the codon may be ambiguous, and it 

varies according to the nucleotide present in this position. Crick’s wobble 

hypothesis was later extended to take into account different covalent 

modifications that occur on the tRNA molecule (Yarus, 1982, Agris, 1991, 

Agris, 2004). These modifications which are usually on the 34
th

 nucleotide of 

the tRNA molecule (the first nucleotide of the anti-codon pair) either disable 

potential pairing between codon-anticodon pairing of different amino-acids or 

enable better pairing when the third position does not match (Yarian et al., 2002, 

reviewed in:Agris, 2004).  

Two major observations suggest that there should be significant differences 

between codons that still code for the same amino acid. The first, the tRNA 

levels in the cytoplasm can be significantly different between different tRNAs 

for the same amino acid (Ikemura, 1981, Ikemura, 1982). Although relatively 

few measurements of such tRNA abundance levels were done (Ikemura, 1981, 

Ikemura, 1982, Dittmar et al., 2005, Zaborske et al., 2009) a quite reliable proxy 

for these levels was found in the form of the tRNA gene copy number (tGCN) 

(Percudani et al., 1997, Kanaya et al., 1999, Tuller et al., 2010a). From this 



 

6 

 

genome proxy, which can be examined at every fully sequenced genome, it is 

clear that the various codons are translated by a set of tRNAs which are very 

different in their relative abundance. The second observation is that there is a 

codon bias in genes, namely a nonrandom use of synonymous codons found in 

genomes of both unicellular and multi-cellular organisms (Ikemura, 1985). This 

bias was found to be particularly pronounced for highly express genes (Sharp & 

Li, 1986). It was also found that the genome codon bias correlates to the tGCN 

(Ikemura, 1981, Ikemura, 1982, Duret, 2000), suggesting connection between 

codon bias and tGCN to translation efficiency. Particularly, highly expressed 

genes were found to be preferentially encoded by codons that correspond to high 

abundance tRNAs (Sharp & Li, 1986). 

3.2 Translation Efficiency 

Based on the fact that highly expressed genes are biased toward “optimal” 

codons which correspond to the most abundant tRNA genes in the cell (Sharp & 

Li, 1986), two indices which calculate the adaptation of a sequence to the 

cellular translation capabilities were developed. The first index is the Codon 

Adaptation Index (CAI) (Sharp & Li, 1987). For each species a reference set of 

highly expressed genes is used to assess the relative translation efficiency score 

of each codon. Then a score for a gene can be calculated by the geometric mean 

of the translation efficiency values of its codons: 
LL

k
kwCAI

1

1








 



 where L is 

the number of codons in the gene and wk
is the relative translation efficiency 

score of the kth codon. This value reflects the usage frequency of the gene’s 

codons in the set of highly expressed genes. The second index is the tRNA 

Adaptation index (tAI) (dos Reis et al., 2004). This index assumes that the 

codon efficiency is derived from its tRNA concentration and its tRNA binding 

affinity. The affinities between each tRNA to each codon were calculated by 

optimizing the tAI index for highly expressed genes in yeast; these affinities are 

assumed to be the same for all organisms. As a proxy of the tRNA concentration 

the tRNA gene copy number (tGCN) of each tRNA type in every species is 

used. After the initial calculation of affinities which was done in the original 

paper (dos Reis et al., 2004), the species’ codons efficiency (    can easily be 
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calculated by simply multiplying its tGCN by the previously calculate affinities 

(     ),    ∑               
  
   . As for the CAI, the tAI score of a gene 

is calculated as the genomic mean of all its codons: 
LL

k
kwtAI

1

1








 



 where L is 

the number of codons in the gene and    is the normalized codon’s efficiency of 

the kth codon              ). 

Although these indices were shown to be good predictors for expression of 

natural genes (Sharp & Li, 1986, Man & Pilpel, 2007), in recent synthetic 

libraries experiments they failed to predict the abundance of a protein across 

different nucleotide sequence variants (Kudla et al., 2009, Welch et al., 2009). 

This failure suggests other sequence parameters affect the translation efficiency, 

shedding light on one of the potential limitations of both indices: they are 

indifferent to the order of the codons along genes, scoring equally alternative 

genes with same codon composition and yet different order of high and low 

efficiency codons.  

In recent years other sequence parameters were shown to also affect translation 

efficiency. One of the most significant parameter is the mRNA secondary 

structure, in particular the folding energy of the ribosome binding site (RBS) 

region, which is also affected by codons close to the ATG (Lu et al., 2007, 

Kudla et al., 2009, Gu et al., 2010, Tuller et al., 2010b, Goodman et al., 2013). 

In addition codons near the ORF start were found to be under selection for low 

folding energy (Gu et al., 2010) but also for less efficient codons (Tuller et al., 

2010a); suggesting that the codons regulate the flow of ribosomes on the 

transcript (Tuller et al., 2010a). To date it is quite clear that changes to the 

secondary structure significantly affect translation efficiency (Goodman et al., 

2013, Kudla et al., 2009). Yet it is still unclear to what extent changes in each of 

these sequence parameters away from the ATG affects the translation efficiency 

of a given transcript and whether we have identified them all. However, it is 

clear that changes of synonymous codons, while not changing the amino acid 

sequence, do influence all the above sequence parameters thus changing 

translation efficiency. 
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3.3 The tRNA pool 

The tRNA (transfer RNA) is one of the fundamental components of the 

translation machinery. The tRNA pool, numerically represented by the tRNA 

concentrations in the cell, was shown to play an important role in the dynamics 

of translation in previous papers (Ikemura, 1981, Ikemura, 1982, Dittmar et al., 

2005, Man & Pilpel, 2007, Subramaniam et al., 2013). This is attributed to the 

fact that the rate limiting step in the elongation cycle of polypeptides is tRNA 

search and selection, (Varenne et al., 1984) 

The tRNAs are transcribed by RNA Polymerase III (Pol III) which, along with 

RNA Polymerase I, dominates cellular transcription, together reaching more 

than 80% of total RNA synthesis in growing cells (Paule & White, 2000). The 

tRNA promoters are composed of two highly conserved sequence elements that 

reside within the transcribed region called the A-box and the B-box (reviewed 

in: Paule & White, 2000). For many years these two internal promoter elements 

along with the Pol III terminator were considered the main elements to regulate 

tRNA transcription. However, more recent papers have shown that the tRNA 

transcription levels also depend on upstream regulatory motifs (Giuliodori et al., 

2003, Parthasarthy & Gopinathan, 2006). 

tRNA genes may be present in multiple copies in a genome, e.g, S. cerevisiae 

has 274 tRNA genes encoding 42 different isoacceptors, human has 506 tRNAs 

encoding 48 different isoacceptors, and E. coli K12 has 86 tRNAs with 39 

different isoacceptors (Chan & Lowe, 2009). It is assumed that the requirement 

for large quantities of tRNAs is met by multiple copies of the tRNA gene in 

addition to multiple rounds of transcription of each tRNA gene (Duret, 2000, 

Percudani et al., 1997, Kanaya et al., 1999). Indeed it was shown that the tRNA 

genome copy number is a reliable proxy for the tRNA levels (Percudani et al., 

1997, Kanaya et al., 1999, Tuller et al., 2010a). 

The tRNA pool is often assumed to be constant throughout the life of a cell 

(Tuller et al., 2010a, dos Reis et al., 2004). However recent papers reveal a more 

complex picture. Absolute tRNA levels were shown to change across growth 

conditions (Dittmar et al., 2005) and in different tissues (Dittmar et al., 2006). 

The binding of Pol III to the genome was also shown to vary between the 
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different tRNAs genes (Canella et al., 2010, Kutter et al., 2011).  These new 

finding suggests the tRNA pool has the potential to be dynamic and to undergo 

regulated change in different growth conditions. A dynamic tRNA pool could 

grant the cell the ability to adapt the translation efficiencies to better fit the 

immediate demand. The questions of how dynamic is the tRNA pool and what 

are the mechanism that enable it to change still remains to be answered. 

3.4 Transcript Degradation 

The amount of protein synthesized in the cell is determined by two primary 

parameters: the mRNA levels of the genes and the rate of translation of this 

mRNA. mRNA levels in turn, are determined by both the rate of transcription 

and the rate of degradation. In bacteria the half-life of different transcripts varies 

significantly, from less than a minute to about an hour (Bernstein et al., 2002), 

thus allowing the stability of the mRNA to play a key role in regulating the 

transcriptome. 

A mature bacterial transcript initially bears a triphosphate at its 5’ and a stem & 

loop structure at its 3’. In Escherichia coli, the degradation of most mRNAs is 

thought to begin with an internal endonucleolytic cleavage (Deana & Belasco, 

2005), resulting in two RNA fragments. The upstream fragment is no longer 

protected by a 3’ stem loop and is thus promptly degraded by 3’ exonucleases. 

The downstream fragment is only monophosphorylated, leading to its rapid 

degradation by a series of internal cleavages and 3’ degradations (Deana & 

Belasco, 2005).  

Since in bacteria the degradation is initiated from an internal cleavage, it is not 

surprising that translation parameters influence the mRNA degradation. Two 

ribosome-related mechanisms have a potential to stabilize the mRNA (reviewed 

in: Deana & Belasco, 2005). The first, closely spaced translating ribosomes can 

protect potential cleavage sites. The second, ribosome occupying the 5’ terminus 

of the transcript can impede access to cleavage site by disrupting the cleavage 

mechanism. Indeed it was found that a ribosome binding to the RBS helps to 

protect mRNAs, and as a consequence a less efficient RBS can give rise to 

destabilization of the mRNA  (reviewed in: Deana & Belasco, 2005). On the 

other hand, stalled ribosomes could have either a stabilizing effect (Bechhofer & 



 

10 

 

Zen, 1989) or a destabilizing affect (Hayes & Sauer, 2003, Sunohara et al., 

2004). In particularly it was shown that clusters of rare codon have a 

destabilizing effect (Sunohara et al., 2004). Furthermore stalled ribosomes were 

found to causes cleavage in variety of location without an identified nucleases, 

naming them “killer ribosomes” (reviewed in:  Dreyfus, 2009). 

It thus appears from biochemical analyses that the control of translation and 

mRNA degradation might be coupled. In particular features that affect 

translation efficiency may also influence the decay rate of the corresponding 

mRNAs. As described above, different codons have the potential to change both 

the secondary structure of the transcript and the ribosomes flow along it. As a 

result, degradation of mRNA might be sensitive to, and perhaps regulated by 

codon usage. To date the exact features which determine where and when a 

transcript will be cleaved are still unknown. Exact cleavages sites were mapped 

only for a handful of genes over the years (Cormack & Mackie, 1992, 

McDowall et al., 1994, Braun et al., 1996, Ehretsmann et al., 1992) and the 

nucleases cleavage preferences were not completely characterize. Thus, any 

hope to predict mRNA stability requires more work to understand both the 

cleavage mechanism and its potential coupling with translation.  
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4 Methods 

4.1 The role of codon selection in regulation of translation efficiency 

deduced from synthetic libraries (Navon et al. Genome Biology 

2011) 

4.1.1 Defining the bottleneck 

In this project we analyzed how a region of non-optimal codons can affect 

translation. We defined this region as the bottleneck, a region on the gene 

where the harmonic mean of the codons’ tAI (dos Reis et al., 2004) values is 

minimal. The codon tAI values are assumed to be proportional to the speed of 

its translation (Tuller et al., 2010a); higher tAI value, correspond to high tRNA 

abundance and affinity, thus faster translation. A harmonic mean of speeds is 

simply an arithmetic mean of the corresponding times. Hence looking for the 

region with the minimum harmonic mean of speed is equivalent to looking for 

the region which takes the longest time to translate. For each region the 

harmonic mean of speed is:


 gionc ctAI

n

Re

1
; where  n  is the region size, and c  is 

the set of all the codons in the region (n  codons). For more details the see the 

Methods in the paper attached to the results chapter, ‎5.1 

4.1.2 Choosing the bottleneck window size (n) 

Under a maximal density scenario (fast initiation rate), the distance between 

two consecutive ribosomes will be minimal. In this case, when two ribosomes 

are translating the same mRNA simultaneously, the minimum possible 

distance between the two translated codon (one by each of the ribosome) is one 

ribosome size (H codons). At any given moment during the translation process, 

two adjacent ribosomes would have translated exactly the same codons apart 

from the last H codons - the first of the two ribosomes has already translated 

them, and second is just about to start them. If the time it took the first 

ribosome to finish translating the nth codon )1,(nT  is larger than the time it 

takes the second ribosome to translate the n-Hth codon )2,( HnT   the second 

ribosome will “bump” into the first one. Therefore the region of H codons with 

maximum translation time determines whether and where a traffic jam will be 
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created (for detailed calculations see the Methods in the paper attached to the 

results chapter, ‎5.1). Consequently the minimal distance between two 

ribosomes should determine our window size. We adopted the average 

ribosome-to-ribosome distance measured by Brandt et al. (Brandt et al., 2009). 

They measured the mean distance between the center of mass of two 

ribosomes on actual bacterial polysomes to be 21.6nm which is about 21 

codons (0.34nm per base).  For more details see the Methods in the paper 

attached to the results chapter, ‎5.1. 

4.1.3 The bottleneck parameters 

A bottleneck is characterized by two parameters: its “location” and its 

“strength”: 

The “location” of the bottleneck is defined as the location in the gene of the 

bottleneck’s first codon ( k codons from the ATG). 

The “strength” of the bottleneck is defined as the arithmetic average of 1/tAI 

values for the codons in the region, e.g. 
 gionc ctAIn Re

11
  (the inverse of the 

harmonic mean). 

The relative strength of the bottleneck is defined as the strength of the 

bottleneck divided by the average 1/tAI for the entire gene, e.g.









l

c
c

bottleneckc
c

tAIl

tAIn

1

11

11

  ; where l  is the number of codon in the gene (excluding 

the stop codon). 

The relative location of the bottleneck is defined as the location of the 

bottleneck divided by number of possible windows; e.g.
1 nl

k
 ; where k  is 

the location of the bottleneck, and l  is the length of the gene and n  is the 

window size. 
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4.1.4 Finding the main anti-correlated codons 

We used partial correlation to find the codons which contribute the most to the 

decrease in the cell’s fitness. The highest contributors were filtered according 

to the following steps: 

1. Find codons which have a negative correlation to the OD. 

2. For all codons left, we calculated the partial correlation matrix M(i,j) = 

partial correlation (codon i, OD | codon j). 

3. Find the minimum absolute value of the partial correlation, for each codon. 

Rank the codons in a descending order accordingly.  

For more details see the Methods in the paper attached to the results chapter, 

‎5.1. 

4.1.5 Calculating the codon usage in the genome and transcriptome 

To calculate the codon usage in the genome we counted each codon 

appearance in all the ORFs and normalized by the total number of codons. For 

this analysis we used the genome of E. coli B21 strain (which was used by 

Kudla et al.) was downloaded from NCBI; [Refseq: NC_012947 (Jan 11, 

2010)].  

To calculate the codon usage of the transcriptome of each gene was calculated 

by multiplying the mRNA levels measurements for the gene by the codon 

usage of the same gene. The contributions of all genes were summed for each 

codon and then divided by the total sum of all codons. mRNA levels were 

taken from Lu et al. (Lu et al., 2007). For details see the Methods in the paper 

attached to the results chapter, ‎5.1. 
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4.2 A Comprehensive tRNA deletion library unravels the genetic 

architecture of the tRNA pool  

4.2.1 Characterizing the growth dynamics and the phenotype of a deletion 

strain 

To assess the contribution of each tRNA gene to cellular growth, we 

characterized the growth dynamics of each deletion strain. We chose to 

characterize each deletion strain by two growth parameters: growth rate and 

the size of the population upon entering the stationary phase, denoted “growth 

yield”. For each strain the relative-growth-rate and relative-growth-yield were 

calculated by normalizing its parameters to the wild type parameters measured 

in the same experiment. These parameters are then projected on a distribution 

of the wild type growth parameters (which was created by measuring the wild 

type multiple times in multiple days) and the number of standard deviations is 

calculated (σ), see Figure 1. Any deviations larger than two standard deviations 

from the mean were considered as “phenotypes” and deviations above three 

standard deviations were considered a “strong phenotype”. A negative 

deviation denotes impairment (worse than the wild type (WT)) while a positive 

deviation denotes improvement (better than the WT).  

  
 

 

O
D 

Time 

          
            

  
                 

      
 

              
 

         
              

― WT 
― deletion 

             
 

Figure 1. Characterizing a deletion strain.  Schematic representation of growth measurements, 

analysis, and scoring. For each strain relative-growth-rate and relative-growth-yield were 

calculated in relation to the wild type strain. These parameters are then projected on a 

distribution of the wild type growth parameters. Sigma (σ) is denotes the number of standard 

deviations from the mean of the wild type. 
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4.2.2 Motif Analysis 

A sequence motif analysis was performed using the MEME online software 

(Bailey & Elkan, 1994) to identify motifs which are can explain difference in 

tRNA deletion strain fitness. The motif search was done on the upstream 

sequence of tRNA genes which exhibited a yield impairment phenotype in rich 

medium upon deletion (42 genes) versus the upstream sequence of tRNA genes 

which exhibited a phenotype in no more than two out of the six measured 

conditions (99 genes). To apply location constrains on the motifs, the MEME 

analysis was done in windows of size 9bp, looking for motifs of 4-8bp in 

length.  

4.2.3 Microarray analysis 

For five tRNA deletion strains the transcriptome was measured using to 

Affymetrix yeast 2.0 microarrays. The microarray background adjustment was 

done using the Robust Multi-array Average (RMA) procedure followed by 

quintile normalization. For each strain, the fold change in expression for all 

genes was calculated by comparing the wild-type measurement in the same 

batch and averaged over two biological repeats.  

The five strains were clustered. The cluster tree was based on the correlation 

between the mRNA fold changes of the different strains. For the clustering we 

used the top 50% of the sorted genes based by the gene variance across the 

strains.  

4.2.4 Gene Set Enrichment 

To expose what are the responses and underling molecular pathways that 

differentiate these two groups of tRNA deletion strains, we used Gene Set 

Enrichment Analysis (GSEA) software. GSEA computationally determines 

whether pre-defined set of genes shows statistically significant difference in 

representation between two biological groups (Subramanian et al., 2005, 

Mootha et al., 2003). For the pre-defined set of genes we used S. cerevisiae 

pathways as defined by KEGG (Kanehisa & Goto, 2000, Kanehisa et al., 

2012). 
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4.3 Ribosome density governs patterns of mRNA cleavage in 

Escherichia coli 

4.3.1 Identifying cleavage sites 

In order to identify cleavages sites for both E. coli and P. aeruginosa we used 

data derived from a modified RNA deep sequencing protocol (Wurtzel et al., 

2010) to deduce location of endonucleolytic cleavage sites. The Mapping of E. 

coli 5’-end monophosphorylated RNA fragments were taken from the Quax et 

al. paper (Quax et al., 2013), which was downloaded from: 

http://www.weizmann.ac.il/molgen/Sorek/Navon_data.fasta.gz. and the P. 

aeruginosa  mapping were taken from Wurtzel et al. paper (Wurtzel et al., 

2012).  

The 5’-end mapping for both datasets were filtered, keeping only the most 

reliable cleavage sites thus filtering out potential transcription-start-sites (TSS) 

and less reliable reads. For details on the filtering see the Material and 

Methods in the paper attached to the results chapter, ‎5.3. 

4.3.2 mRNA folding energy and unpairing score calculations 

To calculate the mRNA secondary structure around the cleavage sites we used 

Vienna RNAfold package (Lorenz et al., 2011). For more details see the 

Material and Methods in the paper attached to the results chapter, ‎5.3. 

4.3.3 Calculating the genes’ ribosome density  

For this paper the ribosome density were constructed from ribosome 

occupancy data deposited in GSE35641 (Li et al., 2012). The ribosome 

occupancy for each gene was normalized to the sum of the ribosome 

occupancy over all the mRNA including its UTRs (50 nucleotides upstream 

and downstream). For more details see the Material and Methods in the paper 

attached to the results chapter ‎5.3. 
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5 Results  

5.1 The role of codon selection in regulation of translation efficiency 

deduced from synthetic libraries (Navon et al. Genome Biology 

2011) 

Although translated into the same amino acid, synonymous codons are not 

perceived the same by the translation system. The translation efficiency of a 

codon is affected by the availability of the tRNAs translating it and their affinity 

to translate it. Thus, some codons will be perceived as more optimal than others 

by the translation system. The aim of this project was to study how regions of 

less than optimal codons affect the gene expression level and the host fitness. 
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The role of codon selection in regulation of
translation efficiency deduced from synthetic
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Abstract

Background: Translation efficiency is affected by a diversity of parameters, including secondary structure of the
transcript and its codon usage. Here we examine the effects of codon usage on translation efficiency by re-analysis
of previously constructed synthetic expression libraries in Escherichia coli.

Results: We define the region in a gene that takes the longest time to translate as the bottleneck. We found that
localization of the bottleneck at the beginning of a transcript promoted a high level of expression, especially if the
computed dwell time of the ribosome within this region was sufficiently long. The location and translation time of
the bottleneck were not correlated with the cost of expression, approximated by the fitness of the host cell, yet
utilization of specific codons was. Particularly, enhanced usage of the codons UCA and CAU was correlated with
increased cost of production, potentially due to sequestration of their corresponding rare tRNAs.

Conclusions: The distribution of codons along the genes appears to affect translation efficiency, consistent with
analysis of natural genes. This study demonstrates how synthetic biology complements bioinformatics by providing
a set-up for well controlled experiments in biology.

