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Abstract 

Cells are complex biological entities that perform all the functions of life and show 

remarkable ability to change and adapt to their surroundings. While lots of efforts have 

been devoted to the characterization of cellular pathways and functions, we still did not 

fully characterize the mechanisms by which cells evolve. The field of Evolutionary Cell 

Biology merges both evolutionary and cell biological thinking and aims to illuminate how 

cellular processes and phenotypes change during evolution. 

Inspired by the ideas of evolutionary cell biology, I devoted my PhD to reveal evolutionary 

mechanisms of cellular machineries. This question has been relatively ignored, and I 

aspired to demonstrate how the combination of genome engineering and genomics tools, 

lab-evolution methodology, and computational analyses can yield important insights 

about the reasons behind the evolution of molecular machines that perform fundamental 

cellular functions. My PhD encompasses three main projects, all of which have been the 

product of fruitful collaborations with my lab peers. 

First, I studied the evolution of the translation machinery by manipulating codon demand 

or tRNA supply. We revealed a new adaptation mechanism for tRNA genes, which is 

widely used in nature and is based on strategic mutations that switch one anticodon to 

another according to cellular needs. Thus, we showed that the tRNA genes are inter-

connected in an evolutionary mutational network that allows them to serve as backups 

for one another, and that this network provides evolutionary plasticity to the translation 

machinery. We then studied the phenomenon of codon usage bias of highly expressed 

genes. Most past studies focused on local effects of codon choice in these genes, and how 

it governs their efficiency and accuracy of translation. By contrast, we revealed that 

codon usage of highly expressed genes has global implications on the cellular translation 

machinery, and that manipulating codon choice results in trans effects on other genes, 

which are affected in a codon-dependent manner. Namely, we revealed that introducing 

a non-optimal codon on highly expressed genes leads to the reduction in translation 

efficiency of genes that naturally use this codon due to an increased tRNA demand. Thus, 
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we show that codon usage bias in highly expressed gene was not selected by evolution 

only to maintain the translation of these genes – but also to maintain the integrity of the 

entire cellular translation process. 

Second, we revealed various molecular mechanisms that cells evolved to reduce the cost 

of gene expression. Using synthetic DNA libraries, we were able to test in parallel the 

effects of many different gene architectures on energetic and resource cost per protein 

molecule. By comparing cost-effective and ineffective architectures, we found that cost 

per protein molecule could be minimized by lowering transcription levels, regulating 

translation speeds, and utilizing amino acids that are cheap to synthesize and that are less 

hydrophobic. We then examined natural bacterial genes and found that highly expressed 

genes have evolved more forcefully to minimize costs associated with their expression. 

We thus elucidated gene design elements that improve the economy of protein 

expression in natural and heterologous systems. 

Lastly, I followed the lab-adaptation of the splicing machinery in yeast to reveal molecular 

means by which the system changes due to a burden of an in-efficiently spliced intron. 

We identified mutations in cis that improved the intron’s splicing efficiency and increased 

the overall expression level of the entire gene. Additionally, we observed adaptations in 

trans, which both increased the cellular availability of the splicing machinery and changed 

proteins that facilitate splicing. Our work here revealed novel molecular means by which 

the splicing machinery is changed by natural selection to optimize gene-expression 

patterns of cells. 

Ultimately, my PhD studies offer a new perspective on the evolution of cells by focusing 

on the interactions between complex systems, cellular demands, and molecular 

adaptation. With this point of view, more questions about the evolution of cells arise, 

which I intend to address in the future. 
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Introduction 

Evolutionary Cell Biology is a powerful paradigm to study basic questions on biological 

systems 

Although the cell is commonly referred to as “the most basic unit of life”, it is actually so 

complex that despite over 350 years of research we are still far from fully understanding 

its structural, functional and evolutionary workings. Even the simplest unicellular 

organisms routinely carry out complicated tasks that remain incompletely understood, 

including processing and responding to signals from the environment, maintaining an 

efficient metabolic network, communicating with other cells, and adapting to new 

evolutionary challenges1. 

Studies in cell biology have illuminated many molecular pathways and proteins that 

govern cells, but we still do not yet fully understand how these systems are established 

and adapted. This is true perhaps because melding understandings of evolutionary 

processes with the observed variation among cells has been less common. Such 

dissection of evolutionary mechanisms that produce cellular functions might significantly 

advance our understanding of the fundamental principles governing cell biological 

systems by providing the rationale behind alterations and variations in cellular 

functions2,3. 

Bringing the fields of cell biology and evolution together into an integrated field of 

“evolutionary cell biology” has provided fundamental ideas on cellular innovation, 

complexity, and adaptation. There are two common ways by which evolutionary cell 

biological approaches are implemented: First, and most commonly used, exploratory 

studies of genomic and cell biological diversity are performed to reveal novel cellular 

components and pathways. Second, organisms with divergent cellular structures are 

compared and studied genetically and molecularly, to better understand the evolutionary 

mechanisms that drive diversity of cellular functions. Here, I review some of the major 

insights that evolutionary cell biology has provided as an introduction to my work on the 

evolution of cellular machineries. 
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Evolution of cellular complexity: the transition from prokaryotes to eukaryotes 

Evidence from both molecular phylogeny and fossil suggest that prokaryotes predated 

eukaryotes4,5. Hence, eukaryotes probably have arisen from a prokaryotic state, in a 

transition from an organism lacking internal membranes to an organism that possesses 

some membrane-bound organelles6. The transition from prokaryote to the many 

eukaryotic species that exist today probably went through a last eukaryotic common 

ancestor (LECA), which evolved to form the major lineages of extant eukaryotes. 

Phylogenetic reconstructions show that LECA was a sophisticated cellular entity, 

possessing cytoskeleton proteins, an elaborate endomembrane system, a nucleus, 

mitochondria, and complex machineries that could implement processes such as intron 

splicing and meiosis7. Therefore, a central motivation of evolutionary cell biology is to 

reveal mechanisms that drive such increase in cellular complexity. 

The most comprehensively studied question in evolutionary cell biology is the origin of 

compartmentalized cells. Two main mechanisms are thought to result in the birth of 

organelles. First, endosymbiotic acquisition, the incorporation and residence of one 

organism, the endosymbiont, inside another, the host. This is how the mitochondria and 

chloroplasts have been suggested to have originated6. The second mechanism is termed 

autogenous origin, in which factors of the pre-eukaryotic ancestor evolved gradually into 

new membrane-bound compartments without endosymbiotic events8. The organelles of 

the endomembrane system (nuclear membrane, endoplasmic reticulum, Golgi apparatus, 

lysosomes, and cellular vesicles) are the most established example of organelles derived 

via an autogenous mechanism9. 

Origin of mitochondria and chloroplasts via endosymbiosis 

Cell biological and genomic studies have revealed much about the endosymbiosis process 

that led to the birth of mitochondria and chloroplasts from alpha-proteobacteria and 

cyanobacteria, respectively10. Interestingly, beyond these two well-characterized 

examples, an array of organisms with organelles derived from additional endosymbiotic 

events, termed plastids, also exists11. This observed variation allowed for the 
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characterization of various methods of endosymbiotic acquisition: (i) Primary 

endosymbiosis, in which a cyanobacteria is engulfed by a heterotrophic eukaryote, 

resulting in establishment of chloroplasts. (ii) Secondary endosymbiosis, in which a 

photosynthetic eukaryote is engulfed by a heterotrophic eukaryote, resulting in 

establishment of chloroplasts that are engulfed by a double-layer membrane. (iii) Tertiary 

endosymbiosis, in which a photosynthetic organism containing a secondary plastid is itself 

engulfed by another eukaryote. (iv) Serial endosymbiosis, in which a photosynthetic 

eukaryote is engulfed by another photosynthetic eukaryote, resulting in the replacement 

of the chloroplast12. 

Notably, an endosymbiotic event leads to biological changes in both the endosymbiont 

and the host that must accommodate one another. Some proteins of the host are 

probably retargeted to the new organelle, while genes from the endosymbiont’s genome 

are in turn adapted to support the biology of the host6,12. Our understanding of the 

molecular processes governing these evolutionary scenarios are incomplete, and it is one 

of the major, current aims of evolutionary cell biology to fill this gap in our knowledge. 

Origin of endomembrane system via autogenous processes 

In addition to endosymbiosis, autogenous processes are also a powerful force in the 

evolutionary origin of the eukaryotic cell, specifically for organelles that are composed of 

a single lipid bilayer and devoid of genetic material. The membrane-trafficking system is 

the best example for an autogenous origin, including the organelles: endoplasmic 

reticulum (ER), Golgi apparatus, endosomes, and plasma membrane13. Relying on 

comparative genomics of membrane-trafficking systems of a wide range of eukaryotes, it 

has been suggested that the last eukaryotic common ancestor possessed a complex set of 

trafficking components8. According to the organelle-paralogy hypothesis (OPH)9,14, the 

membrane-trafficking system became more and more complex with time, encompassing 

a greater variety of organelles and cellular structures. This process presumably occurred 

via gene duplication and divergence of specificity-encoding protein families, which define 

organelle properties such as tethering, docking, fission, or fusion6. 
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In addition to comparative genomics, comparative structural analyses were also used to 

illuminate the origin of organelles. This approach revealed an evolutionary relationship 

between what were considered two distinct families of membrane-deformation proteins - 

coated vesicles and nuclear pore complexes8. While these two systems do not share a 

high degree of amino acid sequence similarity, they have a common, structural molecular 

architecture – which yielded the “protocoatomer hypothesis” that unites the evolutionary 

origin of vesicle coats with parts of the nuclear envelope15. Further investigation into the 

diversity of the eukaryotic domain may continue to reveal the complex evolutionary 

origin of the membrane-trafficking system and allow us to better characterize which of its 

parts are ancient versus those that have evolved more recently and why. 

Evolution of cellular processes 

While evolutionary cell biology has mostly influenced the study of organelle origin, it has 

the potential of providing important insights about the evolution of other cellular 

processes. Using natural variation might reveal different ways to perform same cellular 

tasks and revealing these dissimilarities could provide insights about fundamental 

requirements for such processes. If we aim to completely understand a certain cellular 

function, we need to reveal not only its origin, but also how it keeps evolving. 

For example, the evolutionary interactions between hosts and pathogens can leave 

biological traces in cells6. Such functional changes could occur in host proteins or even in 

the external repertoire of cellular glycan, which is often used by pathogens for cellular 

recognition16. Another example is chromosome segregation, for which an evolutionary 

cell biology approach has been used to illuminate various molecular ways by which cells 

accurately separate their replicated DNA between two daughter cells17. One interesting 

observation in nematodes showed the evolutionary intersection between cell and spindle 

sizes. Mutational accumulation lines along with genetic variations in natural strains 

revealed that the “normal” range of spindle size is larger than expected and that a very 

simple scaling relationship with cell size may explain a great deal of variation in 

subcellular structure among species18,19. From an evolutionary cell biology point of view, 
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this notion suggests that even if a certain phenotype is under a strong selection (here, 

proper chromosomal segregation) – it does not force cells to converge to exactly same 

solutions and behaviors. 

Lastly, cellular machines that carry out basic processes for cells, which demonstrate 

increased complexity with time, can also be studied with an evolutionary cell biology 

perspective. The translation machinery of eukaryotic cells, for example, is diverged from 

its prokaryotic counterpart, and has continued to evolve and change even within 

eukaryotes. While the evolution of this system has been studied at the protein level quite 

extensively20, how it evolutionarily interacts with cellular structures and which cellular 

demands lead to its adaptation are largely unknown. Characterizing molecular 

evolutionary mechanisms of such cellular machineries could improve our ability to 

understand the reasons behind the broad cellular diversity in nature, and help us to better 

reveal the molecular mechanisms and functions of these machineries. This motivation is 

the focus of this thesis work. 

Evolutionary cell biology of bacterial cells 

While most studies in evolutionary cell biology focus on the eukaryotic cell, probably 

because of its increased cellular complexity, bacterial cells can also be studied with an 

evolutionary perspective. Even if they are “simpler”, bacterial cells are still complex 

biological entities that evolve, change with time, and demonstrate a large degree of 

variability that should be explained. 

Bacterial morphology and cellular shape have been studied fruitfully with an evolutionary 

cell biology perspective. Bacteria can be found in multiple shapes and sizes, from simple 

structures of spheres, rods, and spirals to unconventional chains, coils, stars, and more 

complex shapes such as branching filaments. Interestingly, some bacterial species can 

alter their shape, an attribute termed “morphological plasticity”, to optimize their ability 

to survive in different environmental conditions, or as part of their life cycle. Why a 

particular bacterium has a given shape is unclear, given that same ecological niches 
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harbor various cellular morphologies. Ultimately, shape will be influenced by a 

combination of factors, including: nutrient availability, attachment strategies, motility 

requirements, and more. How this diversity of cellular forms evolved remains one of the 

most fundamental questions in cell biology. The mechanisms that regulate cellular shape 

changes are beginning to be understood, but the mechanisms by which new 

morphologies evolved from ancestral ones mostly remain to be described21. 

Another aspect of bacterial cells that was inspected at the context of evolutionary cell 

biology is cellular division. Most bacteria divide by binary fission using a mechanism that 

is based on the interaction between the FtsZ protein and the peptidoglycan (PG) 

biosynthesis machinery. Assembly of FtsZ into a ring structure at the cell division site is 

the earliest event in cell division. While FtsZ is abundant across the bacterial domain, it is 

interestingly missing from a superphylum termed PVC (Planctomycetes, Verrucomicrobia, 

and Chlamydiae). Therefore, these species show a diverse cell division phenotypes 

including division by budding22,23.  

How a binary fission mechanism based on FtsZ evolved into an FtsZ-independent 

mechanism of division is a major question in cell biology that could only be asked due to 

an evolutionary perspective on the bacterial world. Recent studies are beginning to 

characterize FtsZ-independent division, suggesting that MreB, a bacterial homolog of 

actin, interacts with PG synthesis enzymes to define the division plane instead of FtsZ and 

promote division. However, MreB does not seem to be an early cell division protein like 

FtsZ, because it is recruited late into the process. Thus, FtsZ-independent division 

mechanisms share similarities but also have important differences with model organisms 

that use FtsZ – still left to be characterized22,23. 

Neutrality as an evolutionary force that shapes cells and diversity 

While natural selection undoubtedly plays a major role in the evolution of cells, other 

neutral forces are at play as well, which create a drift-barrier that selection must be 

strong enough to cross in order to drive molecular refinement24,25. Interestingly, 
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stochasticity and neutrality do not only prevent cellular complexity, but can also directly 

contribute to such intricacy. 

The theory of “constructive neutral evolution“ (CNE)26 argues that biological functions can 

be changed by neutral forces that influence random interactions between cellular factors 

in the following manner: (i) Consider factor ‘A’ that performs a certain function. (ii) A 

stochastic interaction with a factor ‘B’ occurs that has little or no effect on the activity of 

factor A. (iii) A mutation occurs in factor A that reduces its activity, but due to its 

interaction with factor B, the mutation is suppressed, and the activity (and cellular fitness) 

is maintained. (iv) Subsequent mutations in factor A, and compensatory mutations in 

factor B, further integrate factor B in the cellular pathway of factor A via a ratchet-like 

mechanism that may also lead to the recruitment of additional factors27. 

Interestingly, one of the most complex machineries in cells, the spliceosome, is suggested 

to have emerged in such a neutral process. It has long been suggested that the 

spliceosome underlying process of RNA editing could have evolved from a simple self-

splicing intron. Rather than being the result of selective forces, evolution of the 

spliceosome can be explained as a product of neutrality processes in which mutations in 

the self-splicing RNA molecule were masked by interactions with other RNA/protein 

factors. These RNA-protein interactions accumulated over time, led to the addition of 

increasing number of factors that eventually originated the spliceosome while 

maintaining its basic function of RNA splicing. Complementary to this idea, the last 

chapter of this thesis deals with other forms of splicing evolution that are based on 

natural selection. 

Notably, rewiring of regulatory and metabolic networks may also be driven by neutral 

processes28,29. These processes happen when proteins acquire multiple functions due to 

the prevalence of duplication of entire genes, their regulatory regions, and the 

promiscuity of many proteins. Subsequent duplications and sub-functionalization events 

may lead to alternative evolutionary paths that may be driven not only by selection but 

also by drift2. 
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A recent, elegant study confirmed experimentally that neutral processes can increase 

complexity of a cellular machinery30. The V-ATPase proton pump of many yeast strains is 

composed of three paralogous proteins, yet, ancestral gene resurrection revealed that 

this structure evolved from a two-paralogue complex. This process occurred via a gene 

duplication that was followed by loss of specific interfaces by which each daughter copy 

of the duplication event interacts with other ring proteins – making them obligate 

components of the complex. The authors confirmed this hypothesis by expressing the 

common ancestral gene and observed no alterations in the cell’s ability to produce the 

phenotype. This work shows that increased complexity in an essential molecular machine 

evolved because of simple, high-probability evolutionary processes, without the apparent 

evolution of novel functions.  

Thus, the existence of complex cellular features does not necessitate that all evolutionary 

changes in such structures were adaptive. Therefore, the task of identifying and 

characterizing the evolutionary mechanisms that shape cells is more challenging than one 

might naively perceive - highlighting the benefits biologists can gain from an evolutionary 

cell biology perspective. 

New model organisms provide deeper understanding of cellular diversity 

Often, when biologists recognize that a protein is conserved “from yeast to humans”, 

they think that it is universally conserved across eukaryotes. However, eukaryotes are 

divided into six supergroups, and the popular model organisms (human, fungi, worms, 

flies, etc.) all belong to a single supergroup, Opisthokonta, and are hence closely related 

from an evolutionary perspective. This notion raises the possibility that cellular functions 

that appear to be essential from their presence in conventional model organisms may 

actually be divergent or lineage specific. Hence, the lack of evolutionary perspective may 

lead to unjustified extrapolation of cell biological principles17. It is thus essential to 

examine eukaryotes with a wider evolutionary distance if we want to reveal the extent of 

conservation in the eukaryotic kingdom. Such broader perspective, and the develop of 
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new model organisms, might reveal more of the diversity among cells, and new cellular 

functions and evolutionary trajectories of species31. 

In the past, the usage of a nontraditional organism has revealed the molecular 

mechanism of chromosome maintenance. This was achieved by exploiting the ciliated 

protozoan Tetrahymena, which has a large number of tiny, linear chromosomes. Thus, 

each cell is more enriched with telomere sequences than is a typical eukaryotic cell, which 

allowed the identification of CCCCAA repeats at the ends of chromosomes32. 

Today, biologists are developing new model organisms that will hopefully allow us to 

address cell biology questions that are un-accessible in full with the current model 

organisms. For example, how animal cells can survive extreme conditions could be 

thoroughly studied with tardigrades, which were shown to survive freezing to near 

absolute zero and exposure to the vacuum of outer space33. Another example is cellular 

and whole-body regeneration that are perfected in planaria, which can regenerate any 

part of their body34. The study of this emerging model organism could reveal how cellular 

and tissue organizations are renewed upon damage, which of course could have immense 

applications for human health. 

Lastly, one of the biggest questions in evolutionary cell biology is the transition from a 

unicellular organisms to multicellularity35. How cells developed the ability to 

communicate well enough to be perfectly synchronized and build a biological entity which 

sum is bigger than its individual parts – is not well understood. Some answers to this 

fundamental question are beginning to emerge with the study of choanoflagellates, the 

closest living relatives of animals, that can alternate between unicellular and simple 

multicellular forms35. Hence, such further development of new model organisms could be 

the hallmark of future evolutionary cell biology studies.  
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Main Thesis Results 

Inspired by the ideas of evolutionary cell biology, I devoted my PhD to reveal evolutionary 

mechanisms of cellular machineries. I combined genome engineering and genomics tools, 

lab-evolution methodology, and computational analyses to ask various questions about 

the evolution of cellular machineries of the central dogma.  

1| How does the translation machinery evolve? 

Translation is one of the three cellular processes that form the central dogma of 

molecular biology, and as such it is highly conserved and regulated across the tree of 

life36–38. The translation process can be viewed as an economic-like model, in which the 

demand is governed by the usage frequencies of the sense codon, and the supply is 

governed by the cellular tRNA pool39. Specifically, "Translational demand" of a codon is 

defined by the sum of all the occurrences in which the ribosome translates that codon. 

Because each codon is represented differently across genes40, translational demands vary 

significantly among the 61 sense codons at a given physiological state41. Additionally, the 

demand for a given codon can vary across various physiological states42. Further, 

"Translational supply" refers to the tRNAs that are charged with an amino-acid and are 

available to translate their corresponding codon(s). It has been widely documented that 

codon demand and tRNA supply are correlated with one another, leading to a 

translational balance39,41,43. While various regulatory mechanisms of translational 

elongation have been previously reported44–46, the implication of the translational 

balance on synthesis of new proteins and its potential effects on the cellular proteome 

have not been investigated yet. Hence, we asked how translational imbalance between 

supply and demand affects the adequacy of the translation machinery and why 

translational balance exists as a wide biological phenomenon.  

At the early stages of my PhD we studied how the translational machinery adapts by 

perturbed the tRNA pool of the yeast Saccharomyces cerevisiae with a tRNA gene 

deletion. While ribosomal genes do not exhibit appreciable changes in response to 

environmental alterations36–38, tRNA genes may provide an important source of 
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evolutionary plasticity for fine-tuning translation. tRNAs constitute a fundamental 

component in the process of translation, linking codons to their corresponding amino 

acids47. tRNA genes are classified into gene families according to their anticodon, with 

each gene family containing between one to several copies scattered throughout the 

genome. Evolutionary changes to the tRNA pool were appreciated mainly via 

bioinformatics studies48–52 and only a handful of experimental findings have been 

reported, which rely on genetic manipulations53–55 or direct mutagenesis56. However, the 

fitness effects of an unmet translational demand and its potential role in shaping the 

tRNA pool were not fully characterized. 

 

Deletion of singleton tRNA gene breaks the translational balance 

To demonstrate the importance of the balance between codon usage and the cellular 

tRNA pool we created a yeast strain in which the single copy of the arginine tRNA gene, 

tR(CCU)J, was deleted (designated ∆tRNAArg
CCU). Consequently, in this deletion strain the 

arginine codon AGG cannot be translated with its fully-matched tRNA and it is presumably 

translated by another arginine tRNA, tRNAArg
UCU, owing to a wobble interaction57. Indeed, 

the ∆tRNAArg
CCU strain showed a severe growth defect compared to the wild-type strain 

(Figure 1A). This growth difference demonstrates the effect of translational imbalance on 

cellular growth. Although the deletion mutant of this single copy tRNA is viable58,59, its 

severe growth defect also reveals the inability of the wobble interactions to fully 

compensate for the tRNA gene deletion. 
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The tRNA pool can rapidly evolve to meet translational demands 

To learn how genomes adapt to translational imbalances, we performed lab evolution 

experiments on the ∆tRNAArg
CCU strain, employing the procedure of daily growth and 

dilution to fresh a medium60. Strikingly, after ~200 generations we observed a full 

recovery of the growth defect of the ancestor strain ∆tRNAArg
CCU, as the growth curve of 

the evolved population was indistinguishable from that of the wild-type strain (Figure 1A). 

In search of the potential genetic adaptations underlying this rapid recovery, we first 

looked for genetic alterations in other arginine tRNA genes. We found a single point 

mutation in another arginine tRNA gene which codes for tRNAArg
UCU. This mutation 

changed the anticodon triplet of tRNAArg
UCU from UCU to CCU (i.e. TC transition). 

Consequently, the evolved tRNAArg
UCU perfectly matches the AGG codon (Figure 1B). 

Unlike the singleton tRNAArg
CCU, there are 11 copies of tRNAArg

UCU in the yeast genome. 

Although each of the four-independent lab-evolution experiments showed the exact 

same solution, i.e. a mutation in the anticodon of a tRNAArg
UCU gene, three different 

copies of this gene were changed among the four lines. To confirm that a single point 

mutation in the anticodon of tRNAArg
UCU is sufficient to fully compensate for the growth 
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defect of ∆tRNAArg
CCU, we artificially inserted the same TC mutation into the deletion 

∆tRNAArg
CCU mutant. We inserted the mutation into one of the 11 copies of the tRNAArg

UCU 

genes, a copy that resides on chromosome XI, and was spontaneously mutated in one of 

the evolution lines. Indeed, the artificially mutated strain, termed here Mut∆tRNAArg
CCU, 

showed a full recovery of the deletion adverse phenotype (Figure 1C). This indicates that 

the TC mutation in the anticodon is sufficient for the full recovery of the tRNAArg
CCU 

deletion phenotype.  

Anticodon switching is a widespread phenomenon in nature 

Although the anticodon of a tRNA gene was rapidly mutated in our laboratory conditions, 

it is unclear to what extent this mechanism naturally occurs in species across the tree of 

life. To address this question, we performed a systematic bioinformatics screen for tRNA 

switching events in nature. We defined an anticodon switching event as a case of a tRNA 

whose nucleotide sequence is closer to a tRNA gene with a different anticodon than to a 

tRNA gene with the same anticodon. To this end, we downloaded all the known tRNA 

sequences from the Genomic tRNA Database61, a collection that stores the tRNA pools of 

524 species. We masked the anticodon triplet as “NNN” in all tRNA genes, aligned all 

tRNA sequences from each species individually and inferred a maximum likelihood 

phylogenetic tree of each alignment. For each tRNA sequence, we calculated the shortest 

phylogenetic distance to another tRNA with the same anticodon (designated dsame) and 

the shortest distance to another tRNA with a different anticodon (designated ddiff). For 

each species, we defined its set of tRNA switching events as those in which ddiff < dsame. 

Our analysis included 416 eubacterial, 68 eukaryotic and 40 archaeal species. We found 

that tRNA switching events are present in all domains of life, as we detected at least one 

tRNA switching events per species in 8 bacteria, 58 eukarya and 1 archaeal species (Figure 

2A). A retrospective counting revealed that most switching events occurred due to a 

mutation in the first position in the anti-codon triplet that corresponds to the 3rd codon 

position. For comparison we masked as ‘NNN’ additional triplets of nucleotides within the 
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tRNA molecule and found higher percentage of discrepancies compared to the anticodon 

triplet.  

Figure 3 demonstrates two examples of tRNA switching events, the first in Mus musculus 

and the second in Homo sapiens. In the first example, the phylogeny of tRNA sequences 

with glutamic acid anticodons is presented (Figure 2B). Notably, 6 out of the 8 tRNAs with 

a UUC anticodon in M. musculus were clustered together in our analysis, while 2 other 

copies of the same anticodon identity were clustered closer to tRNA genes with a CUC 

anticodon (Figure 2C). The second example demonstrates a switching event for tRNA 

genes encoding for valine anticodons. Here, a tRNA with a UAC anticodon was clustered 

with CAC and AAC tRNA genes and not with the other 4 UAC tRNAs (Figure 2D+E). 

Interestingly, the CAC and AAC tRNA genes are intermixed in the tree, suggesting that 

anticodon switching was prevalent in the evolution of CAC and AAC tRNA genes in H. 

sapiens (Figure 2D+E). Notably, the switching events shown in mouse were not found in 

human and vice versa. Thus, in each of these two mammals the switching examples 

shown here probably occurred after they split from their common ancestor. In general, 

inspecting the relationship across species between the size of the tRNA pool and the 

number of detected switching events revealed a modest correlation, and in particular 

species with same size of tRNA repertoire manifested tRNA switching to different extents. 
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In conclusion, Genomic duplications, deletions and anticodon mutations shape tRNA gene 

families, yet the evolutionary scenarios that trigger changes in the tRNA pool have not 

been thoroughly explored. In our evolution experiments, a translational imbalance was 

imposed by a tRNA gene deletion, which compromised growth and drove the tRNA pool 

to adapt to a novel translational demand. Importantly, organisms may experience 

equivalent imbalances when their gene expression changes due to altered environmental 

conditions or upon migrating to a new ecological niche42. This scenario is particularly 

feasible given that the genes needed in various environments do show differences in 

codon usage, e.g. respiration as opposed to fermentation in yeast62. 

2 
2 
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When facing the need to adapt, the tRNA pool, i.e. the supply, provides evolutionary 

plasticity to the translation machinery. The ability of the tRNA pool to change rapidly can 

be mainly attributed to its unique architecture in the form of multi-member gene-

families. Only on a much longer evolutionary time-scale, will the genome-wide codon 

usage of genes change so as to further fine-tune the translational balance. Notably, the 

plasticity of the tRNA genes is constrained by the need to maintain proper protein 

folding63. Thus, the need to accommodate changes in codon usage demands acts together 

with protein folding constrains to shape the tRNA pool in living cells. 

Codon Usage of Highly Expressed Genes Affects Proteome-Wide Translation 

Efficiency 

Later, we decided to ask what drives the evolution of codon usage bias in cells. Though 

differential codon usage can result from neutral processes of mutational biases and 

drift64–66, certain codon choices could be specifically favored as they increase 

efficiency41,44,46,67,68 or accuracy63,69–72 of protein synthesis. These forces would typically 

lead to codon biases in a gene because they locally exert their effect on the gene on 

which the codons reside. In addition to such cis effects, it is possible that codon usage 

also acts in trans, namely, that codon choice of some genes would affect translation of 

others due to a “shared economy” of the entire translation apparatus73–75. Previous 

theoretical works have suggested that increase in elongation rate may reduce the number 

of ribosomes on mRNAs and therefore may indirectly increase the rate of initiation of 

other transcripts due to an increase of the pool of free ribosomes65,76. In addition, a 

recent computational study in yeast has also examined the indirect effects of synonymous 

codon changes on the translation of the entire transcriptome77. Yet, experimental 

evidences of such changes are absent. Here we ask how manipulating the frequency of a 

single codon on a small subset of genes influences the synthesis of other proteins. 
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To tackle this question, we replaced common codons with a synonymous, rare 

counterpart in several highly expressed genes. We then asked how this massive change in 

the codon representation in the transcriptome would affect the manipulated genes, other 

genes, and the physiology and well-being of the cell (Figure 1). 

 

 

 

Codon usage manipulation leads to proteome-wide changes in translation efficiencies in 

a codon-dependent manner  

We manipulated the frequency of the arginine codon CGG since it is the only codon in E. 

coli that is translated by a single-copy tRNA gene, and whose tRNA does not translate 

other codons (see Figure 2 for codon-anticodon interactions for CGN codons in E. coli)43. 

Using genome editing, we were able to introduce 60 synonymous mutations into a single 

genome of an E. coli strain that converted CGU and CGC (“origin codons”) to CGG 

(“destination codon”). To maximize the effects of our manipulations, we introduced 

synonymous mutations in the eight genes with the highest ribosome-profiling occupancy 

score that are not essential and that do not relate directly to translation functions. 

Following our manipulation, the translation demand for the CCG anticodon is elevated by 

~3.5-fold and our re-coded genes constitute ~70% of the new total demand for this codon 

in the cell. 

Figure 1 – Does the codon usage of a sub-set of genes affect 

translation efficiencies of other genes? 

Upper panel: Hypothetical genomes of wild-type and re-coded 

strains are shown. Using genome engineering, we replaced 

abundant codons (“origin codon”, blue lines) with rare codons 

(“destination codon”, red lines) in highly expressed genes 

(white background). 

Bottom left: two potential effects of re-coding on fitness: either 

reduce, or not affect the fitness. 

Bottom middle: The translation efficiency of re-coded genes 

could be increased, decreased or not changed at all. 

