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Summary 

Differences in protein levels may result in different phenotypes among species. 

These variations in protein levels are due to differences in the various levels that 

control protein expression, which range from the presence/absence of a gene from the 

genome to more subtle genetic differences that affect a protein’s localization or post-

translational modification.  The aim of my thesis studies was to expand the picture of 

mechanisms underlying phenotypic divergence by examining the involvement of 

differences in coding sequences, which affect protein expression, in species 

phenotypic divergence.  The thesis is composed of two projects; the first consists of 

analysis of yeast species and the second of mammals.  

In the first project, I aimed to investigate the relationship between differential 

translation efficiency of orthologous genes and phenotypic differences between yeast 

species. To this end, I focused on the extent of adaptation of the codon usage of a 

gene to the available tRNA pool, as a surrogate measure for the efficiency of the 

peptide elongation process. To assess translation effects on divergence, I analyzed 

~2,800 orthologous genes in nine yeast genomes, predicting for each gene in each 

species its translation efficiency. Mining this data set, I found many groups of 

functionally-related genes with correlated patterns of translational efficiency across 

the species. Among these, I found cases where the patterns of translation efficiency 

for the group of genes was in concordance with a phenotype. For instance, the genes 

required for respiration were found to be translated more efficiently by obligate 

aerobic species than by species that prefer fermentation over respiration even under 

aerobic conditions, whereas the glycolytic enzymes displayed a complementary 

pattern. Also, the genes required for mRNA splicing are translated more efficiently by 

species with a higher demand for splicing. I also found many cases where statistically 

significant patterns cannot be explained by known phenotypic differences and may 

open avenues to further investigation into the physiology of the species analyzed. My 

results indicate that synonymous codon choices may be under strong selection, 

adapting the codons to the tRNA pool to different extents, depending on the gene’s 

function and organism’s needs. I found a relatively constant tRNA pool in all species, 

indicating that co-evolution of protein-coding genes and tRNAs takes place mainly in 
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a distributive fashion at the protein-coding gene level. The same gene in different 

species adapts itself to different extents to an essentially unmodified tRNA repertoire.  

I conclude that like factors such as transcription regulation, translation efficiency 

affects and is affected by the process of species divergence. 

In the second project, I compared the olfactory receptor repertoires of human and 

chimpanzee that are assumed to have different sensory needs. The coding sequence 

characteristics I aimed at in this project were open reading frame disruptions 

(nonsense mutations or frameshifts) that transform a gene into a pseudogene that is 

transcribed but cannot form a functional protein, as well as differences in the ratio of 

synonymous to non-synonymous mutations that imply that selective pressures on the 

gene differ among the species. Confirming previous predictions, I found that, 

compared to chimpanzees, the human genome contains a significantly larger 

proportion of nonfunctional OR pseudogenes, implying that the human sense of smell 

is deteriorating at a greater rate than that of chimpanzee. Through a  comparison of 

pseudogenes that became nonfunctional before the divergence of these two species 

with those that became nonfunctional after the divergence I was able to reject the 

hypothesis that humans have been accumulating OR pseudogenes at a constant neutral 

rate since their divergence from chimpanzees.  The comparison of the two repertoires 

revealed that most chimpanzee OR genes have a clear human ortholog, so that the 

overall structure of the repertoire is conserved. Nonetheless, I found two chimpanzee-

specific OR subfamily expansions and three expansions specific to humans. The 

comparison also suggested that a subset of OR genes are under positive selection in 

either the human or the chimpanzee lineage. Thus, although overall there is relaxed 

constraint on human olfaction relative to chimpanzee, species-specific sensory 

requirements appear to have shaped the evolution of the functional OR gene 

repertoires. 