Background
Understanding the mechanisms that control the effi-
ciency of protein translation is a major challenge for
proteomics, computational biology and biotechnology.
Efficient translation of proteins, either in their natural
biological context or in heterologous expression systems,
amounts to maximizing production, while minimizing
the costs of the process. Abundant genome sequence
data now make it possible to decipher sequence design
elements that govern the efficiency of translation. The
codon adaptation index (CAI) [1] was the first measure
to be introduced for gauging translation efficiency
directly from nucleotide sequences of genes. This mea-
sure quantifies the extent to which the codon bias of a
gene resembles that of highly expressed genes. The
tRNA adaptation index (tAI) assesses the extent to
which the codons of a gene are biased towards the more
abundant tRNAs in the organism [2]. Despite several
simplifying assumptions, both tAI and CAI are good

measurements for predicting protein abundance from
sequence [3,4]. Perhaps the most critical simplification
of the two models is that they represent the translation
efficiency of an entire gene by a single number - the
average translation efficiency value over all its codons.
As such, both CAI and tAI ignore the order in which
codons of high and low translation efficiency appear in
the sequence. Thus, two genes may share the same
value of CAI or tAI and yet the order of high and low
efficiency codons differs between them.
By analyzing dozens of genomes, we have recently

shown that the order of high and low efficiency codons
in biological sequences is under selection [5,6]. Specifi-
cally, examining such genomes revealed a clustering of
low efficiency codons at the beginning of ORFs, mainly
in the first approximately 50 codons. We termed this
design the ‘translation ramp’, or ‘ramp’ for short, which
might constitute a strategic early bottleneck in the flow
of the ribosomes. Our model suggests that such ramps
attenuate the ribosomes at the beginning of genes, thus
allowing a jam-free flow of ribosomes beyond the ramp.
We have shown that this design is predominantly
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obeyed by highly expressed genes [5,7], suggesting that
it might support efficient production. Investigating nat-
ural genes has two obvious advantages: their availability
in very high numbers, and the fact that they have been
subject to selection and optimization by evolution. Simi-
larly, using the totally asymmetrical simple exclusion
process (TASEP), it was theoretically shown that slow
codons can affect ribosome density and production rates
depending on initiation rate, termination rate, and the
rate of the slow codons and their distribution [8-12].
Yet, analysis of natural sequences also poses limita-

tions. Natural genes represent a wide variety but their
variability is uncontrolled and is influenced by con-
founding factors at many levels. For instance, even if
two genes share the same translation efficiency profile,
they may differ with respect to the strength of their pro-
moter, the un-translated regions, the secondary struc-
ture and the amino acid sequence, all factors that may
affect protein levels. Synthetic biology, which now offers
the ability to synthesize and express designed genes,
may complement the picture obtained from bioinfor-
matics analysis of natural genes. Although the number
of genes that can be synthesized is by orders of magni-
tude lower than the number of natural sequences, syn-
thetic genes enable us to modify one variable at a time
while keeping others constant. In several pioneering stu-
dies of this type, the nucleotide sequence of a single
gene was randomized while amino acid sequence was
kept constant. In particular, these studies generated
libraries of artificial variants of genes’ nucleotide coding
sequences, while fixing other features, such as the un-
translation regions and promoters. Analysis of one such
library led to an important finding - that the stability of
the mRNA, especially in the 5’ region, is a main deter-
minant of protein abundance [13]. Those authors
further found that the CAI of a gene had no effect on
protein expression levels but that it was rather corre-
lated with, and perhaps affected, the fitness of the host
cell.
Here we set to re-analyze the data from these libraries

[13,14]. We were motivated by the realization that, due
to their simplifying assumptions, the CAI and tAI do
not capture the full capacity of codon selection to affect
translation efficiency, particularly since these models
ignore codon order that is under tight selection [5,6].
We show that obeying the design we observed in nature,
namely localization of the bottleneck at the beginning of
the ORF sequence, indeed promotes higher levels of
expression. This was especially true if the predicted
dwell time of the ribosome at these bottleneck regions
was sufficiently long. On the other hand, the bottleneck
characteristics did not affect the fitness of the host cell.
We did find, however, that the extent of utilization of
two particular codons (UCA and CAU) does correlate

negatively with a cell’s fitness, potentially due to seques-
tration of the corresponding rare tRNAs. The results
further demonstrate how correlative conclusions made
from observations of natural gene sequences can be
complemented by synthetic genes, allowing decoding of
the sequence features that govern the efficiency of trans-
lation and its costs.

Results and discussion
Translation efficiency
Looking for the effects of codon usage on translation
efficiency and whether the order of the codons is impor-
tant, we set out to re-analyze data from the three syn-
thetic libraries [13,14]. The original tAI value [2] is
defined for an entire gene based on all its codons as:
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where lg is the length of the gene in codons and wik is

the relative adaptiveness value of the codon defined by
the kth triplet in the gene.
Here we refer to the wi value of a single codon as the

codon’s tAI. This measure is an approximation of the
codon’s translation speed, since a codon is assigned with
a high tAI if the various tRNAs that translate it are at
high abundance and have high affinity towards it.
Besides the tAI, there are other alternative approxima-
tions for the codon’s translation speed [8,15,16] (see dis-
cussion in Additional file 1). Note that all current
models have approximation as their basis, necessarily
introducing inaccuracies in analyses that are based on
them.
To investigate the effect of regions with less than opti-

mal codons, for each gene we defined the ‘bottleneck’ as
a region of a fixed number of codons, n, where the (har-
monic) mean of the codons’ tAI value is minimal (the
value of n is related to the distance between two conse-
cutive ribosomes on the mRNA (see Materials and
methods). Assuming the codon’s tAI value is an approx-
imation for the translation speed, then 1/tAI can be
regarded as the codon’s translation time and the bottle-
neck is the region with the longest average translation
time.
The bottleneck of each gene is characterized by two

parameters: the location of the bottleneck - that is,
number of codons from the ATG in which it occurs -
and the ‘strength’ of the bottleneck - the average time
to translate all the codons within it. To allow compari-
sons between the different genes and libraries below, we
refer to the relative, rather than absolute, form of these
variables - the relative location of the bottleneck is its
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location divided by the length of the gene, and the rela-
tive strength is the strength divided by the average
strength (that is, the time it takes to translate the bottle-
neck regions divided by the total time of translation of
the mRNA, or 1/tAI of the entire gene).
We first analyzed 154 synthetic GFP genes in a library

constructed by Kudla et al. [13]. All the synthetic GFP
variants had the same amino acid sequence but different
codon sequences. For these genes we calculated the bot-
tleneck parameters using a window of length n = 21
codons. Note that there is uncertainty regarding the
exact value of this parameter (see Materials and meth-
ods); however, experimentation with other window sizes
in the range 14 <n < 30 did not affect results qualita-
tively (not shown). Figure 1a shows the relative location
of the bottleneck of all GFP genes versus the protein
abundance of each translated gene (see Materials and
methods). The relative location is anti-correlated to the
protein abundance (Pearson correlation -0.43, P-value
3.4 × 10-8; Spearman correlation -0.46, P-value 2.8 × 10-
9), indicating that genes that have the bottleneck closer
to the ATG (designated here as the ‘proximal bottle-
neck’) tend to have higher protein abundance levels
compared to genes whose bottleneck are located
towards the 3’ end of the gene (designated the ‘distal
bottleneck’).
As for the relative strength of the bottleneck, when

examining the entire library of 154 genes we found a
modest yet significant correlation with the protein abun-
dance (Pearson correlation 0.38, P-value 1.9 × 10-6;
Spearman correlation 0.31, P-value 1.2 × 10-4); that is,

genes with long dwell times of the ribosome in the bot-
tleneck regions tended to have higher expression levels.
However, as seen in Figure 1b, this correlation is mainly
contributed by genes that have a proximal bottleneck.
Focusing on 86 of the genes with a proximal bottleneck
(located between relative positions 0.16 to 0.28) a signif-
icant positive correlation emerged between the relative
strength and the protein abundance (Pearson correlation
0.47, P-value 3.9 × 10-6; Spearman correlation 0.44, P-
value 2.1 × 10-5). From Figure 1a it is seen that there
are relatively few genes with a distal bottleneck that also
have a similar relative strength; therefore, the influence
of the relative strength on distal genes cannot be
deduced.
Summarizing the analysis of the GFP library, the dis-

tribution of the codons along the transcript appears to
affect the final GFP levels in the cell. A region of less
efficient codons at the beginning of a transcript - for
example, a proximal bottleneck - seems to enable higher
protein levels. For genes with a proximal bottleneck it is
also beneficial to have a relatively long dwell time of the
ribosome, that is, a strong enough bottleneck. From this
library we were not able to learn about the significance
of the bottleneck strength in the case of genes with dis-
tal bottlenecks; however, other libraries with different
distributions of bottlenecks can shed light on the
question.
In another recent paper, by Welch et al. [14], two dif-

ferent proteins were synthesized: the DNA polymerase
of Bacillus phage and an antibody fragment (scFv). For
each protein there are approximately 40 different
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Figure 1 Protein abundance versus relative location and strength of the bottleneck in the GFP library. (a) All the genes in the GFP
library. The x-axis is the relative location of the bottleneck in every gene; the y-axis is the per-cell protein abundance. The color of each dot is
the relative strength of the bottleneck in every gene. Eighty-six of the genes are located between the two black lines that correspond to
relatively early bottlenecks - that is, relative location between 0.16 and 0.28. (b) The correlation between the bottleneck relative strength and
per-cell protein abundance for all the genes in the GFP library. The 86 genes that have a relative location between 0.16 and 0.28 are plotted as
red squares, and the rest of the genes are plotted as grey circles.
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sequences in which the amino acid was kept the same
while changing the codon sequence. For both proteins,
the location of the bottleneck is quite far from the ATG
in most synthetic variants (relative distance of approxi-
mately 0.5 and higher; Figure S1 in Additional file 2),
excluding the possibility of examining the effect of the
proximal bottleneck on the expression of these two pro-
teins. Nonetheless, we could still compute the correla-
tion between the bottleneck’s parameters and protein
abundance. Although less significant than in the case of
the GFP library, both libraries showed an anti-correla-
tion between protein abundance levels and the relative
location of the bottleneck (Spearman correlation -0.34
(P-value 0.06) and -0.40 (P-value 0.03); Pearson correla-
tion -0.34 (P-value 0.06) and -0.16 (P-value 0.40) for the
scFv and the polymerase, respectively). Similar to the
GFP library, such negative correlation indicates that
proximal bottlenecks are often associated with higher
expression levels. As was done for the GFP library, we
looked at the correlation between protein abundance
and the bottleneck relative strength (Figure 2) for speci-
fic locations, chosen based on Figure S1 in Additional
file 2 (for correlations see Table S1 in Additional file 1).
Interestingly, while in the case of the GFP library a
proximal bottleneck became more effective with
increased relative strength, in the cases of scFv and the
polymerase, which featured a distal bottleneck, the
strength actually showed the opposite correlation; that
is, genes with long dwell times in the bottleneck regions
showed lower protein abundance (Spearman correlation
-0.43 (P-value 0.02) and -0.67 (P-value 7.1 × 10-5) for all
genes of scFv and the polymerase, respectively). It is our

understanding that a proximal bottleneck can have ben-
eficial effects on protein production [5]. The bottleneck
can delay the translating ribosome, causing a ribosome
backlog (when in polysome), and can also reduce the
density of the ribosome downstream. A proximal bottle-
neck minimizes the number of jammed ribosomes, thus
reducing ribosome sequestering and collisions, two
potential causes for a decrease in protein production.
Assuming the bottleneck reduces the density of ribo-
somes downstream, a slower bottleneck (that is, a bot-
tleneck with increased relative strength) will reduce
even more downstream ribosome collisions, improving
protein production, as seen with the GFP library. On
the other hand, a distal bottleneck at the end of the
ORF causes a long backlog, with no beneficial effects on
expression levels. Since a bottleneck at the end of the
ORF seems to have mainly negative effects on the pro-
tein translation rate, reducing its relative strength is
beneficial, as seen in the case of the scFv and the
polymerase.
To further verify our assumption that the bottleneck
may have beneficial effects on protein abundance when
they are located at the beginning of a gene, we looked
at the distribution of locations of the bottleneck in nat-
ural Escherichia coli genes [Refseq: NC_012947] (Figure
3; Figure S2 in Additional file 2). Indeed, for most genes
with a bottleneck of high relative strength (higher than
1.3), the bottleneck region is located in the first quad-
rant of the transcript (relative location smaller than
0.25). For 41% of genes with a bottleneck of high rela-
tive strength, the bottleneck is located in the first quad-
rant (hyper-geometric significant enrichment P-value
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Figure 2 Protein abundance versus relative strength of the bottleneck for data from the scFv and polymerase libraries. (a) All the scFv
genes; (b) all the polymerase genes. In both panels the x-axis is the relative strength of the bottleneck, the y-axis the per-cell protein
abundance. Genes with bottlenecks at different relative locations are marked by different colors (see legend) to show the correlation between
relative strength and protein abundance for genes with the same bottleneck location.
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6.2 × 10-9) and only 22% of these genes have the bottle-
neck located in the fourth quadrant, which is a signifi-
cant depletion (hyper-geometric P-value 1 × 10-4).
Examining highly expressed genes separately (see Mate-
rials and methods; Figure S2b in Additional file 2),
we also observe a depletion of a strong bottleneck in the
fourth quadrant (18% of the genes, hyper-geometric
P-value 0.02) and enrichment in the first quadrant (49%,
P-value 0.005). In contrast, a separate examination of
lowly expressed genes (Figure S2c Additional file 2)
reveals no significant depletion or enrichment (depletion
in the fourth quadrant 18% (P-value 0.39); enrichment
in the first quadrant 41% (P-value 0.15)).
Kudla et al. [13] showed that the folding energy of the

mRNA near the initiation site influences translation
rate. It was suggested that a weak secondary structure
enables the ribosome to bind more quickly to the
mRNA, thus enabling a faster translation rate. These
observations raised the possibility that the correlation
we observe between bottleneck location and protein
abundance in the GFP library is due to the confounding
effects of mRNA secondary structure stability. We thus
carried out correlation analysis to verify that the correla-
tions we found still hold even when examining gene sets
with similar mRNA folding energy. We calculated the
partial correlation between bottleneck parameters and
per-cell protein abundance while controlling for the
folding energy. Both the relative location correlation
(Pearson correlation -0.24, P-value 0.004; Spearman cor-
relation -0.27, P-value 9.5 × 10-4) and the relative
strength at locations 0.16 to 0.28 (Figure 1) correlation

(Pearson correlation 0.3, P-value 0.006; Spearman corre-
lation, 0.24, P-value 0.024) remained significant even
after controlling for the folding energy, indicating that
bottleneck parameter correlations are significant on
their own. Therefore, although in the GFP library the
folding energy significantly affects the protein abun-
dance, bottleneck location and strength also contribute
to the changes in protein levels.

The cost of production
For efficient translation we are interested not only in the
levels of expressed protein from a gene but also in the
cost of expression. Considering the cost of production,
we looked at how introducing a new gene into the host
cell influenced cell fitness. The influence on fitness is, in
general, a combination of the benefit the protein pro-
vides with the burden its production puts on the system.
However, assuming that the genes from the heterolo-
gous libraries discussed here do not contribute to the
fitness of the host cell, the fitness decline due to expres-
sion reflects only the pure cost of production.
Kudla et al. [13] showed that the measured optical

density (OD), assumed to be proportional to the fitness
of the host cell, is highly correlated with the CAI.
Further analysis showed that the tAI is also correlated
with OD (Pearson correlation 0.51, P-value 2.4 × 10-11).
These two similar measures describe the entire tran-
script and not a particular region within it. In contrast,
we found that the bottleneck parameters that signifi-
cantly correlate with protein abundance are not corre-
lated with cell fitness. Thus, the factors that correlate
with fitness and those correlating with protein abun-
dance appear distinct in this library (Figure 4). It seems
that while specific regions of the transcript affect protein
abundance, the fitness is affected by the codon usage of
the entire transcript.
Trying to understand the source for the correlation

between the fitness and tAI or CAI, we examined the
effect of individual codons on cell fitness. We analyzed
the correlation between the usage frequency of each
specific codon in the GFP sequence (number of copies
of the codon in the sequence) and the fitness of the cell
that was expressing that GFP variant (Figure 5). Inter-
estingly, the extent of usage of some codons is nega-
tively correlated with fitness, is positively correlated for
others, and for the rest is not correlated with fitness.
The cases of negative correlation may indicate a burden
on fitness due to using particular codons. In contrast,
since fitness can only decrease due to GFP expression,
cases of positive correlation between codon usage in a
gene and its host fitness likely reflect an artificial nega-
tive correlation of synonym codons; that is, the prefer-
ence for not using its alternative codons rather than a
preference for expressing the codon itself.
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Figure 3 Distribution of bottleneck relative locations for E. coli
genes. The distribution is shown for three groups of E. coli genes:
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Thus, focusing on the codons that correlate negatively
with fitness, we detected three codons whose usage cor-
relates most significantly: CAU (Pearson correlation
-0.69, P-value < 10-324); AAU (Pearson correlation -0.68,
P-value < 10-324); and UCA (Pearson correlation -0.67,
P-value < 10-324) (Figure 5; Table S2 in Additional file
1). Further examination reveals inter-dependencies
between the usage of some of these codons; in particu-
lar, the frequencies of CAU and AAU are highly corre-
lated (r = 0.92, P-value 10-64) among themselves (the
reasons for internal correlation may have to do with
GFP construction methods; see Kudla et al. [13]). Using
partial correlation analysis between the usage of each
codon, we identified UCA and CAU as the main codons
contributing to the decrease in the fitness (see Materials
and methods).
The number of occurrences of the UCA codon,

encoding serine, in a single gene varies between zero to
three appearances. This codon is the rarest out of the
six serine codons in the E. coli genome [Refseq:
NC_012947], though it is not extremely rare (12.2% of
all serine codons, and 0.7% of all 61 codons in the ORFs
of the genome; Table S2 in Additional file 1). However,
in the transcriptome (that is, the genome, weighted by
the mRNA expression level from each gene; see Materi-
als and methods) UCA is one of the rarest codons (8.7%
of all serine codons and 0.45% of all 61 codons). The
UCA codon is exclusively translated by the tRNAUGA

[17]. The genome of E. coli has only one copy of this
tRNA gene and, reassuringly, it was shown that a short-
age of this tRNA decreases cell fitness [18]. The negative

correlation between the copy number of the UCA codon
and the fitness can thus imply that increased usage of
the UCA codon causes a shortage of the corresponding
tRNA, causing a decrease in fitness. Regarding codons
CAU and AAU, they are negatively correlated with fit-
ness (and with one another) yet we found no apparent
reason for this.
Shortage of tRNAs explains some of the correlations

between the usage of certain codons and fitness; how-
ever, it is not clear through which mechanism a short-
age of tRNAs affects the fitness. The extensive usage of
codons that correspond to rare tRNAs can affect the fit-
ness in at least one of two alternative ways: by ‘consum-
ing’ the tRNAs and sequestering them from
participating in the translation of other transcripts; or
through the unavailability of ribosomes that are delayed
for longer times while searching for rare tRNAs. A sim-
ple means to distinguish between these two alternative
options is to examine whether not only the number but
also the location of such rare codons affects fitness. In
particular, we expect that if the fitness-reducing effect
of the rare codons is the jamming of ribosomes, then
their utilization will be particularly harmful when
located distally, closer to the 3’ end of the transcript. In
contrast, if the fitness-reducing effect is predominantly
due to the consumption of rare tRNAs, then it is not
expected to show such location dependence. In reality,
we observed no correlation with the location (Figure S3
in Additional file 2), suggesting that it is the consump-
tion of the rare tRNAs, in this case, that compromises
fitness.
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Conclusions
As shown, a proximal and strong bottleneck is corre-
lated with an increase in protein abundance. A proximal
bottleneck can reduce the number of jammed ribosomes
on a transcript. Therefore, it can reduce both the num-
ber of occupied ribosomes and the number of delayed
ribosomes. Delaying ribosomes on the mRNA might
increase their abortion rate, thus causing early termina-
tion of the translation [19], reducing protein levels. For
ribosomes to jam, a fast initiation rate is required. This
is usually the case in highly expressed genes, in cases of
heterologous gene expression, and in synthetic libraries
such as discussed here where high protein levels are
desired. Due to amino acid sequence constraints for
some genes, a naïve approach, using only optimal

codons, might result in an unintentional distal
bottleneck.
While the bottleneck parameters are correlated with

protein abundance, they are not correlated with fitness.
This suggests that while the occupation of more ribo-
somes sequesters them from the cell’s pool, for most
genes in the GFP library it does not cause a shortage of
ribosomes, enabling the cell to continue translating
other transcripts. The decrease in fitness is correlated
with the increased usage of codons UCA and CAU, sug-
gesting a shortage of the complementary tRNAs.
Our results thus show that, along with mRNA stabi-

lity, codon choice does affect translation efficiency, and
that naïve averaged measures such as CAI and tAI do
not capture this regulatory capacity. The results also
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show that while codon choices do affect both translation
efficiency and cell fitness, different aspects of codon
selection affect differently the production capacity and
costs. One direct conclusion from our results relates to
the popular usage of ‘His-tags’, chains of histidine resi-
dues at carboxyl termini of genes in heterologous
expression systems [20]. When using carboxy-terminal
His-tags in bacterial expression systems it would be
advantageous to encode histidine with CAC rather than
with CAU for two reasons: first, because CAU appears
to correlate negatively with fitness; and second, in order
to avoid a bottleneck towards the end of the gene.
When trying to understand the cell system, one rea-

lizes its processes are regulated on many different levels.
As shown in this paper, synthetic gene libraries enabled
us to control for a significant portion of gene variability
and focus on the effects of regions with less than opti-
mal codons (the bottleneck). Identification of bottleneck
effects in synthetic genes thus completes Tuller et al.’s
[5] bioinformatics work that identified clustering of low
efficient codons at the beginning of ORFs of natural
genes. The results further demonstrate how correlative
conclusions made from observations of natural gene
sequences can be complemented by synthetic genes,
allowing decoding of the sequence features governing
the efficiency of translation and it costs.
It is our belief that through carefully designed syn-

thetic libraries many other regulation processes can be
understood, thus completing the first step towards
understanding the regulation process as a whole.

Materials and methods
Defining the bottleneck
The bottleneck is a region on a gene where the harmo-
nic mean of its codons’ tAI values is minimal. For all
codons except CGA, the tAI values were calculated
using dos Reis et al.’s s-values [2]; for codon CGA the
value 0.1333 was used. This codon is translated with
tRNAACG; however, the s-value for this interaction is
very high, resulting in a very low tAI value. This tAI
value is smaller by at least an order of magnitude than
the smallest tAI value, causing all other codons to have
a relatively high tAI, disabling this analysis. Since CGA
is actually translated by tRNAACG, we decided to change
the s-value of this interaction to a more reasonable
value, resulting in the above mentioned tAI value. Given
the tRNA repertoire of E. coli, this change affects only
the tAI value of codon CGA.
A codon tAI value is assumed to be proportional to

the speed of the codon’s translation [5]; higher tAI
values correspond to high tRNA abundance and affinity,
thus faster translation. A harmonic mean of speeds is
simply an arithmetic mean of the corresponding times.
Hence, looking for the region with the minimum

harmonic mean of speed is equivalent to looking for the
region that takes the longest time to translate.
For each region the harmonic mean of speed is:

n

tAIcc gion

1



Re

where n is the region size, and c is the set of all the
codons in the region (n codons).
To find the bottleneck, a sliding window of length n

over the gene was used. The harmonic mean was calcu-
lated for each window and the window with the mini-
mum value was identified. It should be noted that since
we are averaging the translation time in a window, an
incorrect window size might in some cases result in
incorrect identification of the bottleneck. For example, if
our estimated window size is too big, it might mask a
cluster of a few slowly translated codons, of a more rele-
vant size, that are surrounded by relatively rapidly trans-
lated codons. In most cases, however, the slow region is
significant enough and its identification is not too sensi-
tive to window size. Indeed, as mentioned in the Result
and discussion section, our results did not change quali-
tatively for window sizes in the range 14 <n < 30.