Bottom right: The translation efficiency of non-recoded genes 

that have the origin (blue) or destination (red) codon could be 

increased, decreased or not changed at all. 
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We then asked how does our manipulation on the CGG representation in the 

transcriptome influence translation efficiency in the cell. To this end, we analyzed the 

transcriptome (by RNA-sequencing) and proteome (by mass-spectrometry) of the original 

wild-type and the re-coded strains (each strain was analyzed with three independent 

repetitions for both the transcriptome and proteome). Then, we calculated the 

translation efficiency of each gene by normalizing the protein level to its corresponding 

mRNA level. 

Notably, only one of the eight recoded genes showed reduced translation efficiency 

(Figure 3A), suggesting that the effects of our codon-usage manipulation on the genes 

that harbor the manipulation are weak. A possible reason for this weak effect is that in 

the current experiment only a single codon type has been manipulated in each re-coded 

gene, in contrast to prior studies in which entire ORFs have been manipulated78,79. It is 

also possible that our manipulations did affect translation efficiency in cis, though some 

compensatory effect, e.g. acting on the initiation level, may have acted to counter-act the 

reduction in elongation. 

We postulated that the increased usage of CGG at the expense of the CGU and CGC 

codons might reduce the translation efficiency of other genes in the genome, which were 

not mutated, in particular genes that naturally have high usage of CGG. Indeed, we 

Figure 2 – The arginine CGN box 
We re-coded CGU and CGC (“origin codons”) to CGG 

(“destination codon”).  In E. coli, both origin codons are 

translated by tRNAACG with the anticodon ACG due to an A-to-I 

modification that is mediated by the enzyme tRNA-specific 

adenosine deaminase (tadA). The destination codon is solely 

translated by tRNACCG, which translate no other codons. 

tRNAACG and tRNACCG appear in the genome with four and one 

copies, respectively. A direct arrow symbolizes fully-match 

interactions between codon and anticodon, while dashed 

arrows represent wobble interactions, which are enabled by 

modifying the ACG anticodon to ICG. 
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observed 455 genes with increased and 566 genes with decreased translation efficiency 

at a fold change of above or below 1.5 in the re-coded strain compared to the wild-type 

(Figure 3A). Strikingly, genes with high occurrences of the CGG codon (>5 occurrences) 

that were not engineered by us demonstrated lower translation efficiencies in the re-

coded strain compared to the WT strain, compared to genes that do not use this codon 

(Figure 3A inset). This observation suggests that our CGG codon manipulation affected in 

trans the translation of other, non-recoded genes in the re-coded strain. In support of this 

result, the hundreds of genes that showed reduced translation efficiency demonstrated 

higher occurrences of the CGG codon compared to the genes with increased translation 

efficiency (Figure 3B). On the other hand, we observed that genes with increased 

translation efficiency were enriched with the CGU, CGC, and CGA codons (Figure 3C). We 

thus conclude that the increased demand on the CGG codon due to our recoding reduced 

the translation efficiency of genes that were enriched with this codon, while the relief of 

demand from the CGU, CGC, and CGA codons increased the translation efficiency of genes 

that utilize these codons. While most studies measure the resulted change in expression 

level of a gene whose different codons were synonymously manipulated78,79, our results 

demonstrate for the first time how a frequency manipulation of a codon can affect global 

translation patterns by changing the translation efficiency of other genes according to 

their codon usage. 

Theory predicts that changes of elongation rate should have the largest expression effects 

on genes with high rates of translation initiation because these genes are more likely to 

suffer from traffic jams and ribosomal collisions44,77. Thus, we hypothesized that genes 

with reduced translation efficiency in the re-coded strain should have higher translation 

initiation rates compared to genes whose translation efficiency did not decrease. Indeed, 

reduce translation efficiency  genes demonstrate higher initiation rates as calculated with 

the Ribosome Binding Site Calculator80 compared to un-effected or increased translation 

efficiency genes (Figure 3G). The observations that genes with reduced translation 

efficiency are more enriched with the CGG codon, on one hand, and have higher initiation 

rates on the other, strengthens our conclusion that the re-coded strain suffers from 
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ribosomal elongation changes compared to WT cells. In line with theoretical 

predictions44,77, increasing the dwell time of ribosome during elongation reduces 

translation efficiency provided that initiation rate is sufficiently high. 

 

Figure 3 – legend on next page. 



25 
 

Figure 3 – Manipulating codon frequency of CGG results in global translation efficiency changes 

A| We carried RNA-sequencing analysis of the transcriptome and mass-spectrometry analysis of the 

proteome for both the wild-type and re-coded strains. This allowed us to calculate translation efficiency 

(protein/mRNA) for each gene and classify two gene groups of increased or decreased translation efficiency 

with a fold change threshold of 1.5. The eight re-coded genes are colored in black, increased translation 

efficiency group is colored in blue, decreased translation efficiency group is colored in red and CGG-

enriched genes are colored in green. 

Inset| Ratios of translation efficiency between re-coded and wild-type cells for CGG-enriched genes (>5 

occurrences) and CGG-depleted genes (no occurrences). CGG-enriched genes show lower translation 

efficiency ratios, p-Value=0.01. 
B| Distribution of CGG occurrences, translated by tRNACCG, for increased (blue) or decreased (red) 

translation efficiency genes in re-coded strain compared to the wild-type strain. The group of decreased 

translation efficiency genes demonstrates higher CGG occurrences (p-Value=0.0018). 

C| Distribution of CGU+CGC+CGA occurrences, all translated by tRNAACG, for increased (blue) or decreased 

(red) translation efficiency genes in re-coded strain compared to the wild-type strain. The group of 

increased translation efficiency genes demonstrates more codon CGU+CGC+CGA occurrences (p-

Value=6.79*10-5). 

D| To increase tRNACCG supply, we mutated the anticodon of tRNAACG from ACG to CCG on the background 

of the re-coded strain, and termed this new strain as anticodon switched strain. We then analyzed its 

transcriptome and proteome. Note that much less genes are now deviating from the diagonal, particularly 

the CGG-enriched genes in green, suggesting that the anticodon switching mutation alleviated the 

translational difficulty of the re-coded strain. Color code is the same as in A. 

Inset| CGG-enriched genes now show similar translation efficiency ratios as CGG-depleted genes, p-

Value>0.05. 
E| Same as B, but for the increased and decreased translation efficiency genes in anticodon-switched strain 

compared to the wild-type strain. In contrast to the previous comparison in B, these two groups utilize the 

CGG codon to the same extend (p-Value>0.05). 

F| Same as C, but for the increased and decreased translation efficiency genes between the wild-type and 

anticodon-switched strain. In contrast to the previous comparison in C, these two groups utilize the 

CGU+CGC+CGA codon to the same extend (p-Value>0.05). 

G| Translation initiation rates for increased, decreased and un-affected genes between re-coded and wild-

type strains, as defined in A. Note that decreased translation efficiency genes, which are also enriched with 

CGG, also show higher initiation rates (p-Value=0.01) – in agreement with theory’s prediction. 

H| The translation efficacy pattern of the anticodon-switched strain clustered closer to the wild-type strain 

and away from the re-coded strain. 

 

Proteome-wide changes in translation efficiencies are alleviated by increased tRNA 

supply  

To confirm our hypothesis that the changes in translation efficiencies resulted from the 

increased cellular demand for tRNACCG, the tRNA which translates CGG, we decided to 

elevate the availability of this tRNA and examine the effect on the translation phenotype. 
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We, and others, have recently shown that a mechanism to increase tRNA availability is a 

mutation in the anticodon that changes the codon specificity of the tRNA81,82. We have 

shown that such anticodon switching mutations can maintain the functionality of tRNA 

genes, and are utilized by many species as an adaptive mechanism of the cellular tRNA 

pool.  

Thus, we mutated the anticodon of one of the four copies of tRNAACG gene from ACG to 

CCG on the background of the re-coded strain (Figure 2). We then analyzed the 

transcriptome and proteome of this anticodon-switched strain (based on three 

independent repetitions) and compared it to both the re-coded and wild-type strains. 

Strikingly, although the genome of the anticodon-switched strain is more similar to the 

re-coded strain, its global translation efficiency pattern clustered together with the wild-

type strain and away from the re-coded strain (Figure 3H). This observation suggests that 

manipulating the tRNA pool of the re-coded strain restored translation efficiency of genes 

back to their normal states.  

Indeed, only 124 and 408 genes with increased or decreased translation efficiency were 

respectively identified between the wild-type and the anticodon-switched strains (Figure 

3D), further demonstrating that the translation efficiency defect in the re-coded strain 

was alleviated upon anticodon switching. Strikingly, while CGG-enriched genes 

particularly tended to have reduced translation efficiencies in the re-coded strain, they 

demonstrated similar efficiencies to the wild-type in the anticodon-switched strain, and 

the difference in translation efficiency ratios between these genes and CGG-depleted 

genes was not observed (Figure 3D inset). Consistently, the genes with increased or 

decreased translation efficiency between the wild-type and anticodon-switched strain 

demonstrated the same distribution of codon occurrences for CGG or CGU+CGC+CGA 

(Figures 3E+F). These observations suggest that the additional supply of tRNACCG, at the 

expense of tRNAACG in the anticodon-switched strain, resulted in a more efficient 

translation of CGG-enriched genes. 

 



27 
 

Increased codon usage of a rare codon reduces cellular fitness due to excessive use of 

tRNA molecules 

The physiological effects between the wild-type and re-coded strains encouraged us to 

ask whether these global translation efficiency changes disturb cellular growth and 

reduce fitness. We thus tested whether introducing the rare codon CGG on highly 

expressed genes is deleterious to the cell. We compared the growth of the wild-type and 

re-coded strains and observed that the re-coded strain suffers from a growth defect 

(Figure 4A). We used a recent logistic growth model83 that calculates relative fitness from 

growth curves and observed that the relative fitness of the re-coded strain is 0.87 

compared to the wild-type strain.  

We next hypothesized that the growth reduction of the re-coded strain is the result of a 

lack in sufficient tRNA supply that leads to changes in translation efficiency of many 

genes. However, cellular fitness could also be affected by the off-target mutations that 

the re-coded strain accumulated following our genome engineering efforts. To test our 

hypothesis, we compared the growth of all four anticodon-switched strains, in which 

tRNACCG levels are increased, and observed that they all demonstrated increased relative 

fitness in comparison to the re-coded strain (Figure 4A). Importantly, when the same 

anticodon mutation was inserted on the background of the wild-type strain, a reduction 

in relative fitness was observed (Figure 4B). These results suggest that introducing a rare 

codon on highly expressed genes reduces cellular fitness not because of its effects on the 

manipulated genes themselves, but as it hampers translation of other genes due to an 

excessive use of tRNA molecules and result in global physiological perturbations.  
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In conclusion, this work raises the question of whether changes in global translation 

efficiencies could pose a challenge to the translation machinery both physiologically and 

evolutionarily. Previous works have demonstrated how codon-to-tRNA balance reacts to 

changes in the environment84–86, to the formation of cancerous tumor87, or to an 

evolutionary challenge81,88. In agreement with these works, we observed that the re-

coded strain suffers from a growth defect, providing a need for selection to optimize the 

translation economy in the cell. Interestingly, we could alleviate these translation and 

growth phenotypes by providing more tRNA supply that could meet the new CGG 

demand. Thus, our work demonstrates that codons and tRNA genes may co-evolve not 

only to tune the expression level of individual (highly expressed) genes, but also to 

maintain the efficiency of global protein translation in the cell. 

  

Figure 4 – Change in global translation efficiency patters is 

deleterious 
A| Growth experiment (OD vs. time) of the wild-type strain 

(blue), the re-coded strain (red) and the four anticodon-

switched strains (tRNAACG argQ in dark orange, tRNAACG 

argZ in dark yellow, tRNAACG argY in bright yellow, tRNAACG 

argV in bright orange). The re-coded strain demonstrates 

reduction in relative fitness to 0.87 compared to the wild-

type strain (p-Value<10-10). The four strains with anticodon 

switching (increased tRNACCG supply) on the background of 

the re-coded strain demonstrate a higher fitness compared 

to the re-coded strain itself, demonstrating that restored 

translation efficiencies patters also alleviated the growth 

defect (relative fitness compared to re-coded strain of 

switched argQ = 1.06, argZ=1.08, argY=1.02 and 

argV=1.04). 

B| Switching the anticodon of tRNAACG from ACG to CCG on 

the background of the wild-type strain reduces fitness 

(relative fitness compared to wild-type strain of switched 

argQ = 0.95 and argZ=0.96). 
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2| How do cells minimize the cost of gene expression? 

Cells express different genes in a regulated manner at levels that maximize the benefit 

from the gene’s product on one hand, and minimize the production costs of transcription 

and translation on the other hand89,90. Costs of mRNA and protein expression originate 

from spending cellular resources such as building blocks of polymers (amino acids and 

nucleotides), from allocation of cellular machineries (RNA polymerase and ribosome), and 

from energy and reducing power consumption91–94. Understanding what molecular 

processes determine expression cost, its relation to both cellular growth and gene 

regulation, and how costs evolutionarily shape the genome - is a key aspect of cell biology 

that remains largely elusive. While numerous studies investigated molecular mechanisms 

and gene sequence architectures that regulate expression level39,73,78,84,95, very little is 

known about design elements that govern expression costs. 

Different works have studied expression costs in unicellular organisms by imposing the 

expression of an unneeded protein, such as GFP89,91,96–99. The production of such 

unneeded proteins diverts resources from synthesis of other, functional proteins and 

decreases cellular fitness100–102. Central to this body of work is the characterization of the 

correlation between the imposed expression level of the unneeded proteins to the cost. 

Yet, ultimately natural selection dictates the expression level of natural genes according 

to the required concentration of a protein in its cellular localization. Thus, a fundamental 

question, which has not been addressed before, is how cells can achieve a specific 

expression level of a gene while minimizing its expression cost. 

This question has not been addressed before because changes in sequence could affect 

concomitantly both expression level and expression costs. To disentangle expression level 

and expression costs, and expose mechanisms that affect cost per protein molecule, we 

utilized a synthetic reporter library of ~14,000 different sequence variants, each fused up-

stream to a GFP gene79. We then combined competition assays and deep-sequencing to 

measure the fitness of all variants in parallel, a procedure that enabled us to elucidate 

gene architectures that minimize expression cost at a given protein expression level. 
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5’ gene-architecture affects cost of gene expression 

We ask whether different sequence elements that compose the gene architecture can 

minimize cost of expression per protein molecule. We focus on sequence features at the 

5' region of a gene by utilizing a previously published, synthetic gene library79 composed 

from ~14,000 different variants expressing a GFP gene. Each variant in the library holds a 

unique variable 5’ gene architecture that includes a promoter, RBS and an 11-amino acid 

long N-terminus fusion (Figure 1A).  

To reveal the expression cost of each variant we measured relative fitness of all variants 

in parallel in a competition assay in six independent biological repeats. We then deep-

sequenced the variable region of the pool of variants at several time points, and 

calculated relative fitness of each variant (Figure 1B). 

We regressed fitness values against GFP expression levels and observed a negative, linear 

correlation (Figure 1C). The linear decline in fitness with expression is in agreement with 

previous studies97,99, though others observe more-than-linear decline, especially at very 

high expression89. The regression line, which outlines the relations between fitness and 

expression, allowed us to estimate the expected fitness for each library variant according 

to its GFP expression level. Variants whose fitness does not deviate consistently across 

repeats from this regression line are deduced not to utilize mechanisms that enhance or 

reduce the production cost per protein molecule. 

Yet, many variants did deviate from the linear-regression line, demonstrating fitness that 

is higher or lower than expected given their GFP expression levels. We hypothesized that 

variants that repeatedly deviated from the expected fitness might utilize gene 

architectures that either reduce or increase the cost of GFP production per protein 

molecule. Hence, we calculated for each variant its “fitness residual”, which we defined as 

the difference between the fitness measured in our experiment for the variant and the 

fitness expected for that variant according to its GFP expression level and the linear 

regression between fitness and GFP expression level (Figure 1C). A positive fitness 

residual means that a given variant showed higher fitness than expected by its GFP 
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expression level, suggesting that it can produce this GFP level with lower costs. A negative 

fitness residual means that the variant showed lower fitness than expected given its GFP 

expression level. 

We then classified each variant as either positive or negative according to its fitness 

residual sign (Figure 1C). Since the observed fitness residual is sensitive to biological noise 

(i.e. drift during competition) and experimental errors (i.e. sampling errors), we only 

classified variants as positive or negative if their fitness residual sign was identical in at 

least five out of the six repeats of the experiments in each of the two final sampling 

points of the populations. This approach resulted in 975 positive and 815 negative 

variants (significantly higher than expected by chance even at very high levels of 

measurement errors). Indeed, classifying variants to either positive or negative fitness-

residual groups allowed us to eliminate the effect of GFP expression level on fitness as 

these two groups demonstrate the same expression distribution (Figure 1C, inset). 

While inspecting fitness residuals, we noticed a set of 80 library variants, which we 

termed ‘underachievers’, and whose fitness residual scores were repeatedly at the 

bottom 5% of the entire library (Figure 1C). There appeared to be no ‘overachievers’ in 

these data. We hypothesized that these underachiever variants show extremely low 

fitness residuals because they produce GFP even more wastefully, and we expected them 

to show stronger usage of low-efficiency gene architectures compared to the negative 

fitness residual group. 
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Figure 1 – 5’ gene architectures affect cost of gene expression at a given expression level 

A| We utilized a synthetic library of ~14K E. coli strains, each expressing a GFP construct with a unique 5’ 

architecture that includes a promoter, ribosome binding site (RBS) and an 11-amino acid fused peptide. 

There were two different promoter types, four RBS and 137 amino acid fusions that were each 

synonymously re-coded to 13 different versions (see Goodman et al. for full details). 

B| FitSeq methodology to measure relative fitness of strains in a pooled synthetic library: First, the library 

was grown six independent times for ~84 generations and samples were taken at generations 0, ~28, ~56 

and ~84. Then, unique 5’ gene architectures were simultaneously amplified and sent for deep-sequencing, 

which allowed following the frequency of each variant in the population over the course of the experiment. 

Finally, a relative fitness score was assigned for each variant based on its frequency dynamics.  
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C| GFP expression level (as measured by Goodman et al., x-axis) vs. fitness effect (based on results of 

repetition C, y-axis) of each variant in the library (Pearson correlation r=-0.79, p-Value<10-200). Fitness effect 

comes from the burden of expressing unneeded proteins on cellular growth, and is calculated by analyzing 

the frequency dynamics of each variant (see Methods). We defined fitness residual as the difference 

between a variant’s observed and expected fitness. The expected fitness is calculated from the regression 

line between GFP expression and fitness. Some variants consistently demonstrated positive (blue dots, 

n=975) or negative (red dots, n=815) fitness residual sign. Other variants showed extremely low fitness 

residual, and we termed those variants as “underachievers” (purple dots, n=80). The group size of positive, 

negative and underachiever variants are significantly much higher than expected by chance (Supplementary 

File 1). These results suggest that certain 5’ gene architectures can increase or reduce the cost of gene 

expression. 

Inset: positive (blue violin-plot) and negative (red violin-plot) fitness residual variants come from the same 

distribution of GFP expression level (Wilcoxon rank-sum p-Value=0.46). Black line represents the median 

value. Thus, the effect of GFP levels on fitness was successfully factored out, thus allowing us to elucidate 

other molecular mechanisms that tune expression cost at given expression levels. 

 

 

Production of more proteins per mRNA molecule is an economic regime that minimize 

expression costs 

We first hypothesized that reaching the same GFP level with lower levels of mRNA of the GFP 

gene could be beneficial. We compared GFP mRNA levels between positive and negative fitness 

residual variants and observed that positive variants demonstrated lower levels (Figure 2A). The 

observation that positive variants have equal GFP protein levels but lower GFP mRNA levels 

indicates that they are able to produce more GFP proteins per mRNA molecule. Since initiation 

rate is usually rate limiting in translation80, we postulated that high translation initiation rate 

could be a mechanism for maintaining same GFP levels while keeping low mRNA levels in positive 

variants. We calculated initiation rates for all library variants using a common prediction model, 

the “Ribosome Binding Site (RBS) Calculator”80, and observed that indeed positive variants had 

higher initiation rates (Figure 2B). Indeed, when examining translation efficiency per variant (using 

measured protein levels divided by mRNA levels), positive variants demonstrated higher 

translation efficiencies than negative fitness ones (Figure 2C). Moreover, we found that 

underachiever variants demonstrated even higher mRNA levels and lower translation efficiencies 

compared to the negative variants (Figures 2A and 2C). These observations suggest that by 

increasing translation efficiency, cells can reduce transcription costs and ultimately reduce costs 

per protein molecule. 
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Slower translation speed at early elongation of coding region, amino acid synthesis cost, 

and hydrophobicity affect cost of gene expression 

We next aimed to elucidate other cellular mechanisms that affect cost per protein 

molecule. We first examined translation codon decoding speeds by the ribosome. The 

prevalence of slowly translated codons at the 5’ of ORFs has been suggested to support 

the efficiency of gene translation44. This “ramp model” proposes that delaying ribosomes 

at the beginning of the elongation phase decreases downstream ribosomal pauses and 

collisions, which can therefore reduce ribosome jamming, and perhaps also pre-mature 

termination events. 

Although contradicting evidence were reported for the existence and relevance of this 

mechanism to expression level77,103–107, the main prediction of the model – that 5’ 

ramping reduces cost of expression at a given expression level – has not been tested so-

Figure 2 – Higher ratio of GFP protein/mRNA minimizes cost of gene expression 

A| Although coming from the same distribution of GFP levels, positive variants (blue 

violin-plot) demonstrate lower mRNA levels of the GFP gene compared to negative 

variants (red violin-plot) (Effect size=58.26%, Wilcoxon rank-sum p-Value=1.6 ∙ 10−9). 

Consistently, underachiever variants (purple violin-plot) show higher mRNA levels 

compared to negative variants (Effect size=68.04%, Wilcoxon rank-sum p-Value=9.6 ∙

10−8). Black line represents the median value. 

B| Positive variants show higher translation initiation rates compared to negative 

variants (Effect size=61.9%, Wilcoxon rank-sum p-Value=3.7 ∙ 10−18).  

C| Positive variants demonstrate higher translation efficiencies (protein/mRNA) 

compared to negative variants (Effect size=55.67%, Wilcoxon rank-sum p-Value=3.4 ∙

10−5). Consistently, underachiever variants (purple violin-plot) further show lower 

translation efficiencies compared to negative variants (Effect size=63.06%, 

Wilcoxon rank-sum p-Value=1.1 ∙ 10−4). 

Statistically significant differences (p-Value<0.05) are marked with an asterisk. 

 



35 
 

far. Here, we had the first opportunity to test this hypothesis in a controlled manner as 

only the 5’ variable region of the GFP varied in the library, while all other parameters 

remained constant. Thus, we asked whether slow 5’ translation speed is associated with 

positive fitness residual. We were able to show that three independent mechanisms that 

slow down ribosome progression are more prevalent in positive variants compared to 

negative variants. First, positive variants show lower values of “Mean of the Typical 

Decoding Rates” (MTDR)107, a measure of codon decoding time derived empirically from 

ribosome profiling data in E. coli (Figure 3A). Second, positive variants demonstrated 

tighter secondary structures compared to negative variants, which can slow down 

ribosomes46,79,108,109 (Figure 3B+C). Third, low ribosome speed due to affinity to the anti-

Shine Dalgarno (aSD) motif of the ribosome45 coincided with positive fitness residual 

variants (Figure 3D). 

We thus provide the first experimental evidence for a set of three gene architecture 

factors - codon decoding time, mRNA structure and affinity to the anti-Shine Dalgarno 

motif - that could each implement 5’ ramping by slowing down ribosomes and by that 

allow cells to reduce the cost of gene expression at a given expression level.  

 

 

Figure 3 – Slow translation speed at early elongation, achieved by 

diverse molecular means, reduces expression cost 

A+C+D| Positive variants show lower values of codon-decoding speed, 

stronger mRNA structures and lower speeds due to higher anti- Shine 

Dalgarno affinities compared to negative variants (Effect size=59.55%, 

65.03% and 63.82%, Wilcoxon rank-sum p-Value=3 ∙ 10−12, 5.4 ∙ 10−28 

and 6.3 ∙ 10−24, respectively). Statistically significant differences (p-

Value<0.05) are marked with an asterisk. 

B| Mean folding energy of mRNA secondary structure according to 

window’s start position for positive (blue curve) and negative (red 

curve) variants, error bars represent standard error of mean. Dashed 

lines mark different positions along the variable region up-stream to 

the GFP. Black vertical line marks the beginning of window with the 

largest observed difference, which is found at nucleotide positions +4 

of the ORF, just after the first AUG codon. The distributions at this 

window position are seen in C.  
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Next, we explored the possibility that the amino acid composition of the N-terminus 

fusion to the GFP influences cellular fitness. Amino acids differ by the metabolic costs 

associated with their biosynthesis - predominantly energy and reducing power 

determinants invested in their metabolic production, as was computed in details for E. 

coli110. We thus hypothesized that usage of energetically-expensive amino acids may 

cause a heavier burden at a given expression level. Indeed, lower-cost of the N-terminus 

fusions were found to associate with positive fitness residual variants (Figure 4A). 

We further examined the relation between fitness residual and amino acid energetic cost, 

by calculating the frequency ratio of each individual amino acid between the positive and 

negative fitness residual groups. Remarkably, this frequency ratio was found to negatively 

correlate with the metabolic cost of each amino acid (Figure 4B), demonstrating that 

expensive amino acids are less frequent in variants with a positive fitness residual. Taken 

together, these observations suggest that expensive-to-synthesize amino acids not only 

burden cells during their costly production but also when they are incorporated into 

proteins by the ribosome, presumably due to a feedback that increases their synthesis in 

response to consumption. 

We next reasoned that an additional factor by which a protein could affect fitness is its 

toxicity, and in particular the tendency of proteins to form aggregates. As aggregation is 

driven by hydrophobic interactions, we turned to a conventional measure of amino acid 

hydrophobicity111 to examine whether it is predictive of positive or negative fitness 

residual designations. We computed the hydrophobicity of each N-terminus fusion in 

positive and negative variants and found that positive variants tended to have 

significantly less hydrophobic amino acids fused to the GFP (Figure 4C). Since the 

heterologously expressed GFP protein resides in the cytoplasm of E. coli, where 

hydrophobic amino acids might form toxic aggregates112, this result suggests that 

incorporation of hydrophobic residues in cytosolic proteins can increase the cost 

production per protein molecule. Notably, unlike the three architectural factors described 

above, this observed expression cost is not caused directly by the protein production 

process, but rather as a subsequent effect of the protein’s toxic outcome. 
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A regression model calculates relative contribution of each feature and predicts fitness 

residual scores 

We next aimed to predict actual fitness residual values of the library variants from their 

gene architecture features, using a multiple linear regression model. We trained the 

model on a randomly chosen subset of 70% of the library variants, cross validated it on all 

other variants by comparing their predicted and observed fitness residual and found a 

good correlation (Figure 5A). 

When the regression was performed on a scrambled library, which randomly links feature 

values and variants, the correlation between observed and predicted fitness residual was 

C Figure 4 – Usage of expensive-to-synthetize and hydrophobic 

amino acids decreases fitness residual 

A| N-terminus amino acid fusions of negative variants are more 

expensive to synthesize compared to positive variants (Effect 

size=72.74%, Wilcoxon rank-sum p-Value=7.4 ∙ 10−62). 

Underachievers utilize even more expensive amino acids (Effect 

size=72.75%, Wilcoxon rank-sum p-Value=1.7 ∙ 10−11).  

B| The frequency ratio of amino acids between positive and 

negative variants is negatively correlated with the energetic cost 

of amino acids (Pearson correlation r=-0.54, p-Value=0.01). 

C| N-terminus amino acid fusions of negative variants are more 

hydrophobic than positive variants (Effect size=69.11%, 

Wilcoxon rank-sum p-Value=3.2 ∙ 10−44). N-terminus fusion of 

underachievers are even more hydrophobic (Effect size=81.67%, 

Wilcoxon rank-sum p-Value=7.7 ∙ 10−21). 
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practically eliminated. We concluded that a gene architecture that utilizes more of the 

features we discovered and to a greater extent typically gives rise to higher fitness 

residuals as expression costs are further minimized.  

Additionally, this regression model allowed us to calculate the relative contribution of 

each feature by comparing the coefficients assigned by the regression model (Figure 5B). 

This analysis revealed that the features contributing to fitness residual the most are 

hydrophobicity and metabolic cost of the N-terminus fusion, while codon decoding speed 

contributing the least. 

 

 

Figure 5 – A model that predicts fitness residual accurately 

reveals that fitness residual of natural E. coli genes is 

correlated with their expression level 

A| A linear regression model based on all eight features 

predicts fitness residual accurately in a cross-validation test 

(Pearson correlation r=0.53, p-Value<10-200). 

B| The weighted coefficients of each feature in the 

regression model, demonstrating the relative contribution of 

each feature to fitness residual (p-Value for regression 

coefficient of mRNA level=3.5 ∙ 10−11, initiation rate=2.5 ∙

10−12, TEGFP protein/mRNA=2.7 ∙ 10−9, codon decoding 

speed=8.7 ∙ 10−3, mRNA folding energy=1.5 ∙ 10−50, aSD 

velocity=8.7 ∙ 10−3, hydrophobicity<10−200, amino acid 

synthesis cost=5.4 ∙ 10−80).  The sign of the contribution of 

each coefficient shows whether a feature is correlated 

positively or negatively with fitness residuals. Error bars 

represent standard error of the coefficient estimation. 

C| Predicted fitness residuals of E. coli genes according to 

the regression model are correlated with their expression 

levels (Pearson correlation r=0.25, p-Value=2 ∙ 10−53), 

suggesting that natural selection shapes 5’ gene 

architectures in order to minimize costs of gene expression.  

D| Distribution of fitness residual scores for E. coli genes, as 

predicted by regression model that was trained on either 

experimental or mock data. The experimentally-based 

model predicts a significant, higher range of fitness residual 

(p-Value<10-5), suggesting that the mechanisms we elucidate 

with the synthetic library also apply on natural genes. 

E| Predicted fitness residuals of B. subtilis genes according 

to the regression model are correlated with their expression 

levels (Pearson correlation r=0.33, p-Value=10-93), suggesting 

that our model also applies for other bacteria species. 

F| Same as D, only for B. subtilis genes. 
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Highly expressed natural E. coli genes have evolved gene architectures that minimize 

their production costs  

With these findings from the synthetic library, we next asked whether the mechanisms 

we revealed as cost-reducing were also utilized by natural selection to optimize E. coli’s 

native genes. We thus calculated for each E. coli gene its scores with respect to the 

relevant features and used the regression model to predict its fitness residual score. Since 

higher expression level results in higher expression cost, we hypothesized that E. coli 

genes with higher expression levels are more likely to be endowed with cost reducing 

architectures. Indeed, we found a significant correlation between predicted fitness 

residual of E. coli genes and their protein expression levels (Figure 5C), demonstrating a 

stronger selection for optimizing the 5’ gene architecture for highly expressed genes. 

Finally, to generalize our predictive model for fitness residual, we decided to test it on a 

different bacterium than the gram-negative E. coli and chose the gram-positive Bacillus 

subtilis. We calculated for each of the genes in this species its scores with respect to the 

relevant features, predicted a fitness residual score and computed its correlation with the 

genes’ protein expression levels. Remarkably, in B. subtilis too we observed a significant 

correlation between expression level and optimization of the gene architecture (Figure 

5E). Taken together, these observations suggest that the same molecular mechanisms we 

found to minimize expression costs in E. coli are also utilized by natural selection to 

reduce production cost per protein molecule in B. subtilis.  
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In conclusion, here we focused on revealing molecular mechanisms that minimize 

expression cost at a given expression level. Indeed, we found architectures and motifs 

that govern such costs, and reveal their function even beyond a direct effect on the 

process of expression. 