In conclusion, both projects have revealed differences among the coding 

sequences of the species analyzed that may take part in their phenotypic divergence. It 

is my hope that future experimental studies will examine whether the differences 

identified in my studies indeed underlie phenotypic differences among yeast species 

and sensory differences between humans and chimpanzees.  
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2. List of Abbreviations and Symbols 

bp – base pairs 

CAI – codon adaptation index 

CRP – cytosolic ribosomal protein 

Dn/Ds – ratio of nonsynonymous to synonymous divergence 

f(Xg) – function predicting the effective number of codons from silent GC content 

FDR – false discovery rate 

GO – gene ontology 

HMM – hidden Markov model 

LRT – likelihood ratio test 

MRP – mitochondrial ribosomal protein 

MY – million years 

MYA – million years ago 

Nc – effective number of codons 

OR – olfactory receptor 

ORF – open reading frame 

SF – synonymous family 

SGD – Saccharomyces Genome Database 

tAI – tRNA adaptation index 

TCA – tricarboxylic acid 

Xg – silent GC content 
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3. Introduction 

4. The genetic basis of phenotypic differences 

A major challenge in comparative genomics is to understand how phenotypic 

differences among species are encoded within their genomes. The most obvious way, 

perhaps, that a difference in phenotype may be generated among species is through 

differential gene repertoires, such that only the genomes of species that possess the 

trait of interest contain the relevant genes. As an example, Avidor-Reiss et al. 

(Avidor-Reiss et al. 2004) identified a group of close to 200 genes that are present in 

the genomes of ciliated species but absent from the genomes of non-ciliated species. 

These authors suggested that members of this group of genes, which contained more 

than 80% of the genes previously implicated in the formation of cilia, are involved in 

cilia biogenesis and function.   

Changes in phenotype may also be attained through mutations in the coding 

sequences of genes that alter their function. For instance, the long wavelength-

sensitive opsin (LWS) protein of haplochromatic cichlid fish species from Victoria 

Lake differs in its peak value of light absorption at long (red) wavelength between 

populations, in a manner that is correlated with the transparency of the waters these 

populations inhabit (Terai et al. 2006). This difference in protein function was shown 

to be the result of differences in the binding site of this protein.  

Differential regulation of transcript levels of shared genes with similar functions 

may also provide a basis for phenotypic divergence. The involvement of differential 

transcription regulation by transcription factors in phenotypic divergence has been 

widely studied (c.f. (Powers and Schulte 1998; Ihmels et al. 2005; Prud'homme et al. 

2007; Simpson 2007)), with examples including the generation of various wing 

pigmentation and bristle patterns in Drosophila species through differential regulation 

of the yellow and scute genes, respectively (Simpson 2007). Other modes of gene 

transcript regulation that undergo selection, and, therefore, may potentially diverge to 

create different phenotypes include: chromatin modifications, as well as mRNA 

degradation, splicing, polyadenylation and localization. Despite the potential for 

involvement of these factors in phenotypic divergence,  a literature search revealed 

only one example that found an association between changes in one of these factors 

(alternative splicing) and differences in phenotype. This is the case of differential 

alternative splicing patterns of the hagoromo gene that were found to be associated 
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with divergent patterns of coloration in cichlid fishes in the lakes of East Africa (Terai 

et al. 2003)).  

Finally, phenotypic divergence may be generated through differential translation 

regulation, as well as through changes in protein localization, modification and 

degradation. For the former, no evidence for involvement in phenotypic variation was 

available at the time I began my study. Since then, a study associating between the 

translation efficiency of genes and species’ lifestyles has been published, and will be 

addressed in the Discussion section. For the latter mechanisms of gene regulation 

there are still no known examples of phenotypic divergence that entails changes in 

them. 

In this study I aimed to complement and expand the picture by examining the 

involvement of differences in coding sequences, which potentially affect protein 

expression, in species divergence. This work is divided into two chapters, each 

examining a different aspect of coding sequence evolution. In the first chapter, I 

aimed to investigate the relationship between differential translation efficiency of 

orthologous genes and phenotypic differences between yeast species. In the second 

chapter, a joint project with Dr. Yoav Gilad and Dr. Gustavo Glusman, we compared 

the olfactory receptor repertoires of human and chimpanzee that are assumed to have 

different sensory needs. In both cases I found evidence for the involvement of 

differences in coding sequences in the phenotypic divergence of the species analyzed. 

 

5. Translation efficiency 

The translation efficiency of a coding sequence is commonly defined as the extent 

of the adaptation of its codon usage to the tRNA cellular pools (Sharp and Li 1987; 

dos Reis et al. 2004), which serves as a surrogate measure for its speed of translation. 