The bottleneck window size (n)
Under a maximal density scenario (fast initiation rate),
the distance between two consecutive ribosomes will be
minimal. In this case, when two ribosomes are translating
the same mRNA simultaneously, the minimum possible
distance between the two translated codons (one by each
of the ribosomes) is one ribosome size (H codons) (Fig-
ure S4 in Additional file 2). At any given moment during
the translation process, two adjacent ribosomes would
have translated exactly the same codons apart from the
last H codons - the first of the two ribosomes has already
translated them, and the second is just about to start
them. If the time it took the first ribosome to finish
translating the nth codon, T(n,1), is longer than the time
it takes the second ribosome to translate the n-Hth
codon, T(n - H ,2), the second ribosome will ‘bump’ into
the first one. That is, if T(n,1) >T(n - H ,2), a traffic jam
will be created. T(n,1)can be found by summing the time
it takes the ribosome to assemble on the ATG (B) with
the time it takes to translate the n codons:

T n B t i
i

n
( , ) ( )1  

 1

where t(i) is the time it takes to translate the ith
codon. The second ribosome gains access to the ATG
only when enough codons (minimum H) are cleared
after being translated by the first ribosome. As a result a
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traffic jam will be created if Tw (k,H) >Tw (1,H)+B,
where Tw (k,H) is the time to translate H consecutive
codons starting from codon k:

Tw k H t i
i k

k H
( , ) ( )



  1

Therefore, the region of H codons with maximum

translation time arg max ( , )
:k H

Tw k H
 

 







1 mRNA length
deter-

mines whether and where a traffic jam will be created
(for a detailed calculation, see page 2 of Additional file
1). Choosing n in our bottleneck equation to be equal
to H, it is easy to see that our bottleneck is related to
this maximum.
As can be seen from this analysis, the minimal dis-

tance between two ribosomes should determine our
window size. The footprint of the ribosome, which is
the actual protection of the ribosome from RNA degra-
dation, was determined quite accurately to be ten
codons [21]. Due to the structure of the ribosomes, we
assume that there should be some space between two
consecutive 30S subunits. As a result, although only ten
codons are protected, the minimal distance between the
two ribosomes should be larger. Therefore, we chose to
adopt the average ribosome-to-ribosome distance mea-
sured by Brandt et al. [22]. They measured the mean
distance between the center of mass of two ribosomes
on actual bacterial polysomes to be 21.6 nm [22], which
is about 21 codons (0.34 nm per base). In this paper, n
was set to be equal to H; that is n is set to 21 codons.

The bottleneck parameters
A bottleneck is characterized by two parameters: its
‘location’ and its ‘strength’.
The ‘location’ of the bottleneck is defined as the loca-

tion in the gene of the bottleneck’s first codon (k codons
from the ATG). The relative location of the bottleneck
is defined as the location of the bottleneck divided by

the number of possible windows; for example, k
l n  1

,

where k is the location of the bottleneck, l is the length
of the gene, and n is the window size.
The ‘strength’ of the bottleneck is defined as the arith-

metic average of 1/tAI values for the codons in the

region, for example,
1 1
n tAIcc gion


Re

(the inverse of the

harmonic mean). The relative strength of the bottleneck
is defined as the strength of the bottleneck divided by
the average 1/tAI for the entire gene, for example,

1 1

1 1
1

n tAI

l tAI

cc bottleneck

cc

l








; where l is the number of codons

in the gene (excluding the stop codon).

Per-cell protein abundance
To get an estimate for protein expression per cell from
the GFP library data [13], we normalized the measured
protein abundance (measured by OD), which serves
here as a proxy for the population size, the OD. The
protein abundance levels for the data from Welch et al.
[14] were measured while keeping the OD constant.
Therefore, we can use this protein abundance as an
already normalized protein level per cell.

Highly and lowly expressed genes of E. coli
The E. coli mRNA levels were taken from Lu et al. [23].
The highly expressed genes are the top 500 genes, and
the lowly expressed genes are the bottom 500 genes
(genes with no mRNA recorded were ignored). How-
ever, for both groups only genes that are longer than
100 codons were used.

Finding the main anti-correlated codons
We used partial correlation to find the codons that con-
tribute the most to the decrease in cell fitness. The
highest contributors were filtered according to the fol-
lowing steps. First, find codons that have a negative cor-
relation to the OD (29 codons). We were looking for
codons that caused a decrease in the fitness; hence, only
anti-correlated codons. Second, for all codons left, we
calculated the partial correlation matrix M(i,j) = Partial
correlation (codon i, OD | codon j). Third, find the
minimum absolute value of the partial correlation for
each codon and rank the codons in a descending order
accordingly. This gives us the codons with a correlation
that cannot be explained by correlation to other codons
(see Table S4 in Additional file 1 for a list of all codons
with P-value < 0.1).
The codon at the top of the list is UCA, which is anti-

correlated to the OD and its correlation cannot be
explained by other codons. The second contributing
codon is CAU, which has the highest partial correlation
(-0.36, P-value 8.5 × 10-6) when controlling for the UCA
codon. This codon is also the second codon in the
ranked list. All other codons have a partial correlation <
0.2 with a P-value ≥ 0.04 when controlling with one of
the two codons (either UCA or CAU).

Calculating codon usage in the genome
The genome for E. coli strain B21 (which was used by
Kudla et al. [13]) was downloaded from the NCBI
([Refseq:NC_012947], 11 January 2010)]. For each codon
we counted its appearance in all the ORFs and normal-
ized by the total number of codons.

Calculating codon usage in the transcriptome
mRNA levels were taken from Lu et al. [23]. If a gene
did not have a measurement, it was assumed to have a
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zero mRNA level. The measurements were done with E.
coli strain K12 MG1655; thus, the sequence used for the
calculation was different from that used for genome
codon usage. The sequence was downloaded from NCBI
([Refseq: NC_000913], 1 April 2010). The contribution
of each gene was calculated by multiplying the mRNA
level measurements for the gene by the codon usage of
the same gene. The contributions of all genes were
summed for each codon and then divided by the total
sum of all codons.

Additional material

Additional file 1: Supplementary methods. This file includes a
discussion regarding codon translation speed, additional tables not
included in the main text, and figure legends for the supplementary
figures in Additional file 2.

Additional file 2: Supplementary figures. Additional figures not
included in the main text.
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CAI: codon adaptation index; GFP: green fluorescence protein; OD: optical
density; ORF: open reading frame; tAI: tRNA adaptation index.
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Supplement Text 

Codons translation speed 

In this paper we used the tRNA adaptation index (tAI) developed by dos Reis [2] as 

an approximation for the codon translation speed. The tAI index was developed 

mainly based on optimizing the translation efficiency of highly express genes. Two 

recent papers [15, 16] used evolutionary selection for translation efficiency as a 

means to learn the efficiency and coefficients of codon-anticodon interactions. They 

found that some non-standard combinations seem to be selected for and hence 

deduced to be translated at high rates. One of the major difference between their 

conclusion to the tAI is the value of the U:U interaction (codon with wobble-U 

translated by a tRNA with a wobble- U) for amino acid in a 4-box. In the tAI 

calculations this interaction was assumed to be forbidden (sU:U=1) while based on 

selection it was suggested that this interaction is quite potent, which should result in a 

low sU:U in the tAI model. 

To investigate the U:U interaction effects we manually added the sU:U interaction to 

the tAI calculations at 4-box cases and scanned the effects over the full possible range 

of  values of sU:U, form 0 to 1. First we looked how adding sU:U changed the 

bottleneck parameters. Figure S5 shows the correlation between our original 

bottleneck parameters and the newly calculated one. As expected the correlation 

decreases as sU:U decreases. The correlation decreases from 1 for sU:U=1 (which is 

as in the original dos Reis tAI values) to 0.61 for sU:U=0, for the bottleneck relative 

location and 0.51 for the bottleneck relative strength. 

Next we looked how the modified tAI predicts expression levels of the E. coli mRNA 

levels [26] for 3 different groups: all genes, highly expressed (top 250) and lowly 



2 

 

express (bottom 250). As can be seen in Figure S6 for all genes and the highly 

expressed ones the correlations increase with an introduction of the U:U interaction 

(sU:U<1). However it seems that the main contribution to the increase occurs merely 

by introducing the interaction, i.e. reducing sU:U from 1 to 0.7 results in half of the 

increase in the correlation. For this graph we find it hard to deduce what should be the 

optimal sU:U value, but the result indeed suggests a desired correction for the tAI.  

Finally we look at the two main correlations we find in the GFP library: the 

correlation with between the bottleneck relative location to the protein abundance and 

the correlation between the bottleneck relative strength for genes with the same 

relative location (between 0.16-0.28) and protein abundance. For both correlations we 

see (figure S7) that the introduction of sU:U actually reduces the correlations.  

 

The bottleneck window size (n) - detailed calculation 

The bottleneck is the region that will have the most slowing down effect on the 

ribosome. This region will only have a bottleneck effect if it slows the ribosomes 

enough to affect consecutive ribosome. As explained in the following the size of this 

region has to be about the minimum ribosome-to-ribosome distance (denoted below 

as H).  

We make first the following definitions:  

1. Traffic jam will be caused if the time it takes the first ribosome to finish 

translation of the nth codon is longer than the time it takes the second 

ribosome to finish translation of codon n-H.  In this case the second 

ribosome will not be able to proceed to the (n-H+1)-th codon since it will 

collide with the first ribosome and hence will be delayed. 
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2. A ribosome can start assembling on the ATG when the first H codons (the 

minimum distance required between 2 ribosomes) are cleared from the 

preceding ribosome.  Let B be the time it takes the ribosome to bind and 

assemble on the ATG.  

3.  If t(i) is the time it takes to translate codon i, and T(n,j) is the time it takes 

the j
th

 ribosome to finish translation of the n
th

 codon, where n is the codon 

at the leading edge of the ribosome. 

then:  

a. The time it takes the first ribosome to reach the n
th

  codon: 





n

i

itBnT
1

)()1,(  

b. The time it takes the second ribosome to reach the (n-H)-th 

codon:  







Hn

i

itBHnT
1

)(cleared) is siteassembly   theuntil time()2,(  






 
Hn

i

H

i

yields itBitBHnT
11

)()()2,(  

4. For a traffic jam to be created, the time for the first ribosome to finish 

translation of the n
th

 codon should be longer than the time it takes the 

second ribosome to finish translation of the n-H codon :  

)2,()1,( HnTnT   






 
Hn

i

H

i

n

i

yields itBitBitB
111

)()()(  

 




 
H

i

n

Hni

yields itBit
11

)()(  
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5. We define ),( HkTw  is the time to translate H consecutive codons starting 

from codon k   





1
)(),(

Hk

ki
itHkTw . Therefore, a traffic jam will be 

created if: 

,H)Tw (BTw (k,H) 1  

B,H)Tw (Tw (k,H)  1  

6. For any traffic jam to be created along the gene: 

     BHTwHkTw
Hk




,1,maxarg
lengthmRNA :1

   

Inspecting the slowest region (of H codons) for the specific gene (bottleneck 

strength), if the time to translate that region minus the time it takes to translate the 

first H codons is longer than the time to finish “assembling” the ribosome (B) than 

traffic jam will be created.  

As can be seen from the equation the region size which determine whether two 

consecutive ribosomes will collide has the size of the minimum distance between 2 

ribosomes. 
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Supplement Figures 

Figure S1: protein abundance vs. bottleneck relative location of data from 

Welch et al.’s libraries. 

 In the left figure (A) plotted all the scFv genes and in the right figure (B) plotted all 

the Polymerase genes. In both figures the x-axis is the gene’s relative location, the Y-

axis is the per-cell protein abundance and the color is the gene’s relative strength.  

Figure S2:  The distribution (2D histogram) of the bottleneck of the E. coli 

genes. 

 X-axis is the relative location, Y-axis the relative strength and the color is the % of 

genes having a bottleneck matching the parameters. A all E. coli genes longer than 

100 (well above region size and still maintain 90% of the E. coli genes) codons were 

plotted. B only the highest expressed genes were plotted. The 500 genes which have 

the highest transcript levels were chosen and from these the genes with 100 codons or 

longer were taken, making a total of 442 genes. C only the lowest expressed genes 

were plotted. The 500 genes which have the lowest transcript levels were chosen and 

from these the genes with 100 or longer were taken, making a total of 473 genes. 

Figure S3: location of first copy of a codon vs. the fitness.   

Each point represents a gene in the GFP library. A, plotted is the location of the first 

CAU codon for each GFP variant vs. the variants’ OD. In figure B, the location of the 

first UCA codon in the GFP variants is plotted vs. the variants’ OD. 

Figure S4: distances between two consecutive ribosomes   

The figure illustrates two consecutive ribosomes, on the same mRNA, with the second 

one (left) currently being assembled on the ATG. The size of a ribosome in the figure 

is H codons. HL is the distance from the ribosome A-site to the left end of the 
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ribosome, HR is the distance from the A-site to the right end of the ribosome. The 

illustration shows that the minimum distance between two ribosomes' A-sites is H 

which is also “one ribosome size”. It can also be seen that in order for the second 

ribosome to start assembling on the ATG the first ribosome should have cleared the 

assembly area, e.g. translate H codons. 

Figure S5: Correlation between the bottleneck parameters for different sU:U 

values 

 The correlation between the bottleneck relative location (A), and bottleneck relative 

strength (B), calculated once with the original dos-Reis tAI values and with 

alternative values of sU:U.  

Figure S6: The gene expression prediction quality of the modified tAI values  

For each sU:U value we calculated the correlation between the gene’s tAI value to the 

expression level. In the figure the correlation is plotted for three different groups: all 

the E. coli genes (blue), only the highly express ones, top 250 (green) and the lowly 

express ones, bottom 250 (red). 

Figure S7: correlation between bottleneck parameters and the protein 

abundance for different sU:U values. 

 A Correlation between the bottleneck relative location and the protein abundance for 

all the GFP variants, for different sU:U values. The blue line is the correlation 

between the relative location and the abundance while the green line is the p-value of 

each correlation.  B Correlation between the bottleneck relative strength and the 

protein abundance for the 86 GFP variants for which the bottleneck is located in 

between 0.16 to 0.28 (as done in the main text) for different sU:U values. The blue 
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line is the correlation between the relative location and the abundance while the green 

line is the p-value of each correlation. 
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Supplement Tables 

Table S1. The correlations between the bottleneck relative strength to the 
protein abundance for the scFv and Polymerase libraries. 

 The relative location regions were chosen to incorporate many genes with the same 

relative location; the regions were chosen based on the plots in figure S1.  

Protein 
Relative 

location 

Number of 

genes 

Correlation with the 

 bottleneck relative 

strength 

Pearson; Spearman 

p-value 

Pearson; 

Spearman 

scFv 0.9-1 25 -0.23; -0.32 0.27; 0.11 

scFv 0-1 (All) 42 -0.43; -0.41 0.01; 0.02 

Polymerase 0.48-0.52 13 -0.60; -0.67 0.03; 0.015 

Polymerase 0.76-0.82 13 -0.38; -0.43 0.2; 0.14 

Polymerase 0-1 (All) 39 -0.55;-0.67 0.0018; 7.1e-5 

 

 

Table S2 – Codon parameters 

For each codon the tables contains it amino acid, number of copies of complementary 

tRNA in the genome, its tAI value, the Pearson correlation with the OD 

measurements, the codon usage in the genome and the in the transcriptome. Except 

for the transcriptome all values are based on E. coli strain B, the transcriptome was 

calculated for E. coli K12 (see methods). When NaN (Not a Number) is listed it 

means that a correlation cannot be calculated due to a constant value of codons for all 

GFP variants 

Amino 

acid 
Codon 

# tRNA 

Copies 
tAI correlation p-value 

Codon 

usage in 

genome % 

Codon usage in 

transcriptome % 

N AAU 0 0.39 -0.68 <E-324 1.73 1.21 

N AAC 4 0.67 0.68 <E-324 2.16 2.69 

K AAA 6 1.00 0.11 1.96E-01 3.37 4.25 

K AAG 0 0.32 -0.11 1.96E-01 1.02 1.29 

T ACU 0 0.20 0.16 5.71E-02 0.89 1.30 
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T ACC 2 0.33 0.07 4.09E-01 2.33 2.60 

T ACA 1 0.17 -0.09 2.57E-01 0.68 0.48 

T ACG 1 0.22 -0.20 1.64E-02 1.45 1.02 

S AGU 0 0.10 -0.48 8.13E-10 0.86 0.54 

S AGC 1 0.17 0.48 8.13E-10 1.61 1.34 

R AGA 1 0.17 -0.16 5.48E-02 0.18 0.10 

R AGG 1 0.22 0.16 5.48E-02 0.11 0.05 

I AUU 0 0.30 -0.39 9.18E-07 3.05 2.57 

I AUC 3 0.50 0.42 1.21E-07 2.52 3.26 

I AUA 0 0.055 -0.22 8.02E-03 0.41 0.19 

M AUG 7 (3.5, 3.5)* 0.58 NaN NaN 2.81 2.73 

H CAU 0 0.10 -0.69 <E-324 1.28 0.95 

H CAC 1 0.17 0.69 <E-324 0.98 1.13 

Q CAA 2 0.33 -0.43 5.75E-08 1.53 1.15 

Q CAG 2 0.44 0.43 5.75E-08 2.89 2.93 

P CCU 0 0.10 -0.42 8.35E-08 0.69 0.57 

P CCC 1 0.17 0.02 8.45E-01 0.55 0.29 

P CCA 1 0.17 -0.35 1.08E-05 0.83 0.73 

P CCG 1 0.22 0.57 4.65E-14 2.35 2.54 

R CGU 4 0.67 0.03 7.23E-01 2.11 2.88 

R CGC 0 0.48 -0.30 1.92E-04 2.22 2.09 

R CGA 0 0.13 0.22 6.21E-03 0.35 0.17 

R CGG 1 0.17 0.06 4.53E-01 0.53 0.25 

L CUU 0 0.10 -0.11 1.95E-01 1.10 0.79 

L CUC 1 0.17 -0.08 3.08E-01 1.11 0.82 

L CUA 1 0.17 -0.42 7.56E-08 0.39 0.20 

L CUG 4 0.72 0.29 4.45E-04 5.33 5.80 

D GAU 0 0.30 -0.41 2.48E-07 3.20 2.97 

D GAC 3 0.50 0.41 2.48E-07 1.91 2.54 

E GAA 4 0.67 -0.09 2.79E-01 3.97 4.80 

E GAG 0 0.21 0.09 2.79E-01 1.77 1.80 

A GCU 0 0.20 -0.18 3.00E-02 1.54 2.31 

A GCC 2 0.33 -0.27 1.13E-03 2.57 2.09 

A GCA 3 0.50 0.46 6.25E-09 2.02 2.23 

A GCG 0 0.16 -0.42 9.49E-08 3.41 3.17 

G GGU 0 0.39 0.19 2.16E-02 2.48 3.39 

G GGC 4 0.67 0.25 2.44E-03 2.99 3.30 

G GGA 1 0.17 -0.58 8.66E-15 0.78 0.47 
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G GGG 1 0.22 0.10 2.39E-01 1.10 0.71 

V GUU 0 0.20 -0.20 1.72E-02 1.83 2.66 

V GUC 2 0.33 -0.27 7.94E-04 1.52 1.29 

V GUA 5 0.83 0.34 2.50E-05 1.10 1.39 

V GUG 0 0.27 0.08 3.52E-01 2.64 2.36 

Y UAU 0 0.30 -0.58 7.11E-15 1.60 1.24 

Y UAC 3 0.50 0.58 7.11E-15 1.21 1.46 

* UAA 0 0.00 NaN NaN 0.21 0.27 

* UAG 0 0.00 NaN NaN 0.02 0.01 

S UCU 0 0.20 0.45 8.07E-09 0.84 1.19 

S UCC 2 0.33 0.36 7.79E-06 0.86 1.05 

S UCA 1 0.17 -0.67 <E-324 0.70 0.45 

S UCG 1 0.22 0.04 6.08E-01 0.90 0.60 

C UGU 0 0.10 0.11 1.84E-01 0.51 0.38 

C UGC 1 0.17 -0.11 1.84E-01 0.65 0.52 

* UGA 0 0.00 NaN NaN 0.09 0.06 

W UGG 1 0.17 NaN NaN 1.53 1.11 

F UUU 0 0.20 -0.52 1.22E-11 2.22 1.54 

F UUC 2 0.33 0.52 1.22E-11 1.65 2.05 

L UUA 1 0.17 -0.54 1.70E-12 1.38 0.79 

L UUG 1 0.22 0.48 9.38E-10 1.36 0.91 

* Met is partly initiation tRNA and partly tRNA decoding regular Met codons. We 

assumed that about half of the Met tRNAs are used for initiation. 

 

Table S3 Amino-acid usage in the GFP sequence 

For each amino acid the table lists the number of times it is used in the GFP protein. 

Amino 

acid 

Copy 

number in 

GFP 

Amino 

acid 

Copy 

number in 

GFP 

Amino 

acid 

Copy 

number in 

GFP 

Amino 

acid 

Copy 

number in 

GFP 

Amino 

acid 

Copy 

number in 

GFP 

A 8 C 2 H 9 M 6 T 16 

R 6 Q 8 I 12 F 12 W 1 

N 13 E 16 L 21 P 10 Y 11 

D 18 G 22 K 20 S 10 V 18 
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Table S4. List of all codons which even after partial correlation still had a 
significant (p-value<0.1) correlation. 

The codons with p-value <0.1 are: 

Codon 
Minimum negative partial 

correlation (p-value) 

Controlling codon in the 

partial correlation 

UCA -0.29 (0.0004) CAU 

CAU -0.24 (0.003) AAU 

AGU -0.17 (0.04) UCA 

AAU -0.156 (0.06) CAU 

GGA -0.156 (0.06) CAU 

GUC -0.15 (0.07) UCA 
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5.2 A Comprehensive tRNA deletion library unravels the genetic 

architecture of the tRNA pool  

Researching the codon usage, we often refer to aspects such as the codons’ 

translation speed or the ability of the cell to translate a codon. This ability is 

affected by the availability of the relevant tRNAs, namely the composition of 

the tRNA pool. In this project our aim was to study the tRNA pool of S. 

cerevisiae and gain a global understanding on the tRNA availability in cells. 

This project is a joint project between Dr. Zohar Bloom-Ackerman and me. I 

wrote all the analysis scripts and took part in designing the experiments and 

analyzing the data. The manuscript was accepted to PLOS Genetics. 

To this aim, we created a comprehensive tRNA deletion library in S. cerevisiae, 

where in each strain a single genomic tRNA gene was deleted. Our tRNA 

deletion library includes 204 deletions, out of the 275 genomic tRNA genes 

identified in S. cerevisiae, covering all 20 amino acids and 40 out of the 42 anti-

codon families. In addition the library consists of a selection of double, triple 

tRNA deletion mutants. 