First, we show that regulating initiation and mRNA levels also affects expression cost, as 

increasing the number of proteins that are produced per mRNA is associated with a 

positive fitness residual. This architecture could be beneficial because it reduces energy 

and resource consumption that are devoted to mRNA production. 

Second, we show that three nucleotide-based features that reduce elongation speed at 

the 5’ of the coding region are likely beneficial: low ribosomal codon-decoding speed, 

occurrence of Shine-Dalgarno like sequences and strong secondary structures.  

Next, we revealed that the amino acid composition of a gene can also affect expression 

cost at a given expression level by showing that hydrophobic amino acids reduce fitness 

residual, perhaps due to their increased tendency to form toxic aggregates in the 

cytoplasm. 

Finally, our observations are relevant to biotechnology and synthetic biology. Many times 

in such non-natural systems there is a need to express a foreign gene, whose expression 

could deprive resources from the hosting cell. Our results allow the design of an 

optimized nucleotide sequence version for heterologous expression that minimizes the 

cost of production, and by that reduces the burden on the cell while not compromising 

expression level. 
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3| How does the splicing machinery evolve? 

Surprisingly, although the process of splicing is central to the maturation and regulation 

of mRNAs in eukaryotes113–117, its role in adapting to novel demands on gene expression 

has not been thoroughly investigated. During mRNA splicing, precursor mRNAs are 

processed to remove introns while fusing exons together to create the mature transcript. 

This process provides an evolutionary means to diversify the proteome towards 

phenotypic novelty, as the choice of intron to be excluded, as well as the exons which are 

found in the mature transcript, can both be regulated based on the cell’s needs115,118,119. 

One aspect of splicing evolution that has been extensively studied is gain and loss of 

intronic DNA, for which several molecular models have been proposed, mainly Reverse-

Transcription and recombination-mediated intron loss, intron transposition and also 

exonization and  intronization via mutations120–123. While intron loss and gain have been 

demonstrated experimentally124,125, other forms of splicing evolution, such as alterations 

in splicing efficiency under changing conditions, have not.  

Here, we set out to reveal whether introns or the splicing apparatus can evolve so as to 

alter the expression levels of genes in a timely and adaptive manner, and ask whether and 

how splicing evolves in cis and in trans to regulate gene expression. To this end, we 

generated a reporter construct in yeast cells that could simultaneously be read out and be 

selected for splicing efficiency. Namely, we introduced an inefficiently-spliced intron to a 

reporter gene that was fused to an antibiotic resistance gene. Using this approach, we 

could carry out a lab-evolution experimental setup to study the adaptation of splicing in 

the presence of the corresponding antibiotics. 

 

Low splicing efficiency leads to stressed cells under restrictive conditions 

We hypothesized that tuning splicing of genes could serve as a means to optimize their 

expression levels. To test this hypothesis, we used the yeast Saccharomyces cerevisiae in 

which ~30% of the transcriptome must be spliced, at a range of splicing efficiencies117,126, 

to form mature mRNAs127. We built a synthetic gene construct that consists of two fused 
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domains: A fluorescent reporter (YFP), which includes two alternative natural introns - 

with either high or low splicing efficiency - near the YFP’s fluorescence site126, fused to an 

antibiotics resistance gene (Kanamycin resistance gene). Specifically, we created three 

strains: (i) WT YFP strain without an intron; (ii) “SplicingHigh” in which the YFP harbors the 

natural intron of OSH7 and was previously reported to have high splicing efficiency within 

this YFP context126; and (iii) “SplicingLow” in which the natural intron of RPS26B, with a low 

splicing efficiency126, was inserted in the same location (Figure 1A). 

We first hypothesized that cellular growth of each strain in the presence of the 

antibiotics, geneticin (G418), will associate with the YFP-Kan expression levels. We 

followed the growth of the three strains in the presence of the antibiotics and found that 

the WT strain had the highest fitness, SplicingHigh grew slower, and SplicingLow 

demonstrated a severe growth defect compared to the two other strains (Figure 1B+C). 

We then measured florescence intensity of the YFP-Kan reporter in the presence of the 

drug. In line with the growth measurements, we observed that WT cells demonstrated 

the highest fluorescence levels, followed by SplicingHigh, and with SplicingLow cells showing 

the lowest YFP-Kan levels (Figure 1D). These results demonstrate that the inefficiently-

spliced intron in SplicingLow reduces cellular levels of YFP-Kan and hence lead to a reduced 

fitness. 

Since YFP-Kan expression level in SplicingLow were significantly lower compared to the 

other strains, we hypothesized that SplicingLow cells did not reach the needed 

concentration to sufficiently neutralize the antibiotics, and hence resulted in stressed 

cells. To test this hypothesis, we performed mRNA sequencing of exponentially growing 

WT and SplicingLow cells in an antibiotics containing medium, and analyzed their 

transcriptome profiles. Indeed, we observed that ribosomal genes were down-regulated 

in SplicingLow compared to the control strain – a clear signature of stressed cells128 (Figure 

1E). Notably, the reduction in ribosomal expression levels (~8%) we observed here due to 

growth rate differences between WT and SplicingLow cells is accurately predicted by a 

recent study, which calculated the linear correlation between growth rate and ribosomal 
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expression levels in yeast cells129. In parallel, stress-related genes130 were up-regulated in 

the SplicingLow compared to the control strain (Figure 1E). We thus concluded that the 

general stress response was activated in SplicingLow cells. 

 

Rapid evolutionary adaptation increases expression level of the resistance gene 

Our experimental system mimics an evolutionary scenario in which there is an immediate 

and continuous selection pressure to up-regulate the expression level of a gene of 

interest. How would the system evolve to better resist the antibiotics? Possible means to 

adapt include mutations in the gene’s promoter to increase transcription, mutations that 

increase translation initiation, or mutations inside the gene itself that increase the 

functional efficiency of the protein. Additionally, the splicing machinery may also take 
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part in adaptation of gene expression levels. To find which evolutionary track would be 

used by cells, we evolved the three strains by daily serial dilution on a medium 

supplemented with G418 for ~560 generations, in four independent cultures for each 

strain (Figure 2A). Interestingly, only the cultures of SplicingLow cells demonstrated a 

significant improvement in fitness at the end of the experiment (Figure 2B+C). This 

observation implies that only SplicingLow experienced a sufficiently strong selective 

pressure to adapt to the presence of the antibiotics in the medium, in contrast to the WT 

and SplicingHigh strains which originally had much higher levels of the resistance gene. 

Consistent with the fitness measurements, YFP measurements of the evolved cultures 

showed that expression levels of the resistance-YFP fusion gene increased in all four 

evolved cultures of SplicingLow compared to the ancestral strain (Figure 2D). Conversely, 

the increase in YFP-Kan expression levels in the evolved WT populations was smaller, and 

only one culture of the evolved SplicingHigh cells demonstrated strong elevation of the 

YFP-Kan levels (Figure 2D). These results further support that SplicingLow cells experienced 

the strongest selective pressure to adapt rapidly to the presence of the antibiotics in our 

experimental setup, and that they achieved this goal by increasing the levels of the 

resistance gene. We next moved to reveal the molecular mechanisms underlying this 

evolutionary process. 
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Adaptation in cis and trans leads to increased splicing efficiency 

We hypothesized that improving the low splicing efficiency of the intron in SplicingLow 

could be exploited by natural selection as an adaptation mechanism towards increasing 

the resistance gene levels. We therefore sequenced the YFP-Kan locus in 16 randomly 

chosen colonies from two evolved populations (termed here population A and population 

B) of SplicingLow. Interestingly, we found that the colonies were split into two types – 

either with or without a mutation in the YFP-Kan locus. In population A, we found that the 

same mutation occurred in four out of eight colonies, changing adenine to cytosine inside 

the intron, 97 nucleotides up-stream to its 3’ end (Figure 3A). In population B, we 

identified an exonic non-synonymous mutation that changed a valine at position 61 of the 

YFP protein into alanine (a thymine to cytosine 14 nucleotides up-stream of the intron) in 

three out of eight colonies. In the five other colonies from this population there were no 

mutations in the YFP-Kan locus. 

Notably, none of the colonies demonstrated a mutation in the construct’s promoter, 

terminator or in the sequence of the Kan resistance gene itself. These results propose 

that different mutations in the intron, or its vicinity, were adaptive and might affect 

splicing efficiency of the intron. Surprisingly, the observed mutations did not occur in the 

5’ donor, 3’ acceptor, nor in the intron branch point – suggesting that other position of 

the intron can also be selected in evolution increase fitness by affecting splicing. While 

the intron- and exon-mutated colonies represent an evolutionary adaptation in cis, the 

colonies that showed no mutation in the entire gene construct potentially found adaptive 

solutions in trans that may have occurred elsewhere in the genome.  

We randomly chose six colonies: four colonies with a cis mutation and two colonies that 

showed no mutations in cis, for which we reasoned that such colonies may have adapted 

in trans. We termed these colonies according to the evolution lines from which they were 

derived: A-cis1, A-cis2, B-cis1, B-cis2, A-trans and B-trans. We followed the growth of 

these evolved colonies in the presence of G418 and found, as expected, that all grew 

faster than the SplicingLow ancestor (Figure 3B). We then performed RNA-seq and 
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transcriptome analysis of all colonies, which revealed relaxation of the stress response 

that was featured in the ancestor. Namely, the general stress response genes were 

reduced and ribosomal proteins were up- regulated in five evolved colonies (Figure 3C). 

These observations suggest that the cells indeed adapted to the presence of the 

antibiotics in the environment and that the stress experienced by them was partially 

alleviated. 

We next hypothesized that cellular fitness might correlate with mRNA levels of the YFP-

Kan construct because increased transcript levels should result in higher concentrations 

of the Kan protein. Indeed, maximal growth rates of the control and SplicingLow ancestors 

and for the six evolved colonies correlate with mRNA levels of the YFP-Kan construct, as 

deduced from the RNA-seq (Figure 3D) – supporting our conclusion that adaptation was 

based on increasing expression levels of the YFP-Kan gene. Since the observed cis 

mutations occurred at the vicinity of the intron, we hypothesized that they increased 

splicing efficiency of the YFP-Kan transcript. To test this possibility, we performed, for 

both cis- and trans-evolved colonies, a splicing efficiency assay with qPCR - targeting the 

un-spliced and spliced transcript versions. Interestingly, the ratio of spliced to un-spliced 

transcripts was higher in all evolved colonies compared to the SplicingLow ancestor, 

suggesting that at least some of the mRNA level increase we observed in the evolved 

colonies results from increased splicing efficiency (Figure 3E). 

To prove that adaptation of the colonies actually led to higher protein levels of the 

resistance gene, we measured fluorescence intensity using flow cytometry. We found 

that the two cis-colonies from population A (A-cis1 & A-cis2) and the two trans-colonies 

(A-trans & B-trans) showed higher YFP-Kan levels compared to the ancestor. However, 

the two cis-colonies from population B (B-cis1 & B-cis2) demonstrated decreased 

fluorescence intensity values (Figure 3F). These observations suggest that the non-

synonymous, exon mutation reduced the fluorescence-per-protein value of the YFP-Kan 

construct in these colonies. Indeed, this position corresponds to a position that was 

recently reported to reduce florescence when mutated in the highly similar GFP131. 
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Because YFP functionality was not selected for or against in our setup, it was free to 

mutate as long as it helps achieve a higher expression level of the entire construct by 

increasing the intron’s splicing efficiency. It thus seems that modular domain-architecture 

of a protein may increase its evolvability under relevant conditions as it allows the 

optimization of each domain in isolation from the other. 

It is possible that additional beneficial mutations exist in the genome of the cis-evolved 

colonies, which account for the phenotypes we observed. To directly assess the effects of 

the cis mutations, we generated two rescue strains, termed rescue-A and rescue-B, in 

which these cis-acting mutations were introduced individually to the ancestral SplicingLow 

background. Notably, the two rescue strains grew better than SplicingLow cells in the 

presence of the antibiotics (Figure 4A), though not as good as the wild-type, and the 

stress experienced by the SplicingLow cells was relieved upon insertion of each individual 
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cis mutation (Figure 4B). Finally, we measured splicing efficiencies and fluorescence 

intensity levels for both rescue strains, and found that they resembled the results of the 

evolved single colonies (Figure 4C-D, in comparison to Figure 3E-F). These observations 

strengthen our conclusions that the cis-acting mutations are sufficient to elevate YFP-Kan 

levels through an increased splicing efficiency, yet the non-synonymous mutation of 

population D also hampers the function of the YFP domain and reduces its florescence-

per-protein ratio. 

Our results thus far provide direct evidence that intron splicing takes part in the 

adaptation and optimization of gene expression patterns to environmental needs. 

Although intron sequences are much less conserved compared to exons, and are believed 

to be less functional, we demonstrate that their sequence can be used by natural 

selection as a molecular mechanism to regulate splicing efficiency and adjust gene 

expression patterns. 
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Increasing cellular availability of the splicing machinery can be adaptive 

We finally aimed to decipher the mechanism behind the increased YFP-Kan levels in the 

trans-evolved colonies that showed no mutations in cis, i.e. within the reporter gene or in 

its vicinity. We reasoned that elevating availability of the splicing machinery as a global 

resource could be a means to increase splicing efficiency of the YFP-Kan transcript, and 

thus could be used as an adaptive mechanism to the antibiotics challenge. Increased 

splicing-availability could be achieved by increasing the expression of the splicing 

machinery genes. In addition, as with other cellular machineries whose functioning 

depends on supply-to-demand economy39,73,81,132 reducing expression levels of the intron-

containing genes, namely the “demand”, could increase the availability of the machinery 

towards the intron under selection here. 

To test if any of these evolutionary routes were indeed taken by the evolved cells, we 

calculated the expression level ratio of genes between the evolved colonies and their 

ancestor. In colony A-trans, we observed that while the average expression-ratio of the 

splicing machinery genes (the “supply”) increased, that of the non-ribosomal intron-

containing genes (the “demand”) decreased (Figure 5A). This observation suggests that 

indeed the cellular availability of the splicing machinery was elevated in this evolved 

colony, which might have allowed for the observed increased splicing efficiency of the 

YFP-Kan gene. Next, we hypothesized that the cis-evolving colonies may have also 

adapted in trans and used this adaptation mechanism as well. Indeed, in all other evolved 

colonies we observed a similar trend, in which the overall supply-to-demand 

measurement of the splicing machinery was increased (Figure 5B). Importantly, the two 

rescue strains, which did not evolve and only harbor our artificially introduced cis-acting 

mutation, did not show any change in splicing availability (Figure 5B), strongly supporting 

our conclusion that this phenotype was achieved by further adaptation of the cells during 

our lab-evolution experiment. Thus, we concluded that both cis and trans adaptation 

routes can co-occur in the same genome towards optimization of its gene expression 

patterns. 
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Mutations in SR-like proteins drive trans adaptation of the splicing machinery  

To reveal mutations that happened in trans, namely in other positions in the genome 

rather than the YFP-Kan construct, we sequenced the entire genomes of the trans-

evolved colonies and compared them to the genome of their ancestral strain. This 

approach revealed two non-synonymous mutations in the SR-like proteins Npl3 and 

Gbp2, which occurred in one of these proteins’ RNA recognition domains. Gbp2 has been 

shown to work as quality control factors for spliced mRNA, it interacts with Mex67, a key 

adaptor in the mRNA export pathway. This interaction only occurs upon efficient splicing; 

else Gbp2 remains associated to the RNA degradation machinery TRAMP and the 

transcript is degraded in the nucleus133. Interestingly, Npl3 is recruited during the early 

stages of transcription as part of mRNP biogenesis, and has been shown to support 

efficiency of splicing by stabilizing the U1 snRNP134,135.  
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In conclusion, here we study the role of the splicing machinery in optimization of gene 

expression programs by placing selective pressure on cells to improve the splicing 

efficiency of a specific gene. Our results provide molecular evidence for the relevance of 

splicing as another instrument in the cellular toolbox towards adjusting its gene 

expression patterns. To the best of our knowledge, we demonstrate the first 

experimental evidence of splicing efficiency adaptation, confirming that this adaptation 

can occur in cis and trans similarly to adaptations of other means of gene regulation. 

Interestingly, we found that different adaptive means co-occurred in the evolved 

populations – independently in different cells or even simultaneously in the same 

genome. In particular, we saw that evolutionary lines that adapted in cis appear to also 

have had adaptations that are not encoded in the evolving gene, hence pointing to 

changes that must have occurred in trans. Further investigations will reveal which of 

these solutions, cis or trans, proves to be more evolutionarily stable - to fully reveal the 

dynamics of splicing adaptation when cells optimize their gene expression. 
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Discussion 

The field of Evolutionary cell biology aims to reveal how cells evolve. While cell biology 

focuses on components, interactions, and processes at the cellular, rather than the 

molecular or organismal level, evolutionary cell biology is the study of how such 

components and complexity emerged and are changed with time. 

Historically, this goal has been implemented by focusing on studying the origin of 

eukaryotic organelles and multicellularity. The common approach by which evolutionary 

cell biology studies have been conducted is using natural species diversity to elucidate 

different mechanisms that evolved to allow complex cellular functions. This path has been 

fruitful and illuminated various insights about the mechanisms of cellular evolution (see 

introduction for discussion).  

However, our understanding of the evolution of cells is still incomplete and we are far 

from being able to predict accurately which environmental and genetic circumstances 

drive the evolution of cellular structure and function. Indeed, how cellular pathways, 

structure, and functions respond to a new challenge at an evolutionary time scale has not 

been fully revealed. During my PhD, I was inspired by concepts of evolutionary cell 

biology and aimed to reveal new layers of cellular evolution. Specifically, I decided to 

combine this conceptual framework with the emerging power of high-throughput 

technologies and lab-evolution methodology to study the evolution of cellular 

machineries. 

Our ability to follow the changes after many generations of growth in the lab of both 

prokaryotes and eukaryotes has been improved immensely in the past decade136. This 

developed “lab-evolution” methodology has been used to look at the dynamic of early 

adaptation137, the types of genomic alterations during a long-term adaptation to a 

constant environment138, the advantage of sex139, and more. However, changes at the 

cellular level have not been the major focus of such studies. I have thus decided that an 

interesting line of investigation could be to challenge fundamental cellular functions 

either genetically or environmentally, grow them for several hundreds of generations, 
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and characterize the mechanisms by which cells adapted the perturbed cellular 

machineries. Such experimental designs, I reasoned, could illuminate new insights on the 

functions of these machineries and reveal how they were shaped during evolution. Some 

specific questions I asked were: By which molecular mechanisms do cellular machineries 

adapt? What are their flexible parts? What are harsh\easy challenges for the systems to 

face? 

While these kinds of questions could be asked to diverse molecular machines in cells, in 

my PhD I focused on cellular machineries of the central dogma that perform gene 

expression – and studied mainly the molecular adaptation of the translation and splicing 

machineries. First, I used genome editing in both bacteria and yeast to reveal the 

economic interplay in translation between codon usage (demand) tRNA genes (supply). 

Our experiments in yeast reveled the tRNA genes provide evolutionary plasticity to the 

translation apparatus, and allows it to respond rapidly to accommodate new translational 

demand. The strategic mutation that we identified in the anticodon of a tRNA gene 

inspired us to look for such mutations in wild species. Indeed, we could find such 

mutations, which suggests that this anticodon switching mechanisms is widely used in 

nature. This example demonstrates how lab-evolution has the potential to accurately 

mimic wild adaptation to illuminate mechanisms by which cells evolve. It also shows why 

indeed it is fruitful to use lab-evolution methodology when studying evolutionary cell 

biology. 

Next, we used a genome engineering technology in bacteria to massively manipulate the 

codon usage of highly-expressed genes. This approach allowed us to study an 

evolutionary question that was hard to test experimentally because of the vast changes 

ones had to introduce into the genome. Why highly-expressed genes show an intensified 

codon bias compared to the rest of the genomes has been thoroughly studied – focusing 

on cis effects of the codons on the genes on which they reside. However, our 

perturbation of the system illuminates that in addition to such changes, other trans 

effects are also observed and might have drove the evolution of these genes. We showed 
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how non-optimal codons in highly-expressed genes result in a cellular-wide translation 

perturbation that affects translation efficiency of genes in a codon-dependent manner. 

These two works demonstrate how a cellular perspective of demand and supply allowed 

us to reveal new aspects of an otherwise intensely studied machinery. 

In addition to lab-evolution, I also used synthetic DNA libraries as a means to ask 

evolutionary cell biology questions. Such libraries allow to simultaneously test many 

hypotheses as they generate a great genetic diversity within a population that yield many 

strains, each with a unique phenotype. We combined this technique with fitness 

measurements of various strains, which express a protein that burdens cellular growth, to 

find molecular mechanisms that improve efficiency of protein expression and minimize its 

associated costs. This approached revealed several molecular mechanisms that indeed 

reduce cost per protein molecule – and importantly from an evolutionary perspective, 

these mechanisms were selected by evolution to be used by natural bacterial genes. This 

work shows how new technologies can revolutionize the ways by which we ask 

evolutionary cell biology question and study the variation of cells. 

Finally, I turned to apply a combined approach of cellular evolution and lab-evolution to 

the splicing apparatus. Splicing evolution has been studied in the past, yet mostly by 

characterizing how its generates phenotypic diversity with alternative splicing and by 

characterizing mechanisms of intron gain and loss. Here, I tested whether splicing 

evolution could occur when a need for increased expression level of a specific gene is 

presented to cells. Evolving these cells revealed molecular adaptation of the slicing 

machinery in both cis and trans. Interestingly, the cis adaptation was based on mutations 

not only in the intron itself of the gene under selection – but also in adjacent exons. 

Complementary, the trans adaptation was based on non-synonymous mutations in 

associated proteins of the splicing machineries that facilitate the transport of mature, 

spliced transcripts from the nucleus to the cytosol. This story demonstrates that complex 

cellular machine that have been evolved for millions of years can still change and help 

cells adapt to new challenges. 
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Two general concepts emerge from my work. First, supply-to-demand balance seems to 

be at play in different cellular pathways. In translation, I showed how the balance 

between tRNA levels and codon demand in the transcriptome can influence the evolution 

of the translation machinery. A shortage in a specific tRNA type can lead to accumulation 

of mutations in other tRNA genes that increase the levels of the needed tRNA by 

anticodon manipulation. Additionally, manipulating codon demand hampers translation 

efficiency globally in the cell and may hence might lead to alterations in the translation 

system in the form of tRNA mutations or manipulation of mRNA levels that will restore 

balance. Interestingly, I also observed how supply-to-demand balance is used as an 

adaptation mechanism of the splicing process. One route of adaptation was based on 

inducing the genes of the splicing apparatus (supply) and reducing the levels of other, 

intron-containing genes (demand). These changes increased the total supply-to-demand 

ratio of splicing in cells because there were more spliceosome complexes available to 

perform splicing and less pre-mature mRNA molecules of them to splice. Therefore, this 

increased supply-to-demand ratio might have improved the splicing of the gene under 

selection in our system and hence improved cellular fitness. Changes in supply-to-demand 

ratio might also be relevant in the evolution of other biological systems, like metabolism. 

It might be possible that enzymatic efficiencies and expression levels are determined by 

optimal balance supply-to-demand levels of the various products. It might be interesting 

to examine whether evolutionary challenges to the metabolic network could result in 

adaptations that are based on supply-to-demand ratios. 

The second conceptual insight concerns the cost of gene expression. As mentioned above, 

we used a synthetic library and fitness measurements, to characterize several 

mechanisms that reduce cost per protein molecule. To achieve this goal, we defined 

“fitness residual” as the difference between expected and measured fitness of any given 

gene architecture. The concept of fitness residual was also observed when we 

manipulated the codon usage of highly-expressed genes. This manipulation revealed how 

changing the codon usage of a gene may lead to residual effects on other genes and 

hence indirectly increase the cost of expression. It is therefore tempting to postulate that 
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other pathways also evolve not only to locally achieve a desired phenotype but to 

accommodate other needs of the cells. An example for that could be the interplay 

between the different transcription factors. A gene might evolve an interaction with a 

specific factor, yet this may hold a residual effect on other genes that rely on this factor as 

well for their transcription.  

In conclusion of this thesis, it is my belief that further combination of emerging 

technologies with evolutionary perspective on cells will yield fascinating questions about 

the molecular mechanisms of adaptation of cellular structure, pathways, and functions. 

Such questions I particularly find interesting to address are: How protein-protein 

interactions change with time? Can cellular localization of proteins and mRNAs be 

challenged to change during adaptation? Can we follow the evolution of organelles’ 

contact site in the lab?  I intend to study such questions in my future scientific path. 
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Abstract Changes in expression patterns may occur when organisms are presented with new 
environmental challenges, for example following migration or genetic changes. To elucidate the 
mechanisms by which the translational machinery adapts to such changes, we perturbed the tRNA 
pool of Saccharomyces cerevisiae by tRNA gene deletion. We then evolved the deletion strain and 
observed that the genetic adaptation was recurrently based on a strategic mutation that changed 
the anticodon of other tRNA genes to match that of the deleted one. Strikingly, a systematic search 
in hundreds of genomes revealed that anticodon mutations occur throughout the tree of life. We 
further show that the evolution of the tRNA pool also depends on the need to properly couple 
translation to protein folding. Together, our observations shed light on the evolution of the tRNA 
pool, demonstrating that mutation in the anticodons of tRNA genes is a common adaptive 
mechanism when meeting new translational demands.
DOI: 10.7554/eLife.01339.001

Introduction
The process of gene translation is fundamental to the function of living cells, and as such its apparatus 
is highly conserved across the tree of life (Müller and Wittmann-Liebold, 1997; Itoh et al., 1999; 
Wolf et al., 2001). Yet, the capacity of the translation machinery to adaptively evolve is crucial in order 
to support life in changing environments. Therefore, a key open question is to identify the mechanisms 
by which the translation machinery adapts to changing conditions.

A thoroughly studied aspect of translation that demonstrates its adaptation capacities is the dif-
ferent proportions by which synonymous codons are used, a phenomenon known as ‘codon usage bias’. 
Although differential use of codons can be the result of neutral processes such as mutational biases 
and the genomic GC content (Urrutia and Hurst, 2001; Rao et al., 2011), natural selection also influ-
ences codon usage bias. Indeed, it has been demonstrated that codon choice affects expression level, 
protein folding, translational accuracy, and other translational features (Akashi, 1994; Parmley and 
Hurst, 2007; Zhou et al., 2009; Hudson et al., 2011). Since both neutral and selective processes govern 
codon usage bias, the balance between selection, mutational bias and drift is crucial in shaping the 
codon usage of each species (Bulmer, 1991). Importantly, although the selective advantage offered by 
alternative synonymous codons is considered to be moderate, it was recently demonstrated that selec-
tion can still shape codon usage patterns in vertebrates even with their small effective population sizes 
(Doherty and McInerney, 2013).

Notably, the differential usage of codons represents the evolution of the ‘demand’ aspect of trans-
lation, namely the codon usage of all expressed genes. Yet, the adaptation mechanisms of the ‘supply’, 
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namely the expression level of each tRNA type that is loaded with an amino acid, are not fully under-
stood. While ribosomal genes do not exhibit appreciable changes in response to environmental altera-
tions (Müller and Wittmann-Liebold, 1997; Itoh et al., 1999; Wolf et al., 2001), tRNA genes may 
provide an important source of evolutionary plasticity for fine tuning translation.

tRNAs constitute a fundamental component in the process of translation, linking codons to their 
corresponding amino acids (Widmann et al., 2010). tRNA genes are classified into gene families 
according to their anticodon, with each gene family containing between one and several copies scat-
tered throughout the genome. Importantly, it has been experimentally observed for Saccharomyces 
cerevisiae (Tuller et al., 2010) and Escherichia coli (Dong et al., 1996) that the cellular concentrations 
of each tRNA family in the cell (i.e., the tRNA pool) correlate with its genomic tRNA copy number 
(Percudani et al., 1997; Kanaya et al., 1999). Notably, the rate-limiting step of polypeptide elonga-
tion is the recruitment of a tRNA that matches the translated codon (Varenne et al., 1984). Thus, the 
translation efficiency is defined as the extent to which the tRNA pool can accommodate the transcrip-
tome (Sharp and Li, 1987; Dos Reis et al., 2004; Stoletzki and Eyre-Walker, 2007), thereby affecting 
protein production and accuracy.

In general, highly expressed genes exhibit a marked codon usage bias toward ‘optimal’ codons, 
whose corresponding tRNA gene copy number is high (Sharp and Li, 1986a, 1986b). The evolu-
tionary force that acts to maintain optimal translation efficiency of such genes was coined ‘translational 

eLife digest Genes contain the blueprints for the proteins that are essential for countless 
biological functions and processes, and the path that leads from a particular gene to the 
corresponding protein is long and complex. The genetic information stored in the DNA must first 
be transcribed to produce a messenger RNA molecule, which then has to be translated to produce 
a string of amino acids that fold to form a protein. The translation step is performed by a molecular 
machine called the ribosome, with transfer RNA molecules bringing the amino acids that are 
needed to make the protein.

The information in messenger RNA is stored as a series of letters, with groups of three letters 
called codons representing the different amino acids. Since there are four letters—A, C, G and U—it 
is possible to form 64 different codons. And since there are only 20 amino acids, two or more different 
codons can specify the same amino acid (for example, AGU and AGC both specify serine), and 
two or more different transfer RNA molecules can take this amino acid to the ribosome. Moreover, 
some codons are found more often than others in the messenger RNA molecules, so the genes that 
encode the related transfer RNA molecules are more common than the genes for other transfer 
RNA molecules.

Environmental pressures mean that organisms must adapt to survive, with some genes and 
proteins increasing in importance, and others becoming less important. Clearly the relative numbers 
of the different transfer RNA molecules will also need to change to reflect these evolutionary 
changes, but the details of how this happens were not understood.

Now Yona et al. have explored this issue by studying yeast cells that lack a gene for one of the 
less common transfer RNA molecules (corresponding to the codon AGG, which specifies the amino 
acid arginine). At first this mutation resulted in slower growth of the yeast cells, but after being 
allowed to evolve over 200 generations, the rate of growth matched that of a normal strain with all 
transfer RNA genes. Yona et al. found that the gene for a more common transfer RNA molecule, 
corresponding to the codon AGA, which also specifies arginine, had mutated to AGG. As a result, 
the mutated yeast was eventually able to produce proteins as quickly as wild type yeast. Moreover, 
further experiments showed that the levels of some transfer RNAs are kept deliberately low in 
order to slow down the production of proteins so as to ensure that the proteins assume their 
correct structure.

But does the way these cells evolved in the lab resemble what happened in nature? To address 
this question Yona et al. examined a database of transfer RNA sequences from more than 500 species, 
and found evidence for the same codon-based switching mechanism in many species across the tree 
of life.
DOI: 10.7554/eLife.01339.002
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selection’ (Dos Reis et al., 2004). It was previously suggested that translational selection acts to maintain 
a balance between codon usage and tRNA availability. On the one hand, there is a selective pressure to 
increase the frequency of preferred codons in highly expressed genes. On the other hand, changes in 
the tRNA pool may also occur, for example duplication of tRNA genes for which high codon demand 
exists. Thus, codon frequencies and tRNA copy numbers coevolve toward a supply versus demand bal-
ance that facilitates optimal protein production (Higgs and Ran, 2008; Gingold et al., 2012).