This definition stems from an early observation of a trend of increasing codon usage 

bias with increasing gene expression levels in a sample of E. coli genes (Sharp and Li 

1986), and that tRNA concentrations are rate limiting in the elongation of nascent 

peptides (Varenne et al. 1984). The same trend of codon usage bias was also observed 

in several other organisms, including: S. cerevisiae (Sharp et al. 1986), C. elegans, D. 

melanogaster and A. thaliana (Duret and Mouchiroud 1999). In the cases where data 

regarding the abundance of the various tRNA species were available it could be 

shown that the codons “preferred” by highly expressed genes were those 
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corresponding to the most abundant tRNAs (Sharp et al. 1986; Moriyama and Powell 

1997). 

The term translational selection refers to natural selection acting to maintain high 

translation efficiency of the coding sequences of certain genes. It is of note that 

translational selection is not the only factor shaping codon usage patterns in the 

genomes of species. Other factors that affect codon usage include directional 

mutational pressure and strand-specific mutational patterns (i.e. a difference in G 

versus C between the leading and lagging strands). Codon usage is typically shaped 

by several such factors, and some may be more dominant than others. Thus, the trend 

of increased translational efficiency in highly expressed genes was not found in the 

genomes of some organisms such as those of M. luteus (Ohama et al. 1990), and the 

spirochaetes B. burgdorferi  and T. pallidum (Lafay et al. 1999), perhaps because 

factors other than translational selection were more dominant in shaping codon usage. 

 

5.1. Measures of translation efficiency 

Many measures have been proposed over the years to evaluate the codon usage of 

coding sequences in terms of translation efficiency. A representative set of these 

measures will be reviewed here. These measures can roughly be divided into two 

categories.  

The measures in the first category measure the deviation of the codon usage of 

genes from the equal use of synonymous codons. If genes that are known, or assumed, 

to be highly expressed in the genome obtain scores that are associated with high bias 

then it is assumed that selection for translation efficiency is a major force shaping 

codon usage in the particular genome. One may then draw conclusions regarding the 

expression levels of other genes in the genome for which no prior information 

regarding their expression is available, based on their codon usage bias scores. A 

disadvantage of this methodology is that it requires knowledge of a set of highly 

expressed genes within the genome. If no expression studies have been performed on 

the genome in question then the set of highly expressed genes may be inferred by 

orthology. For this purpose, it is usually assumed that genes involved in protein 

translation, protein folding, and glycolysis are highly expressed (c.f. (Carbone et al. 

2003)). However, it is not clear how widely applicable this assumption is.  
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The most commonly used index for codon bias in this first category is the 

effective number of codons (Nc) (Wright 1990). This index scores coding sequences 

according to their tendency for equal usage of synonymous codons, in a manner that is 

independent of the genome the sequence originates from. Theoretically, a sequence 

which uses synonymous codons indiscriminately would obtain a score of 61, 

indicating that it uses all 61 sense codons, whereas a highly biased coding sequence 

which uses a single codon for each amino acid would obtain a score of 20 (but see 

Methods section for deviations from these theoretical boundaries).  

The measures in the second category measure the conformance of a sequence’s 

codon usage to a ‘translationally optimal’ codon usage. Ideally, one would derive the 

translational optimality of codons from the abundances of the tRNAs in the cellular 

pool (taking into account wobble interactions). However, experimental data about the 

concentrations of the various tRNA types in the cell are available for very few species 

(Ikemura 1982; Kanaya et al. 1999). This drawback has been addressed in two ways. 

The first solution was to obtain a reference set of genes that are known to be highly 

expressed, and hence assumed to have optimal codon usage in terms of translation. 

All remaining genes belonging to the same genome are then scored according to the 

similarity of their codon usage to that of the reference set.  A disadvantage of this 

solution is that, like the methods in the first category of translation indices, knowledge 

of a set of highly expressed genes is necessary. An alternative solution is to rely on a 

surrogate measure for the cellular abundances of tRNAs. It has been observed that the 

in vivo concentration of a tRNA bearing a certain anticodon is highly proportional 

(r=0.91 for  S. cerevisiae) to the number of gene copies coding for this tRNA type 

(Percudani et al. 1997; Kanaya et al. 1999). This is in line with a recent study that 

showed that in S. cerevisiae the promoters of many of the tRNA genes have a low 

predicted affinity to the nucleosome, suggesting a constitutive expression with little 

transcriptional regulation capacity (Segal et al. 2006). Thus, for fully sequenced 

genomes, the relative concentrations of the various tRNAs in the cell, and therefore 

the optimality of the various codons in terms of translation, can be approximated 

using the respective tRNA gene copy numbers in the genome. 