To assess the contribution of each tRNA gene to cellular growth, we set to 

accurately characterize the growth dynamics of each deletion strain. To this end 

we implemented a robotic method to screen and score growth phenotypes of all 

tRNA deletion strains in multiple conditions (for more details see Method‎0 

‎4.2.1).  

We screened the deletion library under a diverse set of growth conditions, 

including different metabolic challenges and stress-inducing reagents. In rich 

medium (YPD) only 13% of the library strains demonstrated a phenotype in 

growth rate and 27% showed a growth yield phenotype (Figure 2A-B). Most 

strains exhibited a phenotype only in one of the two parameters, which are 

extracted from distinct stages of the growth, resulting in no correlation between 

the two parameters (r=-0.02, p-value 0.8).  Apart from the tRNAs who appear in 

only one copy in the cell (singletons) whose deletion strains are often dead or 

exhibit impaired growth, we could not explain the observed growth phenotypes, 

in either growth rate or yield, by either family size, or amino acid identity.  
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The percent of deletion strains exhibiting any growth phenotype varies between 

the different stresses (Figure 2C-D), indicating the demand for the different 

tRNA genes varies across conditions. In all stresses except proteotoxic stress 

most tRNA deletion strains do not exhibit any growth phenotype, indicating 

robustness to tRNA gene deletion. We showed that this robustness is enabled 

due to a wide spread backup between the different gene copies of the same 

tRNA family and between different families translating the same amino-acid.  

 

Figure 2. Deletion strain measurements in different conditions (A-B) Distribution of phenotypes for the 

tRNA deletion library on rich medium (YPD), according to two growth parameters: growth yield (A)  

growth rate (B). Deletion strains were assigned to categories according to their σ values. Thus, highly 

impaired for σ<-3, impaired for -2>σ>-3, improved for 2<σ<3, and highly improved for σ>3 for σ 

calculations see Method ‎4.2.1. (C-D)  Percent of strains exhibiting a growth yield (C) phenotype and 

growth rate (D) phenotype in various conditions. The color indicates the type of phenotype: impaired (blue) 

or improved (red).  

 

Although it is often implicitly assumed that all tRNA copies contribute similarly 

to the cellular tRNA pool, comparison of the growth parameters of tRNA 

deletions from the same family revealed marked differences between seemingly 

identical family members. In particular, under rich medium, we found that 

deletions from 21 out of the 32 examined, multi-copy families, span a broad 

range of at least 10% difference in growth yield (Figure 3A). Such differences 
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were also exposed in the growth rate parameter but were milder and we thus 

focus on the growth yield parameter in all further analysis. To further investigate 

these differences we focused on the tR(UCU) family that contains 11 identical 

copies in the genome, of which five are represented in our library. In rich 

medium two copies (tR(UCU)E and tR(UCU)M2) showed appreciable reduction 

in growth yield (termed Major copies), while deletions of the other three copies 

(tR(UCU)M1, tR(UCU)G1 and tR(UCU)K) grow essentially as the wild-type 

(termed Minor copies). Further assessment of the Major and Minor copies across 

various stress conditions revealed that the hierarchy of Major and Minor is 

generally preserved (Figure 3B).  

Since all family members have identical sequence, we hypothesized that 

differential contribution should be due to differences in their flanking regions.  

A complementation assay in which the different tRNAs from the UCU family 

were introduced to the tR(UCU)M2 deletion strain revealed different degrees of 

complementation. The different constructs differ only in the region flanking the 

tRNA gene (200bp); thus the variation in complementation capability can be 

attributed to the different sequences flanking the tRNA. Next we turned to look 

which sequence features could govern differential expression of the family 

members and hence their differential contribution to fitness. For this purpose we 

used the data set created by Giuliodori et al. (Giuliodori et al., 2003) in which 

identified conserved sequence elements upstream of S. cerevisiae tRNA genes. 

In their study they identified four conserved sequence elements located at 

positions -53 (T-rich), -42(TATA-like), -30(T-rich) and -13 (pol III TSS) with 

respect to the first nucleotide of the mature tRNA. Our analysis revealed that 

only the two Major copies contain the conserved TATA-like motif at nucleotide 

-42. Examining the entire tRNA deletion library in rich medium, we found that 

strains exhibiting impairment in growth yield were enriched for the same 

TATA-like motif (hypergeometric test, p-value 0.0089). In addition, the TSS 

motif at position -13 was enriched in deletion strains that exhibit impairment in 

either in growth rate or growth yield (Figure 3C). To reinforce these 

observations we ran the MEME motif search algorithm (Bailey & Elkan, 1994) 

screening the upstream sequences of tRNA deletion strains exhibiting impaired 

growth yield for enriched motifs (see Methods). As can be seen in (Figure 3D), 
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we found two significant motifs that resemble those found by Giuliodori et al. 

both in sequence and location.  

  

Figure 3. Different genes of the same tRNA family exhibit phenotype differences (A) Relative growth 

yield values of the tRNA deletion library strains in rich medium, sorted by anti-codon and amino-acid 

identity along the x-axis. Each dot along the vertical lines denotes the value (data are represented as mean 

of 3 biological repetitions +/- SEM) of a deletion strain of different tRNA gene of the respective family. 

The horizontal lines mark two standard deviations around the mean of the wild-type. Dots above or below 

these lines are considered non-normal phenotypes. (B) Relative growth yield of the five tR(UCU) members 

across different growth conditions, indicated on the x-axis. (C) Enrichment of conserved elements in tRNA 

genes divided according to phenotype observed in rich media for each growth parameter. Each column in 

the matrix denotes a conserved element as defined by (Giuliodori et al., 2003). Color bar indicates the -

log10 of the hypergeometric p-value. (D) log10 E-value found by the MEME software for the most 

significant motif in a 9bp window starting from the position indicated by the x-axis. The LOGOs of the two 

significant motifs are displayed below, next to a number indicating its position. Position 0 is the first 

position of the mature tRNA. 

 

Together these results indicate that the contribution to the tRNA pool and 

cellular fitness of different copies from the same tRNA family is far from equal. 

We provide one possible explanation, which can account for the observed 
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differences, implying that the sequences flanking tRNA genes play a role in 

determining their expression level. 

 To determine whether changes in the tRNA pool result in a distinct molecular 

signature, we examined five tRNA deletion strains using mRNA microarrays 

(see Methods). For each strain, we measured genome-wide changes in mRNA 

levels compared to the wild-type under rich growth conditions. The expression 

changes we exposed were modest and demonstrated a nice correspondence 

between the essentiality of the tRNA gene and the extent of changes in mRNA 

expression inflicted upon its loss. Clustering of the expression changes for all 

five deletion strains revealed that the strains could be divided into two groups: 

SC (the single copy family genes & initiator Methionine) and MC (the multi-

copy family genes), Figure 4A. An example for this division can be found in the 

pronounced effect observed for the COS8 gene. This gene was extremely up-

regulated (about 16 fold) in the SC group while unchanged in the MC group 

(Figure 4B). This group division recapitulated a division found between the 

strains when exposed to proteotoxic stress (see full paper at the appendix for 

details). Thus, these results, suggest different molecular signatures for the two 

groups, which are also related to the proteotoxic stress response.  

To expose what are the responses and underling molecular pathways that 

differentiate these two groups, we examined which KEGG pathways (Kanehisa 

& Goto, 2000, Kanehisa et al., 2012) differentiate between them. To this end we 

used Gene Set Enrichment Analysis (GSEA) software, which computationally 

determines whether pre-defined set of genes shows statistically significant 

difference in representation between two biological groups (Subramanian et al., 

2005, Mootha et al., 2003). This analysis revealed a somewhat opposite 

signature between the two groups (Table 1). Pathways which are responsive to 

proteotoxic stress such as the “Proteasome” (FDR q-value <1E-5), and “Protein 

processing in endoplasmic reticulum” (FDR q-value 2E-3) are significantly 

induced in the SC group, relative to the MC group. While in the MC groups 

translation-related pathways such as “Ribosome biogenesis” (FDR q-value <1E-

5) and “Ribosome” (FDR q-value 1E-4) are significantly induced compared to 

the SC group. 
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To further characterize these differences we focused on specific pathways. A 

more detailed examination of the expression changes observed for all the genes 

that constitute the proteasome complex revealed an up-regulation, to various 

extents in response to deletion of tRNAs from the SC group. The MC group 

demonstrated no change and even a slight down-regulation of these genes 

(Figure 4C), a trend which was further verified using RT-qPCR. These 

observations establish the notion that upon deletion of members of the SC group 

cells experience a proteotoxic stress. Another distinction between the groups 

was also observed in the RNA polymerase machinery pathway. Expression of 

genes that belong to this pathway were up-regulated only in the MC group 

(Table 1). Further examination revealed that this signal is due to the elevation of 

Pol III machinery (the polymerase responsible for tRNA gene transcription) and 

not Pol II machinery. The genes encoding for RNA Pol III machinery 

demonstrated up-regulation in the MC group and no change or even down 

regulation in the SC group (Figure 4D); further verified by RT-qPCR. This 

suggests a potential regulation of the tRNA pool by controlling the levels of the 

tRNA’s transcribing polymerase.  

 

Figure 4. Molecular response to changes in the tRNA pool. (A) Dendrogram created by clustering 

changes in gene expression for five representative deletion strains.  (B) Fold change of the COS8  
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(YHL048W) mRNA levels in each of the five deletion strains as measured by microarrays. (C-D) The fold 

change distribution of mRNA levels as measured by microarrays, of genes composing the Proteasome 

pathway (C) and the Pol III RNA Polymerase machinery module (D) as defined by the KEGG database. In 

both sub-figures values are plotted for the same five deletion strains: tL(GAG)G (blue), tR(CCU)J (red), 

tiM(CAU)C (green), tH(GUG)G1 (magenta) and tR(UCU)M2 (cyan). 

 

To summarize, this work revealed additional levels of complexity within the 

tRNA pool including extensive backup interactions and differential 

contribution between tRNA copies. Combining these results with the fact that 

the essentiality of different tRNAs changes across conditions and the potential 

elevation of Pol III upon deletion all suggest the regulation of the pool is more 

complex than commonly accepted and perhaps even as complex as for mRNA 

genes. 

The full results and conclusion are summarized in a paper, see appendix. 

 

Table 1 KEGG pathways differentiating between tRNA deletion sets. KEGG pathways (Kanehisa & 

Goto, 2000, Kanehisa et al., 2012) for which changes in genes expression are significantly different 

between the two groups of tRNA deletion strains: MC (multi-copy) group (∆tH(GUG)G1 and 

∆tR(UCU)M2) vs. SC (single-copy) group (∆tL(GAG)G, ∆tR(CCU)J, ∆tiM(CAU)C) calculated with GSEA 

(Subramanian et al., 2005, Mootha et al., 2003). In the first column are pathways, which are higher in SC 

vs. MC and vice versa in the second column. The values are corrected for multiple hypothesis and the FDR 

q-values are indicated next to each pathway. 

Higher is SC than in MC Higher is MC than in SC 
Proteasome (<1E-5)  Ribosome biogenesis in eukaryotes (<1E-5) 

Oxidative phosphorylation (<1E-5) RNA polymerase (<1E-5) 

Endocytosis(2E-3) 
Phenylalanine, tyrosine and tryptophan biosynthesis 
(<1E-5) 

SNARE interactions in vesicular transport (2E-3) Pyrimidine metabolism (5E-5) 

Protein processing in endoplasmic reticulum (2E-3) Ribosome (1E-4) 

Starch and sucrose metabolism (2E-3) Lysine biosynthesis (1E-4) 

Citrate cycle (TCA cycle) (0.01) Histidine metabolism (4E-4) 

Meiosis - yeast (0.01) Cysteine and methionine metabolism (4E-4) 

Homologous recombination (0.02) Riboflavin metabolism (5E-3)  

Mismatch Repair (0.02) Arginine and proline metabolism (8E-3) 

Cell cycle - yeast (0.02) Valine, leucine and isoleucine biosynthesis (0.01) 

MAPK signaling pathway - yeast (0.02) Purine metabolism (0.03) 

Fructose and mannose metabolism (0.02) Sulfur metabolism (0.03) 

Nitrogen Metabolism (0.02) Tyrosine Metabolism (0.03)  

Phagosome  (0.03) Folate biosynthesis (0.04)  
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5.3 Ribosome density governs patterns of mRNA cleavage in 

Escherichia coli 

One of the main properties of an mRNA which can have a direct effect on the 

final gene expression is its stability. Changes in codon sequence were found to 

affects the mRNA levels and stability (Kudla et al., 2009, Sunohara et al., 2004, 

Petersen, 1987, Kolmsee & Hengge, 2011). In this project our aim was to study 

the interplay between degradation and translation in Escherichia coli. The 

manuscript is under revision in Nucleic Acids Research. 
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ABSTRACT 

Recent developments in microbial genomics allow the study of ribosome profiling and RNA fragments in 

the cell. Analysing ribosome profiles it was discovered that Shine-Dalgarno-like motifs embedded within 

coding region cause ribosome pausing in bacteria. Yet, what are the potential functions of such ribosome 

pausing and attenuation sites remains unknown. Using these developments we set to unravel a 

regulatory relation between translation and mRNA degradation. We used genome-wide mapping of RNA 

fragments to identify the Escherichia coli’s mRNA cleavage sites and combined it with measurements of 

transcriptome-wide ribosome occupancy, exposing intricate relation between the two. We found a 

tendency to have a Shine-Dalgarno-like sequence and high ribosome occupancy downstream to 

cleavage sites, suggesting that the ribosome enhances degradation locally, immediately up-stream to its 

attenuation site. Conversely, genes with higher ribosome density around the start codon were often 

devoid of detectable cleavage points, suggesting that globally the ribosome protects the transcript. Our 

results expose for the first time on a genome-wide scale, a coupling between translation and mRNA 

degradation and ascribe the first functional role for ribosomal pausing in bacteria. 

 

INTRODUCTION  

The amount of protein synthesized in the cell is determined by two primary parameters: the mRNA levels 

of the genes and the rate of translation of this mRNA. mRNA levels in turn, are determined by both the 

rate of transcription and the rate of degradation. In bacteria the half-life of different transcripts varies 

significantly, from less than a minute to about an hour (reviewed in:1), thus allowing the stability of the 

mRNA to play a key role in regulating the transcriptome. 

 In Escherichia coli degradation of mRNA is initiated by endonucleolytic cleavage, the upstream 

fragments are degraded by 3’-to-5’ exoribonucleases while the downstream fragments degrade through a 

series of successive endonucleolytic cleavages (2-4). Of the three site-specific endoribonucleases in 

Escherichia coli, RNase E is the main enzyme in mRNA decay (2,3). The common notion is that this 

enzyme cleaves at specific sites in single stranded regions of mRNAs that are typically AT-rich with no 

strong sequence specificity and with a stem&loop structure frequently found around the site (reviewed in: 

2,3,5). For more on mRNA decay in bacteria, see reviews by (2,3,6). 

The mRNA stability is tied to the translation process through two known stabilizing mechanisms: first, the 

ribosome can simply protect the mRNA by masking a potential cleavage site, namely the ribosome foot 

print protects the region from actually being cleaved (Reviewed in: 4) . The second mechanism that 

coordinates translation and mRNA decay is through the blocking of transcript’s 5’. RNase E degradation 

pathway requires access to the 5’-end of the transcript and when this access is blocked the mRNA is 



 

 

stabilized. For both mechanisms an efficient ribosome binding site (RBS) can have a stabilizing effect on 

the mRNA (4,7). Stalled ribosomes on the 5’ end of the ermC were shown to stabilize the gene in B. 

subtilis (8). However not only the 5’ UTR features can affect the mRNA stability but also properties of the 

ORF which affect the ribosome elongation, such as codon usage and Shine-Dalgarno like motifs (9 , see 

below). Rare codons in the RpoS gene were found to stabilize its transcript, potentially by concentrating 

the ribosome on the mRNA thus protecting it from RNase E attack (10).  Earlier Petersen showed that 

altering codons immediately downstream to the ribosome binding site affect the transcript stability (11). It 

was suggested that these codons affect the transcript stability by changing the ribosome density on the 

gene (12). Though coupling between translation and the degradation was exposed for specific genes in 

the past, whether it is a genome wide phenomenon and what are the coupling mechanisms remain to be 

seen.  

Until now, analysis of cleavage sites and their sequence properties was done by analyzing a handful of 

genes and different oligonucleotides. Here we set to analyze the cleavage sites of more than a thousand 

messenger RNAs in Escherichia coli. By analyzing 5’ RNA sequencing reads mapped onto the genome 

(13,14) we identified mRNA cleavage sites. Combining this data with the recent data on transcriptome-

wide ribosome occupancy (9) we explored the relation between translation efficiency and the mRNA 

cleavage and stability. We discovered a peak of higher ribosome density 25 bps downstream to the 

cleavage sites potentially due to higher anti-Shine-Dalgarno (aSD) affinity of the region. This suggests 

that accumulation of ribosomes at an attenuation site enhance local mRNA cleavage immediately up-

stream to them. On the other hand, higher ribosome density at the 5’ termini of genes was found to be 

associated with more stable mRNAs, suggesting that globally the ribosome exerts a protective effect on 

the transcript. Thus, by analyzing cleavage sites of many genes this work sheds light on the potential 

modes of coordination between translation and degradation. 

MATERIAL AND METHODS 

Identification of RNA cleavage sites from RNA deep sequencing data 

We used data derived from a modified RNA deep sequencing protocol (15) to deduce location of 

endonucleolytic cleavage sites. The Mapping of E. coli 5’-end monophosphorylated RNA fragments were 

taken from the Quax paper (13) which were downloaded from 

http://www.weizmann.ac.il/molgen/Sorek/Navon_data.fasta.gz. Analyzing the data we noticed that the 

5’-end of tens of thousands of fragments was identified to be inside coding regions. Fragments inside 

ORF are less likely to be transcription start site, suggesting that these fragments represent the 

downstream residue of an endonucleolytic cleavage site. Since E. coli does not have a 5’-to-3’ 

exoribonuclease and endonucleolytic cleavage is a main step in the RNA degradation pathway, such data 

can be used to deduce the genome wide features of cleavage sites that cause mRNA degradation.  

http://www.weizmann.ac.il/molgen/Sorek/Navon_data.fasta.gz


 

 

Analyzing only coding regions, the data consists of 13,926 unique potential cleavage sites in the genome, 

which represent mapping of unique RNA fragments (we set a quality threshold such that each unique 

location had to appear at least in two independent reads in the data to be considered) . These 13,926 

cleavage sites distributed over 2218 mRNAs of the Escherichia coli reference genome NC_000913, 

implying that the rest of the 1923 annotated ORFs do not show even a single cleavage point in our final 

dataset. After filtering of sites that less not likely to represent cleavage sites (see Materials and Methods) 

we focused on 4157 high quality sites.  

Filtering cleavage sites 

For both the E. coli and the P. aeruginosa all identified sites were clustered into groups (clusters) based 

on the distance between consecutive sites, two sites which were separated by less than 5 nucleotides 

were clustered together. As a result different clusters had at least 5 nucleotides between their closest 

sites.  

Filtering the Escherichia coli data: For a site to be considered as a cleavage site it should fulfill three 

criteria: (i) It needs to be the site with highest number of reads in its cluster, (ii) it needs to have at least 

three reads and no more than 50, (iii) it needs to be at least 10 nucleotides upstream or downstream from 

a known transcription start site (based on the EcoCyc database (16)). 

Filtering the Pseudomonas aeruginosa data: sites that appeared in either the 37⁰C sample or the 28⁰C 

sample were considered, (as long as the site appeared in both the Tap+ and Tap-). For a site to be 

considered a cleavage site if it fulfilled three criteria: (i) It needs to be the site with highest number of 

reads in its cluster, (ii) it needs to have more than two reads and no more than 50 (averaging the Tap+ 

and Tap- reads), (iii) it needs to be at least 10 nucleotides upstream or downstream from the transcription 

start sites identified by Wurtzel et al. (14). 

As Li et al. did in their kinematic analysis, for the analysis of the ribosome density around the cleavage 

sites we avoided regions with known changes in the ribosomes density. In particular we excluded sites 

which were close (up to 50 bases) to the start or the stop codon, since it is known that the ribosome 

dwells longer on these particular codons (17). By analyzing only sites in the middle of the gene, where the 

ribosome density should be relatively constant and there are no known causes for SD-like sequence to 

exist there, the observed changes can be associated to cleavage sites. 

mRNA folding energy and unpairing score calculations 

We used a sliding window of 20 nucleotides to create a folding energy and pairing score profiles for all 

mRNAs. Each window of 20 nucleotides was folded using Vienna RNAfold package (18). The free energy 

of the window was assigned to the 11
th
 nucleotide in the window. The unpairing score for each nucleotide 

was calculated by counting the number of times it was unpaired over it total number of appearances (20 



 

 

appearances for nucleotides far from the edges of the transcript). The secondary structure analysis was 

run with different window sizes (in the range of 10 to 100 nucleotides) with no significant differences in the 

results (not shown). 

Calculating the genes’ ribosome density  

Using data deposited in GSE35641 (9) we constructed the genes’ ribosome occupancy. The ribosome 

occupancy for each gene was normalized to the sum of the ribosome occupancy over all the mRNA 

including its UTRs, to include 50 nucleotides upstream and downstream to it. We chose 50 nucleotides 

since the average distance of the main TSS site identified in the E. coli 5’ data is 49 nucleotides. Then the 

ribosome density profile was average between the two repeats to get the final ribosome density of a gene.  

Defining expressed, cleaved and not-cleaved genes 

For the expression level of the genes we used the average mRNA in supplement database 2 in Lu et al. 

paper (19), which averages three different mRNA level papers. After ignoring all the genes which had no 

mRNA level reads and genes which are shorter than 200 bases, we ended up with 2025 genes, we took 

the top 50% of these genes which had the highest mRNA levels ending up with 1012 which we defined as 

expressed genes. 

From these 1028 genes were constructed two set of genes. The first set included only genes which had 

no cleavage site at all, a total of 246 genes. The second set included genes which had at least one 

cleavage site after filtering a total of 541 genes. The rest of the expressed genes had cleavage site which 

did not pass the filter (see filtering cleavage sites). 

RESULTS 

Sequence information is found around cleavage sites 

Examining the sequence content around the cleavage site some consensus emerges, mainly in 

nucleotides -1 to 1 (“0” is defined to be the first nucleotide position immediately downstream to the 

cleavage site, i.e. the first nucleotide in the RNA fragment detected). Reassuringly we noticed that indeed 

just around the cleavage site there is an AT-rich region, about 70% of nucleotides are either A or T for all 

three sites (-1 to 1), see Supplement Figure 1. Clustering the sites based on their sequence (using the 

Jukes-Cantor distance (20)) revealed two potential motif groups. The first motif, [G/A]N↑[A/T]TT (↑ 

denotes the cleavage site, Supplement Figure 1B) includes the core consensus sequence ATT  

suggested by Ehretsmann et al. (21) that was obtained from a handful of data points, while the first 

[C/A]T↑ (Supplement Figure 1C) was not detected before, to the best of our knowledge .  