The fitness effects of an unmet translational demand and its potential role in shaping the tRNA pool 
are not fully characterized. Evolutionary changes to the tRNA pool were appreciated mainly via bioin-
formatics studies (Rawlings et al., 2003; Withers et al., 2006; Higgs and Ran, 2008; Bermudez-
Santana et al., 2010; Rogers et al., 2010) and only a handful of experimental findings have been 
reported, which rely on genetic manipulations (Byström and Fink, 1989; Von Pawel-Rammingen 
et al., 1992; Aström et al., 1993) or direct mutagenesis (Saks et al., 1998). Sequence analyses 
of divergent genomes have demonstrated that both the sequence and copy number of tRNA genes 
may change among various species or strains. However, it is unclear whether the observed variations 
in the tRNA pool are a consequence of an adaptive process due to unbalanced translational demand 
or the result of random genomic processes, as tRNA genes are a known source of genomic instability 
(McFarlane and Whitehall, 2009).

Further, the forces that direct and maintain low copy tRNA families remain unclear. Specifically, it is 
not clear whether translational selection acts only to favor optimal codons or also acts in particular 
cases to keep other codons deliberately as ‘non-optimal’ by maintaining their tRNA supply at low 
level. Encoding genes with optimal codons might not always lead to higher protein expression levels 
(Kudla et al., 2009). Similarly, the use of ‘slow codons’ may not always result in lower levels of protein 
expression as they could have functional roles in improving expression, for example when enriched at 
the beginning of a transcript in order to reduce the energy of the RNA structure (Goodman et al., 
2013) or to efficiently allocate ribosomes along the mRNA (Tuller et al., 2010). Additionally, it has 
been proposed that non-optimal codons may play a role in governing the process of cotranslational 
folding by slowing down translation, which supports proper folding between domain boundaries 
(Thanaraj, 1996; Kramer et al., 2009; Cabrita et al., 2010; Wilke and Drummond, 2010; Pechmann 
and Frydman, 2012). Yet, the contribution of non-optimal codons to proper protein folding was 
observed only for specific genes (Crombie et al., 1992; Komar et al., 1999; Cortazzo et al., 2002; 
Tsai et al., 2008; Zhang et al., 2009; Zhou et al., 2013). Thus, the extent and relevance of this phe-
nomenon to the global folding state of the proteome needs to be substantiated.

To elucidate the importance of restoring translational equilibrium, we used an experimental evolu-
tion approach. To this end, we genetically perturbed the tRNA pool of the budding yeast S. cerevisiae. 
In this yeast, the genetic code is decoded by 42 different tRNA families that make up a total of 274 
tRNA genes (Chan and Lowe, 2009). Each tRNA gene family ranges from 1–16 copies, with 6 tRNA 
families consisting of only a single copy. In a recent study (Bloom-Ackermann et al., In press), we have 
systematically manipulated the tRNA pool in S. cerevisiae by individually deleting most tRNA genes 
from its genome. Here, we focus on one particular deletion strain that showed the most extreme fit-
ness reduction among the viable deletion mutants in this tRNA deletion library. This tRNA exists in only 
one copy in the genome, thus after its deletion the cell is left without a tRNA with the corresponding 
anticodon. Lab-evolution experiments performed on this strain demonstrated that the translational 
balance was rapidly restored by mutations in other tRNA genes that compensated for the tRNA dele-
tion. An extensive bioinformatic analysis revealed that a similar evolutionary trend is widespread in 
nature too, suggesting that the anticodon mutations we observed in the lab recapitulate an existing 
mechanism that shapes the tRNA pool. To shed light on the constraints that shape the size of tRNA 
gene families, we artificially overexpressed singleton tRNAs, rather than deleting them. We found that 
when low copy tRNAs were overexpressed, the protein quality control machinery was challenged due 
to increased proteotoxic stress. This observation suggests that low tRNA availability for particular 
codon can serve an essential means to ensure proper cotranslation folding of proteins.

Results
Deletion of singleton tRNA gene breaks the translational balance
To demonstrate the importance of the balance between codon usage and the cellular tRNA pool 
we created a yeast strain in which the single copy of the arginine tRNA gene, tR(CCU)J, was deleted 

http://dx.doi.org/10.7554/eLife.01339
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(designated ΔtRNAArg
CCU). Consequently, in this deletion strain, the arginine codon AGG cannot be trans-

lated with its fully matched tRNA and it is presumably translated by another arginine tRNA, tRNAArg
UCU, 

owing to a wobble interaction (Begley et al., 2007). This shortage in tRNA supply is particularly evident 
given the demand: AGG is the second most highly used codon for arginine in the yeast genome 
(Supplementary file 1A). Indeed, the ΔtRNAArg

CCU strain showed a severe growth defect compared to 
the wild-type strain (Figure 1A, blue and green curves, respectively). This growth difference demon-
strates the effect of translational imbalance on cellular growth. Although the deletion mutant of this 
single copy tRNA is viable (Clare et al., 1988; Kawakami et al., 1993), its severe growth defect also 
reveals the inability of the wobble interactions to fully compensate for the tRNA gene deletion.

The tRNA pool can rapidly evolve to meet translational demands
To learn how genomes adapt to translational imbalances, we performed lab-evolution experiments on 
the ΔtRNAArg

CCU strain, employing the procedure of daily growth and dilution to a fresh medium (Lenski 
et al., 1991). The deletion strain was grown under optimal laboratory conditions (rich medium at 30°C) 
and was diluted daily into a fresh medium by a factor of 120, corresponding to approximately 7 gen-
erations per cycle. Every 50 generations, the growth of the evolving population was compared to both 
the wild-type and the ancestor ΔtRNAArg

CCU strains. Strikingly, after 200 generations we observed a full 
recovery of the growth defect of the ancestor strain ΔtRNAArg

CCU, as the growth curve of the evolved 
population was indistinguishable from that of the wild-type strain (Figure 1A, red curve). Similar 
dynamics were observed in all four independent evolutionary lines.

In search of the potential genetic adaptations underlying this rapid recovery, we first looked for 
genetic alterations in other arginine tRNA genes. We found a single point mutation in another arginine 
tRNA gene that codes for tRNAArg

UCU. This mutation changed the anticodon triplet of tRNAArg
UCU from 

UCU to CCU (i.e., T→C transition). Consequently, the evolved tRNAArg
UCU perfectly matched the AGG 

codon (Figure 1B). Unlike the singleton tRNAArg
CCU, there are 11 copies of tRNAArg

UCU in the yeast 
genome. Although each of the 4 independent lab-evolution experiments showed the exact same 
solution (that is, a mutation in the anticodon of a tRNAArg

UCU gene), 3 different copies of this gene were 
changed among the 4 lines (i.e., 1 of the 11 copies of tRNAArg

UCU was mutated in 2 repetitions; see 
‘Materials and methods’). To confirm that a single point mutation in the anticodon of tRNAArg

UCU is 
sufficient to fully compensate for the growth defect of ΔtRNAArg

CCU, we artificially inserted the same 
T→C mutation into the deletion ΔtRNAArg

CCU mutant. We inserted the mutation into 1 of the 11 copies 
of the tRNAArg

UCU genes, a copy that resides on chromosome XI, and thus spontaneously mutated in 1 
of the evolution lines. Indeed, the artificially mutated strain, termed as MutΔtRNAArg

CCU, showed a full 
recovery of the deletion adverse phenotype (Figure 1C). This indicates that the T→C mutation in the 
anticodon is sufficient for the full recovery of the tRNAArg

CCU deletion phenotype.

Mutated tRNAArg
UCU is functional despite sequence dissimilarities with 

respect to the deleted tRNAArg
CCU

In general, all copies of each tRNA gene family tend to be highly similar in sequence in S. cerevisiae 
(Chan and Lowe, 2009). In particular, the sequences of the 11 copies of tRNAArg

UCU are 100% identical 
to each other. Yet, the 2 arginine tRNA, tRNAArg

UCU, and tRNAArg
CCU, differ in 21 of their 72 nucleotides 

(including the third anticodon position, Figure 2A). Thus, the evolutionary solution that occurred 
in our experiments created a ‘chimeric’ tRNA with a CCU anticodon, whereas the rest of the tRNA 
sequence (termed as the ‘tRNA scaffold’) remained as tRNAArg

UCU. The sequence identity among 
all members of the tRNAArg

UCU family suggests a functional role for the tRNA scaffold in addition 
to that of the anticodon (Schultz and Yarus, 1994; Konevega et al., 2004; Cochella and Green, 
2005; Olejniczak et al., 2005; Saks and Conery, 2007; Schmeing et al., 2011). Therefore, it is 
surprising that the chimeric tRNA performed just as well as the deleted tRNAArg

CCU in terms of cell 
growth, despite the major sequence differences between the two tRNA scaffolds. Thus, we raised 
the hypothesis that more challenging growth conditions may expose possible inadequacies in the 
chimeric tRNA. To test this notion, we compared the rescued strain, MutΔtRNAArg

CCU, which carries 
the chimeric tRNA, to the wild-type strain under an array of challenging conditions. Surprisingly, 
under all the examined conditions, we observed no significant growth difference between the two 
strains (Figure 2B). Hence, the chimeric tRNA provides a direct in vivo indication that the scaffolds 
of tRNAs, which encode for the same amino acid, may be interchangeable in terms of their effect 
on cellular growth under the conditions we tested.

http://dx.doi.org/10.7554/eLife.01339
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To examine the generality of our observation, 
we once again perturbed the tRNA pool in a wild-
type (WT) strain by deletion of an entire serine 
tRNA family, tRNASer

GCU that has four copies in the 
genome. A complete deletion of this gene family 
is lethal, indicating that the tRNASer

GCU is essential 
in S. cerevisiae. Although we could not evolve that 
strain, we did find that this quadruple deletion 
strain was viable when supplemented with a cen-
tromeric plasmid carrying the tRNASer

GCU gene. 
Thus, the lethality is conferred directly from the 
tRNA loss and is not due to other indirect effects 
(Figure 2—figure supplement 1). We hypothe-
sized that, as with tRNAArg

CCU, other chimeric serine 
tRNAs that carry a GCU anticodon, yet with the 
scaffold of another tRNA for serine, would also 
prevent the observed lethality. Indeed, a strain car-
rying a chimeric tRNA with a scaffold of tRNASer

CGA 
and the GCU anticodon is viable on the background 
of the tRNASer

GCU-family deletion (Figure 2—figure 
supplement 2). Therefore, we concluded that the 
identity of the anticodon is essential for the func-
tion of the tRNASer

GCU gene family. Thus, it appears 
that for the examined tRNAs the anticodon is a 
dominant feature in terms of cellular fitness, over-
shadowing other sequence elements.

Anticodon switching is a widespread 
phenomenon in nature
Although the anticodon of a tRNA gene was rap-
idly mutated under our laboratory conditions, thus 
regaining proper translational equilibrium, it is 
unclear to what extent this mechanism naturally 
occurs in species across the tree of life. To address 
this question, we performed a systematic bioin-
formatics screen for tRNA switching events in 
nature. We defined an anticodon-switching event 
as a case of a tRNA whose nucleotide sequence 
is closer to a tRNA gene with a different antico-
don than to a tRNA gene with the same antico-
don. To this end, we downloaded all the known 
tRNA sequences from the Genomic tRNA Database 
(Chan and Lowe, 2009), a collection that stores 
the tRNA pools of 524 species. We masked the 
anticodon triplet as ‘NNN’ in all tRNA genes, 
aligned all tRNA sequences from each species 
individually and inferred a maximum likelihood 
phylogenetic tree for each alignment. For each 
tRNA sequence, we calculated the shortest phy-
logenetic distance to another tRNA with the same 
anticodon (designated dsame) and the shortest 
distance to another tRNA with a different anti-
codon (designated ddiff). For each species, we 
defined its set of tRNA switching events as those 
in which ddiff<dsame (see ‘Materials and methods’, 
Figure 3—source data 1).

Figure 1. The growth defect associated with deletion of 
a singleton tRNA gene was rapidly rescued during the 
lab-evolution experiment. (A) Growth curve measure-
ments of wild-type (WT) (green), ΔtRNAArg

CCU (blue) and 
the evolved deletion (red) are shown in optical density 
(OD) values over time during continuous growth on rich 
medium at 30°C. (B) The mutation that was found to 
recover the deletion phenotype in the evolved strains 
is shown on the secondary structure of tRNAArg

UCU. 
Figure 1. Continued on next page

http://dx.doi.org/10.7554/eLife.01339
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Our analysis included 416 eubacterial, 68 eukar-
yotic, and 40 archaeal species. We found that 
tRNA switching events are present in all domains 
of life, as we detected at least 1 tRNA switching 
event per species in 8 bacteria, 58 eukarya, and 
1 archaeal species (Figure 3A). A retrospective 
counting revealed that most switching events 
occurred due to a mutation in the first position 
in the anticodon triplet that corresponds to the 
third codon position (see details in ‘Materials 
and methods’). For comparison, we masked as 
‘NNN’ additional triplets of nucleotides within 

the tRNA molecule, and found a higher percentage of discrepancies compared to the anticodon 
triplet (Figure 3—figure supplement 1; Supplementary file 1B).

Figure 3 demonstrates two examples of tRNA switching events, the first in Mus musculus and the 
second in Homo sapiens. In the first example, the phylogeny of tRNA sequences with glutamic acid 
anticodons is presented (Figure 3B). Notably, six out of the eight tRNAs with a UUC anticodon in 
M. musculus were clustered together in our analysis, while two other copies of the same anticodon 
identity were clustered closer to tRNA genes with a CUC anticodon (Figure 3C). The second example 
demonstrates a switching event for tRNA genes encoding for valine anticodons. In this study, a tRNA 
with a UAC anticodon was clustered with CAC and AAC tRNA genes and not with the other four UAC 
tRNAs (Figure 3D,E). Interestingly, the CAC and AAC tRNA genes are intermixed in the tree, suggest-
ing that anticodon switching was prevalent in the evolution of CAC and AAC tRNA genes in H. sapiens 
(Figure 3D,E). Also of interest, the switching events shown in mouse were not found in human and vice 
versa. Thus, in each of these two mammals the switching examples shown here probably occurred 
after they split from their common ancestor. In general, inspecting the relationship across species 
between the size of the tRNA pool and the number of detected switching events revealed a modest 
correlation, and in particular species with same size of tRNA repertoire manifested tRNA switching to 
different extents (not shown). This analysis suggests that future examination of the tRNA switching 
phenomenon in individual species could be of interest.

Multiple copies of rare tRNAs are deleterious to the cell
After demonstrating the prevalence of anticodon switching, we refocused on our lab-evolution results. 
The switching events that we observed (from tRNAArg

UCU to tRNAArg
CCU) suggest that the effective gene 

copy number of each tRNA anticodon set can change during evolution, presumably due to demand-
to-supply changes. Given that a single point mutation can functionally convert one tRNA into another, 
an interesting question emerges: why does the genome maintain a single copy of tRNAArg

CCU? T to C 
mutations must have occurred in evolution but they appear to have been selected against so as to 
preserve only a single copy of the CCU anticodon tRNA. Consistent with this hypothesis is the obser-
vation that other yeast species maintain tRNAArg

CCU at a single copy (Supplementary file 1C). We thus 
reasoned that an artificial increase in the copy number of a rare tRNA, but not of an abundant one, 
might result in a deleterious effect on the cells.

Indeed, transformation of a multi-copy plasmid containing a tRNAArg
CCU gene to a wild-type strain 

(termed as WTmultiCCU) resulted in a substantial growth reduction when compared to wild-type 
cells carrying an empty multi-copy plasmid (termed WTmultiControl). In contrast, when we created 
a strain with a similar multi-copy plasmid that contains the abundant tRNAArg

UCU gene, designated as 
WTmultiUCU, a growth profile much closer to that of WTmultiControl was observed (Figure 4A). 
These findings are consistent with the evolutionary tendency for yeast to keep a low copy number of 
tRNAArg

CCU and suggest that a high copy number of such rare tRNAs is deleterious to cells.
To demonstrate the generality of our findings, we employed the same assays in two additional cases. 

First, we examined 2 serine tRNAs, the singleton tRNASer
CGA and tRNASer

AGA that is found in the genome 
in 11 copies. In the second case, we focused on two glutamine tRNAs, the singleton tRNAGln

CUG and 
tRNAGln

UUG that is found in the genome in nine copies. In both the cases, we observed that the wild-
type strain supplemented with multiple copies of a singleton tRNA exhibit impaired growth compared 
to the same strain supplemented with the abundant tRNA for the same amino acid (Figure 4—figure 
supplements 1 and 2). Since the changes in tRNA family sizes during evolution likely occur gradually, 

The UCU anticodon nucleotides are marked with 
black circles, and the red circle indicates the mutation 
that occurred in the anticodon, that is T→C transition. 
(C) MutΔtRNAArg

CCU in which the same mutation that was 
found in the evolved strain was deliberately engineered, 
exhibits similar growth as the WT. Growth curve measure-
ments of WT (green) and of MutΔtRNAArg

CCU (magenta) 
are shown in OD600 values over time during continuous 
growth on rich medium at 30°C.
DOI: 10.7554/eLife.01339.003

Figure 1. Continued
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perhaps one copy at a time, we also examined the effect of adding low copy number plasmids 
carrying either tRNAArg

UCU or tRNAArg
CCU. The cells with the tRNAArg

CCU plasmid showed a modest 
growth defect compared to the cells with tRNAArg

UCU plasmid, yet only when grown at 39°C (Figure 4—
figure supplement 3).

Multiple copies of the rare tRNAArg
CCU induce proteotoxic stress

Why is it essential to keep certain tRNAs at a low level? One interesting possibility is that rare tRNAs 
are essential for the process of cotranslation folding, presumably because low abundance tRNAs pro-
vide a pause in translation that might be needed for proper folding (Thanaraj, 1996; Drummond and 
Wilke, 2008; Cabrita et al., 2010; Pechmann and Frydman, 2012). Other deleterious effects that 
may stem from a high copy number of tRNAArg

CCU could be misincorporation of arginine into non-
arginine codons, or the misloading of arginine tRNA molecules with other amino acids. These poten-
tial sources of errors are not mutually exclusive and can each contribute to the observed growth defect 
by exerting a protein folding stress.

Figure 2. The growth of MutΔtRNAArg
CCU carrying the chimeric tRNA compared to wild-type (WT) under different conditions. (A) The sequence of the 

chimeric tRNA is drawn showing the scaffold of tRNAArg
UCU with the mutated CCU anticodon. The anticodon triplet is marked with black circles. The 

evolved mutation is marked with a red circle. All 20 nucleotide differences between tRNAArg
UCU and tRNAArg

CCU are marked with blue background, next to 
which, in green letters, the original nucleotide of tRNAArg

CCU are written. (B) Growth curve measurements of WT (green) and of MutΔtRNAArg
CCU (magenta) 

are shown in OD600 values over time during continuous growth.
DOI: 10.7554/eLife.01339.004
The following figure supplements are available for figure 2:

Figure supplement 1. Quadruple deletion of tRNAser
GCU is lethal. 

DOI: 10.7554/eLife.01339.005

Figure supplement 2. A chimeric serine tRNA can rescue the lethality of the quadruple deletion. 
DOI: 10.7554/eLife.01339.006
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Figure 3. Anticodon switching is a widespread phenomenon in nature. (A) Number of species with at least one tRNA switching event in each domain 
of life. (B) The anticodon UUC convergently evolved in Mus musculus. A maximum likelihood phylogeny of tRNA sequences in M. musculus that 
decode glutamic acid (Glu) codons. Branch lengths express average nucleotide substitutions per site. Decimals on internal branches express branch 
support. (C) A comparison of nucleotide sequences for glutamic acid tRNA genes in M. musculus with anticodon UUC (top, tRNA1547 and tRNA359), 
‘switched’ UUC tRNAs (middle, tRNA286 and tRNA754), and CUC tRNAs (bottom, tRNA1002, tRNA745, tRNA303, tRNA999, tRNA996 tRNA709, tRNA1001, 
tRNA1912 and tRNA81). The anticodon triplet is boxed in gray. Red vertical bars indicate differences between sequences. (D) The anticodon UAC 
convergently evolved in Homo sapiens. A maximum likelihood phylogeny of tRNA sequences in H. sapiens encoding for valine (Val) is shown. (E) A comparison 
of nucleotide sequences for H. sapiens tRNAs with anticodons UAC (top, tRNA6), a ‘switched’ UAC tRNA (middle, tRNA40), and an AAC tRNA (bottom, 
tRNA136). The number of genes is according to the tRNA database.
DOI: 10.7554/eLife.01339.007
The following source data and figure supplements are available for figure 3:

Source data 1. Table of anticodon switchings in different species across the tree of life.
DOI: 10.7554/eLife.01339.008
Figure supplement 1. A comparison of discrepancy proportions at the anticodon triplet vs control triplets. 
DOI: 10.7554/eLife.01339.009
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To examine the possibility that the growth defect associated with multiple copies of tRNAArg
CCU is 

indeed associated with such a proteotoxic stress, we used an established method that examines the 
load on the protein quality control machinery of the cell (see ‘Materials and methods’) (Kaganovich 
et al., 2008). In this assay, we transformed cells with a plasmid harboring the human gene, von Hippel–
Lindau (VHL), fused to a fluorescent tag (mCherry). Fluorescently tagged VHL that is present as 

Figure 4. WTmultiCCU experiences a growth defect compared to WTmultiUCU and demonstrates higher levels of misfolded proteins. (A) Growth curve 
measurements of WTmultiControl (blue), WTmultiUCU (brown) and WTmultiCCU (khaki) are shown in optical density (OD) values over time during 
continuous growth. The WTmultiCCU strain carrying a high copy number plasmid harboring tRNAArg

CCU demonstrates slower growth compared to cells 
with an empty plasmid or with a tRNAArg

UCU plasmid that is mainly characterized by a longer growth delay (lag phase). (B) A demonstration of a WTmultiCCU 
cell in which the mCherry-Von Hippel–Lindau (VHL) proteins appear with a punctum phenotype when the protein quality control machinery is saturated 
with misfolded proteins. (C) A demonstration WTmultiUCU cell in which the quality control machinery is not occupied with other proteins; mCherry-VHL 
is localized to the cytosol. (D) WTmultiCCU, WTmultiUCU and WTmultiControl were transformed with a VHL-mCherry containing plasmid and visualized 
under the microscope; 1000 cells per strain were counted for either cytosolic or punctum localization of the VHL protein. The fold change in the number 
of cells containing puncta was then deduced by normalization to the WTmultiControl population. The 95% confidence interval is indicated. (E) The mRNA 
fold change of six representative heat-shock genes measured by real-time quantitative PCR (RT-qPCR). Presented values are the mean of two biological 
repetitions ± SEM. The significance of the fold change differences was examined using a t test, with *p<0.001 or **p<0.0001.
DOI: 10.7554/eLife.01339.010
The following figure supplements are available for figure 4:

Figure supplement 1. Multiple copies of rare tRNASer
CGA gene are deleterious compared to abundant tRNASer

AGA. 
DOI: 10.7554/eLife.01339.011

Figure supplement 2. Multiple copies of the rare tRNAGln
CUG gene are deleterious compared to abundant tRNAGln

UUG. 
DOI: 10.7554/eLife.01339.012

Figure supplement 3. Addition of low copy number tRNAArg
CCU is deleterious compared to low copy number tRNAArg

UCU when grown in heat. 
DOI: 10.7554/eLife.01339.013
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aggregated puncta (Figure 4B), and not as a disperse cytosolic localization (Figure 4C), indicates that 
the protein quality control machinery is saturated due to high levels of misfolding in the cell’s endog-
enous proteins. We transformed the VHL-mCherry plasmid to each of the multi-copy tRNA strains, 
WTmultiCCU, WTmultiUCU and WTmultiControl, and monitored the level of proteotoxic stress by 
quantifying the number of cells with puncta phenotype in each population. The fold change in those 
cells was then deduced by normalization to the WTmultiControl population. We found that while 
WTmultiUCU exhibited similar amount of cells with puncta as the WTmultiControl, the WTmultiCCU 
exhibited a threefold increase (Figure 4D).

The proteotoxic stress experienced by the two strains overexpressing tRNAs was further assessed 
by measuring the induction level of an array of heat-shock proteins (HSPs) using real-time quantitative 
PCR (RT-qPCR). Since the HSPs have been shown to undergo induction under proteotoxic stress, they 
are an excellent indicator for this stress (McClellan et al., 2005; Kaganovich et al., 2008). Indeed, we 
found a significant upregulation in mRNA levels for all the examined HSP genes in the WTmultiCCU 
strain, but not in the WTmultiUCU strain (Figure 4E). These findings further demonstrate that increas-
ing the copy number of a rare tRNA gene, but not of an already abundant one, results in proteotoxic 
stress in the cell.

Discussion
Genomic duplications, deletions, and anticodon mutations shape tRNA gene families, yet the evo-
lutionary scenarios that trigger changes in the tRNA pool have not been thoroughly explored. In our 
evolution experiments, a translational imbalance was imposed by a tRNA gene deletion that com-
promised growth and drove the tRNA pool to adapt to a novel translational demand. Importantly, 
organisms may experience equivalent imbalances when their gene expression changes due to 
altered environmental conditions or upon migrating to a new ecological niche (Gingold et al., 
2012). This scenario is particularly feasible given that the genes needed in various environments do 
show differences in codon usage, for example respiration as opposed to fermentation in yeast (Man 
and Pilpel, 2007).

Indeed, when faced with different environmental challenges, transcriptional changes affect the 
codon usage of the transcriptome (Gingold et al., 2012), and hence the demand for the various 
tRNAs, and may thus cause translational imbalances. To maintain optimal protein production, the 
tRNA pool is under pressure to restore the translational balance by accommodating the new trans-
lational demands. On a short timescale, the tRNA pool might respond non-genetically by changing 
expression profiles of the tRNAs (Tuller et al., 2010; Saikia et al., 2012; Pavon-Eternod et al., 2013a, 
2013b). Yet, if changes in demand-to-supply persist, a genetic change in the tRNA pool might become 
beneficial evolutionarily. In this work, we demonstrate how anticodon mutations provide a rapid mech-
anism to alter the tRNA pool. We propose that during evolution, novel translational requirements can 
be addressed by anticodon shifting of tRNA copies more readily than by duplications and deletions of 
tRNA genes. The tRNA pool can evolve to meet new translation demands by adjusting the ratios of 
tRNA families that code for the same amino acid. Within a single mutational event, anticodon switching 
holds the potential to rapidly change the ratios of tRNAs within the pool, by increasing the copy 
number of one tRNA family at the expense of a counterpart. A similar solution could be obtained by 
a sequence of genomic duplications and deletions of tRNA genes. These alternatives are likely to 
fixate less frequently than anticodon switching, as they may carry negative effects due to duplications 
or deletions of adjacent unrelated genetic features. Furthermore, our systematic search for tRNA 
switching events throughout the tree of life revealed the prevalence of tRNA anticodon mutations 
in nature. This observation is consistent with the results of our lab-evolution experiment and may be 
the evolutionary outcome to novel translational demands in the wild.

Studies on methionine tRNAs have previously shown that the scaffold sequences determine their 
function as either initiator or elongator Met tRNA (Von Pawel-Rammingen et al., 1992; Aström et al., 
1993; Kolitz and Lorsch, 2010). Yet, the initiator and the elongator represent extreme cases of tRNAs 
that are used at different stages in translation. The present chimeric tRNAs that emerged in our lab-
evolution experiments successfully replaced the deleted tRNA, despite differences in 20 nucleotide 
positions between the 2 tRNA scaffolds. If tRNA scaffolds are interchangeable in terms of the effect of 
their function on the fitness, what can explain the high sequence similarity observed among tRNA 
gene copies of the same family in yeast? It is possible that the sequence of the tRNA scaffold is indeed 
important under specific conditions that were not examined in this work, or that our measurements 

http://dx.doi.org/10.7554/eLife.01339
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were not sensitive enough to detect small selective disadvantages that can act against chimeric tRNAs 
in nature. Under these scenarios, the high sequence similarity can be explained by purifying selection 
that maintains sequence identity within tRNA families. Yet, there is also a possibility that the sequence 
similarity is not due to purifying selection but the result of ‘concerted evolution’, an evolutionary pro-
cess that maintains sequence identity by frequent recombination events among copies of the same 
gene family (Munz et al., 1982; Amstutz et al., 1985; Teshima and Innan, 2004). This possibility 
implies that the high conservation observed within tRNA gene families is not due to functionality, but 
is rather the result of neutral evolution. At present, it is not possible to determine which of the two 
possibilities explains best the observed sequence identity.

If a single point mutation in one of the tRNAArg
UCU copies enables it to function like a tRNA from 

a different family, what were the evolutionary constraints that have left some families with more mem-
bers while others with fewer? Is purifying selection acting to deliberately maintain low levels of certain 
tRNAs? Such selection would render their corresponding codons ‘non-optimal’. To examine potential 
adaptive functions of tRNA family sizes, we tested the consequences of increasing the sizes of several 
tRNA families. We found that keeping low copy tRNA families is adaptive, as increasing their copy 
number can result in a proteotoxic stress due to problems in protein folding.

Most of the published work on the functionality of codons that correspond to rare tRNAs have so 
far tested how modified codon usage of specific proteins influences their proper folding (Crombie 
et al., 1992; Komar et al., 1999; Cortazzo et al., 2002; Tsai et al., 2008; Zhang et al., 2009; Zhou 
et al., 2013). In contrast, we took a different approach, in which no protein coding gene sequence is 
modified, but rather the tRNA supply is manipulated. Thus, the effect we generated could be exerted 
on all genes, and we could indeed detect it as a global proteotoxic stress in the cell. Our observations 
are consistent with the theory that programmed pauses in the translation process could promote 
proper folding during translation (Thanaraj, 1996; Kramer et al., 2009; Cabrita et al., 2010; Wilke 
and Drummond, 2010). The overexpression of the rare tRNA could have thus impaired with cotransla-
tion folding. Yet, there could be additional reasons for the observed proteotoxic stress, which are not 
necessarily mutually exclusive. First, overexpression of tRNAArg

CCU may result in misincorporation of 
arginine into non-arginine codons. Second, other aminoacyl tRNA synthetases may aminoacylate 
an incorrect amino acid to the highly expressed tRNA. Misloading will result in the incorporation of 
a different amino acid instead of arginine. A potential part of the observed proteotoxic stress due to 
misincorporation still remains to be studied. Yet, such an effect should be relevant not only for the 
overexpression of the rare tRNAArg

CCU but also for the overexpression of the abundant tRNAArg
UCU. Our 

results show a sever proteotoxic stress only upon expression of the rare tRNA, thus landing more sup-
port to the intriguing hypothesis, that the proteotoxic phenotypes observed are due to converting 
a slow translating codon, scattered in many genes in the genome, into a fast one. This notion is con-
sistent with and complementary to the picture that emerges from single gene-based analyses.

When facing the need to adapt, the tRNA pool (that is the supply) provides evolutionary plas-
ticity to the translation machinery. The ability of the tRNA pool to change rapidly can be mainly attrib-
uted to its unique architecture in the form of multimember gene families. Only on a much longer 
evolutionary timescale, will the genome-wide codon usage of genes change so as to further fine tune 
the translational balance. Notably, the plasticity of the tRNA genes is constrained by the need to main-
tain proper protein folding (Drummond and Wilke, 2008). Thus, the need to accommodate changes 
in codon usage demands acts together with protein folding constrains to shape the tRNA pool in the 
living cells.