 The fraction of optimal codons, Fop (Ikemura 1981), the earliest index of 

translation efficiency, is a member of this second category of translation efficiency 

measures.  This index entails the determination of the most optimal codons for each 

amino acid (in a species-dependent manner), and then calculating the fraction of 
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codons in a coding sequence that are optimal (i.e. the values for this index range from 

0 (no bias) to 1 (maximum bias)). This index results in an obvious loss of information, 

since for those amino acids that have more than two possible codons, the sub-optimal 

codons are not necessarily equal in terms of their translation efficiency.  

The codon adaptation index, CAI (Sharp and Li 1987), a measure developed 

slightly later, is the most widely used index of translation efficiency. This index 

assigns weights to the various codons according to their frequency of occurrence in 

the coding sequences of a training set of highly expressed genes. The original training 

set used for CAI in the genome of S. cerevisiae constituted 24 genes, encoding 16 

ribosomal proteins, one elongation factor and seven glycolytic enzymes. Coding 

sequences are then scored by combining the derived weights of their individual 

codons, resulting in values ranging from 0 (no bias) to 1 (maximum bias). More 

recently, a variation on the original CAI was proposed by Carbone et al. (Carbone et 

al. 2003). Under this variation, a reference set of genes that are most representative of 

the dominant codon bias in the genome is determined iteratively. If the resultant 

reference set contains genes involved translation, protein folding and glycolysis it is 

concluded that the genome analyzed is subject to translational selection. Codon 

weights and individual sequence scores are then computed as in the original CAI, 

using the reference set as a basis for calculations. 

The tRNA adaptation index, tAI (dos Reis et al. 2004), is a relatively recent index 

of translation efficiency that uses the copy numbers of tRNA genes in the genome as a 

means to calculate the translation efficiency weights of the various codons, taking into 

account wobble interactions. The weights of the codons in a coding sequence are then 

combined in a manner that is identical to that of CAI to obtain a translation efficiency 

score for the sequence, which ranges from 0 (no bias) to 1 (maximum bias). 

 

5.2. Measures of translation efficiency as predictors of gene expression 

levels 

Several studies have examined the relationship between the codon usage bias 

values and the corresponding gene expression levels (Coghlan and Wolfe 2000; 

Jansen et al. 2003; Friberg et al. 2004; Goetz and Fuglsang 2005; Supek and 

Vlahovicek 2005). The expression values used in these studies were mainly from E. 

coli and S. cerevisiae, the two model organisms for which selection for translation 
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efficiency was first established and for which large-scale expression data exists. Since 

a large scale data set of protein expression levels in S. cerevisiae was published only 

in 2003, most of the studies used mRNA expression values or small-scale protein 

expression values obtained from 2D-gel experiments. The comparison of codon 

usage, which is assumed to be selected for translation efficiency, with mRNA levels 

was justified by the general correspondence of high mRNA levels with high protein 

levels. Overall, all studies found the correlation between codon usage bias and 

expression levels to be highly statistically significant. However, the values of the 

correlation coefficients are not high, and are similar to the correlations observed 

between mRNA and protein expression levels (Jansen et al. 2003).  In fact, for lowly-

expressed transcripts there is almost no relationship between mRNA levels and codon 

usage bias (Coghlan and Wolfe 2000). These studies therefore suggest the use of 

codon usage bias as a rule of thumb, rather than a highly reliable predictor of 

expression levels. It was also found that codon usage bias correlated better with 

mRNA expression levels measured in growth conditions matching the organism’s 

natural habitat than with those measured under defined growth medium (Goetz and 

Fuglsang 2005; Supek and Vlahovicek 2005). A possible explanation for this 

observation is that the effect of codon usage, a static property of a gene, is negligible 

when mRNA levels are close to zero, and would therefore be strongest when a gene 

reaches its maximal mRNA level (Goetz and Fuglsang 2005). 