High ribosome occupancy downstream of cleavage sites 



 

 

A relation between the presence and density of ribosomes and mRNA degradation was repeatedly 

suggested (4,7,10,12), particularly due to the potential of the ribosome to protect the mRNA from 

degradation (reviewed in: 4). Recent profiling of ribosome density along mRNAs in Escherichia coli (9) 

allows us to examine potential relation between the ribosome density along transcripts and cleavage sites. 

First we examined the ribosome occupancy around the cleavage sites, Figure 1A. We worked throughout 

with ribosome occupancy profiles that are normalized for each gene individually, thus depicting relative 

changes in occupancy along a gene, and ignoring absolute differences between genes. As can be seen 

in the figure, around 12 bases downstream to the cleavage site there is a deep in the ribosome density 

profile (Wilcoxon rank sum test p<1e-27 compared to the density of all 100 bases around the cleavage 

site) and around 24 bases downstream there is a peak in the ribosome density profile (Wilcoxon rank sum 

test p<1e-31 compare to the density of all sites 100 bases around the cleavage site). The differences in 

the ribosome density could not be explained by codon bias (see supplement Figure 2).  

Following Li et al.’s (9) work we examined whether Shine-Dalgarno (SD) like sequences drive ribosomes 

pausing downstream to our candidate cleavage points. Using the same method as in Li et al. we 

constructed the anti-Shine-Dalgarno (aSD) affinity profile of genes (the affinity to bind to the 

complementary sequence of the Shine-Dalgarno, which is at the 3’ end of the 16S rRNA) profile around 

each cleavage site. We found a high aSD affinity about 13 bases downstream to the cleavage site 

(Wilcoxon rank sum test p<1e-12), see Figure 1B; this peak in the aSD affinity is located 11 bases 

upstream to the peak of the ribosome occupancy. Since the ribosome occupancy data are aligned to the 

A-site, the peak in the aSD affinity is 8 nucleotides upstream to the P-site which is in range for an 

effective SD (22).  

To further examine the relation between cleavage sites and SD-like sequences we turned to another 

bacterial species, Pseudomonas aeruginosa. Using 5’-end mapping of RNA fragments published by 

Wurtzel et al. in this specie (14) we calculated the aSD affinity around the P. aeruginosa cleavage sites 

(see Materials and Methods). As in E. coli we find a high aSD affinity about 13 bases downstream to the 

cleavage site (Wilcoxon rank sum test p<1e-4), see Figure 1C.  

High ribosome occupancy downstream potentially increases cleavage probability by keeping the region 

upstream to it free of secondary structure, as required by RNase E. To further investigate the connection 

between cleavage and the structure of the RNA we computed predicted mRNA secondary structure 

around the cleavage sites. We examined the averaged free energy profile around the cleavage sites and 

searched for significant differences in free energy and potential pairing of the nucleotides (see Material 

and Methods). For comparison we examined profiles of randomly permutated sequences around 

cleavage sites and sequence without cleavage sites. Reassuringly we found differences in the free 

energy around the cleavage site (Figure 2A). While around the cleavage site the energy is 60% higher 



 

 

(looser structure), the structure becomes tight (low free energy values) further upstream and downstream 

from the cleavage site. In addition, from Figure 2C we notice there is a significant difference between the 

amounts of base pairing of some nucleotide position around the cleavage site, mainly base 0 and base -6 

(Wilcoxon rank sum test compared to background  p=3e-21, p=2e-54 respectively). Similar figures were 

obtained for folding P. aeruginosa, see figures 2B and 2D 

Ribosomes stabilize transcripts 

 While so far we revealed that ribosomes can affect locally degradation by enhancing cleavage 

immediately up-stream, here we turned to examine more global effect of ribosomes on stability of their 

harboring transcripts. As mentioned above, we identified one or more cleavage sites in only about a half 

of the E. coli genes; for the rest of the genes no such site was seen in the data. To further investigate why 

some genes show cleavage sites and others do not, we examined the ribosome density of cleaved and 

non-cleaved genes. For this analysis we avoided genes with low expression levels (see Material and 

methods) as these are unlikely to show cleavage events. The expressed genes were divided into two sets: 

without any observed cleavage site, and genes with at least one cleavage site (see Material and 

Methods). As can be seen in Figure 3A, expressed genes without cleavage sites have significantly higher 

ribosome density around their start codon. This observation might suggest that high ribosome density 

close to the 5’ UTR exerts a global protecting effect on RNAs from cleavage.  

To further check the relationship between the ribosome density around the start codon and the gene 

cleavage we divided all of the E. coli genes into 3 equal groups based on their relative ribosome density 

in nucleotide positions -6 to +4 relative to the ATG. For each group we checked the fraction of expressed 

genes which had cleavage sites, Figure 3B. The set of genes with low relative density had significantly 

higher fraction of genes with cleavage sites than expected (hyper-geometric probability 0.0015) and the 

set of genes with high density had significantly lower fraction of genes with cleavage sites than expected 

(hyper-geometric probability 0.0028). To conclude, genes with low relative ribosome density around the 

start codon are more likely to have cleavage sites which suggest that stalled ribosomes around the ATG 

protect the transcript from cleavage.  

DISCUSSION 

The modified RNA deep sequencing protocol (15) enables, as far as we know for the first time, to analyze 

cleavage sites of bacteria on a single nucleotide resolution on a genome-wide scale. This genome-wide 

analysis reinforces the notion that the mRNAs are cleaved in AT-rich regions that have a relatively loose 

structure. 

An important aspect of cleavage control that is analyzed here is the coupling between translation and 

degradation. Coupling between layers of gene expression regulation is a common theme (23) and here 



 

 

we provide one such mode of coupling. We notice high relative ribosome occupancy about 25 bases 

downstream to the cleavage site suggesting the ribosome enhances degradation locally. Due to the 

ribosome size (foot-printing of 25-42 nucleotides (9)) a cleavage site which is 25 bases upstream to the 

ribosome A-site will most likely be free of the ribosome but very close to it, thus with limited ability to 

refold. The single stranded requirement of the RNase E is thought to be maintained by the RNA 

secondary structure; however here we suggest an additional mechanism. We suggest that the ribosomes 

take an active role in keeping the cleavage sites single stranded by dwelling a bit longer just downstream 

of the cleavage sites. 

While the ribosome enhances degradation locally, we found that globally it exerts global protection to the 

transcript. On a genome-wide scale we notice that high ribosome occupancy around the start codon may 

stabilize the transcript. Such ribosomes have the potential to mask essential cleavage sites and jam other 

ribosomes on the 5’ UTR, thus blocking it from the degradation machinery which requires access to the 5’ 

end of the transcript.  

In the future it will be interesting to repeat this analysis on data from different bacteria, on mutants which 

have different RNases knock down and in different stress conditions, which could activate additional 

degradation pathways (24) and modify the ribosome patterns genome wide (9). Such data can shed more 

light on the degradation process, its coupling to the translation process and its different enzymes. 

 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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 TABLE AND FIGURES LEGENDS 

Figure 1. Ribosome Occupancy and SD-like sequences around the cleavage site 

(A) For each base aligned around the cleavage site the median of the ribosome density profile in E. coli is 

plotted. The confidence intervals plotted by thin lines were found using bootstrapping. The black line is 

the median of all the bases between -50 to 50 around the cleavage site regardless to their location. (B-C) 

mean aSD affinity profile around the cleavage site for the E. coli sites (B) and the P. aeruginosa (C). The 

profile was calculated by averaging the aSD binding affinity (as calculated by Li et al (9)) for each base 

over all cleavage sites. The confidence intervals (thin lines) were calculated using bootstrapping. The plot 

was smoothed with a moving average of 3 bases to reduce frame effects. The black line is the average of 

all point in the ±50 region. As can be seen there about 11 nucleotides upstream of the high ribosome 

occupancy there is a high aSD affinity which could explain the ribosome occupancy. 

Figure 2. Secondary structure features around the cleavage site 

In the figure are plotted the mRNA secondary structure properties around the E. coli (A&C) and P. 

aeruginosa (B&D) cleavages sites calculated as describe in the Material and Methods. (A, B) The free 

energy aligned around the cleavage site averaged over the cleavage site sequences; E. coli (A) and P. 

aeruginosa (B).  (C, D) The unpairing score profile aligned around the cleavage site averaged over all the 

sites; E. coli (C) and P. aeruginosa (D).   In each subplot in addition to the profile for all cleavage sites 

(solid blue line) are plotted two additional controls: (i) after randomly permutating the sequences of the 

cleavage site (line-dot black), and (ii) sequences without cleavage sites (dashed gray). 

Figure 3. Ribosome Density of genes with and without cleavage sites 

(A) From the express genes were two groups were constructed: (i) expressed genes with at least one 

cleavage site (red) (ii) expressed genes without any site, even ones that didn’t pass our filter (blue). For 

each group the median of the ribosome density is plotted when the genes are all aligned to the start 

codon (starting with nucleotide 0). It is important to notice that while the ribosome is assembled on the “P 

site”, the ribosome’s location is mapped to its “A” site in the ribosome data. Therefore high ribosome 

occupancy on the ATG is shifted toward the second codon. The error bars are the standard deviation for 

nucleotide three calculated using bootstrapping. (B) The genes in subplot (A) were divided into 3 groups 



 

 

depending on their level of ribosome density in nucleotides -6 to 4 (thresholds were set to have 3 equal 

size groups when analyzing all genes). For each group of genes the fraction of cleaved genes is plotted. 

The error bars (red) are the standard deviation calculated using bootstrapping. * indicates that the level of 

the cleaved genes is significantly different than expected. The ‘low’ occupancy group has more cleaved 

genes than expected (hyper-geometric probability 0.0015) while the ‘high’ occupancy group has less than 

expected (hyper-geometric probability 0.0028) 
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Supplementary Figures  

 

Supplement Figure 1.  Sequence information of the cleavage sites 

 (A) Sequence logo (Crooks et al., 2004) of 4157 cleavage sites. After clustering we get two groups of genes: (B) 

Sequence logo of the first group of genes (2321 genes), (C) Sequence logo of the second group of genes (1836). In 

all subplots base 0 is the first nucleotide just after the cleavage site (the cleavage is between base -1 to base 0). (D-F) 

is the probability logo of: all 4157 cleavage sites (D), first group of genes (E), second group of genes (F). 

  



2 
 

 

Supplement Figure 2.  Codon’s translation time around the cleavage sites.  

The figure shows the mean time it takes to translate the region around the cleavage site. One over the codon 

adaptiveness index from the tAI definition (dos Reis et al., 2004; Tuller et al., 2010) was used as a proxy for the 

time it take to translate each codon. We constructed a translation time profile for each gene by dividing the time it 

takes to translate the codon evenly between its 3 nucleotides. Then we aligned these profiles around the reliable 

cleavage sites to get the mean translation time around the cleavage sites.  
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6 Discussion 

The ability to predict final protein levels based on the nucleotide sequence is a 

major challenge for proteomics, computational biology and biotechnology. 

During the translation process the codon sequence is decoded into amino acids by 

tRNAs. Most amino acids are coded by more than one codon. Though resulting 

with the same polypeptide the levels of protein were found to change by up to 100 

fold just by changing the codon sequence which in turns changes the mRNA 

secondary structure and the translation rates (Kudla et al., 2009, Welch et al., 

2009, Subramaniam et al., 2013). To predict these changes we need to understand 

which additional information is coded by the codons in addition to the amino-acid 

sequence.  

During the years a few indices were developed to try to predict protein levels 

based on the codon sequence. The two famous indices are the CAI (Sharp & Li, 

1986) and the tAI (dos Reis et al., 2004). Both indices score a gene according to 

the adaptation of its codon sequence to the cellular translation capabilities. 

Though these indices were shown to correlate with protein levels in different 

organisms, they failed to predict protein levels in synthetic experiments in which 

the same protein was expressed with different codon combinations.  

The basic assumption that underlines these indices and their weakness point is 

that they only look at the gene’s codon composition regardless to the codon’s 

location. In an earlier work we realized that in many organisms across the three 

domains of life the codons are not distributed evenly across the gene. We found 

that the first codons tend to be “slow codons”, i.e. codons which takes longer to 

be translated (Tuller et al., 2010a). In the work that followed this initial 

publication we focused on the single gene level and examined how regions of 

“slow codons” affect protein expression. We found that localizing the slowest 

codons in the 5’ end is correlated with higher protein levels, while localizing them 

in the 3’ end correlates with lower protein levels. In addition, we found that the 

time it takes to translate these codons affected the protein levels, if the slowest 

codons are indeed located at the 5’ end, then the slower region the higher will the 

protein levels be. In contrast if the slowest region is closer to the 3’ end of the 

transcript then the slower that region is the lower, on average, is the expression 
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level. By analyzing the codons of a given gene and locating the slowest region we 

believe that we can improve the prediction of protein levels and improve the 

design of synthetic genes.  

In the past few years, much work was done to in the field trying to settle whether 

different codon usage for the same protein results in different expression level is 

due to secondary structure changes in the mRNA or due to translation efficiency 

of different codons. The main focus was on the N-terminal codons which are 

enriched with codons corresponding to rare tRNAs (Tuller et al., 2010a). As first 

showed on a small library by Kudla et al. (Kudla et al., 2009) and recently, on a 

much larger library, by Goodman et al. (Goodman et al., 2013) a reduced RNA 

structure at the 5’-end and not codon rarity itself is responsible for expression 

increases. This goes along with findings by Li et al. (Li et al., 2012) which 

showed by ribosome occupancy data that on rich medium the rate of translation of 

all codons in E. coli is the same. While the secondary structure seems to be the 

dominate factor for the N-terminal these results do not explain how codons far 

from the N-terminal also affect the expression level (Welch et al., 2009). In 

addition it was recently shown that in amino-acid starvation condition changes in 

protein expression were due to limited availability of tRNAs (Subramaniam et al., 

2013). These limitations should also be taken into account when trying to express 

proteins in extremely high levels since in that case the synthetic protein codon 

usage might cause by itself a tRNA shortage in the cell, as suggested by our 

analysis of the Kudla library (Navon & Pilpel, 2011). Thus, although currently 

secondary structure is the leading answer I believe that as in many field in biology 

the answer is not secondary structure or codon translation efficiency but both. 

Only by understanding both mechanisms and their limitation we will be able to 

predict when each mechanism will dominate and improve our protein level 

predictions.  

As found in our analysis of the Kudla’s library (Kudla et al., 2009) and also 

shown by Li et al. and Subramaniam et al. shortage is tRNAs can affect the cell’s 

fitness and protein levels. Thus, to better predict the protein levels we need to gain 

a better understanding of the tRNA pool. Since measuring the tRNA 

concentrations in the cell is far from trivial, we would like to learn about it 

regulation, thus enabling us to predict their levels just from the genomic sequence.  
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To study the tRNA pool we created a comprehensive tRNA deletion library in S. 

cerevisiae. When deleting the tRNA genes we found that there is extensive 

backup between the different tRNAs, resulting in robustness to deletion of most 

tRNA genes. This suggests that either the tRNAs usually transcribed in higher 

amounts than required for growth in rich medium or that the transcription rate of 

the remaining genes increases. The idea that decrease in tRNA levels can be 

sensed by the cell and result is increased transcription rate of related tRNAs is 

very intriguing and resembles the backup mechanism found between paralog 

mRNA genes (Kafri et al., 2006). 

The tRNA genes are transcribed by RNA polymerase III which binds to internal 

promoters inside the tRNA sequence. Since many tRNA genes have identical 

sequences or at least identical internal promoter it is reasonable to expect that 

those tRNA will have the same transcription rate. Yet, in our study we discovered 

that even identical tRNA contribute differently to the tRNA pool. The results 

prove the tRNA surrounding may affect its transcription. We found that upstream 

motifs maybe the source for the identified differences between the tRNAs. 

Upstream motifs were shown to affect the tRNA transcription by facilitating the 

binding of RNA polymerase III (Giuliodori et al., 2003, Parthasarthy & 

Gopinathan, 2005). This again reminds regulation mechanisms of mRNA 

transcription by RNA polymerase II and suggests the tRNA transcription is more 

complex than previously assumed and might be as complex as mRNA 

transcription. This conclusion is reinforced by our results from microarray 

analysis of a few tRNA deletion strains where we found up-regulation of RNA 

polymerase III genes in some deletion strains indicating the ability to regulate of 

the tRNA transcription.  

While mRNA transcription rates is studied and modeled thoroughly (Sharon et 

al., 2012) the tRNA transcription is neglected. Our work showed the complexity 

of the tRNA pool and took the first step toward understanding the underling 

mechanisms that regulate it. Nevertheless, since the tRNA pool may affect the 

cell’s fitness (Navon & Pilpel, 2011) and the protein levels (Subramaniam et al., 

2013), it is clear that for better predictions of protein levels we need better 

predictions of tRNA levels in the cell.  
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Researching the information coded by the codons it is clear that the most direct 

question is how the codon usage influences the translation process through the 

regulation of the ribosome elongation rates. However, codon usage was shown to 

also affect the mRNA stability (Sunohara et al., 2004, Petersen, 1987, Kolmsee & 

Hengge, 2011), the protein folding (Pechmann & Frydman, 2013) and even the 

host fitness, upon expressing the protein (Kudla et al., 2009). The codons affect 

these properties of the transcript either through the coupling between the mRNA 

degradation/folding process with the translation process or through additional 

levels of information overlaid on the codon sequence. For example, different 

combination of codons result in different nucleotide sequences thus 

creating/eliminating overlaid information as sequence motifs. 

During my research we encountered twice a coupling between the different 

processes. One of the results of the tRNA deletion library is that some deletion 

strains have more misfolded proteins and an elevated protein quality control 

pathway. This result suggests that reduced levels of a specific tRNA in the pool 

resulted in a reduced translation efficiency of the related codon(s), which in turn 

changed the ribosome elongation rate and hampered the correct folding of the 

protein. A coupling between codon usage and folding was also found by others 

(Pechmann & Frydman, 2013). However, the exact mechanisms are still unclear 

and our ability to predict which codons are essential for correct folding is still 

lacking. A unique feature of our approach is that we disrupted translation-folding 

coupling without manipulating the translated mRNA directly, but only by 

modifying the tRNA supply. 

The second coupling we explored in my research is the coupling between codon 

usage and mRNA stability. The work by Kudla et al. who created a synthetic 

library of the same GFP protein coded with many different codon combinations 

revealed that codon usage can affect mRNA level even by 6 fold. Understanding 

this coupling is essential for synthetic biology in which the promoters are used to 

optimize transcript levels and codons are used to optimize translation efficiency. 

In my research I focused on mRNA degradation in E. coli and its coupling to the 

translation process. In bacteria, the mRNA degradation process consists of a 

series of endonucleolytic cleavages. By combining cleavage site information with 

ribosome profiling data we found that the ribosomes play a dual role: locally their 
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accumulation at strategic locations enhances mRNA cleavage immediately up-

stream, globally their high density on the transcript 5’ termini is associated with a 

tendency to be protected from degradation. 

Surprisingly, the ribosome accumulation which enhances the degradation is not 

caused by slow codons but rather by the affinity of the downstream sequence to 

the anti-Shine-Dalgarno (aSD) sequence. This result goes along with the 

discovery by Li et al. (Li et al., 2012) who showed that in bacteria ribosome 

pausing is caused mainly by Shine-Dalgarno like sequences. In addition to the 

Shine-Dalgarno sequence, which was found to affect the ribosome elongation and 

mRNA stability, we also found that the cleavage sites themselves are not random 

and that they occur in locations with specific sequence information. However, not 

only the sequence is important for cleavage but also the transcript secondary 

structure, which is required to be single-stranded for cleavage. Thus, the 

secondary structure is another layer of information that causes indirect coupling 

between the codons and other cell process. 

The work described in this thesis exposes four levels of dependencies between 

codons and gene expression that should be taken into consideration when 

designing proteins or trying to predict their expression: The first is the ability of 

the cell to translate the chosen codons based on the availability of the tRNAs. The 

second is the order of the codons and the load it exerts on the ribosomes. The 

third are the motifs and the secondary structure which are the results of specific 

codon choices. The four and perhaps the most complicated of all is the coupling 

between the different processes such as translation and degradation or folding. 

The done work here, from the point of view of the gene expression, was mainly 

done on E. coli while the work on the tRNA pool was done in S. cereviease. Due 

to the many difference between the translation, degradation, maturation and 

coupling between the different processes in eukaryotes vs. prokaryotes additional 

work is required in all domain of life.  

All together, these studies expand our understanding of the basic processes of 

gene expression, showing some of the less obvious effect of codon selection and 

putting forth the extensive coupling between the translation and degradation 

processes in prokaryotes.   
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Abstract 

Deciphering the architecture of the tRNA pool is a prime challenge in translation 

research, as tRNAs govern the efficiency and accuracy of the process. Towards 

this challenge, we created a systematic tRNA deletion library in S. cerevisiae, 

aimed at dissecting the specific contribution of each tRNA gene to the tRNA pool 

and to the cell’s fitness. By harnessing this resource, we observed that the 

majority of tRNA deletions show no appreciable phenotype in rich medium, yet 

under more challenging conditions, additional phenotypes were observed. 

Robustness to tRNA gene deletion was often facilitated through extensive backup 

compensation within and between tRNA families. Interestingly, we found that 

within tRNA families, genes carrying identical anti-codons can contribute 

differently to the cellular fitness, suggesting the importance of the genomic 

surrounding to tRNA expression. Characterization of the transcriptome response 

to deletions of tRNA genes exposed two disparate patterns: in single-copy 

families, deletions elicited a stress response; in deletions of genes from multi-

copy families, expression of the translation machinery increased. Our results 

uncover the complex architecture of the tRNA pool and pave the way towards 

complete understanding of their role in cell physiology. 