Materials and methods
Yeast strains and plasmids
The following S. cerevisiae strains were used in this study: ΔtRNAArg

CCU (based on Y5565, genetic back-
ground: ΔtR(CCU)J::Hyg, MATα, can1Δ::MFA1pr-HIS3 mfα1Δ::MFα1pr-LEU2 lyp1Δ ura3Δ0 leu2Δ0) 
(Bloom-Ackermann et al., In press) was used for lab-evolution experiments. MutΔtRNAArg

CCU is based 
on ΔtRNAArg

CCU and carries a mutation (T→C transition) in tR(UCU)K gene plus a URA3 selection marker. 
BY384 (MATa leu2Δ1 lys2Δ202 trp1Δ63 ura3-52 his3Δ200) was used to generate a complete deletion 
of the tRNASer

GCU gene family. BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and BY4742 (MATα 
his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) were used for examining the effect of increasing tRNA gene copy 
number.

http://dx.doi.org/10.7554/eLife.01339
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Plasmids used in this study to express tRNA genes were pRS316 (CEN, URA3), pRS425 (2µ, LEU2), 
and pRS426 (2µ, URA3). For the rescue assays of the quadruple serine deletion, the pQF50 (2µ, URA3) 
and pQF150 (2µ, LEU2) were used. For the protein quality control assays the pGAL-VHL-mCherry (2µ, 
LEU2) plasmid was used (Kaganovich et al., 2008). For additional information on plasmids and prim-
ers see Supplementary file 2.

Media
Cultures were grown at 30°C in either rich medium (1% bacto-yeast extract, 2% bacto-peptone and 
2% dextrose [YPD]) or synthetic medium (0.67% yeast nitrogen base with ammonium sulfate and with-
out amino acids and 2% dextrose, containing the appropriate supplements for plasmid selection). 
Protein quality control assays were performed on synthetic medium supplemented with 2% galactose 
as a carbon source. All chemicals used to create the media were manufactured by BD. All sugars, nucleic 
acids and amino acids were manufactured by Sigma-Aldrich.

Evolution experiments
Lab-evolution experiments were carried out by serial dilution. Cells were grown on 1.2 ml of YPD at 
30°C until reaching stationary phase and then diluted by a factor of 1:120 into fresh media (6.9 gener-
ations per dilution). This procedure was repeated daily until population growth under the applied 
condition matched the wild type. In all measurements of evolved populations, we used a population 
sample and not selected clones.

Liquid growth measurements
The cultures were grown at the relevant condition, and optical density (OD)600 measurements were 
taken during the growth at 30–45 min intervals until reaching early stationary phase. Qualitative growth 
comparisons were performed using 96-well plates (Thermo Scientific) in which 2 strains were divided 
on the plate in a checkerboard manner on the plate to cancel out positional geographical effects. 
For each strain, a growth curve was obtained by averaging over 48 wells.

Growth on 5-fluoro-orotic acid (5-FOA) plates
Strains were grown for 2 days in a non-selective liquid medium, which contains uracil (YPD), to allow 
growth of cells that lost the plasmid containing the URA3 counterselectable marker (Boeke et al., 
1984). Then, 100 µl were plated on a YPD plate and replicated on the following day on either YPD or 
standard 5-fluoro-orotic acid (5-FOA) (US Biological) plates to identify potential colonies that lost the 
plasmid. Following 2 days of incubation at 30°C, growth of the colonies was scored.

Measurements for saturation of the protein quality control machinery
We used a previously published method that allows examination of the protein quality control of the 
cell (Kaganovich et al., 2008). This assay provides an indication for the protein unfolding stress in cells 
by assessing the load on the protein quality control machinery. In this assay, the cells were introduced 
with a high copy number plasmid that contains the human gene VHL fused to a fluorescent tag 
(mCherry). VHL is a naturally unstructured protein and is dependent on two additional proteins (Elongin 
B and C) for proper folding in human cells. Expressing VHL in yeast cells, which lack VHL’s complex 
partners, leads to misfolding of the translated proteins. Under normal conditions, the misfolded VHL 
proteins are handled by the cell’s quality control machinery. When the quality control machinery is not 
saturated, the fluorescently tagged VHL appears in the cytosol. However, under stress, in which the 
quality control machinery is fully occupied, misfolded proteins in the cytosol are processed into dedi-
cated inclusions (JUNQ and IPOD) and form punctum structures. Hence, a punctum phenotype of the 
VHL-mCherry construct is an indication for cells that experience proteotoxic stress and saturation of 
the protein quality control machinery.

Wild-type yeast cells harboring the pGAL-VHL-mCherry (CHFP) fusion plasmid (Kaganovich et al., 
2008) and either an additional empty plasmid or the tRNA overexpression plasmid, were grown overnight 
on SC+2% raffinose, diluted into SC+2% galactose and grown at 30°C for 6 hr. The cells were visualized 
using an Olympus IX71 microscope (Olympus) controlled by Delta Vision SoftWoRx 3.5.1 software, 
with X60 oil lens. Images were captured by a Photometrics Coolsnap HQ camera with excitation at 
555/28 nm and emission at 617/73 nm (mCherry). The images were scored using ImageJ image processing 
and analysis software. The percentage of cells harboring VHL-CHFP foci (Puncta) in the overexpression 
strains were normalized to the level in a control strain carrying an empty plasmid.

http://dx.doi.org/10.7554/eLife.01339
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Computational identification of anticodon switching events
To characterize the extent of anticodon switching across the tree of life, we first downloaded all tRNA 
sequences from the Genomic tRNA Database (Chan and Lowe, 2009). The sequences in this database 
were discovered with the tRNAscan algorithm (Lowe and Eddy, 1997), which finds tRNA sequences 
by scanning genomic DNA. We removed psuedogene tRNAs, which are defined as those tRNAs with 
a COVE score less than 40.0 (Lowe and Eddy, 1997) . For each remaining tRNA sequence, we masked 
its anticodon triplet as ‘NNN’. We next grouped all tRNA sequences by their species, and then aligned 
the sequences for each species using Muscle with default settings (Edgar, 2004). For each species, we 
inferred a maximum likelihood phylogeny of its tRNA sequences using RAxML with the GTRCAT model 
(Stamatakis, 2006). We calculated statistical support for tree branches using SH-like approximate 
likelihood ratio test (Anisimova and Gascuel, 2006). We next interrogated each species’ tRNA 
phylogeny using DendroPy (Sukumaran and Holder, 2010). Specifically, we identified those tRNA 
sequences harboring an anticodon that appears in the genome more than once; for each of these 
tRNA sequences, we found the shortest distance to another tRNA with the same anticodon (dsame) and 
the shortest distance to another tRNA with a different anticodon (ddiff). We labeled tRNAs as putatively 
‘switched’ if ddiff<dsame.

RT-qPCR measurements of HSP genes in strains overexpressing tRNAs
Cultures were grown in rich medium at 30°C to a cell concentration of 1 × 107 cells/ml. Then, RNA was 
extracted using MasterPure kit (Epicentre-illumina) (EPICENTER Biotechnologies), and used as a template 
for quantitative RT-PCR using light cycler 480 SYBR I master kit (Roche Applied Science) and the 
LightCycler 480 system (Roche Applied Science), according to the manufacturer’s instructions.

Genomic copies of tRNAArg
UCU mutated during lab-evolution 

experiments
In all, 4 independent lab-evolution experiments that started with ΔtRNAArg

CCU as the ancestral strain 
showed full recovery of the deletion phenotype after 200 generations. In each of the evolved popula-
tions a mutation in one of the copies of tRNAArg

UCU was found to change the anticodon from UCU to 
CCU. The genomic copies of tRNAArg

UCU that were found to carry the mutation were: tR(UCU)K, tR(UCU)
G1 and tR(UCU)D that was changed in two of the independent cultures.

The contribution of different anticodon positions to tRNA switching 
events
Out of 4245 anticodon switching events that we detected, the first position in the anticodon was changed 
in 2540 cases while the second and third were only involved in 1448 and 1330 cases, respectively.
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Abstract 

Although the genetic code is redundant, synonymous codons for the same amino acid are 

not used with equal frequencies in genomes, a phenomenon termed codon usage bias. 

Previous studies have demonstrated that synonymous changes in a coding sequence can 

exert significant cis effects on the gene’s expression level. Yet, whether the codon 

composition of a gene can also affect the translation efficiency of other genes has not 

been thoroughly explored. To study how codon usage bias influences the cellular 

economy of translation, we massively converted abundant codons to their rare 

synonymous counterpart in several highly expressed genes in Escherichia coli. This 

perturbation reduces both cellular fitness and the translation efficiency of genes that 

have high initiation rates and are naturally enriched with the manipulated codon – in 

agreement with theory perditions. Interestingly, we could alleviate the observed 

phenotypes by increasing the supply of the tRNA for the highly-demanded codon, thus 

demonstrating that the codon usage of highly expressed genes was selected in evolution 

to maintain the efficiency of global protein translation. 
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Significance Statement: 

Highly expressed genes are encoded by codons that correspond to abundant tRNAs, a 

phenomenon thought to ensure high expression levels. An alternative interpretation is 

that highly expressed genes are codon-biased so-as to support efficient translation of the 

rest of the proteome. Until recently, it was impossible to examine these alternatives, 

since statistical analyses providing correlations but not causal mechanistic explanations. 

Massive genome engineering now allows recoding genes and examining effects on 

cellular physiology and protein translation. We engineered the E. coli genome by changing 

codon bias of highly expressed genes. The perturbation affected translation of other 

genes, depending on their codon demand – suggesting that codon bias of highly 

expressed genes ensures translation integrity of the rest of the proteome. 
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Introduction 

Since there are 61 sense codons but only 20 amino acids, most amino acids are encoded 

by more than a single codon. Yet, synonymous codons for the same amino acid are not 

utilized to the same extent across different genes or genomes. This phenomenon, termed 

codon usage bias, has been the subject of intense research and was shown to affect gene 

expression and cellular function through varied processes in bacteria, yeast and 

mammals(1–4). 

Though differential codon usage can result from neutral processes of mutational biases 

and drift(5–7), certain codon choices could be specifically favored as they increase 

efficiency(8–12) or accuracy(13–17) of protein synthesis. These forces would typically 

lead to codon biases in a gene because they locally exert their effect on the gene on 

which the codons reside. Indeed, there is a positive correlation between a gene’s 

expression level and the degree of its codon bias(1). Various systems have demonstrated 

how altering the codon usage synonymously can alter expression levels of the 

manipulated genes(18–21), an effect that could reach more than 1,000-fold(22).  

In addition to such cis effects, it is possible that codon usage also acts in trans, namely, 

that codon choice of some genes would affect translation of others due to a “shared 

economy” of the entire translation apparatus(23–25). Previous theoretical works have 

suggested that increase in elongation rate may reduce the number of ribosomes on 

mRNAs and therefore may indirectly increase the rate of initiation of other transcripts 

due to an increase of the pool of free ribosomes(6, 26). In addition, a recent 

computational study in yeast has also examined the indirect effects of synonymous codon 

changes on the translation of the entire transcriptome(27). Yet, experimental evidences 

of such changes are absent. Here we ask how manipulating the frequency of a single 

codon on a small subset of genes influences the synthesis of other proteins. 

To tackle this question, we replaced common codons with a synonymous, rare 

counterpart in several highly expressed genes. We then asked how this massive change in 

the codon representation in the transcriptome would affect the manipulated genes, other 
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genes, and the physiology and well-being of the cell (Figure 1). Interestingly, our genetic 

manipulation has not consistently affected the translation efficiency of the mutated 

genes, yet it did show a profound proteome-wide effect on the translation process. 

Importantly, translation efficiency of genes changed in a way that was dependent on the 

extent to which they contain the affected codons. These observations demonstrate that 

trans effects of codon usage could have strong implications in the cell. We could alleviate 

these physiological and molecular defects by increasing tRNA supply for the manipulated 

codon in a manner that restored codon-to-tRNA balance. Our work demonstrates that 

codon choice does not only tune the expression level of individual genes, but also 

maintains the efficiency of global protein translation in the cell. 
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Results 

Codon usage manipulation leads to proteome-wide changes in translation efficiencies in 

a codon-dependent manner  

We ask how the codon usage of a small subset of genes affects the translation of other 

genes. To this end, we manipulated the frequency of the arginine codon CGG since it is 

the only codon in E. coli that is translated by a single-copy tRNA gene, and whose tRNA 

does not translate other codons (see Box 1 for codon-anticodon interactions for CGN 

codons in E. coli)(28). Using genome editing, we were able to introduce 60 synonymous 

mutations into a single genome of an E. coli strain that converted CGU and CGC (“origin 

codons”) to CGG (“destination codon”). To maximize the effects of our manipulations on 

the proteome and on the cell, we re-coded genes that show high mRNA levels and are 

highly occupied by ribosomes. Notably, we avoided any re-coding of essential, ribosomal 

or global regulatory genes, as manipulating these genes might influence the cell directly, 

hence masking potential effects due to changes in codon usage. We introduced 

synonymous mutations in the eight genes with the highest ribosome-profiling occupancy 

score that are not essential and that do not relate directly to the above functions (Table 

1). Following our manipulation, the translation demand for the ACG anticodons is reduced 

by ~5%, the demand for the CCG anticodon is elevated by ~3.5-fold and our re-coded 

genes constitute ~70% of the new total demand for this codon in the cell (Table 1). See 

Materials and Methods for a full description of the re-coded process.  

We then asked how does our manipulation on the CGG representation in the 

transcriptome influence translation efficiency in the cell. To this end, we analyzed the 

transcriptome (by RNA-sequencing) and proteome (by mass-spectrometry) of the original 

wild-type and the re-coded strains (each strain was analyzed with three independent 

repetitions for both the transcriptome and proteome, see Materials and Methods). Then, 

we calculated the translation efficiency of each gene by normalizing the protein level to 

its corresponding mRNA level based on the three independent repetitions. 
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Notably, only one of the eight recoded genes showed reduced translation efficiency 

(Figure 2A), suggesting that the effects of our codon-usage manipulation on the genes 

that harbor the manipulation are weak. A possible reason for this weak effect is that in 

the current experiment only a single codon type has been manipulated in each re-coded 

gene, in contrast to prior studies in which entire ORFs have been manipulated(18, 21). It 

is also possible that our manipulations did affect translation efficiency in cis, though some 

compensatory effect, e.g. acting on the initiation level, may have acted to counter-act the 

reduction in elongation. Ultimately, this observation reassures that our codon 

manipulations successfully increased translation demand for the CGG codon and provides 

a unique opportunity to elucidate any trans effects of codon usage in highly expressed 

genes. 

We postulated that the increased usage of CGG at the expense of the CGU and CGC 

codons might reduce the translation efficiency of other genes in the genome, which were 

not mutated, in particular genes that naturally have high usage of CGG. Indeed, we 

observed 455 genes with increased and 566 genes with decreased translation efficiency 

at a fold change of above or below 1.5 in the re-coded strain compared to the wild-type 

(Figure 2A). Strikingly, genes with high occurrences of the CGG codon (>5 occurrences) 

that were not engineered by us demonstrated lower translation efficiencies in the re-

coded strain compared to the WT strain, compared to genes that do not use this codon 

(Figure 2A inset). This observation suggests that our CGG codon manipulation affected in 

trans the translation of other, non-recoded genes in the re-coded strain. In support of this 

result, the hundreds of genes that showed reduced translation efficiency demonstrated 

higher occurrences of the CGG codon compared to the genes with increased translation 

efficiency (Figure 2B). On the other hand, we observed that genes with increased 

translation efficiency were enriched with the CGU, CGC, and CGA codons (Figure 2C). We 

thus conclude that the increased demand on the CGG codon due to our recoding reduced 

the translation efficiency of genes that were enriched with this codon, while the relief of 

demand from the CGU, CGC, and CGA codons increased the translation efficiency of genes 

that utilize these codons. While most studies measure the resulted change in expression 
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level of a gene whose different codons were synonymously manipulated(18, 21), our 

results demonstrate for the first time how a frequency manipulation of a codon can affect 

global translation patterns by changing the translation efficiency of other genes according 

to their codon usage. 

Theory predicts that changes of elongation rate should have the largest expression effects 

on genes with high rates of translation initiation because these genes are more likely to 

suffer from traffic jams and ribosomal collisions(10, 27). Thus, we hypothesized that 

genes with reduced translation efficiency in the re-coded strain should have higher 

translation initiation rates compared to genes whose translation efficiency did not 

decrease. Indeed, reduce translation efficiency  genes demonstrate higher initiation rates 

as calculated with the Ribosome Binding Site Calculator(29) compared to un-effected or 

increased translation efficiency genes (Figure 2G). The observations that genes with 

reduced translation efficiency are more enriched with the CGG codon, on one hand, and 

have higher initiation rates on the other, strengthens our conclusion that the re-coded 

strain suffers from ribosomal elongation changes compared to WT cells. In line with 

theoretical predictions(10, 27), increasing the dwell time of ribosome during elongation 

reduces translation efficiency provided that initiation rate is sufficiently high. 

Proteome-wide changes in translation efficiencies are alleviated by increased tRNA 

supply  

To confirm our hypothesis that the changes in translation efficiencies resulted from the 

increased cellular demand for tRNACCG, the tRNA which translates CGG, we decided to 

elevate the availability of this tRNA and examine the effect on the translation phenotype. 

We, and others, have recently shown that a mechanism to increase tRNA availability is a 

mutation in the anticodon that changes the codon specificity of the tRNA(30, 31). We 

have shown that such anticodon switching mutations can maintain the functionality of 

tRNA genes, and are utilized by many species as an adaptive mechanism of the cellular 

tRNA pool.  
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Thus, we mutated the anticodon of one of the four copies of tRNAACG gene from ACG to 

CCG on the background of the re-coded strain (Box 1). We then analyzed the 

transcriptome and proteome of this anticodon-switched strain (based on three 

independent repetitions) and compared it to both the re-coded and wild-type strains. 

Strikingly, although the genome of the anticodon-switched strain is more similar to the 

re-coded strain, its global translation efficiency pattern clustered together with the wild-

type strain and away from the re-coded strain (Figure 2H). This observation suggests that 

manipulating the tRNA pool of the re-coded strain restored translation efficiency of genes 

back to their normal states.  

Indeed, only 124 and 408 genes with increased or decreased translation efficiency were 

respectively identified between the wild-type and the anticodon-switched strains (Figure 

2D), further demonstrating that the translation efficiency defect in the re-coded strain 

was alleviated upon anticodon switching. Strikingly, while CGG-enriched genes 

particularly tended to have reduced translation efficiencies in the re-coded strain, they 

demonstrated similar efficiencies to the wild-type in the anticodon-switched strain, and 

the difference in translation efficiency ratios between these genes and CGG-depleted 

genes was not observed (Figure 2D inset). Consistently, the genes with increased or 

decreased translation efficiency between the wild-type and anticodon-switched strain 

demonstrated the same distribution of codon occurrences for CGG or CGU+CGC+CGA 

(Figures 2E+F). These observations suggest that the additional supply of tRNACCG, at the 

expense of tRNAACG in the anticodon-switched strain, resulted in a more efficient 

translation of CGG-enriched genes. 

We next wanted to examine whether particular codons, especially those involved in the 

re-coding process (CGN codons), were enriched or depleted from the proteome of the re-

coded strain. We defined a “proteomic codon usage” as the multiplication of codon 

occurrences in each gene and the measured expression level of its protein product. We 

then calculated this index for each codon and calculated its re-coded/WT ratio (Figure 

3A). Remarkably, the CGG codon has the lowest re-coded/WT ratio from all 61 codons, 
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further showing how the introduction of this codon on highly expressed genes resulted in 

a global proteomic effect. Notably, the two origin codons, namely CGU and CGC, behaved 

similarly to all other sense codons in this measurement. When the same comparison was 

performed between the re-coded and the anticodon-switched strains, the observed ratio 

for CGG was significantly increased, while the ratio for the CGU and CGC codons was 

reduced (Figure 3B). These observations are consistent with the additional supply of 

tRNACCG at the expense of tRNAACG in the anticodon-switched strain. Interestingly, the 

codon CGA, which is translated by tRNAACG, demonstrated a similar behavior to CGG and 

not CGU or CGC. This trend is probably the result of the fact the CGA is the rarest CGN 

codon and usually co-occurs with CGG on the same genes. 

 

The re-coded strain suffers from reduced ability to translate transcripts with the CGG 

codon  

To directly demonstrate that the codon manipulation in the re-coded strain indeed 

hampered the translation of other genes in a codon-dependent manner, we sought a 

reporter that would read-out the effects of re-coding on translation of the CGG codon. To 

this end, we used two previously published versions of a YFP reporter with six 

occurrences of arginine(32), each version with an alternative codon choice - either CGU or 

CGG (Figure 4A). Since both YFP variants are not under any specific regulation by the cell 

and were shown to have similar mRNA levels(32), they can serve as a direct proxy for 

protein synthesis in each strain. 

Low-copy plasmids carrying either YFP-CGU or YFP-CGG were transformed to the wild-

type and re-coded strains. Then, YFP production was measured (see Materials and 

Methods) and a YFP-CGG/YFP-CGU ratio was calculated for each strain (Figure 4A). The 

wild-type strain demonstrated max YFP production values of 1224 (AU) and 1405 (AU) for 

YFP-CGU and YFP-CGG, respectively, leading to a YFP-CGG/YFP-CGU ratio of 1.15 (Figure 

4B), in agreement with a previous measurement of codon translation speeds in E. coli(33). 



10 
 

In comparison, the re-coded strain showed max YFP production values that were 

consistent with the phenotypes we observed for natural genes, namely, an increased 

value of 1316 (AU) for YFP-CGU and a reduced YFP-CGG value of 1328 (AU). Thus, the YFP-

CGG/YFP-CGU ratio was significantly reduced in the re-coded strain, and was measured to 

be 0.99 (Figure 4B). This result further supports the view that the increased translational 

demand for CGG in the re-coded strain hampers the production of proteins that utilize 

the CGG codon.  

Since the anticodon switching mutation alleviated the translation difficulty of the re-

coded strain, we next asked whether it would also restore translation efficiency of the 

YFP-CGG reporter. Hence, we generated three more anticodon-switched strains, each 

with a different tRNAACG copy that we mutated, and measured their YFP-CGG/YFP-CGU 

expression ratio. Indeed, all four strains with anticodon-switching mutation showed YFP-

CGG/YFP-CGU ratios closer to the wild-type strain and above the ratio of the re-coded 

strain (Figure 4B). These observations further support our conclusion that the re-coded 

strain suffers from low availability of tRNACCG due to the codon manipulation of CGG, 

which hampers protein production in a codon-specific manner. This perturbation could be 

alleviated upon increased tRNA supply in the cell. 

Increased codon usage of a rare codon reduces cellular fitness due to excessive use of 

tRNA molecules 

The physiological effects between the wild-type and re-coded strains encouraged us to 

ask whether these global translation efficiency changes disturb cellular growth and 

reduce fitness. We thus tested whether introducing the rare codon CGG on highly 

expressed genes is deleterious to the cell. We compared the growth of the wild-type and 

re-coded strains (see Materials and Methods) and observed that the re-coded strain 

suffers from a growth defect (Figure 5A). We used a recent logistic growth model(34) that 

calculates relative fitness from growth curves and observed that the relative fitness of the 

re-coded strain is 0.87 compared to the wild-type strain.  
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We next hypothesized that the growth reduction of the re-coded strain is the result of a 

lack in sufficient tRNA supply that leads to changes in translation efficiency of many 

genes. However, cellular fitness could also be affected by the off-target mutations that 

the re-coded strain accumulated following our genome engineering efforts. To test our 

hypothesis, we compared the growth of all four anticodon-switched strains, in which 

tRNACCG levels are increased, and observed that they all demonstrated increased relative 

fitness in comparison to the re-coded strain (Figure 5A). Importantly, when the same 

anticodon mutation was inserted on the background of the wild-type strain, a reduction 

in relative fitness was observed (Figure 5B). These results suggest that introducing a rare 

codon on highly expressed genes reduces cellular fitness not because of its effects on the 

manipulated genes themselves, but as it hampers translation of other genes due to an 

excessive use of tRNA molecules and result in global physiological perturbations.  

Changes in codon usage lead to mis-translation at modified positions 

We did not observe changes in translation efficiency for the recoded genes (Figure 2A), 

suggesting that the manipulation of CGG demand leads to stronger trans effects on global 

cellular patterns of translation efficiency. However, we hypothesized that our re-coding 

might have other cis effects in the form of mis-translation. To test this idea, we used our 

new developed methodology that uses mass-spectrometry proteomics data to identify 

peptides that harbor mis-translation events that results in the replacement of the correct 

amino-acid with a different one(35). Strikingly, we identified such events for two of the 

recoded genes, ompC and ompA, exactly at the positions in which CGU or CGC were 

respectively mutated into CGG (Figure 6). The mis-translation event for ompC was found 

in the re-coded strain, and changed the coded arginine with glutamine (which has a near-

cognate codon, CAG, to CGG) at position 238 of the protein. The mis-translation event for 

ompA was found in the ACS strain, and it changed the coded arginine with lysine at 

position 329 of the protein – suggesting that the additional tRNA(ACG) supply in this 

strain did not fully alleviated the mis-translation phenotype, similarly to other phenotypes 

we observed in this study.  
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Discussion 

Often in biology, a correlation between two factors could be explained either by a 

physiological causal link or by an evolutionary one(36). This is particularly relevant to the 

correlation that is broadly observed between codon usage and expression level(1, 2, 37–

39). On the one hand, optimal codon usage could lead to higher translation speeds(1, 28, 

40), suggesting that some proteins enjoy higher expression levels because of their codon 

usage. On the other hand, highly expressed genes could be strongly evolutionarily 

selected for codon optimization compared to lowly expressed genes because the fitness 

cost of not optimizing them is greater, and hence they force the genome to optimize their 

codon usage(13, 16, 18). Furthermore, specific codons may be selected for or against for 

reasons other than their effect on translation itself, for example to maintain mRNA 

structure(21), splicing signals(4), degradation rate of the transcript(41) or to minimize the 

cost of gene expression(42). 

An additional reason for the strong codon bias of highly expressed genes could be their 

massive representation in the transcriptome and overall impact on the translation 

machinery. Thus, a non-optimal codon presents on a gene with a high mRNA level could 

disturb the translation of other genes that utilize this codon(27).  

Here we study this possibility and our results provide the first experimental evidence that 

introducing a rare codon into highly expressed genes indeed hampers protein production 

of other genes, especially those that are encoded with that codon. In our experimental 

system, we introduced 60 new occurrences of a rare arginine codon, CGG, on highly 

expressed genes and this manipulation led to a reduction in translation efficiency of CGG-

containing genes. Importantly, we confirmed the protein synthesis difficulties of such 

genes by using two versions of a reporter gene that either use the CGG codon or avoid it. 

Thus, our results demonstrate that translation of a certain gene is not only influenced by 

its own regulation in the form of codon usage or mRNA level – but also by the translation 

efficiency of all other genes in the cellular genetic network. 
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One limitation of the genome engineering approach we took here is the accumulation of 

off-target mutations, in addition to the planned mutations (see also Materials and 

Methods). Yet, we argue that our observed phenotypes are mostly due to the on-target 

mutations for the following reasons. First, the off-target mutations in the re-coded strain 

did not manipulate CGG specifically (in direct contrast to the on-target mutations), and 

they are of diverse nature: half are synonymous mutations, 7 are inter-genic, 20% 

occurred inside un-validated or un-characterized proteins and none occurred in genes 

that are part of the translation machinery. It is extremely unlikely that the off-target 

mutations, which are diverse and do not show any pattern, would lead to the CGG-

specific phenotype we observed. Second, out of the 1021 genes with increased or 

decreased translation efficiency only 8 had off-target mutations in them. Importantly, 

these genes were either enriched or depleted from the CGG codon in agreement with the 

overall increased translational demand in the re-coded strain. This phenotype, together 

with the observation for the YFP production as discussed above, are extremely unlikely to 

occur as a result of the off-targets – especially given the fact that we planned the on-

target changes to directly manipulate CGG. Third, and most importantly, we could cure 

most of the phenotypic and molecular defects of the re-coded strain by tRNA 

manipulation in the form of anticodon switching. This is a very clear indication that the re-

coded strain mainly suffers from a direct effect of recoding, and less so due to off-target 

mutations. In particular, we observed the following phenotypes for the anticodon 

switched strain that support the direct effects of the on-target mutations: a) The 

anticodon switching strain has an additional copy of tRNA(CCG) and therefore the 

translation efficiency of the perfectly-matching codon CGG-containing genes is increased. 

b) The anticodon switching stain has one less copy of tRNA(ACG) and therefore the 

translation efficiency of CGU/CGC-containing genes is decreased. c) The translation 

efficiency pattern of the anticodon switched strain clusters with that of the WT, although 

it is genetically closer to the re-coded strain. This result shows that the re-coded strain 

indeed suffers from imbalance between CGG demand and tRNA(CCG) supply that 

anticodon switching fixes. If off-targets were dominant in determining the phenotypes we 



14 
 

observe, we would have obtained exactly the opposite result – that the anti-codon 

switched recoded strain would have clustered with the recoded strain since they share 

the off-target mutations. 

Our observations are also relevant to the context of heterologous gene expression. The 

codon usage of a gene is most relevant to its successful expression in a foreign system(1, 

22). Yet, the effects of artificially expressing a gene that is not native to the genome, 

usually to high levels, on cell physiology has not been explored thoroughly. Our results 

allow to measure and appreciate the proteome-wide changes under such conditions. 

Although in our systems the re-coded genes are natural to the genome, it is likely that 

they apply to heterologous proteins, which are thus predicted here to affect the 

translation apparatus in a similar manner as in our case due to changes in codon 

demands. 

Finally, this work raises the question of whether changes in global translation efficiencies 

could pose a challenge to the translation machinery both physiologically and 

evolutionarily. Previous works have demonstrated how codon-to-tRNA balance reacts to 

changes in the environment(32, 43, 44), to the formation of cancerous tumor(45), or to 

an evolutionary challenge(30, 46). In agreement with these works, we observed that the 

re-coded strain suffers from a growth defect, providing a need for selection to optimize 

the translation economy in the cell. Interestingly, we could alleviate these translation and 

growth phenotypes by providing more tRNA supply that could meet the new CGG 

demand. Thus, our work demonstrates that codons and tRNA genes may co-evolve not 

only to tune the expression level of individual (highly expressed) genes, but also to 

maintain the efficiency of global protein translation in the cell.  
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Materials and Methods 

Genome Engineering 

To introduce synonymous mutations that replace origin codons (CGU & CGC) to the 

destination codon (CGG), we used Co-Selection Multiplex Automated Genome 

Engineering (CoS-MAGE) as previously described(47–49). The background E. coli strain 

was EcM2.1, an especially designed strain for high MAGE efficiency(50). Each day one 

CoS-MAGE cycle was perform with ten 90mer oligos and selecting either for or against the 

tolC marker. Briefly, cells were grown overnight at 34°C. Then, 30 µl of the saturated 

culture were transferred into fresh 3ml of LBL medium until reaching OD=0.4 and then 

moved to a shaking water bath (350 RPM) at 42°C for 15 min after which it was moved 

immediately to ice. Next, 1ml was transferred to an Eppendorf tube and cells were 

washed twice with sterile water at centrifuge speed of 13,000g for 30 seconds. Next, the 

bacterial pellet was dissolved in 50µl of ddW containing 4µM of ten SS-DNA oligos + a tolC 

dedicated oligo and transferred into a cuvette. Electroporation was performed in 1.78kV, 

200ohms, 25µF. After electroporation, the bacteria were transferred into 1ml of fresh LBL 

for recovery and then moved to selection medium. Selection for tolC was performed on 

liquid LBL + 0.005%SDS and selection against tolC was with LBLCCoV plates that contain 

50g/ml Carbenicillin + 64g/ml Vancomycin + purified Colicin E1(51). Every four CoS-

MAGE cycles, random colonies were screened for on-target mutations via multiplex allele 

specific colony PCR (mascPCR), and colonies with highest number of mutations were 

sequenced for further verification. Then, the best colony was picked for successive 

engineering via additional CoS-MAGE cycles. 

To facilitate re-coding efforts, we split the eight targeted genes into two groups according 

to their genomic loci (Supplementary Figure 1). Strain A was re-coded for genes: ahpC, 

cspE, pal, ompX, ompF & ompA. Strain B was re-coded for genes: atpE & ompC. After 

engineering was completed for both strains, we merged their genome by following the 

conjugative assembly genome engineering (CAGE) protocol(52, 53). Strain A was the 

donor, and thus was transformed with the pRK29 plasmid while strain B was the 

recipient. Selection for final strain was done on LBL plates with 0.005% SDS + 100g/ml 
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Spectinomycin + 5g/ml Gentamycin. To maintain a similar genetic background as 

possible between the re-coded and the wild-type strains, we also transformed the 

resistance markers for SDS, Spectinomycin and Gentamycin to the same loci as in the re-

coded strain. 

We confirmed the successful introduction of all 60 planned genomic changes by whole-

genome sequencing. We also revealed additional 58 off-target mutations as typically 

happens with this genome-editing technology(54). Any off-targeted gene, which was 

mutated unintentionally, was therefore excluded from all our down-stream analyses. 

Importantly, the off-target mutations in the re-coded strain did not manipulate CGG 

specifically (in direct contrast to the on-target mutations), and they are of diverse nature: 

half are synonymous mutations, 7 are inter-genic and did not affect any gene, 20% 

occurred inside un-validated or un-characterized proteins and none occurred in genes 

that are part of the translation machinery. Thus, it is unlikely that the off-target 

mutations, which are diverse and do not show any pattern, would lead to the CGG-

specific phenotype we observed. See full discussion on off-target mutations in Discussion 

section.  

See list of off-target mutations in Supplementary File 1 and a list of strains, CoS-MAGE 

oligos, mascPCR primers and tolC information in Supplementary File 2. 

 

Liquid growth measurements  

Cultures were grown for 48hours in LB medium at 30oC, back diluted in a 1:100 ratio and 

dispensed on 96-well plates in a checkerboard manner. Wells were measured for optical 

density at OD600 and measurements were taken during growth at 30min intervals until 

reaching stationary phase. For each strain, a growth curve was obtained by averaging all 

wells. Then, we converted these curves to relative fitness using the Curveball 

approach(34). 
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YFP production measurements 

Each strain was transformed with the plasmid pZS*11-YFP-Kan harboring a Kan resistance 

cassette and a YFP gene with six occurrences of either CGG or CGU. Growth was 

measured as described in Liquid growth measurements section only YFP measurements 

(excitation=500±25nm, emission=540±25nm) were taken in addition to OD600. YFP 

production rate was measured as previously described(55) by subtracting the YFP value at 

time t by the YFP value in time t-1 and dividing the result by OD600 value at time t. 

Maximal production rate was defined as the highest value on this curve. We follow the 

YFP production along the entire growth curve (from lag to saturation) as it includes all the 

different physiological states the cells experience under these growth conditions. Then, a 

YFP-CGG/YFP-CGU ratio was calculated for each strain.  

 

Harvesting cells for transcriptome and proteome analyses 

To compare the transcriptome of the wild-type, re-coded and anticodon-switched strains, 

we grew each strain with three independent repetitions in LB at 30oC over-night. Then, 

for each repetition 400µl of culture was diluted in 50ml of LB and grew until cells reached 

OD600 of 0.4. Cells were flash frozen in liquid nitrogen and pellets were used for either 

RNA-sequencing or mass-spectrometry. 

 

Transcriptome analysis 

RNA-sequencing was performed as described in Dar et al(56). RNA was extracted with 

standard protocol. Then, samples were treated with DNase using TURBO DNA-free™ Kit 

by Ambion and rRNA was depleted by using epicenter’s Ribo-Zero rRNA Removal Kit. 

Next, Strand-specific RNA-seq was performed with the NEBNext Ultra Directional RNA 

Library Prep Kit. Libraries were sequenced by using the Illumina Nextseq with a read 

length of 50 nucleotides. 
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Proteome analysis 

Sample preparation for mass-spectrometry 

Cell pellets were subjected to in-solution tryptic digestion using a modified Filter Aided 

Sample Preparation protocol (FASP). All chemicals are from Sigma Aldrich, unless stated 

otherwise. Sodium dodecyl sulfate buffer (SDT) included: 4%(w/v) SDS, 100mM Tris/HCl 

pH 7.6, 0.1M DTT. Urea buffer (UB): 8M urea (Sigma, U5128) in 0.1M Tris/HCl pH 8.0 and 

UC buffer: 2M Urea, pH 7.6-8.0 (dilute UB X 4 with 0.1M Tris-HCl pH 7.6). Cells were 

dissolved in 100μl SDT buffer and lysed for 3min at 95°C. Then, centrifuged at 16,000RCF 

for 10min. 30μl were mixed with 200μl UB and loaded onto 30kDa molecular weight 

cutoff filters and spun down. 200μl of UA were added to the filter unit and centrifuge at 

14,000g for 40min. Trypsin was then added and samples incubated at 37°C overnight. 

Digested proteins were then spun down, acidified with trifluoroacetic acid and stored in -

80°C until analysis. 

 

Liquid chromatography 

ULC/MS grade solvents were used for all chromatographic steps. Each sample was 

fractionated using high pH reversed phase followed by low pH reversed phase separation. 

200μg digested protein was loaded using high Performance Liquid Chromatography 

(Agilent 1260 uHPLC). Mobile phase was: A) 20mM ammonium formate pH 10.0, B) 

acetonitrile. Peptides were separated on an XBridge C18 column (3x100mm, Waters) 

using the following gradient: 3% B for 2 minutes, linear gradient to 40% B in 50min, 5 min 

to 95% B, maintained at 95% B for 5 min and then back to initial conditions. Peptides 

were fractionated into 15 fractions. The fractions were then pooled: 1 with 8, 2 with 9, 3 

with 10, 4 with 11, 5 with 12, 6 with 13 and 7 with 14-15. Each fraction was dried in a 

speedvac, then reconstituted in 25μl in 97:3 acetonitrile:water+0.1% formic acid. Each 

pooled fraction was then loaded using split-less nano-Ultra Performance Liquid 

Chromatography (10 kpsi nanoAcquity; Waters, Milford, MA, USA). The mobile phase 

was: A) H2O + 0.1% formic acid and B) acetonitrile + 0.1% formic acid. Desalting of the 
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samples was performed online using a reversed-phase C18 trapping column (180μm 

internal diameter, 20mm length, 5μm particle size; Waters). The peptides were then 

separated using a T3 HSS nano-column (75μm internal diameter, 250mm length, 1.8μm 

particle size; Waters) at 0.35μl/min. Peptides were eluted from the column into the mass 

spectrometer using the following gradient: 4% to 35%B in 150 min, 35% to 90%B in 5min, 

maintained at 95% for 5min and then back to initial conditions. 

 

Mass Spectrometry 

The nanoUPLC was coupled online through a nanoESI emitter (10 μm tip; New Objective; 

Woburn, MA, USA) to a quadrupole orbitrap mass spectrometer (Q Exactive Plus, Thermo 

Scientific) using a FlexIon nanospray apparatus (Proxeon). 

Data was acquired in DDA mode, using a Top20 method. MS1 resolution was set to 

60,000 (at 400m/z) and maximum injection time was set to 20msec. MS2 resolution was 

set to 17,500 and maximum injection time of 60msec. 

 

Data processing and analysis 

Raw data was imported into the Expressionist software (Genedata) and processed as 

previously described(57). The software was used for retention time alignment and peak 

detection of precursor peptides. A master peak list was generated from all MS/MS events 

and sent for database searching using Mascot v2.5 (Matrix Sciences). Data was searched 

against Escherichia coli K12 protein database (http://www.uniprot.org/) appended with 

125 common laboratory contaminant proteins. Fixed modification was set to 

carbamidomethylation of cysteines and variable modification was set to oxidation of 

methionines. Search results were then filtered using the PeptideProphet algorithm(58) to 

achieve maximum false discovery rate of 1% at the protein level. Peptide identifications 

were imported back to Expressions to annotate identified peaks. Quantification of 

proteins from the peptide data was performed using an in-house script(57). 
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Data was normalized base on the total ion current. Protein abundance was obtained by 

summing the three most intense, unique peptides per protein. Principal Component 

Analysis was used to assess global integrity of the data and search for outlier samples. 
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Figure Legends 

 

Figure 1 – Does the codon usage of a sub-set of genes affect translation efficiencies of other genes? 

Upper panel: Hypothetical genomes of wild-type and re-coded strains are shown. Using genome 

engineering, we replaced abundant codons (“origin codon”, blue lines) with rare codons (“destination 

codon”, red lines) in highly expressed genes (white background). 

Bottom left: two potential effects of re-coding on fitness: either reduce, or not affect the fitness. 

Bottom middle: The translation efficiency of re-coded genes could be increased, decreased or not changed 

at all. 

Bottom right: The translation efficiency of non-recoded genes that have the origin (blue) or destination 

(red) codon could be increased, decreased or not changed at all. 

 

Figure 2 – Manipulating codon frequency of CGG results in global translation efficiency changes 

A| We carried RNA-sequencing analysis of the transcriptome and mass-spectrometry analysis of the 

proteome for both the wild-type and re-coded strains. This allowed us to calculate translation efficiency 

(protein/mRNA) for each gene and classify two gene groups of increased or decreased translation efficiency 

with a fold change threshold of 1.5. The eight re-coded genes are colored in black, increased translation 

efficiency group is colored in blue, decreased translation efficiency group is colored in red and CGG-

enriched genes are colored in green. 

Inset| Ratios of translation efficiency between re-coded and wild-type cells for CGG-enriched genes (>5 

occurrences) and CGG-depleted genes (no occurrences). CGG-enriched genes show lower translation 

efficiency ratios, p-Value=0.01. 
B| Distribution of CGG occurrences, translated by tRNACCG, for increased (blue) or decreased (red) 

translation efficiency genes in re-coded strain compared to the wild-type strain. The group of decreased 

translation efficiency genes demonstrates higher CGG occurrences (p-Value=0.0018). 

C| Distribution of CGU+CGC+CGA occurrences, all translated by tRNAACG, for increased (blue) or decreased 

(red) translation efficiency genes in re-coded strain compared to the wild-type strain. The group of 

increased translation efficiency genes demonstrates more codon CGU+CGC+CGA occurrences (p-

Value=6.79*10-5). 

D| To increase tRNACCG supply, we mutated the anticodon of tRNAACG from ACG to CCG on the background 

of the re-coded strain, and termed this new strain as anticodon switched strain. We then analyzed its 

transcriptome and proteome. Note that much less genes are now deviating from the diagonal, particularly 

the CGG-enriched genes in green, suggesting that the anticodon switching mutation alleviated the 

translational difficulty of the re-coded strain. Color code is the same as in A. 

Inset| CGG-enriched genes now show similar translation efficiency ratios as CGG-depleted genes, p-

Value>0.05. 
E| Same as B, but for the increased and decreased translation efficiency genes in anticodon-switched strain 

compared to the wild-type strain. In contrast to the previous comparison in B, these two groups utilize the 

CGG codon to the same extend (p-Value>0.05). 

F| Same as C, but for the increased and decreased translation efficiency genes between the wild-type and 

anticodon-switched strain. In contrast to the previous comparison in C, these two groups utilize the 

CGU+CGC+CGA codon to the same extend (p-Value>0.05). 

G| Translation initiation rates for increased, decreased and un-affected genes between re-coded and wild-

type strains, as defined in A. Note that decreased translation efficiency genes, which are also enriched with 

CGG, also show higher initiation rates (p-Value=0.01) – in agreement with theory’s prediction. 
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H| The translation efficacy pattern of the anticodon-switched strain clustered closer to the wild-type strain 

and away from the re-coded strain. 

 

Figure 3 – Codon manipulation affects proteomic codon usage  

A| We defined the codon proteomic usage as the multiplication of codon occurrences in each gene and the 

measured expression level of its protein product. We calculated the re-coded/WT ratio of this index for 

each of the 61 sense codons and observed that the CGG codon has the lowest value. 

B| The same as A, but comparing the anticodon-switched strain with the wild-type. Due to the additional 

supply of tRNACCG, at the expense of tRNAACG, the CGG codon demonstrates similar values to other codons. 

Here, CGU and CGC show lower values than in A. 

 

Figure 4 – Increased translational demand for CGG hampers protein synthesis of a reporter gene  

A| To directly link frequency manipulation of CGG with protein synthesis of other genes, we utilized two 

versions of a YFP reporter-gene with six occurrences of either CGU or CGG. These YFP reporters were 

introduced separately to either the wild-type or the re-coded strain. Following the production of YFP vs. 

time along the growth cycle allowed us to derive the maximal YFP production for each combination of strain 

& YFP version. 

B| For each strain, a YFP-CGG/YFP-CGU ratio is shown for maximal YFP production. The re-coded strain 

demonstrates lower ratios for both these parameters compared to the wild-type strain (p-Value=5.6*10-5), 

supporting our observation that changing the codon usage of small subset of genes hampers the production 

of other genes that contain the CGG codon. Upon anticodon switching on the background of the re-coded 

strain, maximal YFP rate is restored to similar values of the wild-type strain. 

 

Figure 5 – Change in global translation efficiency patters is deleterious 

A| Growth experiment (OD vs. time) of the wild-type strain (blue), the re-coded strain (red) and the four 

anticodon-switched strains (tRNAACG argQ in dark orange, tRNAACG argZ in dark yellow, tRNAACG argY in 

bright yellow, tRNAACG argV in bright orange). The re-coded strain demonstrates reduction in relative fitness 

to 0.87 compared to the wild-type strain (p-Value<10-10). The four strains with anticodon switching 

(increased tRNACCG supply) on the background of the re-coded strain demonstrate a higher fitness 

compared to the re-coded strain itself, demonstrating that restored translation efficiencies patters also 

alleviated the growth defect (relative fitness compared to re-coded strain of switched argQ = 1.06, 

argZ=1.08, argY=1.02 and argV=1.04). 

B| Switching the anticodon of tRNAACG from ACG to CCG on the background of the wild-type strain reduces 

fitness (relative fitness compared to wild-type strain of switched argQ = 0.95 and argZ=0.96). 

 

Figure 6 – introducing CGG on highly-expressed genes results in mis-translation events 

Using a new methodology to identify translation errors from mass-spectrometry data, we identified such 

events for two of the recoded genes, ompC and ompA, exactly at the positions in which CGU or CGC were 

respectively mutated into CGG. While we did not find errors in the wild-type strain, we did observe them in 

the re-coded and anticodon-switched strains. The mis-translation event for ompC was found in the re-

coded strain, and it changed the coded arginine with glutamine (which has a near-cognate anticodon, CUG) 

at position 238 of the protein. The mis-translation event for ompA was found in the anticodon-switched 

strain, and it changed the coded arginine with lysine at position 329 of the protein. 
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Supplementary Figure 1 – Genome engineering to create re-coded strain 
The eight re-coded genes were split into two groups according to genome loci. Group A =  ahpC, cspE, pal, 

ompX, ompF & ompA; Group B = atpE & ompC. To facilitate the genome editing process, each group was re-

coded separately as described in methods section. After each group was successfully re-coded and 

validated via Sanger sequencing, selection markers were introduced to enable the merger between the two 

genomes by using the CAGE technology. Additionally, the donor strain was transformed with pRK29 that 

harbors the conjugation machinery. After conjugation was performed, cells were selected to all three 

markers and were then grown in permissive conditions that resulted in the loss of pRK29. 

 
 
 
Supplementary Figure 2 – Manipulating codon frequency of CGG results in global proteomic changes 
A| The introduction of CGG on highly expressed genes results in massive proteomic changes between the 
re-coded and wild-type strains. 
B| Similarly to translation efficiency, as seen in Figure 2D, increasing tRNA(GGC) supply with an anticodon 
switching mutation restores the proteome of the cell back to its wild-type form. 
 
 
Box 1 – The arginine CGN box 
We re-coded CGU and CGC (“origin codons”) to CGG (“destination codon”).  In E. coli, both origin codons 

are translated by tRNAACG with the anticodon ACG due to an A-to-I modification that is mediated by the 

enzyme tRNA-specific adenosine deaminase (tadA). The destination codon is solely translated by tRNACCG, 

which translate no other codons. tRNAACG and tRNACCG appear in the genome with four and one copies, 

respectively. A direct arrow symbolizes fully-match interactions between codon and anticodon, while 

dashed arrows represent wobble interactions, which are enabled by modifying the ACG anticodon to ICG. 
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Table 1

Genes
# CGU

Codons
# CGC

Codons

% of total 
CGG 

translation 
demand after 

re-coding

ompA 3 10 25.8

ompC 1 12 18.5

ompF 2 10 9.1

ompX 2 3 5.7

pal 0 8 4.5

ahpC 1 5 3.3

atpE 0 2 2.7

cspE 1 0 1.8

Total: 10 50 71.3
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Supplementary File 1 

Off-target Mutations in re-coded strain 

Position Ref Alt Gene Impact Info  Effect 

75915 G A sgrR Moderate P462L NON_SYNONYMOUS_CODING 

291125 G A insB1 
+ insA 

Moderate R10C + 
G74 

NON_SYNONYMOUS_CODING 
SYNONYMOUS_CODING 

344053 G T  Modifier  INTERGENIC 

451664 T C  Modifier  INTERGENIC 

520507 C T ybbP Moderate A31V NON_SYNONYMOUS_CODING 

553657 G A lpxH Moderate T95M NON_SYNONYMOUS_CODING 

644379 C T rna Moderate G209R NON_SYNONYMOUS_CODING 

651008 A G citC Low T283 SYNONYMOUS_CODING 

794306 G A modE Low S113 SYNONYMOUS_CODING 

826233 C T ybhS Low L340 SYNONYMOUS_CODING 

869757 C T gsiB Moderate A116V NON_SYNONYMOUS_CODING 

871927 A G gsiD Modifier N13S NON_SYNONYMOUS_CODING 

891137 G A ybjC Low L75 SYNONYMOUS_CODING 

975807 C T mukE Low N62 SYNONYMOUS_CODING 

976037 A G mukE Moderate N139S NON_SYNONYMOUS_CODING 

987200 G A  Modifier  INTERGENIC 

1019932 T C ompA Moderate D41G NON_SYNONYMOUS_CODING 

1055317 T C torS Moderate T288A NON_SYNONYMOUS_CODING 

1198145 T C ymfE Moderate I31M NON_SYNONYMOUS_CODING 

1358078 A G puuP Low A370 SYNONYMOUS_CODING 
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1450180 A G tynA Low G390 SYNONYMOUS_CODING 

1568925 T C gadC Modifier  DOWNSTREAM 

2067300 C T insH1 Moderate G8R NON_SYNONYMOUS_CODING 

2099006 T C ugd Moderate Y203C NON_SYNONYMOUS_CODING 

2262518 G A fruB Low G326 SYNONYMOUS_CODING 

2312925 TAAATGC T  Modifier  INTERGENIC 

2345274 A G nrdA Moderate H137R NON_SYNONYMOUS_CODING 

2564421 G GT yffR Modifier  DOWNSTREAM 

2599853 GT G  Modifier  INTERGENIC 

2602010 G GC  hyfB High -65? FRAME_SHIFT 

2623506 A G ppk Moderate T155A NON_SYNONYMOUS_CODING 

2650927 C T ½ yfhM Moderate S454N NON_SYNONYMOUS_CODING 

3020579 G A ygfM Moderate A14T NON_SYNONYMOUS_CODING 

3079014 G A cmtB Moderate A106V NON_SYNONYMOUS_CODING 

3101032 G GC yggN High -197? FRAME_SHIFT 

3114683 G A yghJ Moderate A1477V NON_SYNONYMOUS_CODING 

3123400 C T glcB Moderate G136S NON_SYNONYMOUS_CODING 

3203932 C T bacA Moderate R67H NON_SYNONYMOUS_CODING 

3310505 G A pnp Low L222 SYNONYMOUS_CODING 

3356723 G A gltB Moderate G667S NON_SYNONYMOUS_CODING 

3420670 A G yhdX Low G179 SYNONYMOUS_CODING 

3479581 T C kefB Moderate T343A NON_SYNONYMOUS_CODING 

3680536 G A yhjJ High Q469STOP STOP_GAINED 

3962536 A G rep Low E620 SYNONYMOUS_CODING 

3974525 A G wecD Modifier N20S NON_SYNONYMOUS_CODING 
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4173879 A G birA Low E266 SYNONYMOUS_CODING 

4196244 A G  Modifier  INTERGENIC 

4309790 C T alsA Low A397 SYNONYMOUS_CODING 

4347986 A G dcuB Low G253 SYNONYMOUS_CODING 

4356415 T C dtpC Modifier  UPSTREAM 

4390374 C T psd Modifier  UPSTREAM 

4419725 C CT  Modifier  INTERGENIC 

4472418 C CA pyrL High -39? FRAME_SHIFT 

4492664 A G idnO Moderate F230L NON_SYNONYMOUS_CODING 

4561974 C T yjiJ Low P234 SYNONYMOUS_CODING 

4563557 A G yjiK Moderate I16T NON_SYNONYMOUS_CODING 

4564586 C T yjiL Moderate R35H NON_SYNONYMOUS_CODING 

4616629 C T yjjI High W146STOP STOP_GAINED 

 
 
Off-target Mutations - Summary 

 Non-Synonymous 26 

Synonymous 15 

Intergenic 7 

Frame shift 3 

Upstream 2 

Downstream 2 

Stop gained 2 

NS & SY 1 

Sum 58 
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SUMMARY

Gene expression burdens cells by consuming re-
sources and energy. While numerous studies have
investigated regulation of expression level, little is
known about gene design elements that govern
expression costs. Here, we ask how cells minimize
production costs while maintaining a given protein
expression level and whether there are gene archi-
tectures that optimize this process. We measured
fitness of �14,000 E. coli strains, each expressing
a reporter gene with a unique 50 architecture. By
comparing cost-effective and ineffective architec-
tures, we found that cost per protein molecule could
be minimized by lowering transcription levels, regu-
lating translation speeds, and utilizing amino acids
that are cheap to synthesize and that are less hydro-
phobic. We then examined natural E. coli genes and
found that highly expressed genes have evolved
more forcefully to minimize costs associated with
their expression. Our study thus elucidates gene
design elements that improve the economy of pro-
tein expression in natural and heterologous systems.

INTRODUCTION

In nature, cells must express different genes in a regulated

manner. On one hand, genes must be expressed at levels that

maximize their benefit, and on the other, cells need to minimize

the genes’ production costs (Dekel and Alon, 2005; Wagner,

2005). Costs of expression originate from spending cellular re-

sources, such as building blocks (amino acids and nucleotides),

from allocation of cellular machineries (RNA polymerase and

ribosome), and from energy and reducing power consumption

(Bienick et al., 2014; Glick, 1995; Ibarra et al., 2002; Rang

et al., 2003). Even after their production, proteins might still

impose costs when degraded or by exerting toxicity, e.g., due

to aggregation (Geiler-Samerotte et al., 2011). Understanding

what molecular processes determine expression cost, its rela-

tion to cellular growth and gene regulation, and how costs evolu-

tionarily shape the genome are key aspects of cell biology that

remain largely elusive. While numerous studies investigated mo-

lecular mechanisms and gene sequence architectures that regu-

late expression level (Gingold and Pilpel, 2011; Kudla et al., 2009;

Qian et al., 2012; Sharp et al., 1986; Subramaniam et al., 2013),

very little is known about design elements that govern expres-

sion costs.

Different works have studied expression costs in unicellular or-

ganisms by imposing the expression of an unneeded protein

(Bentley et al., 1990; Dekel and Alon, 2005; Dong et al., 1995; Ka-

fri et al., 2016; Rang et al., 2003; Scott et al., 2010). The produc-

tion of such unneeded proteins diverts resources from synthesis

of the cell’s own proteins, thus decreasing cellular fitness (Emils-

son and Kurland, 1990; Marr, 1991; Vind et al., 1993). Central to

these studies is the characterization of the correlation between

the imposed expression levels of the unneeded proteins to the

cost. Yet, ultimately natural selection dictates the expression

level of natural genes according to the required concentration

of each protein. Thus, a fundamental question, which has not

been addressed before, is how cells can achieve a specific

expression level of a gene while minimizing its expression costs.

Addressing this question is challenging because changes in

sequence could affect both expression level and expression

costs. To disentangle expression level and expression costs

and reveal mechanisms that affect cost per protein molecule,

we utilized a synthetic reporter library of �14,000 different

sequence variants, each fused upstream to a GFP gene

(Goodman et al., 2013). We then combined competition assays

and deep sequencing tomeasure the fitness of all variants in par-

allel. This procedure allowed us to elucidate gene architectures

that minimize expression cost at a given protein expression level.

We show that various molecular mechanisms, such as protein/

mRNA ratios, ribosome early elongation pauses, amino acid syn-

thesis costs, and peptide hydrophobicity, determine the cost per

protein molecule. We then generated a model that predicts the

cost effectiveness of gene architectures and applied it to natural

E. coli genes. We found that highly expressed genes have
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Figure 1. 50 Gene Architectures Affect Cost of Gene Expression at a Given Expression Level

(A) We utilized a synthetic library of �14,000 E. coli strains, each expressing a GFP construct with a unique 50 architecture that includes a promoter, ribosome

binding site (RBS), and an 11-amino-acid-fused peptide. There were two different promoter types, four RBSs, and 137 amino acid fusions that were each

synonymously re-coded to 13 different versions (see Goodman et al., 2013 for full details).

(B) FitSeq methodology to measure relative fitness of strains in a pooled synthetic library. First, the library was grown six independent times for�84 generations,

and samples were taken at generations 0, �28, �56, and �84. Then, unique 50 gene architectures were simultaneously amplified and sent for deep sequencing,

which allowed to follow the frequency of each variant in the population over the course of the experiment. Finally, a relative fitness score was assigned for each

variant based on its frequency dynamics.

(C) GFP expression level (as measured by Goodman et al., 2013; x axis) versus fitness effect (based on results of repetition C; y axis) of each variant in the library

(Pearson correlation, r = �0.79, p < 10�200). Fitness effect comes from the burden of expressing unneeded proteins on cellular growth and is calculated by

analyzing the frequency dynamics of each variant (see Experimental Procedures). We defined fitness residual as the difference between a variant’s observed and

expected fitness. The expected fitness is calculated from the regression line between GFP expression and fitness (black line). Some variants consistently

demonstrated positive (blue dots, n = 975) or negative (red dots, n = 815) fitness residual sign. Other variants showed extremely low fitness residual, and we

termed those variants as ‘‘underachievers’’ (purple dots, n = 80). The group size of positive, negative, and underachiever variants are significantly much higher

than expected by chance (Supplemental Information). These results suggest that certain 50 gene architectures can increase or reduce the cost of gene

(legend continued on next page)
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evolved more forcefully to be encoded by cost-minimizing

mechanisms. Our observations indicate that natural selection

has shaped genes’ architectures to reduce cost of gene

expression.

RESULTS

50 Gene Architecture Affects Cost of Gene Expression
Our question is whether different gene sequence elements can

minimize cost of expression per protein molecule and hence in-

crease cellular fitness. To focus on sequence features at the 50

region of a gene, we utilized a previously published synthetic

gene library (Goodman et al., 2013) composed from �14,000

different variants expressing a GFP gene. Each variant holds a

unique variable 50 gene architecture that includes a promoter,

a ribosome binding site (RBS), and an 11-amino-acid-long N ter-

minus fusion (Figure 1A; Experimental Procedures).

To reveal the expression cost of each variant, we measured

relative fitness of all variants in parallel in a competition assay

in six independent repeats. We then deep sequenced the vari-

able region of the pool of variants and calculated relative fitness

of each variant (Figure 1B; see Experimental Procedures).

We regressed fitness values against GFP expression levels

and observed a negative, linear correlation (Figure 1C, Pearson

correlation, r =�0.79, p < 10�200; Figure S1A). The linear decline

in fitness with expression is in agreement with previous studies

(Kafri et al., 2016; Scott et al., 2010). The regression line, which

outlines the relations between fitness and expression, allowed

us to estimate the expected fitness for each library variant ac-

cording to its GFP expression level. Variants whose fitness

does not deviate consistently across repeats from this regres-

sion line are deduced not to utilize mechanisms that enhance

or reduce the production cost per protein molecule.

Yet, many variants did deviate from the linear regression line,

demonstrating fitness that is higher or lower than expected given

their GFP expression levels. We hypothesized that variants that

repeatedly deviated from the expected fitness might utilize

gene architectures that either reduce or increase the cost of

GFP production per protein molecule. Hence, we calculated

each variant’s ‘‘fitness residual,’’ which we defined as the differ-

ence between the actual fitness that wemeasured for the variant

and the fitness expected for it according to its GFP expression

level and the linear regression (Figure 1C). A positive fitness

residual means that a given variant showed higher fitness than

expected given its GFP expression level, suggesting that it can

produce this GFP level with lower costs. A negative fitness resid-

ual means that the variant showed lower fitness than expected

given its GFP expression level.

We then classified each variant as either positive or negative

according to its fitness residual sign (Figure 1C, blue and red

dots; see Experimental Procedures). Since the observed fitness

residual is sensitive to biological noise (i.e., drift during competi-

tion) and experimental errors (i.e., sampling errors), we only clas-

sified variants as positive or negative if their fitness residual sign

was identical in at least five out of the six repeats of the experi-

ments in each of the two final sampling points of the competition

(see Experimental Procedures and Supplemental Experimental

Procedures). This approach resulted in 975 positive and 815

negative variants (significantly higher than expected by chance

even at very high levels of measurement errors; Supplemental

Experimental Procedures). Classification into either positive or

negative fitness residual groups allowed us to eliminate the ef-

fect of GFP expression level on fitness as these two groups

demonstrate the same expression distribution (Figure 1C, inset).

We also noticed a set of 80 library variants, which we termed

‘‘underachievers,’’ whose fitness residual scores were repeat-

edly at the bottom 5% of the entire library (Figure 1C, purple

dots; see Experimental Procedures). We hypothesized that

these underachiever variants show extremely low fitness resid-

uals because they produce GFP even more wastefully, and we

expected them to show stronger usage of low-efficiency gene

architectures compared to the negative fitness residual group.

There appeared to be no ‘‘overachievers’’ in these data.

Production of More Proteins per mRNA Molecule Is an
Economic Means to Minimize Expression Costs
We first hypothesized that reaching the same GFP level with

lower levels of mRNA of the GFP gene could be beneficial. While

positive and negative fitness residual variants come from the

same distribution of GFP expression levels (Figure 1C, inset),

we compared their GFPmRNA levels and found positive variants

to have lower levels compared to negative variants (Figure 2A;

Wilcoxon rank-sum, p = 1.6 3 10�9, effect size = 58.26%; see

Experimental Procedures). This difference was independent

of GFP level: binning the data according to GFP levels, we

observed the reduced levels of mRNA for positive variants in

all expression bins (Figure S1B).