 



 

 

Author Summery 1 

Transfer RNAs are an important component of the translation machinery. 2 

Despite extensive biochemical investigations, a systems-level investigation of 3 

tRNAs’ functional roles in physiology, and genetic interactions among them, are 4 

lacking. We created a comprehensive tRNA deletion library in yeast and assessed 5 

the essentiality of each tRNA gene in multiple conditions. The majority of tRNA 6 

deletions show no appreciable fitness defect when such strains were grown on 7 

rich medium. More challenging environmental conditions however revealed a 8 

richer set of specific-tRNA phenotypic defects. Co-deletion of tRNA combinations 9 

revealed that tRNAs with essential function can be compensated by members of 10 

the same or different anti-codon families. Often times, we saw that identical 11 

tRNA gene copies contribute deferentially to fitness, suggesting that the genomic 12 

context of each gene can affect function. Genome-wide expression changes in 13 

response to tRNA deletions revealed two distinct responses. When a deleted 14 

tRNA belongs to a family which contain multiple genes with the same anti-codon, 15 

the affected cells responded by up-regulating the translation machinery; but 16 

upon deletion of singleton tRNAs, the cellular response resembled that of 17 

proteotoxic stress. Our tRNA deletion library is a unique resource that offers a 18 

way towards fully characterizing the tRNA pool and their important role in cell 19 

physiology. 20 



 

 

Introduction 21 

Messenger RNA translation is a central molecular process in any living cell and is 22 

among the most complicated and highly regulated of cellular processes [1,2]. The 23 

tRNA pool is a fundamental component in that process, serving as the physical 24 

link between the nucleotide sequence of mRNAs and the amino acid sequence of 25 

proteins. In the cycle of translation elongation, tRNA selection is considered the 26 

rate-limiting step [3], therefore tRNA availability is one of the major factors that 27 

govern translation-efficiency and accuracy of genes [4,5]. 28 

Previous studies have established that efficient translation can increase protein 29 

levels and provide a global fitness benefit by elevating the cellular 30 

concentrations of free ribosomes [6,7], while accurate translation benefits the 31 

cell by reducing the metabolic cost of mis-incorporation events [8].  32 

The tRNA pool is composed of various tRNA isoacceptor families, each family 33 

carries a different anti-codon sequence that decodes the relevant codon by 34 

Watson-Crick base pairing, or codons with non-perfect base pairing of the third 35 

nucleotide by the wobble interaction. tRNA families are further classified to 36 

isotypes  if they carry the same amino acid. In all eukaryotic genomes, each tRNA 37 

family can be encoded by a single or multiple gene copies [9,10]. It was 38 

previously shown for several organisms that the concentrations of various tRNA 39 

isoacceptors positively correlates with the tRNA family’s gene copy-number 40 

[11,12]. These observations along with detailed analysis of the relationship 41 

between gene copy-number of tRNA families and codon-usage, established the 42 

notion that the multiplicity of tRNA genes in yeast is not functionally redundant. 43 

Such multiplicity might establish the correct balance between tRNA 44 



 

 

concentrations and the codon usage in protein-coding genes [13], thus justifying  45 

the use of the tRNA gene copy-number as a proxy for actual tRNA amounts 46 

[12,14,15].  47 

The transcription of tRNA genes is catalyzed by RNA polymerase III (pol III), 48 

promoted by highly conserved sequence elements located within the transcribed 49 

region [16]. A genome wide analysis of pol III occupancy in yeast revealed that 50 

virtually all tRNA genes are occupied by the pol III machinery [17–19], and are 51 

thus considered to be genuinely transcribed. This observation, combined with 52 

the fact that tRNA genes within a family are highly similar, led to the notion that 53 

all copies within a family contribute equally to the total expression level and 54 

hence to the tRNA pool.  55 

Although tRNAs have been extensively studied, until very recently many of the 56 

studies were performed on individual genes at the biochemical level. Only in 57 

recent years systematic genome-wide approaches started to complement the 58 

biochemical approach. These studies reveal a much more complex picture in 59 

which pol III occupancy, a proxy for tRNA transcription, varies within families 60 

and between tissues [17,20–22]. Expression however does not equal function, 61 

and so far no systematic study has been carried out to decipher the specific 62 

contribution of each tRNA gene to the tRNA pool and to the cell’s fitness. 63 

To study the role of individual tRNAs and the architecture of the entire tRNA 64 

pool, we created a comprehensive tRNA deletion library in the yeast S. cerevisiae. 65 

The library includes 204 deletions of nuclear-encoded tRNA genes out of the 66 

total 275 present in the yeast genome. In addition, we created double deletions 67 

of selected tRNA gene combinations and of specific tRNAs with a tRNA modifying 68 

enzyme. We developed a robotic method to screen and score various fitness 69 



 

 

parameters for these deletion strains, and applied it across various growth 70 

conditions. This systematic deletion library revealed an architecture of genetic 71 

interactions that feature extensive backup-compensations within and between 72 

tRNA families. Such compensation capacity endows the organism with 73 

robustness to environmental changes and to genetic mutations. We found that 74 

different copies within a tRNA family contribute differently to the organism’s 75 

fitness, revealing a higher level of complexity in the tRNA pool’s architecture, 76 

possibly at the regulatory level. Finally, we observed two distinct molecular 77 

signatures that underlie the cellular response to changes in the tRNA pool. First, 78 

the deletion of non-essential single-copy tRNA genes invoked proteotoxic stress 79 

responses, indicating a connection between aberrant tRNA availability and 80 

protein misfolding. Second, the deletion of representative tRNAs from multi-copy 81 

families triggered milder responses by up-regulating genes that are involved in 82 

the translation process. Together our results uncover the complex architecture of 83 

the tRNA pool reviling a profound effect on cellular fitness and physiology.  84 



 

 

Results 85 

Generation of a tRNA deletion library in S. cerevisiae 86 

To gain a better understanding of the functional role of individual tRNA genes 87 

and their contribution to the tRNA pool, we created a comprehensive tRNA 88 

deletion library in S. cerevisiae, where in each strain a single nuclear–encoded 89 

tRNA gene was deleted. This methodology is based on recombining a selective 90 

marker into the genome at the expense of the deleted gene, as was done in the 91 

creation of the yeast ORF deletion library [23] (Figure 1A). A particular challenge 92 

in targeting specific tRNA genes for deletion by such a method stems from the 93 

high degree of sequence similarity within tRNA families, which can share 100% 94 

sequence identity. Consequently, in order to create specific gene deletions, we 95 

relied on unique sequences that overlap or flank the tRNA genes (see 96 

Supplemental text S1). Our tRNA deletion library contained 204 deletions out of 97 

the 275 nuclear-encoded tRNA genes identified in S. cerevisiae (see Materials and 98 

Methods). These deletions covered all 20 amino acids and 40 of the 42 anti-99 

codon families. The remaining 71 tRNA genes were not deleted due to their 100 

complex genomic surrounding, since such deletions might affect neighboring 101 

potential features in their genomic vicinities. The library also consisted of 50 102 

strains that represent various combinations of tRNA deletions, and co-deletions 103 

of selected tRNAs with the TRM9 gene which codes for an enzyme that post-104 

transcriptionally modifies tRNA molecules.  105 

Although the majority of tRNA families contain multiple gene copies, there are 106 

six single-copy tRNA families in the S. cerevisiae genome. Out of these singleton 107 

families, four (tS(CGA), tR(CCG), tQ(CAG) tT(CGU)) were found to be essential in 108 



 

 

our analysis, which confirms previous reports [24–26](see Supplemental text 109 

S1). The remaining two singleton families (tR(CCU), tL(GAG)) were identified as 110 

non-essential upon deletion. All the tRNA genes that belong to multi-copy 111 

families were non-essential upon deletion.  112 

Cells were robust to tRNA gene deletions in rich medium but reveal sensitivity in 113 

challenging conditions 114 

To assess the contribution of each tRNA gene to cellular growth, we attempted to 115 

accurately characterize the growth dynamics of each deletion strain by 116 

implementing a robotic method to screen and score growth phenotypes of all 117 

tRNA deletion strains in a given growth condition. This fitness measurement 118 

approach allowed us to differentiate between physiological effects of the deletion 119 

under different growth phases, unlike the competition approaches for fitness 120 

measurement [27] that typically integrated all growth phases. We characterized 121 

each deletion strain by two growth parameters: growth rate and growth yield, 122 

the latter is defined as the size of the population upon entering stationary phase 123 

(Figure 1B and Supplemental figure S1A).  124 

We began the characterization of the tRNA deletion library by growing the 125 

strains in rich medium. Under this condition, 13% of the deletion strains 126 

demonstrated a phenotype in growth rate and 27% showed a growth yield 127 

phenotype (Figure 1C-D and Supplemental figure S1B). Most strains exhibited a 128 

notable phenotype only in one of the two parameters. Strains that showed 129 

altered phenotypes in both growth rate and yield were rare (Supplemental figure 130 

S1B). Overall, most tRNA deletion strains did not exhibit any altered growth 131 

phenotype in rich medium, indicating robustness to tRNA gene deletion. Seven 132 



 

 

percent of the tRNA deletion strains resulted in growth improvement, suggesting 133 

that for some genes the cost of retaining them in the genome and/or expressing 134 

them may exceed their benefit in this condition. Similar observations were also 135 

made on a selection of protein-coding genes in this species [28].  Apart from the 136 

singletons whose deletion strains were often dead or exhibit impaired growth, 137 

we could not explain the observed growth phenotypes in growth rate or yield by 138 

either tRNA family size or amino acid identity (Supplemental figure S2). To 139 

further examine the phenotypes of the tRNA deletion strains, we calculated the 140 

correlation to the mRNA expression level of adjacent genes and found none (see, 141 

Supplemental table S1 figure S3 and Supplemental text S1).  142 

Given that yeast cells are constantly exposed to varying environmental 143 

conditions, their tRNA repertoire should differentially accommodate growth in 144 

various environments. We next examine whether stressful conditions would 145 

retain the robustness observed in rich medium or reveal another set of 146 

condition-dependent growth phenotypes. We screened the deletion library 147 

under a diverse set of growth conditions including different metabolic challenges 148 

and stress-inducing reagents reported in previous studies [29–31]. The fact that 149 

the production of tRNA molecules is considered energetically costly [32] 150 

prompted us to explore the effect of carbon limitation, alternative carbon 151 

sources and minimal medium on tRNA essentiality. 152 

Growing the tRNA deletion library under stressful conditions revealed condition-153 

specific phenotypes (Figure 2A-D, Supplemental table S2). In all but one of the 154 

examined conditions (Dithiothreitol-DTT, a reducing agent that also inflicts a 155 

general protein-unfolding stress), robustness to tRNA gene deletion was 156 

maintained. In the DTT condition, the phenotypes were surprising: while 157 



 

 

multiple tRNA deletions exhibited impaired growth rates, many also 158 

demonstrated growth rate improvements (Figure 2B, 2D). As in the rich medium 159 

condition, we could not explain the observed growth phenotypes by either the 160 

family size, or the amino acid identity in all of the examined stress conditions.  161 

Extensive redundancy underlies robustness to tRNA gene deletion 162 

Our observations of robustness to tRNA gene deletions in rich medium, as well as 163 

several stressful growth conditions, prompted us to further explore the genetic 164 

architecture conferring this phenotype. Given that most tRNA families contain 165 

multiple gene copies, we hypothesized that at least part of the observed 166 

robustness might be the outcome of compensation provided by the remaining 167 

genes in the family. In addition, due to wobble-interactions, robustness may also 168 

be the outcome of compensation between families of the same isotype. Focusing 169 

on rich medium conditions, we generated selected combinations of multiple 170 

tRNA deletions. To examine the first possibility we created deletions of entire 171 

two-member and three-member tRNA families. As shown in figure 3A such 172 

family deletions resulted in either lethality (indicating a loss of the family’s 173 

function), or viability with growth impairment (indicating a partial 174 

compensation of the family’s function by other families). 175 

We then turned to examine in more detail the interactions within these essential 176 

three-gene families by examining the growth of various double deletion strains. 177 

Contrary to the common notion that suggests little or no functional redundancy 178 

between tRNA gene copies [13], we observed that in each of these families any 179 

one family member can sustain normal or near-normal fitness (Figure 3A, 180 

Supplemental figure S4A-B and Supplemental table S3). Similar observations 181 



 

 

were made for essential two-gene families upon one member’s deletion (Figure 182 

3A). Such results can either imply that yeast cells carry more tRNA copies than 183 

are actually needed to sustain growth under optimal growth conditions, or that a 184 

responsive backup mechanism might be at work, one that provides 185 

compensation by increasing the transcription of the remaining copies, as was 186 

previously observed in protein-coding genes [33–35]. We thus decided to 187 

investigate the expression levels of certain tRNA families, using RT-qPCR (Figure 188 

S5). For each deletion, we compared the expression level of the remaining copies 189 

belonging to the designated family to that of a wild-type strain. We observed in 190 

most strains an expected reduction in expression of the respective family. These 191 

findings suggest that in these families, tRNA supply exceeds the demand under 192 

rich medium conditions (Figure S5A).  However in some cases there were no 193 

such decreases in expression, there were even observable increases, 194 

demonstrating that a responsive backup mechanism may have been at work, 195 

inducing the expression of the remaining family members following deletion of a 196 

certain member (Figure S5B).  197 

Next, we turned to examine the surprising cases in which the deletion of an 198 

entire tRNA gene family resulted in a viable strain. We reasoned that in these 199 

cases a different type of compensation, which is based on wobble interactions 200 

across iso-acceptor families, came into play. To decipher this compensation 201 

mechanism we focused on the genetic interactions involving the two non-202 

essential singleton families, tL(GAG) and tR(CCU) (Figure 3A).  203 

In the absence of tL(GAG), the members of the tL(UAG) family represent the sole 204 

tRNA that can decode the CUN Leucine codons, and might be a candidate for 205 

providing compensation upon deletion of tL(GAG) even though such decoding 206 



 

 

does not match the classic wobble rules [36]. Co-deletion of tL(GAG) with one of 207 

the tL(UAG) gene copies resulted in growth aggravation and negative epistasis. 208 

Deletion of the tL(GAG) together with two copies of the tL(UAG) family was lethal 209 

despite the fact that one copy of tL(UAG) still remained in the genome, indicating 210 

that a single tL(UAG) gene was insufficient to compensate for the loss of tL(GAG) 211 

(Figure 3B). The genetic interaction between tL(UAG) and tL(GAG) appeared 212 

specific, since co-deleting one copy of the tL(UAG) family together with two 213 

additional tRNA genes (tL(CAA)G3 and tW(CCA)G1) did not generate observable 214 

epistasis in either case (Figure 3B). We thus concluded that the tL(UAG) family is 215 

partially redundant to the tL(GAG) family, yet such redundancy was not sufficient 216 

to completely compensate for the loss of tL(GAG).  217 

Similarly, the viability of the tR(CCU) deletion strain could be due to 218 

compensation provided by the 11 copies of the tR(UCU) family. Indeed the 219 

wobble rules are consistent with this assumption, but such interaction was never 220 

functionally demonstrated. Formally, demonstrating that the tR(UCU) family can 221 

compensate for the loss of the singleton tR(CCU) would amount to co-deleting all 222 

12 tRNA genes. Looking for simpler means, we decided on a more economic, 223 

albeit indirect way. We co-deleted the singleton tR(CCU) with the Trm9 enzyme, 224 

which is responsible for methylating the third anticodon position of tR(UCU) and 225 

tE(UUC) [37].  It was previously shown that such methylation is needed for 226 

supporting the wobble interaction between tR(UCU) tRNAs and the AGG codon 227 

(the cognate codon of the CCU anti-codon)[37]. The tR(CCU)–trm9 double 228 

deletion strain was viable, but exhibited an appreciable aggravation of growth 229 

yield (Figure 3A and 3C). Thus our results confirm that the methylated tR(UCU) 230 

family can partially compensate for the loss of tR(CCU). We attempted to define a 231 



 

 

more general role for the Trm9 modification enzyme in modulating the 232 

compensation mechanism between tRNA families. To this end we created 10 233 

additional double deletions of the enzyme along with each of 10 tRNA genes from 234 

two glutamic acid families, one that is modified by the enzyme and one that is 235 

reportedly not modified by the enzyme [38] (see Supplemental figure S6). No 236 

epistasis was detected between the enzyme and any of these 10 tRNAs and 237 

hence, the data cannot support or exclude a putative similar role of the enzyme 238 

beyond the tR(UCU) family.   239 

We thus conclude that there are two mechanisms that can account for the 240 

observed robustness for tRNA deletions under favorable growth conditions. The 241 

first is redundancy within a family, and its efficiency appears to be independent 242 

of the number of remaining tRNA gene copies. The second is compensation 243 

between families, which operates via wobble interactions.  244 

Identical tRNA genes contributed differentially to cellular fitness  245 

We then asked whether all copies within a family contribute equally to the tRNA 246 

pool. It is often implicitly assumed that all tRNA copies contribute similarly to the 247 

cellular tRNA pool. However, comparison of the growth parameters of tRNA 248 

deletions from the same family revealed marked differences between seemingly 249 

identical family members. In particular, under rich medium, 21 out of the 32 250 

deletions examined from multi-copy families showed growth yield differences 251 

spanning a broad range of at least 10% (Figure 4A). Such differences were also 252 

detected in the growth rate parameter (Supplemental figure S7A) although they 253 

were less pronounced. We thus focus on the growth yield parameter in all 254 

further analysis. The phenomenon of differential contribution to fitness by 255 



 

 

different family members was further enhanced when we grew the deletion 256 

strains on more challenging conditions such as low glucose (Figure 4B and 257 

Supplemental figure S7B). To further investigate the genetic interactions 258 

between differentially contributing tRNA copies within a given family, we 259 

focused on the tR(UCU) family. 260 

The tR(UCU) family contains 11 identical copies in the genome, 5 of which were 261 

represented in our library. In rich medium, two copies (tR(UCU)E and 262 

tR(UCU)M2) showed appreciable reduction in growth yield (termed Major 263 

copies), while deletions of the other three copies (tR(UCU)M1, tR(UCU)G1 and 264 

tR(UCU)K) grew essentially as the wild-type (termed Minor copies). Introducing 265 

a plasmid with the appropriate tRNA gene copy complemented the growth of all 266 

deleted copies (Supplemental figure S7C). To further assert the separation 267 

between the Major and Minor copies, we examined various pair-wise deletion 268 

combinations of these members. All pairs that included at least one Major 269 

member exhibited growth impairment upon deletion, while pairs that consisted 270 

of only Minor copies demonstrated either a slight growth defect or none at all 271 

(Figure 4C). Further analysis of genetic interactions of these family members 272 

with either the TRM9 gene, or with the above mentioned tR(CCU) gene that 273 

belongs to a different Arginine family, revealed a similar effect (Figure 4C). These 274 

results indicate that the loss of different tR(UCU) genes in the same genetic 275 

background does not affect the phenotype equally, Major copies are more 276 

essential than Minor copies and as such are also more essential in providing 277 

compensation within the family. 278 

We next turned to examine whether the hierarchy of Major and Minor copies is 279 

preserved across various stress conditions (Figure 4D). Examining essentiality in 280 



 

 

several conditions, we observed the same phenomenon in which Major copies 281 

demonstrated a stronger effect on growth compared to Minor copies in most 282 

stress conditions. We also noted that the Minor copies showed a diverse 283 

response ranging from slight growth improvement, wild-type level growth to 284 

observable growth impairment. A potential scenario may be one in which the 285 

Major copies always actively contribute to the pool, while the Minor copies might 286 

be recruited at times of need to maintain efficient translation. Thus, the loss of a 287 

Major copy could only be partially compensated by the remaining copies. 288 

Following these observations, we turned to examine possible genetic elements 289 

that might promote the phenomenon of differential contribution. Since all family 290 

members have identical sequence, we hypothesized that differential contribution 291 

should be due to differences in the vicinity of tRNA genes.  To demonstrate this 292 

notion we performed a complementation assay, introducing different tRNAs 293 

from the UCU family, along with 200bp of their flanking sequences, to the 294 

tR(UCU)M2 deletion strain. We observed different degrees of complementation. 295 

Given that different constructs differ only in the region flanking the tRNA gene, 296 

the variation in complementation capability can be attributed to the different 297 

sequences flanking the tRNA (Supplemental figure S7D). The effect of sequences 298 

that flank tRNA genes on their transcription was reported in multiple 299 

studies[39–42]. In one such study Giuliodori et al. [42] preformed an analysis of 300 

conserved sequence elements upstream of S. cerevisiae tRNA genes. They 301 

identified four conserved sequence elements located at positions -53 (T-rich), -302 

42(TATA-like), -30(T-rich) and -13 (pol III TSS) with respect to the first 303 

nucleotide of the mature tRNA. We used these results to examine the entire tRNA 304 

deletion library and checked whether tRNA deletions that exhibited or that did 305 



 

 

not exhibit altered phenotype in rich medium revealed enrichment for any 306 

particular motif (Figure 4E). We found that deletions exhibiting phenotypes of 307 

growth impairment were significantly enriched for the presence of specific 308 

motifs. In particular, deleted strains that exhibited impairment in growth yield 309 

had an enrichment for the TATA-like motif at position -42. In addition, the TSS 310 

motif at position -13 was enriched in deletion strains that exhibited impairment 311 

in both growth rate and yield. To reinforce these observations, we ran the MEME 312 

motif search algorithm [43] to screen the upstream sequences of tRNA deleted 313 

strains exhibiting impaired growth yield for enriched motifs (see Materials and 314 

Methods). Two significant motifs were found that resemble those reported by 315 

Giuliodori et al. in both sequence and location (Figure 4F).  316 

Together these results indicate that the contribution to the tRNA pool and 317 

cellular fitness of different copies of the same tRNA family are far from equal. We 318 

provide one possible explanation, which can account for the differential 319 

essentiality, implying that the sequences flanking tRNA genes play a role in 320 

determining their expression level.  321 

Physiological effects of tRNA gene deletions on protein folding 322 

As mentioned above, screening the tRNA deletion library in the presence of the 323 

reducing agent Dithiothreitol (DTT), a drug that exerts a proteotoxic stress in the 324 

cell, showed severe phenotypic defect in many deletion mutants (Figure 2A, B). 325 

Yet, many of the strains that demonstrated growth reduction in other conditions 326 

were less sensitive than wild-type to this drug (Figure 2C, D). These findings 327 

point towards a connection between tRNA functionality and the protein folding 328 

state in the cells. To further explore this connection, we turned to thoroughly 329 



 

 

characterize a selection of tRNA deletions in the presence of various proteotoxic 330 

agents. We chose two deletion mutants that exhibited either impaired or wild-331 

type growth under DTT, namely (tR(UCU)M2 and tH(GUG)G1), both members of 332 

multi-copy families designated the MC group. In addition to the two viable single 333 

gene deletions (tR(CCU)J and tL(GAG)G), the initiator methionine tiM(CAU)C also 334 

demonstrated improved growth; we thus designated these three strains the SC 335 

group. 336 

The various strains were treated with either DTT, Azetidine 2 carboxylic acid 337 

(AZC)- a toxic analog of proline [44], or Tunicamycin- a drug used to induce the 338 

unfolded protein response (UPR) in the endoplasmic reticulum (ER) [45]. The 339 

growth of each strain was characterized under each proteotoxic agent applied at 340 

several concentrations. The strains in the MC group demonstrated either growth 341 

impairment or wild-type growth under all examined conditions. However, the 342 

deletions of single-copy tRNAs and to some extent the imitator methionine 343 

demonstrated reduced sensitivity to all three proteotoxic agents (Figure 5A-C). 344 