The observation that positive variants have equal GFP protein

levels but lower GFP mRNA levels indicates that they are able to

produce more GFP proteins per mRNAmolecule. We postulated

that high translation initiation rate could be a mechanism for

maintaining the same GFP levels despite low mRNA levels in

positive variants. We calculated initiation rates for all library var-

iants using the ‘‘Ribosome Binding Site Calculator’’ (Salis, 2011)

and observed that indeed positive variants had higher initiation

rates (Figure 2B; effect size = 61.9%, Wilcoxon rank-sum,

p = 3.7 3 10�18). This observation holds true when examining

mRNA level versus translation initiation rate at the individual

variant level (Figure S2A). Indeed, when examining translation ef-

ficiency per variant (using measured protein levels divided by

mRNA levels), positive variants demonstrated higher translation

efficiencies than negative fitness residual variants (Figure 2C; ef-

fect size = 55.67%, Wilcoxon rank-sum, p = 3.4 3 10�5). More-

over, we found that underachiever variants demonstrated even

expression. See also Figure S1A. Inset: positive (blue violin plot) and negative (red violin plot) fitness residual variants come from the same distribution of GFP

expression level (Wilcoxon rank-sum, p = 0.46). Black line represents the median value. Thus, the effect of GFP levels on fitness was successfully factored out,

thus allowing us to elucidate other molecular mechanisms that tune expression cost at given expression levels.

(D) Fitness and fitness residuals demonstrate different distributions. While most variants showed negative fitness values, fitness residual is more similar to a

normal distribution, though with a negative tail.
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higher mRNA levels and lower translation efficiencies compared

to the negative variants (Figures 2A and 2C; effect size = 68.04%

and 63.06%,Wilcoxon rank-sum, p = 9.63 10�8 and 1.13 10�4,

respectively). Thus, by increasing translation efficiency, cells

reduce transcription costs and hence also cost per protein.

Slower Translation Speed at Early Elongation of Coding
Region, Achieved by Diverse Means, Reduces
Expression Costs
We next aimed to elucidate other cellular mechanisms that

directly regulate the translation machinery and that might reduce

expression costs. We first examined codon decoding speeds by

the ribosome. Codon adaptation of transcripts to the cellular

tRNA pool has been shown to be a regulatory mechanism for

translation elongation (Goodarzi et al., 2016; Higgs and Ran,

2008; Kudla et al., 2009; Plotkin and Kudla, 2011; Shah and Gil-

christ, 2011; Weinberg et al., 2016; Yona et al., 2013). Specif-

ically, the prevalence of slowly translated codons at the 50 of
open reading frames (ORFs) has been suggested to support

the efficiency of gene translation (Tuller et al., 2010a). This

‘‘ramp model’’ proposes that delaying ribosomes at the begin-

ning of the elongation phase decreases downstream ribosomal

pauses and collisions, which can therefore reduce ribosome

jamming, and perhaps also ribosomal abortion events.

Although contradicting evidence were reported for the exis-

tence and relevance of this mechanism to expression level

(Charneski and Hurst, 2014; Dana and Tuller, 2014; Heyer and

Moore, 2016; Ingolia et al., 2009; Shah et al., 2013; Tuller and

Zur, 2015), the main prediction of the model—that 50 ramping

reduces cost of expression at a given expression level—has

not been tested so far. Here, we had the first opportunity to

test this hypothesis as only the 50 variable region of the GFP var-

ied in the library, while all other parameters remained constant.

Thus, we asked whether slow 50 translation speed is associated

with positive fitness residual. We used ‘‘mean of the typical

decoding rates’’ (MTDR) (Dana and Tuller, 2014), a measure

of codon decoding time derived empirically from ribosome

profiling data in E. coli (see Experimental Procedures), to calcu-

late translation speed for each library variant. We reasoned that

if translational ramp is beneficial, then low MTDR scores, i.e.,

low ribosome speeds, should be more prevalent among the

positive fitness residual variants. Indeed, our results showed

that positive variants demonstrate significantly lower translation

speeds at the N-terminal fusion (Figure 3A; effect size =

59.55%, Wilcoxon rank-sum, p = 3 3 10�12) and further for

Figure 2. Higher Ratio of GFP Protein/mRNA Minimizes Cost of

Gene Expression

(A) Although coming from the same distribution of GFP levels, positive variants

(blue violin plot) demonstrate lower mRNA levels of the GFP gene compared to

negative variants (red violin plot) (effect size = 58.26%, Wilcoxon rank-sum,

p = 1.6 3 10�9). Consistently, underachiever variants (purple violin plot) show

higher mRNA levels compared to negative variants (effect size = 68.04%,

Wilcoxon rank-sum, p = 9.6 3 10�8). Black line represents the median value.

(B) Positive variants show higher translation initiation rates compared to

negative variants (effect size = 61.9%, Wilcoxon rank-sum, p = 3.7 3 10�18).

(C) Positive variants demonstrate higher translation efficiencies (protein/

mRNA) compared to negative variants (effect size = 55.67%, Wilcoxon rank-

sum, p = 3.4 3 10�5). Consistently, underachiever variants (purple violin plot)

further show lower translation efficiencies compared to negative variants

(effect size = 63.06%, Wilcoxon rank-sum, p = 1.1 3 10�4).

Statistically significant differences (p < 0.05) are marked with an asterisk. See

also Figures S1B and S2A.
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the underachievers (effect size = 64.79%, Wilcoxon rank-sum,

p = 1.2 3 10�5).

Though in the original ramp model ribosome attenuation was

proposed to be obtained by codons that correspond to rare

tRNAs, additional mechanisms that can slow down the

ribosome at early elongation regions could serve in ramping.

These mechanisms include, in particular, tight mRNA second-

ary structure (Goodman et al., 2013; Tholstrup et al., 2012;

Tuller et al., 2010b; Wen et al., 2008) and high affinity to the

anti-Shine Dalgarno (aSD) motif of the ribosome (Li et al.,

2012). We thus examined each of these factors separately

and asked whether they are associated with positive or nega-

tive fitness residual.

When we computed folding energies for segments of mRNA

nucleotides on a sliding window along the variable region

of each variant, we found that positive fitness residual

variants demonstrated tighter secondary structures compared

Figure 3. Slow Translation Speed at Early

Elongation, Achieved by Diverse Molecular

Means, Reduces Expression Cost

(A, C, and D) Positive variants show lower values

of codon decoding speed (A), stronger mRNA

structures (C), and lower speeds due to higher

anti-Shine Dalgarno affinities (D) compared to

negative variants (effect size = 59.55%, 65.03%,

and 63.82%, Wilcoxon rank-sum, p = 3 3 10�12,

5.4 3 10�28, and 6.3 3 10�24, respectively).

Statistically significant differences (p < 0.05) are

marked with an asterisk. See also Figure S1B.

(B) Mean folding energy of mRNA secondary

structure according to window’s start position

for positive (blue curve) and negative (red curve)

variants; error bars represent SEM. Dashed

lines mark different positions along the variable

region upstream to the GFP. Black vertical line

marks the beginning of window with the largest

observed difference, which is found at nucleotide

positions +4 of the ORF, just after the first AUG

codon. The distributions at this window position

are seen in (C). See also Figure S2B.

to negative variants along many different

window positions (Figure 3B; Figure S2B

for different window sizes). Strikingly, the

maximum difference in folding energy is

observed when the window’s start posi-

tion is at the beginning of the translated

region of the ORF, excluding the up-

stream 50 UTR (Figure 3C; effect size =

65.03%, Wilcoxon rank-sum, p = 5.4 3

10�28). Hence, these results, together

with previous ones, reveal the dual

role of mRNA folding: on one hand,

loose mRNA structure at the RBS is

associated with high expression level

(Goodman et al., 2013), and on the other

hand, utilization of a strong secondary

structure at the 50 end of the ORF can

reduce per-protein costs.

It was previously suggested that elongating ribosomes inE. coli

dwell longer on sequences that have high affinity to the aSDmotif

in the ribosome (Li et al., 2012). However, this observation has

been recently questioned (Mohammad et al., 2016). We next

examined the effects of Shine Dalgarno-mediated ribosomal

pauses on fitness residuals. We calculated affinities to the aSD

along the sequence of each variant, derived a ribosome speed

estimation based on these affinities (see Experimental Proced-

ures) and found that positive fitness residual variants are charac-

terized by low ribosome speed early in the ORF (Figure 3D; effect

size = 63.82%, Wilcoxon rank-sum test, p = 6.33 10�24).

We thus provide the first experimental evidence for a set of

three gene architecture factors—codon decoding time, mRNA

structure, and affinity to the anti-Shine Dalgarno motif—that

could each implement 50 ramping by slowing down ribosomes

and, by that, allow cells to reduce the cost of gene expression

at a given expression level.
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Another means of reducing translation speed that was

recently demonstrated (so far in yeast) is the incorporation of

positively charged amino acids (Charneski and Hurst, 2013)

or proline residues (Artieri and Fraser, 2014) in newly synthe-

sized peptides. Yet, we did not detect any difference in fre-

quency of such amino acids between the positive and negative

fitness residual groups.

Amino Acid Synthesis Cost and Hydrophobicity Affect
Cost of Gene Expression
So far we have examined features that are based on the nucleo-

tide sequence and how it associates with fitness residual. Next,

we aimed to explore the possibility that the amino acid compo-

sition of the N terminus fusion to the GFP associates with cellular

fitness.

Amino acids differ by themetabolic costs associated with their

biosynthesis—predominantly energy and reducing power deter-

minants invested in their metabolic production (Akashi andGojo-

bori, 2002). We thus hypothesized that usage of energetically

expensive amino acids may cause a heavier burden at a given

expression level. Indeed, lower cost of the N terminus fusions

were found to associate with positive fitness residual variants

(Figure 4A; effect size = 72.74%, Wilcoxon rank-sum, p =

7.4 3 10�62). Here, as well, underachiever variants show more

expensive amino acid usage compared to the negative group

(Figure 4A; effect size = 72.75%, Wilcoxon rank-sum, p =

1.7 3 10�11).

We further examined the relation between fitness residual

and amino acid energetic cost by calculating the frequency

ratio of each individual amino acid between the positive and

negative fitness residual groups (see Experimental Proced-

ures). Remarkably, this frequency ratio was found to negatively

correlate with the metabolic cost of each amino acid (Fig-

ure 4B; Pearson correlation, r = �0.54, p = 0.01). These

observations suggest that expensive-to-synthesize amino

acids burden cells during their costly production due to a

potential feedback that increases their synthesis in response

to consumption.

In addition to direct metabolic cost, the incorporation of amino

acids that appear in low cellular concentrations could reduce

Figure 4. Usage of Expensive-to-Synthetize, Lowly Available, and Hydrophobic Amino Acids Decreases Fitness Residual

(A) N terminus amino acid fusions of negative variants are more expensive to synthesize compared to positive variants (effect size = 72.74%, Wilcoxon rank-sum,

p=7.4310�62).Underachieversutilizeevenmoreexpensiveaminoacids (effect size=72.75%,Wilcoxon rank-sum,p=1.7310�11).SeealsoFiguresS1BandS2C.

(B) The frequency ratio of amino acids between positive and negative variants is negatively correlated with the energetic cost of amino acids (Pearson correlation,

r = �0.54, p = 0.01). Each amino acid is marked according to its one-letter code.

(C) The frequency ratio of amino acids between positive and negative variants is negatively correlated with the demand/supply ratio of amino acids (Pearson

correlation, r = �0.82, p = 10�4). Demand comes from occupancy of ribosomes on each transcript (see Experimental Procedures), and supply is the cellular

concentration of each amino acid (Bennett et al., 2009).

(D) Amino acid availability and energetic cost are correlated (Pearson correlation, r = �0.72, p = 1.8 3 10�3).

(E) N terminus amino acid fusions of negative variants are more hydrophobic than positive variants (effect size = 69.11%, Wilcoxon rank-sum, p = 3.23 10�44). N

terminus fusion of underachievers are even more hydrophobic (effect size = 81.67%, Wilcoxon rank-sum, p = 7.7 3 10�21). See also Figures S1B and S2C.
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fitness indirectly as it might disturb the synthesis of other native

proteins. We used ribosome profiling data (Li et al., 2012) to

calculate amino acid demands and utilized previously measured

cellular concentrations as amino acid supplies (Bennett et al.,

2009) (see Experimental Procedures). Indeed, we found that

amino acids with low demand-to-supply ratios are more

prevalent in positive variants (Figure 4C; Pearson correlation,

r = �0.82, p = 10�4). This observation implies that utilization of

amino acids that are less available to the cell (either due to

high demand or low supply) increase expression cost and

are associated with negative fitness residual variants. Since

metabolic cost of amino acids and their cellular supplies

are correlated (Figure 4D; Pearson correlation, r = �0.72,

p = 1.8 3 10�3), we could not evaluate which mechanism—

cost or availability—contributes more to fitness residual.

We next reasoned that an additional factor by which a protein

could affect fitness is its toxicity, e.g., due to aggregation. As

aggregation is driven by hydrophobic interactions, we turned

to a conventional measure of amino acid hydrophobicity (Kyte

and Doolittle, 1982) to examine whether it is predictive of

fitness residuals. We found that positive fitness residual vari-

ants tended to have significantly less hydrophobic amino acids

fused to the GFP (Figure 4E; effect size = 69.11%, Wilcoxon

rank-sum, p = 3.2 3 10�44). Underachievers showed an even

more pronounced effect (Figure 4E; effect size = 81.67%, Wil-

coxon rank-sum, p = 7.7 3 10�21). This negative effect of

hydrophobic residues in cytosolic proteins could indeed be

derived from post-synthesis costs, but it could also reflect an

equally interesting possibility: that aggregation-prone peptides

reduce the functional level of the GFP (and similarly the fraction

of the active form of native proteins). According to this possibil-

ity, aggregation is wasteful and must be compensated by

further costly production to reach the required expression level

of the protein.

We further found that the higher the GFP expression, the more

beneficial it should be to utilize cheap or hydrophilic amino acids

(Figure S2C).

All Sequence Parameters Contribute Independently to
Fitness
We have revealed, so far, a set of mechanisms that affect

expression costs and therefore cellular fitness. Although these

mechanisms are different in their nature, it is possible that var-

iants that score highly on one of these parameters tend

to score highly on others. For example, anti-Shine Dalgarno

affinity could correlate with the energy of the secondary

structure of the mRNA, as both parameters are influenced

by Guanine content. To check this possibility, we computed

the correlation among the variants in the library between

each pair of sequence parameters: codon decoding speed,

mRNA secondary structure, anti-Shine Dalgarno affinity, hy-

drophobicity, and amino acid energy cost. Reassuringly,

no strong correlation was found between any two parameters

(Figure 5). Nonetheless, for feature pairs that did demonstrate

non-negligible correlations (Pearson correlation, r > 0.1),

we asked whether the signal of one feature is still observed

while controlling for variation in the other. We found that

each factor contributed directly to the signal, even upon

controlling for other factors as potential confounders (see

Figure S3).

Expression Costs Can be Minimized Even at Specified
Amino Acid Sequences
Since maintaining a protein’s function usually requires keeping

its specific amino acid sequence, we next asked whether the

mechanisms that we found here can reduce expression costs

for a specified peptide sequence by using alternative nucleotide

sequences. We defined ‘‘Dfitness-residual’’ as the difference be-

tween a variant’s fitness residual and the average fitness residual

of all library variants who share with that variant the same amino

acid sequence. Then, we compared the various architectural

features between variants with above-average Dfitness-residual

to variants with below-average Dfitness-residual (see Experi-

mental Procedures).

Figures 6A–6E depict, for each of the analyzed features, the

difference in feature value between variants with above- or

below-average Dfitness-residual. Interestingly, for each feature,

the above- and below-average sub-groups had significantly

different feature scores, reflecting the same trends as observed

in all earlier analyses. For example, mRNA levels tend to be

higher in the below-average sub-group in most of the 137 N ter-

minus fusions (t test, p values for GFPmRNA levels = 6.23 10�3,

initiation rates = 73 10�9, codon decoding speeds = 4.33 10�2,

mRNA folding = 3.53 10�16, and aSD velocity = 7.63 10�7). The

conclusion from this analysis is that although amino acid features

affect fitness residuals, the other features provide sufficient de-

grees of freedom to minimize costs even at a specified amino

acid sequence.

A Regression Model Calculates Relative Contribution of
Each Feature and Predicts Fitness Residual Scores
So far, we have examined fitness residual as a binary classifi-

cation, namely categorizing variants with either positive

or negative fitness residual. Complementing this binary anal-

ysis, in Figure S4A, we show that each feature correlates

significantly with actual fitness residual values. We next

aimed to predict actual fitness residual values of the library

variants from their gene architecture features using a multi-

ple linear regression model. We trained the model on a

randomly chosen subset of 70% of the library variants,

cross validated it on all other variants by comparing

their predicted and observed fitness residual, and found a

good correlation (see Experimental Procedures; Figure 7A;

r = 0.53, p < 10�200).

When the regression was performed on a scrambled library,

which randomly links feature values and variants, the correlation

between observed and predicted fitness residual was practically

eliminated (Figure S4B; r = 0.02). We performed 105 such ran-

domizations, and all of them demonstrated such extremely

weak correlations. This negative control demonstrates that we

obtained a genuine means to predict fitness residual values

based on computable gene architecture parameters. We

concluded that a gene architecture that utilizes more of the fea-

tures that we discovered and that, to a greater extent, typically

gives rise to higher fitness residuals as expression costs are

further minimized.
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Additionally, this regression model allowed us to calculate the

relative contribution of each feature by comparing the coeffi-

cients assigned by the regression model (Figure 7B). This anal-

ysis revealed that the features contributing to fitness residual

the most are hydrophobicity and metabolic cost of the N termi-

nus fusion, while codon decoding speed contributes the least.

To avoid over-fitting of our model on the library data, we per-

formed feature selection using the Lasso algorithm (see Experi-

mental Procedures). This validation resulted in the exclusion of

only codon decoding speed from the model, suggesting that

its contribution to fitness residual is indeed lower compared to

other features.

Highly Expressed Natural Bacterial Genes Have Evolved
Gene Architectures that Minimize Their Production
Costs
With these findings from the synthetic library, we next asked

whether the mechanisms that we revealed as cost reducing

were also utilized by natural selection to optimize E. coli’s

native genes. We thus calculated each E. coli gene’s score

with respect to the relevant features and used the regression

model to predict its fitness residual score (see Experimental

Procedures and Table S4, related to Figure 7). Since a higher

expression level results in higher expression cost, we next hy-

pothesized that E. coli genes with higher expression levels are

more likely to be endowed with cost-reducing architectures.

Indeed, we found a significant correlation between predicted

fitness residual of E. coli genes and their protein expression

levels (Figure 7C; r = 0.25, p = 2 3 10�53), demonstrating a

stronger selection for optimizing the 50 gene architecture for

highly expressed genes. We obtained similar results when pre-

dicting fitness residuals for all genes in the Gram positive

B. subtilis, pointing to the generality of the model (Figure 7E;

r = 0.33, p = 10�93; see Experimental Procedures and Table

S4, related to Figure 7).

Interestingly, the range of fitness residuals predicted by our

model for the E. coli and B. subtilis genes was significantly larger

than the range predicted by a mock regression model that was

trained on randomly scrambled data of the synthetic library

(see Experimental Procedures; Figures 7D and 7F; p < 10�5).

Figure 5. Each Feature Affects Fitness Residual Independently

Correlation plots of each feature pair show lack of correlation inmost cases and only weak correlations in other cases. For feature pairs with Pearson correlation of

r > 0.1, we compared the difference in one feature while controlling for the second and vice versa. See also Figure S3. Black lines are the regression curves

between each feature pair. Number at upper-left corner is the Pearson correlation.
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This observation suggests that the model that we trained on the

library data is able to expose the expression-cost optimality of

natural 50 gene architectures.

DISCUSSION

In this study, we found architectures and motifs that govern

expression costs and reveal their function even beyond a direct

effect on the process of expression. We show that regulating

initiation andmRNA levels affects expression cost, as increasing

the number of proteins that are produced per mRNA is associ-

ated with a positive fitness residual. This architecture could be

beneficial because it reduces energy and resource consumption

that are devoted to mRNA production. If cost reducing, why do

genomes not further utilize the strategy of low transcription

and mRNA abundance, combined with high translation initia-

tion? One potential reason is that too low of mRNA levels might

lead to increased expression noise (Taniguchi et al., 2010) or

increased response time to an environmental signal (Gasch

and Werner-Washburne, 2002). It is thus expected that natural

genes would show a tradeoff between cost-reducing architec-

Figure 6. Variant with Same N Terminus

Amino Acid Fusion Demonstrate a Range

of Fitness Residuals

(A–E) Each dot represents one of the 137 N ter-

minus fusions in the library. The x axis and the

y axis represent the mean value of a feature for

the variants with either below-average or above-

average Dfitness-residual, respectively. The ver-

tical and horizontal error bars represent standard

errors for each of the axes. A statistical difference

for deviance from the X = Y line was observed for

all features, suggesting that even at a given amino

acid sequence, these mechanisms affect fitness

residual and can minimize expression costs (t test,

p values: A, mRNA levels, 6.2 3 10�3; B, initiation

rates, 73 10�9; C, codon decoding speeds, 4.33

10�2; D, mRNA folding, 3.5 3 10�16; and E, aSD

velocity, 7.63 10�7). d is Cohen’s d that calculates

the effect size.

tures and designs that satisfy other re-

quirements, such as controlled noise

and short response times.

The ‘‘translational ramp’’ theory pre-

dicted an effect of ribosome speed at

early elongation on expression cost at

a given expression level (Tuller et al.,

2010a). The theory was never tested

as such, since fitness reduction upon

expression of an unneeded protein was

not systematically measured for different

gene sequences at various expression

levels. We demonstrate here that slow

translation speed at the 50 end is benefi-

cial in terms of reduced expression cost

and increased cellular growth rate. We

show that in addition to codon decoding

times, there are at least two additional ramping means that are

likely beneficial: occurrence of Shine-Dalgarno-like sequences

and strong secondary structures.

Recent works showed that 50 mRNA secondary structure gov-

erns expression level of transcripts in bacteria (Goodman et al.,

2013; Kudla et al., 2009; Shah et al., 2013). Here, we observed

that tight mRNA structures are enriched in positive variants.

Consequently, it seems that mRNA structure plays a more com-

plex role than previously thought. On one hand, 50 mRNA struc-

ture, specifically upstream of the AUG start codon, regulates

expression levels as it governs initiation rates (Goodman et al.,

2013; Salis, 2011). On the other hand, tight structures at the

beginning of the ORF, which were previously observed in E. coli

genes (Tuller et al., 2011), are shown here to be beneficial in mini-

mizing expression cost.

We revealed that the amino acid composition of a gene can

also affect expression cost at a given expression level by

showing that hydrophobic amino acids reduce fitness residual,

perhaps due to their increased tendency to form toxic aggre-

gates in the cytoplasm. In agreement with this, it was shown

that mis-folded proteins impose growth reduction to yeast
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cells in a dosage-dependent manner (Geiler-Samerotte

et al., 2011). It is interesting to postulate that hydrophobic

residues that promote aggregation can reduce the portion of

properly folded, functional protein. Such futile protein synthe-

sis might need to be compensated for by further costly pro-

duction in order to reach the needed functional level of a

certain protein.

We further demonstrate that there are sufficient degrees of

freedom for a gene to evolve a cost-reducing architecture,

even when its amino acid sequence is constant. Hence, our

Figure 7. A Model that Predicts Fitness Re-

sidual Accurately Reveals that Fitness

Residual of Natural Bacterial Genes Is

Correlated with Their Expression Level

(A) A linear regression model based on all eight

features predicts fitness residual accurately in a

cross-validation test (Pearson correlation, r = 0.53,

p < 10�200). See also Figure S4.

(B) The weighted coefficients of each feature in

the regression model demonstrating the relative

contribution of each feature to fitness residual

(p value for regression coefficient of mRNA

level = 3.5 3 10�11, initiation rate = 2.5 3 10�12,

TEGFP protein/mRNA = 2.7 3 10�9, codon decoding

speed = 8.7 3 10�3, mRNA folding energy =

1.5 3 10�50, aSD velocity = 8.7 3 10�3, hydro-

phobicity < 10�200, andamino acid synthesis cost =

5.4 3 10�80). The sign of the contribution of each

coefficient shows whether a feature is associated

positively or negatively with fitness residuals. Error

bars represent standard error of the coefficient

estimation.

(C) Predicted fitness residuals of E. coli genes

according to the regression model are correlated

with their expression levels (Pearson correlation,

r = 0.25, p = 2 3 10�53), suggesting that natural

selection shapes 50 gene architectures in order to

minimize costs of gene expression.

(D) Distribution of fitness residual scores for E. coli

genes as predicted by regression model that was

trained on either experimental or mock data. The

experimentally basedmodel predicts a significant,

higher range of fitness residuals (p < 10�5), sug-

gesting that the mechanisms that we elucidate

with the synthetic library also apply on natural

genes.

(E) Predicted fitness residuals of B. subtilis genes

according to the regression model are correlated

with their expression levels (Pearson correlation,

r = 0.33, p = 10�93), suggesting that our model

also applies for other bacteria species.

(F) Same as (D), only for B. subtilis genes.

study suggests design elements that

could be utilized both for better heterolo-

gous gene expression and by natural

selection for the optimization of natural

genes.

As such, our observations are also rele-

vant to biotechnology and synthetic

biology. Many times in such non-natural

systems, there is a need to express a foreign gene, whose

expression could deprive resources from the hosting cell. Our re-

sults allow the design of an optimized nucleotide sequence

version for heterologous expression that minimizes the cost of

production and, by that, reduces the burden on the cell while

not compromising expression level.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for full description.
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Library Architecture

The synthetic library was provided to us by Goodman et al. (2013) and is

fully described there. In short, each variant in the library harbors a unique

50 gene architecture that is composed of a promoter, a ribosome binding

site, and an N0 terminus amino acid fusion of 11 amino acids followed by

a super-folder GFP (sfGFP) gene. The library as a whole includes two pro-

moters with either high or low transcription rates; three synthetic RBSs

with strong, medium, or low translation initiation rates, as well as 137

different genomic RBSs that were defined as the 20 bp upstream to the

ORF of 137 E. coli genes; and, finally, 137 coding sequences (CDSs) con-

sisting of the first 11 amino acids from the same genes. Each CDS appears

in the library in 13 different nucleotide sequences representing alternative

synonymous forms. All combinations amounted in 14,234 distinct library

variants.

Competition Assay

Competition experiment was carried out by serial dilution. The library was

grown on 1.2 mL of Lysogeny broth (LB) and 50 mg/mL kanamycin at 30�C,
the exact same conditions that were used in Goodman et al. (2013) to measure

GFP expression level. We grew six parallel, independent lineages, and each

was diluted daily by a factor of 1:120 into fresh media (resulting in�6.9 gener-

ations per dilution). This procedure was repeated for 12 days, and samples

were taken from each lineage every 4 days (�27 generations), mixed with glyc-

erol, and kept at �80�C.

Fitness and Fitness Residual Estimations

Fitness effect is derived from the following equation:

fðtÞ= fðancÞ,ð1+ sÞtzfðancÞ,est

where f is the variant frequency, t is the generation number, and s is the fitness

effect.

To extract fitness effect, we took two independent approaches. First, we

took the logarithm of the ratio between the frequency of a variant at a certain

time point and its frequency at time zero. We then divided this value by the

number of generations. This calculation was performed for both generation

�84 and generation �56. See Supplemental Experimental Procedures for

description of fitness calculation based on maximum likelihood. The two

fitness-estimation methods were highly correlated (Figures S5A and S5B;

r = 0.99, p < 10�200) and resulted in the same conclusions throughout our

analyses.

We then defined ‘‘fitness residual’’ of a variant as the difference between the

observed fitness by FitSeq and the fitness predicted by a linear model given

the variant’s GFP expression level (see Supplemental Experimental Proced-

ures for further details).

Model for Estimating Translation Velocity Based on Anti-Shine

Dalgarno Affinity

The Shine-Dalgarno affinity was calculated identically to Li et al. (2012). In

short, for each position, we calculated the affinity of 8–11 bp upstream of

that position (the distance between the ribosome A site and the aSD site) to

the anti-Shine Dalgarno motif. The free energy of interaction between the

aSD motif and the mRNA sequence (DG) was calculated for all possible 10-

mer sequences for that position using the RNA annealing function from the

ViennaRNA package algorithm (Lorenz et al., 2011), and the highest affinity

(lowest energy) score was used. We calculated the affinity for all positions

for which the annealing with the aSD motif resides in the 11 amino acid fusion

(positions 19–33) and then transformed all affinities of a given variable

sequence to estimated ribosomal velocity, as follows.

We converted the DG estimates into the equilibrium constant of the interac-

tion, K, which represents the equilibrium between association (kf) and dissoci-

ation (kb). The elongation velocity (v) as the ribosomemoves from current site n

to the n + 1 site is given by the harmonic mean of the dissociation reaction of

site n and the association reaction of site n + 1:

1

vn/n+ 1

=
1

kbn
+

1

kfn+ 1

Equation 1

vn/n+ 1 =
kbnkfn+1

kbn + kfn+1

Equation 2

We further assume that the association reaction rate is not dependent on the

sequence, therefore, for every n, kfn = kf , and that differences in affinity thus

only reflect differences in dissociation constant displayed by various se-

quences. We then get a term for the ribosomal velocity at a specific position

by the anti-Shine Dalgarno affinity:

vn/n+ 1 =
kf,kfK�1

kf ð1+K�1Þ= kf
e
DG
RT

1+ e
DG
RT

Equation 3

To calculate the average ribosomal velocity across the entire N terminus

fusion sequence of each library variant, we calculated the harmonic mean of

the velocity values for all positions. See Supplemental Experimental Proced-

ures for full description.
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Abstract 

Can splicing be used by cells to adapt to new environmental challenges? While various 

adaptation mechanisms for regulating gene expression have been revealed for 

transcription and translation, the role of splicing and how it evolves to optimize gene-

expression patterns has not been thoroughly investigated. To tackle this question, we 

employed a lab-evolution experimental approach that challenged yeast cells to increase 

expression levels of a gene that carries an inefficiently-spliced intron. We followed the 

evolution of multiple lines and found independent routes by which cells adapted. 

Surprisingly, we did not observe an intron loss event, a mechanism believed to be 

common in intron evolution. Instead, we identified mutations in cis that improved the 

intron’s splicing efficiency and increased the overall expression level of the entire gene. 

One of these cis-acting mutations occurred in an adjacent exon and hampered the 

functionality of the gene that was not under selection - demonstrating that adaptation of 

splicing efficiency may sometimes come at the expense of protein activity. Additionally, 

we observed adaptations in trans, which increased the cellular availability of the splicing 

machinery. These adaptations were achieved either by elevated expression levels of the 

splicing apparatus or, unexpectedly, by reduced expression levels of other intron-

containing genes that are the natural consumers of this process. Ultimately, our work 

reveals novel molecular means by which the splicing machinery is changed by natural 

selection to optimize gene-expression patterns of cells. 

  

mailto:frumkin.idan@gmail.com
mailto:pilpel@weizmann.ac.il


2 
 

Introduction 

Changing environments can force cells to change their gene-expression programs, to 

better accommodate their surroundings. Throughout evolution, cells acquired regulatory 

mechanisms to tune gene expression, which have been the subject of intensive 

investigations – focusing mainly on transcription and translation. For example, when cells 

are challenged to increase protein expression levels, the DNA sequence of genes can 

change so as to increase transcription1,2, support more efficient mRNA translation3,4, or 

result in greater mRNA transcript stability5,6. Additionally, the transcription and 

translation machineries themselves have been shown to adapt to environmental 

challenges by altering the cellular pools of transcription factors7 or tRNAs8,9. 