The differences in relative growth for all the examined strains were apparent 345 

even at low concentrations and were consistent upon increase in the 346 

concentrations of these proteotoxic agents (Figure 5A-C).  347 

The fact that the tRNA deletion strains from the SC group are resistant to 348 

proteotoxic agents led us to hypothesize that deleting these genes might inflict 349 

intrinsic and chronic misfolding stress, even at the absence of the drug. This 350 

stress results in the activation of relevant cellular response that protects cells 351 

from the aggravating effect of extrinsic proteotoxic stress. Such an effect is 352 

reminiscent of the cross protection effect observed between environmental 353 



 

 

stressors [46], yet here it is manifested between a genetic perturbation and an 354 

environmental stress.  355 

To directly examine whether changes in the tRNA pool induce proteotoxic stress 356 

in these strains, we examined the state of the protein quality control machinery 357 

using the naturally unstructured human protein VHL as a proteotoxic stress 358 

reporter [47]. In this system, the VHL protein can be destined to one of two 359 

cellular localizations. If the cell experiences protein-folding stress, the 360 

heterologous protein VHL will aggregate in inclusions (or puncta) due to 361 

saturation of the protein quality control machinery. In contrast, under normal 362 

conditions, the quality control machinery is available to properly deal with this 363 

naturally unfolded heterologous protein, thus it remains soluble in the cytoplasm 364 

and no inclusions are formed. For each of the five deletion strains, we quantified 365 

the number of VHL inclusions (puncta) in populations of yeast cells. This analysis 366 

revealed that indeed the tRNA deletions in the SC group exhibited a significant 367 

increase in the number puncta containing cells relative to the wild-type (Figure 368 

5D and 5F), indicating saturation of the quality control machinery caused by 369 

intrinsic proteotoxic stress. The MC group did not exhibit inherent proteotoxic 370 

stress; their puncta containing cells count resembled that of the wild-type. 371 

The inherent chronic proteotoxic stress observed for the SC deletions might 372 

provide them with the capacity to respond better to an additional external 373 

proteotoxic stress. To further explore this possibility we examined the state of 374 

the protein quality control machinery upon extrinsic proteotoxic stress induced 375 

by treatment with AZC. Treating the wild-type cells with AZC resulted in a rapid 376 

accumulation of the VHL protein in stress foci, indicated by increase in the 377 

occurrence of multiple inclusions [48]. As anticipated, the behavior of the SC 378 



 

 

group demonstrated a significant increase in the presence of a single punctum 379 

upon AZC treatment, however the appearance of stress foci (multi-puncta) was 380 

significantly lower compared to the wild-type and to the MC group (Figure 5E 381 

and 5G). As in the previous experiment, the deletions of the MC group responded 382 

in a similar manner to that of the wild-type, displaying increased number of 383 

stress foci. 384 

These results thus indicate that the deletion of some tRNA genes induced an 385 

inherent proteotoxic stress in the cell, demonstrating a physiological role of 386 

proper tRNA supply in protein folding by an undetermined mechanism. Such 387 

physiological response renders these cells relatively less sensitive, compared to 388 

other tRNA deletion strains and the wild-type, from the otherwise harmful effect 389 

of proteotoxic drugs.  390 

Different molecular responses to deletions of tRNAs from single and multiple copy 391 

families 392 

To determine whether changes in the tRNA pool result in a distinct molecular 393 

signature, we examined the same set of tRNA deletions (SC and MC groups) using 394 

mRNA microarrays. For each strain, we measured genome-wide changes in 395 

mRNA levels compared to the wild-type, under rich growth conditions. The 396 

expression changes we observed were modest and demonstrated a correlation 397 

between the essentiality of the tRNA gene and the extent of changes in mRNA 398 

expression upon its loss. Hierarchical clustering of the strains according to 399 

similarity in expression changes (Fig 6A and supplemental figure S8), revealed 400 

that the strains could be divided into two groups recapitulating the division to 401 

the SC and MC groups. An example for this division can be found in the 402 



 

 

pronounced effect observed for the COS8 gene. This gene was extremely up-403 

regulated (about 16 fold) in the SC group while unchanged in the MC group 404 

(Figure 6B). These results suggest different molecular signatures for the two 405 

groups, which are also related to the proteotoxic stress response.  406 

To determine the responses and the underling  molecular  pathways that 407 

differentiate these two groups, we examined which KEGG pathways [49,50] 408 

differentiate between them. We used Gene Set Enrichment Analysis (GSEA), a 409 

computational software which determines whether a defined set of genes shows 410 

statistically significant differences between two biological states [51,52]. This 411 

analysis revealed a somewhat opposite signature between the two groups (Table 412 

1 and supplemental figure S8). Pathways which are responsive to proteotoxic 413 

stress such as the Proteasome (FDR q-value <1E-5) and Protein processing in 414 

endoplasmic reticulum (FDR q-value 2E-3) were significantly induced in the SC 415 

group relative to the MC group. While in the MC groups, translation-related 416 

pathways such as Ribosome biogenesis (FDR q-value <1E-5) and Ribosome (FDR 417 

q-value 1E-4) were significantly induced compared to the SC group. 418 

To further characterize these differences we focused on specific pathways. A 419 

more detailed examination of the expression changes observed for all the genes 420 

that constitute the proteasome complex revealed an up-regulation to various 421 

extents in response to deletion of tRNAs from the SC group. The MC group 422 

demonstrated no change and even a slight down-regulation of these genes 423 

(Figure 6C), a trend which was further verified using RT-qPCR (Figure 6D). 424 

These observations establish the notion that cells experience proteotoxic stress 425 

upon deletion of members of the SC group. A further indication of proteotoxic 426 

stress in these deletion strains is the up regulation of COS8. The exact biological 427 



 

 

function of this gene is still unclear, it was however found to interacts with IRE1, 428 

which is a hallmark regulator of the unfolding stress response [53].  429 

 An interesting distinction between the groups was also observed in the pathway 430 

consisting of the RNA polymerase machinery. Expression of genes that belong to 431 

this pathway were up-regulated only in the MC group (Table 1). Separating the 432 

RNA polymerase genes into modules corresponding to the different polymerases, 433 

revealed an interesting pattern. While the genes that encode RNA Pol II subunits 434 

did not change in any of the tRNA deletion strains (Supplemental figure S9), the 435 

genes encoding RNA Pol III machinery (the polymerase responsible for tRNA 436 

gene transcription) demonstrated up-regulation in the MC group and no change 437 

or even down regulation in the SC group (Figure 6E). These results were further 438 

verified by RT-qPCR (Figure 6F). Up-regulation of the pol III machinery for the 439 

MC group may suggest that in some MC deletion strains, the transcription of the 440 

remaining tRNA genes could increase, thus providing a possible molecular 441 

mechanism for backup compensation within families. Such response to deletions 442 

of tRNAs from the MC group could indicate the presence of a negative feedback 443 

loop, allowing the cell to respond to changes in the tRNA pool in the attempt to 444 

regain steady state levels. 445 



 

 

Discussion 446 

In this study, we investigated the genetic architecture of the tRNA pool and its 447 

effect on cellular fitness using a comprehensive tRNA deletion library. We found 448 

extensive dispensability of many tRNA genes, especially under optimal growth 449 

conditions. Such lack of essentiality has been studied in protein-coding genes, 450 

and is often interpreted to reveal a role for partially redundant genes and 451 

pathways providing backup compensation for the deleted gene [33,34,54–56]. 452 

Similar design principles are displayed in the architecture of tRNA genes, which 453 

exhibited significant gene redundancy and compensation (either partial or 454 

complete) among family members. An additional reason for apparent lack of 455 

essentiality of genes is the limited set of examined environmental challenges, and 456 

it was indeed shown for protein-coding genes that challenging gene deletion 457 

libraries to less favorable conditions exposes more essentiality [57,58]. We 458 

showed that a similar situation holds for tRNA genes. We found condition-459 

specific functional roles for tRNAs, demonstrating increased demand for certain 460 

tRNA genes under certain defined conditions. This implies that the compensation 461 

within tRNA families changes across conditions. Such changes in the essentiality 462 

of tRNA genes can imply that the tRNA pool is dynamic and changes across 463 

conditions to accommodate cellular needs, as was recently suggested [59].  464 

Further, we have discovered interesting architecture within families, which 465 

questions the prior notion that all tRNA gene copies contribute equally to the 466 

pool. Previous work has shown that Pol III transcription machinery displays 467 

different occupancy levels at various copies of the same tRNAs in the genome 468 

[21,22,60]. However, the potential phenotypic consequences of such 469 



 

 

transcriptional differences have not been previously explored. We report that the 470 

flanking sequences around each tRNA gene contains motifs that are predictive of 471 

the deletion phenotypic consequences, potentially affecting pol III transcription 472 

machinery. 473 

We further speculate that some tRNA genes, i.e. the Major copies, might be active 474 

across all conditions and with only partial functional redundancy, thus their loss 475 

cannot be fully compensated. Minor copies on the other hand are either not 476 

transcribed or have a modest contribution to the tRNA pool, with complete 477 

functional redundancy by other copies, thus their loss can be fully compensated. 478 

Such architecture could provide the cell with means to respond in a dynamic 479 

manner to changes in the environment, by transcribing varying portions of the 480 

members of each tRNA family depending on demand. As such, differential 481 

contribution within tRNA families exposed an additional novel mean to regulate 482 

the tRNA pool and as a consequence to regulate the translation process. 483 

An interesting finding was that changes in the tRNA pool elicit molecular changes 484 

in the cells even when no severe phenotype is detected. Our results 485 

demonstrated two distinct molecular signatures which can be attributed to the 486 

family architecture and the severity of the changes in the pool. Upon deletion of 487 

the two viable single copy tRNAs, and also upon deletion of one of the initiator 488 

tRNA methionine copies, the cell exhibited a response reminiscent of a 489 

proteotoxic stress. We were able to identify such a stress in these mutant cells. 490 

Although the exact mechanisms by which changes in the tRNA pool induces 491 

proteotoxic stress remains to be determined, we hypothesize that the 492 

elimination or reduction in these tRNAs may lead to events of amino acid 493 

misincorporation, ribosome frame-shifting or stalled protein synthesis 494 



 

 

terminations. Such events would have a clear impact on the protein quality 495 

control machinery of the cell by titrating chaperons to deal with misfolded or 496 

misassembled proteins. Translation errors such as incorrect tRNA selection and 497 

incorrect tRNA aminoacylation have been shown to induce proteotoxic stress in 498 

yeast [61,62]. Given that cells exploit chaperon availability as a sensing 499 

mechanism to induce a stress response [63,64], translation errors may lead to 500 

the onset such a response. On the other hand, deletions of tRNAs from multi-copy 501 

families results in milder effects on the tRNA pool due to the extensive 502 

redundancy or backup-compensation, and they indeed elicit a different cellular 503 

response from the one invoked upon deletion of single-member families. In the 504 

response to deletion of members from multi-gene families, the pol III 505 

transcription machinery seems to be up regulated. Such up-regulation would 506 

bring about induced transcription of tRNAs, this would act as a feedback 507 

mechanism to bring the tRNA pool closer to its normal state [65]. At least in one 508 

case (Supplemental figure S5) our results suggest the existence of such 509 

responsive backup among tRNA genes from the same family. Yet, a clearer 510 

relationship between changes in the tRNA pool, pol III activation, and tRNA 511 

transcription is still lacking. Regardless of the actual mechanism that determines 512 

the exact cellular response to tRNA deletions, the fact that such a response 513 

wiring exists may be beneficial for maintaining cellular robustness upon 514 

environmental changes and mutations.    515 

This work provides for the first time a systemic tool to study the functional role 516 

of individual tRNA genes. Using this deletion library, we discovered a much more 517 

complex picture than was previously known. We anticipate that a high 518 

throughput mapping of all genetic interactions between pairs of tRNA genes (as 519 



 

 

done for protein-coding genes) [66,67] would reveal the full genetic network. In 520 

addition, it might reexamine and potentially refine the wobble interaction rules 521 

from a genetic, rather than the traditional biochemical/structural perspective. 522 

The design principles defined in this study, consisting of massive gene 523 

redundancy as well as differential contribution of gene copies may provide 524 

cellular plasticity and allow the tRNA pool to accommodate various growth 525 

conditions and developmental planes. Deciphering the effects of tRNA variations 526 

as is found in some diseases such as cancer [68] and Huntington [69] can provide 527 

possible routes for future treatment. We provide this novel set of minimalist 528 

genetic perturbations in the translation machinery as a resource to the yeast 529 

community towards further characterization of this highly complex process as 530 

well as additional cellular processes. 531 



 

 

Materials and Methods 532 

Creation of tRNA deletion library  533 

The complete tRNA pool of S. cerevisiae was obtained from the tRNA genomic 534 

database [70], where 286 tRNA genes are annotated. 13 tRNA genes are encoded 535 

by the mitochondrial genome and the remaining are nuclear-encoded. Here we 536 

focused on the nuclear-encoded tRNAs. Two tRNA genes that are annotated in 537 

this database as not determined, belong to the tS(GCU) family. Thus, the tS(GCU) 538 

family contains two additional members, tS(GCU)L and tS(GCU)D , both verified 539 

by PCR, bringing the total number of nuclear encoded tRNA genes to 275. 540 

Deletion strains were constructed using a PCR-based gene deletion [71,72], in 541 

the genetic background of the Y5565 strain (MATα, can1∆::MFA1pr-HIS3, 542 

mfα1∆::MFα1pr-LEU2, lyp1∆, ura3∆0, leu2∆0). The S. cerevisiae strain S288C 543 

reference genome sequence R57-1-1 downloaded from the Saccharomyces 544 

Genome Database was used for primer design. Each deletion construct contained 545 

45 bp flanking or overlapping a tRNA sequence for specific recombination event, 546 

a unique barcode and the HPH antibiotics ‘cassette’, conferring resistance to the 547 

antibiotic hygromycin B, [73]. PCR products were transformed into yeast cells 548 

and single colonies were verified by PCR. Three colonies from each strain were 549 

used to verify phenotypes in growth analysis. A wild-type strain in which the 550 

same antibiotic marker was integrated 200bp upstream of the tL(CAA)L3 locus 551 

was created as a control and was used in all analyses as wild-type. A complete 552 

list of all plasmids, yeast strains and PCR fragments can be found in 553 

Supplemental text S1 and Supplemental table S5.   554 



 

 

Measurements of growth using OD reads   555 

Strains were grown for two days at 30oC in YPD (1% yeast extract, 2% peptone, 556 

2% glucose), diluted (1:50) into the appropriate medium in U-bottom 96-well 557 

plates and grown at 30oC (using TECAN Freedom EVO robot). The OD of the 558 

population in each plate was monitored every 30 minutes using a 559 

spectrophotometer at 600 nm (INFINITE200-TECAN). Each plate contained a 560 

wild-type strain to which the growth parameters of the deletions strains were 561 

normalized. The OD reads served for growth analysis and extraction of growth 562 

parameters. At least 3 biological repeats and 36 technical repeats were 563 

performed for each strain in each condition. Complete description of analysis and 564 

normalization procedures are provided in the Supplemental text S1. 565 

Yeast growth conditions 566 

Library strains were screened in the following growth conditions: YPD, SCD 567 

(0.67% Bacto-yeast nitrogen base w/o amino acids 2% glucose supplemented 568 

with amono acids), YP supplemented with 0.025% glucose, YP supplemented 569 

with 1% galactose, YPD supplemented with 0.5M NaCl, SCD supplemented with 570 

1.5mM DTT. Growth measurements were also performed on YPD supplemented 571 

with increasing concentrations of the proteotoxic agents DTT, AZC and 572 

Tunicamycin.   573 

Motif Analysis 574 

A sequence motif analysis was performed using the MEME online software [43]. 575 

The motif search was done on the upstream sequence of tRNA genes which 576 

exhibited a yield impairment phenotype in rich medium upon deletion (42 577 

genes) versus the upstream sequence of tRNA genes which exhibited a 578 



 

 

phenotype in no more than two out of the six conditions (99 genes). To apply 579 

location constrains on the motifs, the MEME analysis was done in windows of 580 

size 9bp, looking for motifs of 4-8bp in length.  581 

Analysis of protein quality control using VHL-CHFP reporter 582 

Wild-type and tRNA deletion strains harboring the pGAL-VHL-mCherry (CHFP) 583 

fusion were grown overnight on SCD+2% raffinose, diluted into SCD+2% 584 

galactose and grown at 30°C for 6 hours. Cells were visualized using an Olympus 585 

IX71 microscope controlled by Delta Vision SoftWoRx 3.5.1 software, with X60 586 

oil lens. Images were captured by a Photometrics Coolsnap HQ camera with 587 

excitation at 555/28 nm and emission at 617/73 nm (mCherry). Images were 588 

scored using the ImageJan Image Processing and Analysis software. The 589 

percentage of cells harboring VHL-CHFP foci was determined by counting at least 590 

500 cells for each strain in three biological repetitions.  Protein un-folding stress 591 

was induced with AZC at a concentration of 2.5 mM AZC (Sigma) following 592 

induction with galactose. 593 

Analysis of genome wide expression changes 594 

Cultures were grown in YPD medium at 30°C to a cell concentration of 1.5*107 595 

cells/ml. Cells were then harvested, frozen in liquid nitrogen, and RNA was 596 

extracted using MasterPure™ (EPICENTER Biotechnologies). The quality of the 597 

RNA was assessed using the BIOANALYZER 2100 platform (AGILENT); samples 598 

were then processed and hybridized to Affymetrix yeast 2.0 microarrays using 599 

the Affymetrix GeneChip system according to manufacturer’s instructions. The 600 

background adjustment was done using the Robust Multi-array Average (RMA) 601 

procedure followed by quintile normalization.  602 



 

 

For each strain, the fold change in expression for all genes was calculated by 603 

comparing the wild-type measurement in the same batch and averaged over two 604 

biological repeats.  605 

Microarray analysis 606 

The cluster tree is based on the correlation between the mRNA fold change of the 607 

different strains. For the clustering we used the top 50% of the sorted genes 608 

based by the gene variance across the strains.  609 

Microarray data access 610 

The data from this study have been submitted to the NCBI Gene Expression 611 

Omnibus (GEO) under accession number GSE47050. A list of the measured fold 612 

changes for all genes in each strain can be found in Supplemental table S4. 613 

RT-qPCR measurements 614 

Cultures were grown in YPD medium at 30°C to a cell concentration of 1*107 615 

cells/ml. RNA was extracted using MasterPure™ (EPICENTER Biotechnologies), 616 

and used as a template for quantitative RT–PCR using light cycler 480 SYBR I 617 

master (Roche)(LightCycler 480 system) according to the manufacture 618 

instructions. A list of the primers can be found in Supplemental table S6. 619 

 620 
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Figure Legends 881 

Figure 1. Creation and analysis of tRNA deletion library. 882 

(A) Schematic representation of the deletion process. 204 different tRNA strains 883 

were created using homologous recombination. In each strain, a different tRNA 884 

gene was replaced by a hygromycin B resistance marker 885 

(B) Schematic representation of growth measurements, analysis, and scoring. 886 

For each strain, relative-growth-rate and relative-growth-yield are calculated in 887 

relation to the wild-type strain. These parameters are then projected on a 888 

distribution of the wild-type growth parameters. Sigma (σ) is calculated 889 

according to the formula and denotes the number of standard deviations from 890 

the mean of the wild-type (see also Supplemental figure S1A). The color in the 891 

histogram are areas were: σ<-3 (blue), -3<σ<-2 (cyan), 2<σ<3 (yellow) and 3<σ 892 

(red). The same color code is used to define phenotypes in the pie charts (C and 893 

D).  894 

(C-D) Distribution of phenotypes for the tRNA deletion library in rich medium, 895 

according to two growth parameters: relative growth yield (C) relative growth 896 

rate (D). Deletion strains were assigned to categories according to their σ values. 897 

Any absolute σ value larger than 2 was considered as non-normal phenotype, 898 

where negative sigma denotes impairment (worse than the wild-type) and 899 

positive sigma denotes improvement (better than the wild-type). Any absolute σ 900 

value larger than 3 was considered as a strong phenotype. Thus, highly impaired 901 

for σ<-3, impaired for -2>σ>-3, improved for 2<σ<3, and highly improved for 902 

σ>3, see also Supplemental figure S1B. 903 

 904 



 

 

Figure 2. Screening the tRNA deletion library across various growth conditions. 905 

(A) Percent of strains exhibiting a growth yield phenotype in various conditions. 906 

The color indicates the type of phenotype: impaired (blue) or improved (red). 907 

(B) Percent of strains exhibiting a growth rate phenotype in various conditions.   908 

(C-D) The σ values measured for both the growth yield (C) and the growth rate 909 

(D) for all deletion strains across six conditions. 910 

The color bar indicates the σ values, red denoting improvement and blue 911 

impairment. Each row denotes a tRNA deletion strain and each column denotes 912 

different growth condition. Strains are ordered on the y-axis according to amino 913 

acids (denoted by letter) and further separated into families (denoted by lines 914 

within the amino-acid box). Black rows denote lethal strains. Gray rows indicate 915 

strains for which the respective value was not measured.  916 

Figure 3. Extensive redundancy underlies robustness to tRNA gene deletion. 917 

(A) Schematic representation of the genetic interactions within and between 918 

tRNA families. Families are denoted by dark grey circles and grouped (black 919 

dashed line) according to their tRNA copy number. Each family is denoted by its 920 

anti-codon and amino-acid. A protein-coding gene i.e. TRM9 is denoted by a grey 921 

box. Each filled circle indicates a tRNA deletion strain. The lines connecting the 922 

deletion strains denote a co-deletion of these genes (a multi-tRNAs deletion 923 

strain). The color of the filled circles and lines denote the severity of the growth 924 

phenotype for the respective strain: blue for normal growth, purple for impaired 925 

growth (worse than wild-type) and red for lethality. (B) Epistasis values for 926 

multi-tRNAs deletion strains which contain the deletion of tL(GAG) and either: 927 



 

 

one tL(UAG) gene, two tL(UAG) genes, tL(CAA) (which is a tRNA of different 928 

Leucine family), and tW(CCA) (which is a non-Leucine tRNA) as controls. 929 

(C) Epistasis values for multi-tRNAs deletion strains which contain the deletion 930 

of trm9 with: the singleton tR(CCU), and tR(ACG) which is a tRNA of different 931 

Arginine family and tW(CCA) which is a non- Arginine tRNA as controls. In both 932 

(B) and (C) epistasis values of the relative growth yield and growth rate are 933 

indicated in grey and green respectively. Data is presented as mean of 3 934 

biological repetitions +/- SEM. 935 

Figure 4. Differential contribution of identical tRNA gene copies. 936 

(A-B) Relative growth yield values of the tRNA deletion library strains in rich 937 

medium (A) and low glucose (B), sorted by anti-codon and amino-acid identity 938 

along the x-axis. Each dot along the vertical lines denotes the value (data are 939 

represented as mean of 3 biological repetitions +/- SEM) of a deletion strain of 940 

different tRNA gene of the respective family. The horizontal lines mark two 941 

standard deviations around the mean of the wild-type. Dots above or below 942 

these lines are considered non-normal phenotypes (see also Supplemental figure 943 