In evolving expression programs, adaptation often occurs either directly on the genes 

under pressure (“evolution in cis”)10, or indirectly, e.g. on the expression machineries, 

mostly transcription and translation (“evolution in trans”)11,12. These two routes of 

evolution are profoundly different, as the first (cis) provides a localized solution that in 

principle can affect only a certain gene, while the later (trans) could be the method of 

choice if a coordinated change in many genes is needed.  

Surprisingly, although the process of splicing is central to the maturation and regulation 

of mRNAs in eukaryotes13–17, its role in adapting to novel demands on gene expression 

has not been thoroughly investigated. During mRNA splicing, precursor mRNAs are 

processed to remove introns while fusing exons together to create the mature transcript. 

This process provides an evolutionary means to diversify the proteome towards 

phenotypic novelty, as the choice of intron to be excluded, as well as the exons which are 

found in the mature transcript, can both be regulated based on the cell’s needs15,18,19. 

One aspect of splicing evolution that has been extensively studied is gain and loss of 

intronic DNA, for which several molecular models have been proposed, mainly Reverse-

Transcription and recombination-mediated intron loss, intron transposition and also 

exonization and  intronization via mutations20–23. While intron loss and gain have been 

demonstrated experimentally24,25, other forms of splicing evolution, such as alterations in 

splicing efficiency under changing conditions, have not.  
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Here, we set out to reveal whether introns or the splicing apparatus can evolve so as to 

alter the expression levels of genes in a timely and adaptive manner, and ask whether and 

how splicing evolves in cis and in trans to regulate gene expression. To this end, we 

generated a reporter construct in yeast cells that could simultaneously be read out and be 

selected for splicing efficiency. Namely, we introduced an inefficiently-spliced intron to a 

reporter gene that was fused to an antibiotic resistance gene. Using this approach, we 

could carry out a lab-evolution experimental setup to study the adaptation of splicing in 

the presence of the corresponding antibiotics. 

Our results demonstrate two alternative adaptive routes for this evolutionary challenge. 

First, cis-acting solutions, in the form of adaptive mutations, occurred in the intron itself, 

but also surprisingly in an up-stream exon. These mutations resulted in increased splicing 

efficiency and higher expression levels of the antibiotic resistance gene. Remarkably, in 

some evolutionary lines there were no cis mutations, but rather trans-acting adaptations 

that have increased cellular availability of the splicing machinery - either by increased 

expression levels of the machinery’s genes themselves, or surprisingly, by decreasing the 

expression levels of other intron-containing genes. Thus, this works unravels different 

layers at which the splicing machinery can be adapted to alter gene expression. 
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Results 

Low splicing efficiency leads to stressed cells under restrictive conditions 

We hypothesized that tuning splicing of genes could serve as a means to optimize their 

expression levels. To test this hypothesis, we used the yeast Saccharomyces cerevisiae in 

which ~30% of the transcriptome must be spliced, at a range of splicing efficiencies17,26, to 

form mature mRNAs27. We built a synthetic gene construct that consists of two fused 

domains: A fluorescent reporter (YFP), which includes two alternative natural introns - 

with either high or low splicing efficiency - near the YFP’s fluorescence site26, fused to an 

antibiotics resistance gene (Kanamycin resistance gene). Specifically, we created three 

strains: (i) WT YFP strain without an intron; (ii) “SplicingHigh” in which the YFP harbors the 

natural intron of OSH7 and was previously reported to have high splicing efficiency within 

this YFP context26; and (iii) “SplicingLow” in which the natural intron of RPS26B, with a low 

splicing efficiency26, was inserted in the same location (Figure 1A). 

We first hypothesized that cellular growth of each strain in the presence of the 

antibiotics, geneticin (G418), will associate with the YFP-Kan expression levels. We 

followed the growth of the three strains in the presence of the antibiotics and found that 

the WT strain had the highest fitness, SplicingHigh grew slower, and SplicingLow 

demonstrated a severe growth defect compared to the two other strains (Figure 1B+C). 

We then measured florescence intensity of the YFP-Kan reporter in the presence of the 

drug. In line with the growth measurements, we observed that WT cells demonstrated 

the highest fluorescence levels, followed by SplicingHigh, and with SplicingLow cells showing 

the lowest YFP-Kan levels (Figure 1D). These results demonstrate that the inefficiently-

spliced intron in SplicingLow reduces cellular levels of YFP-Kan and hence lead to a reduced 

fitness. 

Since YFP-Kan expression level in SplicingLow were significantly lower compared to the 

other strains, we hypothesized that SplicingLow cells did not reach the needed 

concentration to sufficiently neutralize the antibiotics, and hence resulted in stressed 
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cells. To test this hypothesis, we performed mRNA sequencing of exponentially growing 

WT and SplicingLow cells in an antibiotics containing medium, and analyzed their 

transcriptome profiles. Indeed, we observed that ribosomal genes were down-regulated 

in SplicingLow compared to the control strain – a clear signature of stressed cells28 (Figure 

1E). Notably, the reduction in ribosomal expression levels (~8%) we observed here due to 

growth rate differences between WT and SplicingLow cells is accurately predicted by a 

recent study, which calculated the linear correlation between growth rate and ribosomal 

expression levels in yeast cells29. In parallel, stress-related genes30 were up-regulated in 

the SplicingLow compared to the control strain (Figure 1E). We thus concluded that the 

general stress response was activated in SplicingLow cells. 

Rapid evolutionary adaptation increases expression level of the resistance gene 

Our experimental system mimics an evolutionary scenario in which there is an immediate 

and continuous selection pressure to up-regulate the expression level of a gene of 

interest. How would the system evolve to better resist the antibiotics? Possible means to 

adapt include mutations in the gene’s promoter to increase transcription, mutations that 

increase translation initiation, or mutations inside the gene itself that increase the 

functional efficiency of the protein. Additionally, the splicing machinery may also take 

part in adaptation of gene expression levels. To find which evolutionary track would be 

used by cells, we evolved the three strains by daily serial dilution on a medium 

supplemented with G418 for ~560 generations, in four independent cultures for each 

strain (Figure 2A). Interestingly, only the cultures of SplicingLow cells demonstrated a 

significant improvement in fitness at the end of the experiment (Figure 2B+C). This 

observation implies that only SplicingLow experienced a sufficiently strong selective 

pressure to adapt to the presence of the antibiotics in the medium, in contrast to the WT 

and SplicingHigh strains which originally had much higher levels of the resistance gene. 

Consistent with the fitness measurements, YFP measurements of the evolved cultures 

showed that expression levels of the resistance-YFP fusion gene increased in all four 

evolved cultures of SplicingLow compared to the ancestral strain (Figure 2D). Conversely, 
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the increase in YFP-Kan expression levels in the evolved WT populations was smaller, and 

only one culture of the evolved SplicingHigh cells demonstrated strong elevation of the 

YFP-Kan levels (Figure 2D). These results further support that SplicingLow cells experienced 

the strongest selective pressure to adapt rapidly to the presence of the antibiotics in our 

experimental setup, and that they achieved this goal by increasing the levels of the 

resistance gene. We next moved to reveal the molecular mechanisms underlying this 

evolutionary process. 

Adaptation in cis and trans leads to increased splicing efficiency 

We hypothesized that improving the low splicing efficiency of the intron in SplicingLow 

could be exploited by natural selection as an adaptation mechanism towards increasing 

the resistance gene levels. We therefore sequenced the YFP-Kan locus in 16 randomly 

chosen colonies from two evolved populations (termed here population A and population 

B) of SplicingLow. Interestingly, we found that the colonies were split into two types – 

either with or without a mutation in the YFP-Kan locus. In population A, we found that the 

same mutation occurred in four out of eight colonies, changing adenine to cytosine inside 

the intron, 97 nucleotides up-stream to its 3’ end (Figure 3A). In population B, we 

identified an exonic non-synonymous mutation that changed a valine at position 61 of the 

YFP protein into alanine (a thymine to cytosine 14 nucleotides up-stream of the intron) in 

three out of eight colonies. In the five other colonies from this population there were no 

mutations in the YFP-Kan locus. 

Notably, none of the colonies demonstrated a mutation in the construct’s promoter, 

terminator or in the sequence of the Kan resistance gene itself. These results propose 

that different mutations in the intron, or its vicinity, were adaptive and might affect 

splicing efficiency of the intron. Surprisingly, the observed mutations did not occur in the 

5’ donor, 3’ acceptor, nor in the intron branch point – suggesting that other position of 

the intron can also be selected in evolution increase fitness by affecting splicing. While 

the intron- and exon-mutated colonies represent an evolutionary adaptation in cis, the 
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colonies that showed no mutation in the entire gene construct potentially found adaptive 

solutions in trans that may have occurred elsewhere in the genome.  

We randomly chose six colonies: four colonies with a cis mutation and two colonies that 

showed no mutations in cis, for which we reasoned that such colonies may have adapted 

in trans. We termed these colonies according to the evolution lines from which they were 

derived: A-cis1, A-cis2, B-cis1, B-cis2, A-trans and B-trans. We followed the growth of 

these evolved colonies in the presence of G418 and found, as expected, that all grew 

faster than the SplicingLow ancestor (Figure 3B). We then performed RNA-seq and 

transcriptome analysis of all colonies, which revealed relaxation of the stress response 

that was featured in the ancestor. Namely, the general stress response genes were 

reduced and ribosomal proteins were up- regulated in five evolved colonies (Figure 3C 

and Supplementary Figure 1). These observations suggest that the cells indeed adapted to 

the presence of the antibiotics in the environment and that the stress experienced by 

them was partially alleviated. 

We next hypothesized that cellular fitness might correlate with mRNA levels of the YFP-

Kan construct because increased transcript levels should result in higher concentrations 

of the Kan protein. Indeed, maximal growth rates of the control and SplicingLow ancestors 

and for the six evolved colonies correlate with mRNA levels of the YFP-Kan construct, as 

deduced from the RNA-seq (Figure 3D) – supporting our conclusion that adaptation was 

based on increasing expression levels of the YFP-Kan gene. Since the observed cis 

mutations occurred at the vicinity of the intron, we hypothesized that they increased 

splicing efficiency of the YFP-Kan transcript. To test this possibility, we performed, for 

both cis- and trans-evolved colonies, a splicing efficiency assay with qPCR - targeting the 

un-spliced and spliced transcript versions. Interestingly, the ratio of spliced to un-spliced 

transcripts was higher in all evolved colonies compared to the SplicingLow ancestor, 

suggesting that at least some of the mRNA level increase we observed in the evolved 

colonies results from increased splicing efficiency (Figure 3E). 
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To prove that adaptation of the colonies actually led to higher protein levels of the 

resistance gene, we measured fluorescence intensity using flow cytometry. We found 

that the two cis-colonies from population A (A-cis1 & A-cis2) and the two trans-colonies 

(A-trans & B-trans) showed higher YFP-Kan levels compared to the ancestor. However, 

the two cis-colonies from population B (B-cis1 & B-cis2) demonstrated decreased 

fluorescence intensity values (Figure 3F). These observations suggest that the non-

synonymous, exon mutation reduced the fluorescence-per-protein value of the YFP-Kan 

construct in these colonies. Indeed, this position corresponds to a position that was 

recently reported to reduce florescence when mutated in the highly similar GFP31. 

Because YFP functionality was not selected for or against in our setup, it was free to 

mutate as long as it helps achieve a higher expression level of the entire construct by 

increasing the intron’s splicing efficiency. It thus seems that modular domain-architecture 

of a protein may increase its evolvability under relevant conditions as it allows the 

optimization of each domain in isolation from the other. 

It is possible that additional beneficial mutations exist in the genome of the cis-evolved 

colonies, which account for the phenotypes we observed. To directly assess the effects of 

the cis mutations, we generated two rescue strains, termed rescue-A and rescue-B, in 

which these cis-acting mutations were introduced individually to the ancestral SplicingLow 

background. Notably, the two rescue strains grew better than SplicingLow cells in the 

presence of the antibiotics (Figure 4A), though not as good as the wild-type, and the 

stress experienced by the SplicingLow cells was relieved upon insertion of each individual 

cis mutation (Figure 4B). Finally, we measured splicing efficiencies and fluorescence 

intensity levels for both rescue strains, and found that they resembled the results of the 

evolved single colonies (Figure 4C-D, in comparison to Figure 3E-F). These observations 

strengthen our conclusions that the cis-acting mutations are sufficient to elevate YFP-Kan 

levels through an increased splicing efficiency, yet the non-synonymous mutation of 

population D also hampers the function of the YFP domain and reduces its florescence-

per-protein ratio. 
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Our results thus far provide direct evidence that intron splicing takes part in the 

adaptation and optimization of gene expression patterns to environmental needs. 

Although intron sequences are much less conserved compared to exons, and are believed 

to be less functional, we demonstrate that their sequence can be used by natural 

selection as a molecular mechanism to regulate splicing efficiency and adjust gene 

expression patterns. 

Increasing cellular availability of the splicing machinery can be adaptive 

We finally aimed to decipher the mechanism behind the increased YFP-Kan levels in the 

trans-evolved colonies that showed no mutations in cis, i.e. within the reporter gene or in 

its vicinity. We reasoned that elevating availability of the splicing machinery as a global 

resource could be a means to increase splicing efficiency of the YFP-Kan transcript, and 

thus could be used as an adaptive mechanism to the antibiotics challenge. Increased 

splicing-availability could be achieved by increasing the expression of the splicing 

machinery genes. In addition, as with other cellular machineries whose functioning 

depends on supply-to-demand economy4,8,32,33 reducing expression levels of the intron-

containing genes, namely the “demand”, could increase the availability of the machinery 

towards the intron under selection here. 

To test if any of these evolutionary routes were indeed taken by the evolved cells, we 

calculated the expression level ratio of genes between the evolved colonies and their 

ancestor. In colony A-trans, we observed that while the average expression-ratio of the 

splicing machinery genes (the “supply”) increased, that of the non-ribosomal intron-

containing genes (the “demand”) decreased (Figure 5A). This observation suggests that 

indeed the cellular availability of the splicing machinery was elevated in this evolved 

colony, which might have allowed for the observed increased splicing efficiency of the 

YFP-Kan gene. Next, we hypothesized that the cis-evolving colonies may have also 

adapted in trans and used this adaptation mechanism as well. Indeed, in all other evolved 

colonies we observed a similar trend, in which the overall supply-to-demand 

measurement of the splicing machinery was increased (Figure 5B). Notably, in some 
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colonies this phenotype was achieved by only increasing expression levels of splicing 

genes or by only reducing levels of the intron-containing genes (Supplementary Figure 2). 

Importantly, the two rescue strains, which did not evolve and only harbor our artificially 

introduced cis-acting mutation, did not show any change in splicing availability (Figure 

5B), strongly supporting our conclusion that this phenotype was achieved by further 

adaptation of the cells during our lab-evolution experiment. Thus, we concluded that 

both cis and trans adaptation routes can co-occur in the same genome towards 

optimization of its gene expression patterns.  
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Discussion 

Here we study the role of the splicing machinery in optimization of gene expression 

programs by placing selective pressure on cells to improve the splicing efficiency of a 

specific gene. Our results provide molecular evidence for the relevance of splicing as 

another instrument in the cellular toolbox towards adjusting its gene expression patterns. 

To the best of our knowledge, we demonstrate the first experimental evidence of splicing 

efficiency adaptation, confirming that this adaptation can occur in cis and trans similarly 

to adaptations of other means of gene regulation. 

Two potential solutions to the burden we imposed on our ancestor lines were, 

surprisingly, not realized during our lab-evolution. First, considering previous studies of 

splicing evolution, one could have expected the intron to be lost by a genomic deletion or 

reverse transcription34,35. Such a solution could have been an ideal evolutionary 

adaptation to alleviate the burden, as we show that the intron-less strain has the highest 

fitness. The fact that we did not observe an intron-loss event suggests that nucleotide 

substitutions were more accessible solutions in this case, in agreement with previous 

evidence in yeast that nucleotide mutations are much more prevalent than deletion 

events, at a ratio of 33:136. Another surprise was that the mutations we observed did not 

occur within any of the intron’s three functional sites: the 5’ donor, 3’ acceptor, or the 

branch point of splicing. Surprisingly, one mutation was actually detected, and was 

verified here to affect splicing, in a region of the intron not known to exert a major effect 

on splicing, and another splicing-improving mutation happened in the up-stream exon - 

suggesting that various positions in the intron and its proximity may facilitate splicing rate 

and take part in the evolution of this process. 

Notably, the fluorescence intensity per protein molecule of the YFP domain was 

decreased due to the non-synonymous mutation in the YFP first exon, suggesting that 

under certain evolutionary constrains selection may hamper superfluous functions of 

certain protein domains so as to increase availability of the entire protein. Why then, 

would the mutations we observed increase splicing efficiency? Past evidence showed that 
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mRNA secondary structures at the intron’s edges influence splicing efficiency26,37–39. It is 

possible then that the mutations we observed in this study somehow open the structure 

of the intron under selection and make it more accessible for the splicing machinery. 

Adaptive changes also occurred in trans to the YFP-Kan locus and increased availability of 

the splicing machinery. Recently, the competition of pre-mRNAs for the splicing 

machinery was shown to affect cellular function, as splicing efficiency of multiple introns 

was influenced by changes in the composition of the transcript pool40. While this 

mechanism was elegantly suggested to maintain the separation between meiotic and 

vegetative gene expression states, it is also possible that it can be utilized as an adaptive 

route available for cells to optimize expression levels of genes. More broadly, it has been 

shown41 that yeast species that have a high content of intron-containing genes have 

adapted the codon usage of their splicing machinery genes more vigorously to their 

cellular tRNA pools compared to other species that have a lower number of introns in the 

genome. This evolutionary trend indeed shows that the splicing machinery adaptively 

responds to meet its own evolutionary demand. 

Our findings demonstrate how availability of the splicing apparatus may have been 

beneficially increased both by elevating the expression level of the machinery and/or by 

reducing other intron-containing genes that compete with the antibiotic resistance un-

spliced RNA for the spliceosome. Thus, increase in supply-to-demand ratio, analogous to 

the case in translation systems8,42, appears to have evolved in this case.  

Interestingly, we found that different adaptive means co-occurred in the evolved 

populations – independently in different cells or even simultaneously in the same 

genome. In particular, we saw that evolutionary lines that adapted in cis appear to also 

have had adaptations that are not encoded in the evolving gene, hence pointing to 

changes that must have occurred in trans. Further investigations will reveal which of 

these solutions, cis or trans, proves to be more evolutionarily stable - to fully reveal the 

dynamics of splicing adaptation when cells optimize their gene expression.  
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Materials and Methods 

Yeast strains and plasmids  

All S. cerevisiae strains in this study have the following genetic background: his3∆1::TEF2-

mCherry::URA3::RPS28Ap-YiFP-KAN::NAT; can1::STE2pr-Sp_his5; lyp1::STE3pr-LEU2; 

leu2∆0; ura3∆0; 

Strains of Y-intron-FP were taken from Yofe et al26 and were introduced with a Kan 

resistance gene fused 3’ terminally to the YFP. To reconstitute the mutations discovered 

after lab evolution (rescue strains), we amplified cassettes of Y-imut-FP-KAN and 

transformed these into the ancestor WT strain, selecting with KAN. Notably, all strains 

also carry an mCherry-fluorescent protein driven by an independent TEF2 promoter that 

was used to normalize cell-to-cell variability for the YFP-Kan expression levels.  

 

Media  

Cultures were grown at 30°C in rich medium (1% bacto-yeast extract, 2% bacto-peptone 

and 2% dextrose [YPD]). Throughout all experiments, G418 was supplemented to the 

medium at a concentration of 3mg/ml, which is 10fold higher than the standard. 

 

Evolution experiments  

Lab-evolution experiments were carried out by daily serial dilution for 80 days. Cells were 

grown on 1.2ml of YPD+G418 at 30°C until reaching stationary phase and then diluted by 

a factor of 1:120 into fresh media (~7 generations per dilution, total of ~560 generations). 

 

Liquid growth measurements  

The cultures were grown at YPD+G418, and optical density (600nm) measurements were 

taken at 30min intervals. Growth comparisons were performed using 96-well plates, and 

the growth curve for each strain was obtained by averaging at least 15 wells. 
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FACS measurements of YFP-Kan levels 

Cells were grown in YPD+G418 at 30°C until they reached the logarithmic growth phase at 

an optical density of ~0.4. Then, YFP and mCherry levels were measured for ~50,000 cells 

for each culture with flow cytometry. Gating was performed according to side and 

forward scatters, and YFP levels were normalized with the mCherry signal for each cell 

individually. 

 

Quantitative PCR measurements of splicing efficiency 

Cultures were grown in YPD+G418 at 30°C until cells reached the logarithmic growth 

phase at an optical density of ~0.4. Then, RNA was extracted using MasterPure kit 

(Epicentre), and were reverse-transcribed to cDNA using random primers. 2µl of cDNA 

were added to each reaction as template for qPCR using light cycler 480 SYBR I master kit 

and the LightCycler 480 system (Roche Applied Science), according to the manufacturer’s 

instructions. For each strain, two qPCRs were performed with three biological repetitions 

and three technical repeats. A first qPCR was performed targeting the transcript spliced-

version with a forward primer complementing the exon-exon junction and a downstream 

reverse primer. A second reaction targeted the un-spliced version of the transcript with a 

forward primer complementing the intron and the same reverse primer of the first 

reaction. 

Fexon-exon = 5’-CACTACTTTAGGTTATGGTTT-3’ 

Fintron = 5’-CTTCAATTTACTGAATTTGTATG-3’ 

Rboth = 5’-GTCTTGTAGTTACCGTCA-3’ 

Splicing efficiency is reported as the average Cp of the spliced transcript minus the 

average Cp of the un-splice version. 

 

mRNA deep sequencing 

Cultures were grown in YPD+G418 at 30°C until cells reached the logarithmic growth 

phase at an optical density of ~0.4. Cells were then harvested by centrifugation and flash-

frozen in liquid nitrogen. RNA was extracted using a modified protocol of nucleospin® 96 
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RNA kit (Machery-Nagel). Specifically, cell lysis was done in a 96 deep-well plate by adding 

for each well 450µl of lysis buffer containing 1M sorbitol, 100mM EDTA and 0.45µl 

lyticase (10IU/µl). The plate was incubated at 30°C for 30min to break cell wall, 

centrifuged for 10min at 3000rpm, followed by the removal of the supernatant. Then, 

extraction continued as in the protocol of nucleospin® 96 RNA kit, only using β-

mercaptoethanol instead of DTT. Poly(A)-selected RNA extracts of size ~200bps were 

reverse-transcribed to cDNA using poly(T) primers that were barcoded with a unique 

molecular identifier (UMI). cDNA was then amplified and sequenced with an Illumina 

HiSeq 2500. 

 

Analysis of mRNA deep sequencing 

Processing of RNA-seq data was performed as described in Voichek et al43. Shortly, reads 

were aligned using Bowtie44 (parameters: --best –a –m 2 –strata -5 10) to the genome of 

S. Cerevisiae (R64 from SGD) with an additional chromosome containing the sequence of 

the YFP-Kan construct. For each sequence, we normalized for PCR bias using UMIs as 

describe in Kivioja et al45. Next, reads for each gene end (400bp upstream to 200bp 

downstream of the ORF’s 3’ end) were summed-up to estimate the gene’s expression 

level. Genes with coverage lower than 10 reads were excluded. To normalize for 

differences in coverage among samples, we divided each gene expression by the total 

read count of each sample and then multiplied by 106. Then, expression ratio was 

calculated between an evolved/rescue colony to the ancestor and a log2 operation was 

performed on that ratio. These values were used to compare expression levels of gene 

groups (ribosomal genes, general stress response genes, splicing machinery genes, intron-

containing genes) and of the YFP-Kan mRNA levels as described in the manuscript. When 

calculating the expression levels of splicing machinery and intron-containing gene groups, 

the ribosomal and general stress response genes were excluded from the analysis in order 

to avoid bias from cellular regulation due to changes in physiology and growth rate of the 

cells. 
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Figure 1 – Inefficient intron splicing leads to lower gene 

expression levels and compromised antibiotics 

resistance. 

A| We introduced two alternative introns into a YFP 

domain that was fused to a kanamycin resistance domain 

- to generate three strains: (i) WT without an intron; (2) 

SplicingHigh with an efficiently spliced intron; and (iii) 

SplicingLow with an inefficiently spliced intron. Evolving 

cells at the presence of the antibiotics could adapt by 

mutating different parts of the YFP-Kan construct 

(evolution in cis) or other loci, evolution in trans (red stars 

represent potential locations of such putative mutation 

sites).  

B+C| SplicingLow suffers from a severe growth defect 

compared to WT or SplicingHigh cells when the antibiotic is 

supplemented to the medium. The growth defect is 

manifested as a longer lag phase and a lower maximal 

growth rate. 

D| Florescence intensity of the YFP-Kan reporter for all 

three strains shows that SplicingLow cells have lower 

expression levels of YFP-Kan. This observation links 

between YFP-Kan expression levels and cellular fitness. 

E| Transcriptome profiling shows that ribosomal genes 

were down-regulated (green dots, p-Value=4.62x10-26, 

paired t-test) and stress-related genes were up-regulated 

(red dots, p-Value=3.40x10-5, paired t-test) in SplicingLow 

compared to WT cells. This observation suggests that 

SplicingLow cells are stressed because of compromised 

resistance to the antibiotics and that the general stress 

response was activated in them. Inset| Mean log2 ratio of 

ribosomal and ESR gene groups. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Rapid adaptation to the presence of the antibiotics is observed only for SplicingLow cells. 

A| We evolved WT, SplicingHigh, and SplicingLow cells for ~560 generations with the presence of the antibiotics in four independent cultures for each strain. 

We measured fitness and YFP-Kan expression levels for all evolved lines (see below), and also randomly chose 16 colonies from two evolved lines of 

SplicingLow. We sequenced the YFP-Kan locus of those colonies and observed that around half showed mutations in the YFP-Kan construct (indication of 

evolution in cis) and the other half did not (indication of evolution in trans). Of those colonies, we randomly chose two cis-evolved and one trans-evolved 

colonies from each evolved population for further examinations (see figure 3 onwards). 

B+C| Growth of evolved populations compared to the three ancestors. Only evolved SplicingLow cells demonstrate significant improvement in growth for 

all four independent evolution lines. This observation suggests that the inefficiently spliced intron led to a rapid adaptation of SplicingLow cells. 

D| Florescence intensity of the YFP-Kan reporter for all evolved cultures show that expression levels were much increased in all four evolved cultures of 

SplicingLow compared to the ancestral strain (effect sizes = 78.67, 79.54, 75.17, 83.19). Conversely, the increase in expression levels in the evolved WT and 

of SplicingHigh populations were smaller (WT effect sizes = 64.66, 68.44, 63.51, 67.74; SplicingHigh effect sizes = 54.33, 70.66, 52.43 and 58.27). This 

observation suggests that adaptation of SplicingLow cells was based on their ability to increase expression levels of the resistance proteins. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Evolved colonies demonstrate increased splicing 

efficiency that results in higher transcript levels and relieved 

stress. 

A| Sequencing of the YFP-Kan construct in the evolved colonies 

revealed two mutation types: (i) in the intron itself and (ii) in 

the up-stream exon – see text for full description. These 

mutations did not occur in the intron 5’ donor, 3’ acceptor, or 

the branching point – suggesting that other positions of the 

intron and its vicinity are phenotypically functional and may 

affect splicing efficiency. 

B| All cis-evolved colonies (upper graph) and trans-evolved 

colonies (lower graph) show increased fitness compared to the 

Splicing
Low

 ancestor, yet still lower than the WT ancestor. 

C| Transcriptome profiling reveals that ribosomal genes were 

up-regulated (green dots, p-Value=4.94 x10
-18

, paired t-test) and 

stress-related genes were down-regulated (red dots, p-

Value=3.64 x10
-15

, paired t-test) in the evolved colony A-cis1 

compared to the Splicing
Low

 ancestor. This trend was observed 

in 5 out of 6 evolved colonies (Supplementary Figure 1). Inset| 

Mean log2 ratio of ribosomal and ESR gene groups. 

D| mRNA levels of YFP-Kan transcripts correlate with growth 

rate – suggesting that cellular fitness in our set-up is indeed 

determined by the availability of Kanamycin-resistance proteins 

to overcome the antibiotics. 

E| All cis- and trans-evolved colonies demonstrate increased 

splicing efficiency of the YFP-Kan mRNA compared to the 

Splicing
Low

 ancestor. This result suggests that all adaptation 

trajectories led to the adaptation of the splicing process to 

better mature the un-spliced YFP-Kan transcript. 

F| Florescence intensity of the YFP-Kan reporter show increased 

levels for the two cis-evolved colonies with the mutation in the 

intron and for the two trans-evolved colonies. In contrast, the 

two cis-evolved colonies with the non-synonymous mutation in 

the exon demonstrate decreased YFP-Kan levels. This 

observation suggests that the non-synonymous mutation 

hampered the ability of the YFP domain to florescent and 

reduced the Florescence intensity per protein molecule (see 

text for full explanation). 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – cis-acting mutations are sufficient to increase fitness by elevating splicing efficiency.  

A| We created two rescue strains, each harboring one of the mutations that appeared spontaneously in the evolved populations. Growth of the two 

rescue strains show that a single mutation in the YFP-Kan construct is sufficient to increase fitness compared to SplicingLow. 

B| The exonic mutation is also sufficient to alleviate stress, as ribosomal genes were up-regulated (green dots, p-Value=1.02x10-18, paired t-test) and 

stress-related genes were down-regulated (red dots, p-Value=9.02x10-12, paired t-test) in Rescue-B compared to SplicingLow. The same trend was also 

observed for the intronic mutation for Rescue-A cells. Inset| Mean log2 ratio of ribosomal and ESR gene groups. 

C| The two rescue strains demonstrate higher splicing efficiency of the YFP-Kan mRNA compared to the SplicingLow ancestor. This result suggests that a 

single mutation is sufficient to improve splicing efficiency. 

D| Florescence intensity of the YFP-Kan reporter for the Rescue-A and Rescue-B strains show similar trends as the colonies in Figure 3D - supporting earlier 

conclusions. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Increasing cellular availability of the splicing machinery is an adaptive mechanism of splicing. 

A| The groups of splicing genes and intron-containing genes were increased (p-Value=1.36x10-3, paired t-test) and decreased (p-Value=1.67x10-2, paired t-

test), respectively, in the trans-evolved colony A-trans compared to SplicingLow ancestor. This observation suggests that the supply-to-demand ratio of the 

splicing machinery was increased in A-trans colony, which allowed its increased splicing efficiency of the YFP-Kan transcript. 

B| Supply-to-demand ratios for the splicing machinery were calculated to all evolved colonies and to the rescue strains as the difference between the 

mean fold-change of splicing genes to the mean fold-change of intron-containing genes. While supply-to-demand ratios were increased in all evolved 

colonies, they remained the same for the two rescue strains. These results suggest that indeed the cellular availability of the splicing machinery was 

elevated in the evolved colonies – a trans-adaptation mechanism to optimize gene expression using the splicing process. 



Supplementary Figure 1 | Transcriptome profiling reveals that ribosomal genes were up-regulated and that stress-related genes were 
down-regulated in 5 out of 6 of the evolved colonies compared to the SplicingLow ancestor. 



Supplementary Figure 2 | Supply-to-demand ratio in each of the evolved colonies. Folding change ratios in log2 are shown for splicing 
genes (left) and intron-containing genes (right). Black line represents the median of the distribution. 
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