S7).  944 

 (C) Relative growth yield values (data are presented as mean of 3 biological 945 

repetitions +/- SEM) of various double deletion combinations consisting of: five 946 

tR(UCU) family members, tR(CCU) and trm9 deletion strains as indicated on the 947 

x-axis, along with the five members of the tR(UCU) family each denoted by a 948 

different shape and color in the legend. (D) Relative growth yield of the five 949 

tR(UCU) members across different growth conditions, indicated on the x-axis.  950 



 

 

(E) Enrichment of conserved elements in tRNA genes divided according to 951 

phenotype observed in rich media for each growth parameter. Each column in 952 

the matrix denotes a conserved element as defined by [42]. Color bar indicates 953 

the –log10 of the hypergeometric p-value. (F) log10 E-value found by the MEME 954 

software for the most significant motif in a 9bp window starting from the 955 

position indicated by the x-axis. The LOGOs of the two significant motifs are 956 

displayed below, next to a number indicating its position. Position 0 is the first 957 

position of the mature tRNA. 958 

Figure 5. Changes in the tRNA pool affect protein folding 959 

(A-C) Relative growth rate (compare to wild-type) of the following five deletion 960 

strain: tL(GAG)G (blue), tR(CCU)J (red), tiM(CAU)C (green), tH(GUG)G1 (magenta) 961 

and tR(UCU)M2 (cyan). Strains were grown in media supplemented with 962 

increasing concentrations of the following proteotoxic agent: AZC (A) 963 

Tunicamycin (B) DTT (C).  964 

(D) Percentage of cells that contain puncta in the populations of the above 965 

strains. 966 

(E) Percentage of cells that contain puncta in the populations of the above strains 967 

following treatment with 2.5mM AZC. Data are presented as mean of 3 biological 968 

repetitions +/- SEM, in each repetition 500 cells were counted. (*) P< 0.001 by 969 

Students t-test. 970 

(F-G) Images of representative fields for the wild-type and tR(CCU)J deletion 971 

strain, without treatment (F) and following treatment with 2.5mM AZC (G). 972 



 

 

Figure 6. Molecular response to changes in the tRNA pool. 973 

(A) Dendrogram created by clustering changes in gene expression for five 974 

representative deletion strains, for more information see Materials and Methods.  975 

(B) Fold change of the COS8  (YHL048W) mRNA levels in each of the five deletion 976 

strains as measured by microarrays. (C) The fold change distribution of mRNA 977 

levels as measured by microarrays, of genes composing the Proteasome pathway 978 

by the KEGG database [49], for each of the listed tRNA deletion strains.  979 

(D) mRNA Fold change of 6 representative genes from the proteasome pathway 980 

measured by RT-qPCR. Presented values are the mean of 3 biological repetitions 981 

+/- SEM. The strain colors are as in (C). If the mRNA fold change in a specific 982 

strain is significantly different from 0 (t-test) it is marked with:* (p<0.05) or ** ( 983 

p<0.005). 984 

 (E) The fold change distribution of mRNA levels as measured by microarrays, of 985 

genes composing the Pol III RNA Polymerase machinery module by the KEGG 986 

database, for each tRNA deletion strain. (F) mRNA Fold change of 6 987 

representative genes from the Pol III KEGG module measured by RT-qPCR. 988 

Presented values are the mean of 3 biological repetitions +/- SEM. The strain 989 

colors are as in figure (C). If the mRNA fold change in a specific strain is 990 

significantly different from 0 (t-test) it is marked with:* (p<0.05) or ** ( 991 

p<0.005). 992 

In all the sub-figures (C,D,E,F) values are plotted for the same five deletion 993 

strains: tL(GAG)G (blue), tR(CCU)J (red), tiM(CAU)C (green), tH(GUG)G1 994 

(magenta) and tR(UCU)M2 (cyan). 995 



 

 

Tables 996 

Table 1. KEGG pathways differentiating between tRNA deletion sets 997 

Higher in SC than in MC Higher in MC than in SC 

Proteasome (<1E-5)  Ribosome biogenesis in eukaryotes (<1E-5) 

Oxidative phosphorylation (<1E-5) RNA polymerase (<1E-5) 

Endocytosis(2E-3) 
Phenylalanine, tyrosine and tryptophan 

biosynthesis (<1E-5) 

SNARE interactions in vesicular transport (2E-3) Pyrimidine metabolism (5E-5) 

Protein processing in endoplasmic reticulum (2E-

3) 
Ribosome (1E-4) 

Starch and sucrose metabolism (2E-3) Lysine biosynthesis (1E-4) 

Citrate cycle (TCA cycle) (0.01) Histidine metabolism (4E-4) 

Meiosis (0.01) Cysteine and methionine metabolism (4E-4) 

Homologous recombination (0.02) Riboflavin metabolism (5E-3)  

Mismatch Repair (0.02) Arginine and proline metabolism (8E-3) 

Cell cycle (0.02) Valine, leucine and isoleucine biosynthesis (0.01) 

MAPK signaling pathway - yeast (0.02) Purine metabolism (0.03) 

Fructose and mannose metabolism (0.02) Sulfur metabolism (0.03) 

Nitrogen Metabolism (0.02) Tyrosine Metabolism (0.03)  

Phagosome  (0.03) Folate biosynthesis (0.04)  

KEGG pathways [49] for which changes in genes expression are significantly 998 

different between the two groups of tRNA deletion strains: MC (multi-copy) 999 

group (∆tH(GUG)G1 and ∆tR(UCU)M2) vs. SC (single-copy) group (∆tL(GAG)G, 1000 

∆tR(CCU)J, ∆tiM(CAU)C) calculated with GSEA [51,52]. In the first column are 1001 

pathways, which are higher in SC vs. MC and vice versa in the second column. 1002 

The values are corrected for multiple hypothesis and the FDR q-values are 1003 

indicated next to each pathway. 1004 



 

 

Supplemental Figures 1005 

 Figure S1. Growth measurements parameters.  1006 

(A) Schematic growth curve of Optical Density (OD) vs. time. The red dots 1007 

indicate the time points from which the growth rate (1) and growth yield (2) 1008 

parameters are extracted. (B) Dot plot for all strains in the library grown in YPD. 1009 

Each strain is represented by a blue dot, showing its sigma growth rate vs. its 1010 

sigma growth yield values. The Pearson correlation coefficient is -0.019 1011 

indicating there is no correlation between the two parameters p-val 0.794. 1012 

 1013 

Figure S2. Phenotypes cannot be explained by family size and amino-acid identity. 1014 

Sigma growth parameters for the tRNA library grown in rich medium are plotted 1015 

in boxes sorted by either family size or amino-acid identity. For each box, the 1016 

central mark is the median, the edges of the box are the 25th and 75th 1017 

percentiles. Sigma growth yield by family size (A) sigma growth rate by family 1018 

size (B) sigma growth yield by amino-acid (C) sigma growth rate by amino-acid 1019 

(D). Apart from the singletons whose deletion strains are often lethal or 1020 

impaired, we could not explain the observed growth phenotypes, in either 1021 

growth rate or yield, by either the size of the family, or the amino acid identity. 1022 

 1023 

Figure S3. tRNA deletion phenotype are not correlated to the expression of nearby 1024 

genes. 1025 

(A-B) the average expression level of the genes located upstream and 1026 

downstream to the tRNA gene that was deleted in each strain vs. the sigma 1027 



 

 

growth yield (A) or the sigma growth rate (B). (C) Relative growth parameters of 1028 

tR(CCU)J deletion (black), tR(CCU)J deletion containing a centromeric plasmid 1029 

harboring the tR(CCU)J gene (gray)  and a strain deleted for the YJR055W gene 1030 

which is the protein-coding gene located downstream of tR(CCU)J (white).  As 1031 

can be seen only the tR(CCU)J deletion strain exhibits growth rate impairment 1032 

while the two other strains do not. 1033 

 1034 

Figure S4. Single tRNA genes can sustain wild-type growth upon deletion of 1035 

multiple members in three gene families. 1036 

(A-B) Relative growth rate (red) and growth yield (blue) values of double 1037 

deletion combinations containing members of the tG(UCC) family (A) and the 1038 

tS(UGA) family (B). In each experiment the mean of 3 biological repetitions is 1039 

presented +/- SEM. Two σ around the mean of the wild-type are indicated by red 1040 

and blue lines around 1 (wild-type value). 1041 

 1042 

Figure S5. Compensation within some tRNA families is due to plasticity of the pool 1043 

and transcriptional changes of the remaining copies. 1044 

RT-qPCR measurement of the RNA levels of the tS(UGA)  family(A) and tL(UAG) 1045 

family (B) upon deletion of various members of the family. Results are reported 1046 

in terms of log2 fold change of the expression level in each of the indicated 1047 

deletion strain compared to the wild-type. In both (A) and(B) the * indicates 1048 

cases in which the fold change was significantly different  from zero (t-test,  p-1049 

value <0.05). 1050 



 

 

Figure S6. Epistasis of trm9 deletion with Glutamic Acid tRNAs. 1051 

Examining a more general role for Trm9 in modulating the compensation 1052 

between tRNA families we chose the second tRNA family that is modified by 1053 

Trm9, tE(UUC), and in addition we examined the tE(UCU) family. Together these 1054 

two families decode in a split codon box, in a similar manner to the Arginine UCU 1055 

and CCU families. We created 10 double deletions, each consisting of the enzyme 1056 

along with one of the tRNA genes of the two glutamic acid families and analyzed 1057 

their interactions by epistasis.   1058 

Epistasis values for co-deletion strains which contain the deletion of trm9 with: 1059 

the deletion of the two members of tE(CUC) family, and eight members of the 1060 

tE(UUC) family. Epistasis values of the relative growth yield and growth rate are 1061 

indicated in grey and green respectively. Data is presented as mean +/- SEM of 3 1062 

independent experiments. 1063 

Figure S7. Identical tRNA genes contribute differentially to the tRNA pool. 1064 

(A-B) Growth rate values of the tRNA deletion library in rich medium (A) and 1065 

low glucose (B) sorted by families and amino-acid identity. The horizontal lines 1066 

denote two standard deviations around the mean of the wild-type in that 1067 

condition. Dots above or below these lines are considered phenotypes. (C) 1068 

Relative growth yield values (data of 3 biological repetitions +/- SEM is 1069 

presented) of five tR(UCU) deletion strains (Grey) and the corresponding 1070 

complementation strains (White). Each complementation strain carries the 1071 

deleted tRNA gene on a centromeric plasmid. The values are relative to the wild-1072 

type. In the complementation experiment, the wild-type harbors an empty 1073 

plasmid. (D) Relative growth yield values of strain deleted for tR(UCU)M2 gene 1074 



 

 

(a major copy of the tR(UCU) family- marked as M2 ), and M2 strains 1075 

containing different centromeric plasmids. Each centromeric plasmid carries the 1076 

tR(UCU) tRNA flanked from each side by 200bp sequence identical to a the 1077 

different members of the tR(UCU) family.  1078 

Figure S8. Expression changes of tRNA deletions. 1079 

Expression changes for the five deletion strains. Each row indicates a gene and 1080 

each column is a tRNA deletion strain. The genes and strains are sorted 1081 

according to the clustering results (see Materials and Methods). The Color bar 1082 

indicates the log2 fold change. The groups of genes enriched for relative 1083 

pathways are indicated on the right (locations were found by looking at the 1084 

highest hypergeometric enrichments for varying window sizes). 1085 

Figure S9. Fold change of the Pol II pathway. 1086 

(A) The fold change distribution of mRNA levels as measured by microarrays, of 1087 

genes composing the Pol II RNA Polymerase machinery by the KEGG database for 1088 

each of the listed tRNA deletion strains. (B) mRNA Fold change of 3 1089 

representative genes from the Pol II pathway measured by RT-qPCR. Presented 1090 

values are the mean of 3 biological repetitions +/- SEM. The strain colors are as 1091 

in figure (A). If the mRNA fold change in a specific strain is significantly different 1092 

from 0 (t-test) it is marked with:* (p<0.05) or ** ( p<0.005). 1093 

In both sub-figures (A, B) values are plotted for the same five deletion strains: 1094 

tL(GAG)G (blue), tR(CCU)J (red), tiM(CAU)C (green), tH(GUG)G1 (magenta) and 1095 

tR(UCU)M2 (cyan). 1096 

 1097 
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Supplemental Text 

Materials and Methods  

Yeast strains and plasmids 

 S. cerevisiae strain Y5565 (MATα can1∆::MFA1pr-HIS3 mfα1∆::MFα1pr-LEU2 lyp1∆ 

ura3∆0 leu2∆0) was used as the genetic background for the tRNA deletion library 

strains and the double deletion strains. 

 S. cerevisiae strain BY4743 (MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 

met15Δ0/MET15 ura3Δ0/ura3Δ0) was used for analysis of tRNA essentiality in tetrad 

analysis. 

 pAG32 DEL-MARKER-SET (EOUROSCARF) [1] was used to amplify the Hygromycin B 

resistance marker. 

 pAG25 DEL-MARKER-SET (EOUROSCARF) [1] was used to amplify the Nourseothricin 

resistance marker.  

 pFA6a-kanMX6 [2] was used to amplify the Kanamycin resistance marker.  

 pRS316- Centromeric plasmid [3] was used for tRNA complementation assays. 

Creation of a tRNA deletion library 

In similarity to the yeast gene deletion library [8], the tRNA deletion library was constructed 

using homologous recombination, replacing each tRNA gene with the HPH antibiotics 

cassette. The DNA template for the recombination event was created using two sequential 

PCR reactions. The first PCR reaction created the basic template for the recombination 

containing the antibiotic marker and a 23bp sequence homologous to the desired tRNA. The 

second PCR reaction served to lengthen this template so it contains 45bp homologues to the 

desired tRNA deletion. The first PCR reaction used primers containing a genomic sequence 

that flanks either the 5' or 3' end of the tRNA (directly proximal and distal to the start and 

end of the gene respectively), 18 and 17bp of sequence common to all gene disruptions as 

was used in the yeast deletion collection, a 20 base pairs unique sequence (the 'molecular 

bar-code' TAG) and 22 base pairs of sequence, homologous to the HPH gene. The template 

for this PCR reaction was the pAG32 plasmid, encoding the hygromycin B 

phosphotransferase conferring resistance to the antibiotic hygromycin B. The second PCR 



 

 

reaction used two tRNA gene-specific 45 bp primers, to extend the tRNA specific homology 

of the first PCR product to a total of 45 bp. The product of the second PCR served for yeast 

transformation. For a full list of primers see Supplemental table S5. 

 

Verification of tRNA deletion strains 

For each tRNA deletion strain, five different colonies were selected, and verified by two PCR 

reactions. The junctions of the antibiotics cassette were amplified using two primer 

combinations. Each primer combination contained a primer homologous to sequence within 

antibiotics cassette of either the promoter or terminator of the marker gene, and a tRNA 

specific primer, homologous to sequence upstream or downstream of the tRNA deletion. 

Only colonies from which the correct products were amplified served for further analysis.  

Verification of lethality of tRNA deletions by tetrad analysis 

To confirm the essentiality of double and triple tRNA deletions, diploid strains were created 

by mating two deletion strains, either single or double deletions. These heterozygous 

diploids were sporulated in SC medium (1% potassium acetate) for three days at 25°C. The 

resulting tetrads were then dissected using a Micromanipulator (Singer). Spores were then 

allowed to germinate at 30°C on YPD plates and scored on plates containing the appropriate 

antibiotics. The essentiality of single tRNA genes was confirmed by deletion of the gene 

from a diploid strain, BY4347, in a similar manner to the construction of the tRNA deletion 

library. The resulting colonies were verified, grown on rich medium, sporulated and scored. 

At least 100 tetrads were scored for each such deletion.  

Construction of complementation plasmids 

In order to reintroduce into the cell a tRNA deleted gene we created a set of 

“complementation plasmids”. Complementation plasmids were constructed for multiple 

tRNA genes using gene specific primers homologous to 200 bp up and down stream of the 

tRNA gene which was deleted in the library. Genomic DNA of Y5565 was used to amplify the 

desired tRNA gene, followed by cloning into the pRS316 centromeric plasmid. 

 

Creation of multi-deletion tRNA strains 

Double deletion of tRNA genes was constructed in a similar way to the creation of the tRNA 

deletion library strains. A strain from the tRNA deletion library served as the genetic 



 

 

background for the deletion of an additional gene by means of homologues recombination. 

The sequential PCR was repeated for the second tRNA gene deletion using the same primers 

used for the creation of the tRNA deletion library. The templates for the first PCR round 

were either the pAG25 plasmid containing the nourseothricin N-acetyl-transferase that 

confers resistance to the antibiotics nourseothricin, or the pFA6a-kanMX6, encoding the 

kanamycin gene that confers resistance to the antibiotics G418. Triple deletions were 

created by mating double deletions with a single deletion.  

 

Growth measurements and normalization 

The measures obtained for each strain in the library were compared to wild-type values that 

were retrieved separately for each condition. The wild-type measures were done in three 

repeats and were then summarized by the mean and standard deviation values to generate 

normalized growth rate and normalized growth yield for each condition. This procedure 

allowed normalizing for potential variation between days, incubator slots, and locations of 

wells within the 96-well plate. These measures were obtained from three biological repeats 

containing wild-type cells in all plate positions, for all slots in the incubator. Each mutant 

was characterized by growth rate and growth yield. We consider a mutant as showing a 

phenotype if it deviated by more than two standard deviations from the wild-type mean in 

that condition in either growth rate or growth yield.  

 

Double deletion epistasis calculations  

The epistasis between any two deletion strains was calculated according to the non-scaled 

measure of epistatic interactions [9] using the following equation: 

In which  and  represent the growth values (separating growth rate 

and growth yield) of the single deletions and  represents the growth values of the 

corresponding  double deletion. The results of the calculation indicate the nature of the 

epistasis,  indicates no epistasis,  aggravation and  buffering. 



 

 

Note 

No appreciable correlation between tRNA expression and the expression levels of nearby 

protein-coding genes  

It has been demonstrated in the past (mainly for specific cases) that the expression of tRNA 

genes may affect the expression levels of nearby coding genes [6–8]. In order to explore a 

possible relation between the essentially of tRNA genes, as revealed here upon their 

deletion, and the expression of nearby genes we measured the correlation between the 

tRNA deletion phenotype and the expression level (as measured for the wild-type strain in 

our microarray data) of their upstream and downstream nearby genes. We found no 

correlation between the severity of growth yield or growth rate phenotypes and nearby 

gene expression level, indicating that high (or low) expression of a nearby gene is not a 

predictor of fitness change upon tRNA deletion (see Supplemental figure S3A,B and 

Supplemental table S1). In addition, we did not find any correlation between the distance to 

the closest genomic feature and the phenotype of the deletion strain. 

Furthermore focusing on five tRNA deletions for which we measured genome wide 

expression changes, we examined the effect of the deletion on the expression levels of the 

adjacent genes. As can be seen in the following table: 

Deletion Strain 
Upstream Downstream 

Gene Name 
Distance 

bp 
log2 (Fold 
Change) 

Gene Name 
Distance 

bp 
log2 (Fold 
Change) 

∆iM(CAU)C YCR018C -1017 0.21 YCR019W 2846 0.05 

∆R(CCU)J YJR054W -1006 0.27 YJR055W 146 -0.97 

∆tR(UCU)M2 YML071C -253 -0.37 YML070W 1579 -0.38 

∆tH(GUG)G1 YGL205W -221 0.79 YGL203C 1779 0.07 

∆L(GAG)G YGR106C -889 -0.12 YGR108W 2880 -0.37 

Out of 10 protein-coding genes examined, only in two cases (YJR055W and YGL205W) we 

detect an appreciable change in the expression level (although in both cases it was less than 

two fold). This indicates that in most cases tRNAs deletion do not affect their surroundings. 

 

The general lack of coordination between tRNA genes and nearby  protein-coding genes  is 

in agreement with the work of Conesa et al., [9], that have measured the expression level of 

all protein-coding genes in several Pol III mutants as well as few tRNA deletion strains. This 

analysis detected only a modest correlation between altered expression of Pol II-transcribed 



 

 

genes and their proximity to class III genes.  

For the deletion that demonstrated the highest fold change in the expression of a nearby 

gene (tR(CCU)J) and a severe phenotype, we verified that the fitness reduction observed in 

this strain is indeed due to the deletion of the tRNA gene using several different methods. 

First, using complementation assay we re-introduced the tR(CCU)J gene on a centromeric 

plasmid into the background of the deleted strain. This resulted in a complete abolishment 

of the fitness defect (Supplemental figure S3C). In addition, we measured the growth of a 

strain deleted for the YJR055W gene (the protein-coding gene located downstream 

tR(CCU)J) and found that unlike tR(CCU)J this strain does not exhibit a growth rate 

phenotype (Supplemental figure S3C). Taken together these two analysis demonstrate that 

the growth defect observed in cells deleted for tR(CCU)J is due to the lack of function of the 

CCU tRNA. 
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Table S1. Correlation between tRNA phenotype and expression of nearby genes.  

 

 

The table shows the correlation (r) and the p-value between the deletion strain 

phenotypes and the expression of nearby genes. Each row shows the correlation between 

the sigma value of the growth yield/growth rate in rich medium (YPD) and the expression 

of the nearby gene/s taken from the microarray wild-type measurements (columns 1-3) 

and the distance to the closest genomic feature (column 4).  

 

 
Upstream 

Gene 

Downstream 

Gene 

Average 

(up & down 

genes) 

Minimal 

distance 

yield phenotype 
r=0.06 

p-value:0.41 

r=-0.02 

p-value:0.78 

r=0.03 

p-value:0.68 

r=0.06 

p-value:0.36 

absolute yield 

phenotype (no matter 

whether it is 

impairment or 

improvement) 

r=-0.03 

p-value:0.71 

r=0.02 

p-value:0.80 

r=0.01 

p-value:0.95 

r=0.07 

p-value:0.37 

growth phenotype 
r=-0.01 

p-value:0.92 

r=-0.05 

p-value:0.50 

r=-0.04 

p-value:0.63 

r=0.04 

p-value:0.61 

absolute growth 
phenotype (no matter 

whether it is 

impairment or 

improvement) 

r=-0.02 

p-value:0.78 

r=-0.04 

p-value:0.60 

r=-0.04 

p-value:0.61 

r=0.12 

p-value:0.08 

any absolute 
phenotype 

(growth rate/growth 

yield impairment/ 

improvement) 

r=-0.02 

p-value:0.77 

r=-0.01 

p-value:0.86 

r=0.00 

p-value:0.99 

r=0.08 

p-value:0.24 