Finally, measures of translation efficiency have been shown to be potentially 

useful in functional inferences. Two studies investigated the predicted expression 

levels of proteins, as approximated by their codon usage bias, in closely related yeast 

species of the genus Saccharomyces (Fraser et al. 2004) and in many other unicellular 

organisms (Lithwick and Margalit 2005). Both studies found that for functionally 

related protein pairs, the predicted protein expression levels tend to correlate across 

species for functionally related protein pairs, implying that the expression levels of 

these protein pairs co-evolve. 

 

6. Ascomycotic fungi 

The Ascomycota, also known as sac fungi, is a monophyletic group of species, 

which accounts for about 75% of described fungi. The ascomycotic fungi include 

some extensively-researched model organisms, such as the Saccharomyces cerevisiae 
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and Schizosaccharomyces pombe, as well as many yeasts noted for their involvement 

in disease (e.g. Candida albicans) or their utility in industry (e.g. Yarrowia lipolytica). 

Over the last ten years the genomes of a large number of members of Ascomycota 

have been sequenced, and many more are in the process of being sequenced. These 

sequencing projects have improved our understanding of the evolutionary 

relationships among members of this group, and revealed large scale genome 

dynamics in these organisms, such as a whole genome duplication (Wolfe and Shields 

1997; Kellis et al. 2004). Comparative analyses among the sequenced genomes 

allowed the elucidation of regulatory motifs for extensively-researched model 

organisms (Cliften et al. 2003; Kellis et al. 2004), as well as the annotation of genes in 

the genomes of less researched organisms. In spite of this, by and large biological 

knowledge regarding phenotypes and their genetic basis in these sequenced species is 

still scarce. 

In the first part of my research, I aspired to gain more knowledge regarding the 

molecular basis of phenotypes in ascomycotic species through the analysis of the 

translation efficiency of their genes. The research was inspired by a recent study, 

which showed that differences in the way hemiascomycotic species (a monophyletic 

subset of Ascomycota) prefer to metabolize glucose is connected to the regulation of 

transcription of the cytosolic vs. the mitochondrial ribosomal proteins (CRPs and 

MRPs, respectively) (Ihmels et al. 2005). My aim was to investigate whether 

differential translational efficiency of orthologous genes could also be related to 

phenotypic divergence of species. In particular I wanted to know whether patterns of 

differential translation efficiency could explain known physiological differences 

among related fungal species, as well as suggest new avenues of research of the 

species.  

 

7. Phenotypic divergence between humans and chimpanzees 

The chimpanzee (Pan troglodytes), together with the bonobo (Pan paniscus), is 

our closest extant evolutionary relative, and has diverged from humans ~5-7 million 

years ago (MYA) (Chen and Li 2001; Brunet et al. 2002). Chimpanzees share with us 

many similarities, some of them behavioral, such as tool use and group aggression 

(Goodall 1964; Whiten et al. 1999). However, in many respects humans are unique, 

relative to chimpanzees and other “great apes”. These include habitual bipedalism, a 
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greatly enlarged brain and complex language (Whiten et al. 1999). Despite many 

physiological similarities between humans and chimpanzees, there are also important 

differences in the incidence and severity of several major human diseases (Olson and 

Varki 2003). As an example, humans are susceptible to malaria caused by P. 

falciparum, whereas chimpanzees are resistant to this form of malaria (Escalante et al. 

1995; Ollomo et al. 1997). A comprehensive list of phenotypic traits which are 

confirmed or have been claimed to be different between humans and great apes (as a 

group) can be found in (Varki and Altheide 2005). 

A comparison of the draft of the chimpanzee genome sequence with the human 

genome sequence revealed  ~1% nucleotide substitutions between the two genomes, 

as well as that insertion and deletion events (indels) result in ~1.5% of the sequence in 

each species being lineage-specific ("The Chimpanzee Sequencing and Analysis 

Consortium" 2005).This low sequence divergence was already observed in earlier 

comparisons that used partial sequences, and has led to the formulation of several 

hypotheses regarding the genetic basis of the phenotypic differences among humans 

and chimpanzees. The earliest of these hypotheses was proposed in 1975 by Mary-

Claire King and Alan Wilson (King and Wilson 1975): based on the paucity of protein 

sequence differences among the two species, these two researchers suggested that the 

phenotypic divergence among humans and chimpanzees was likely to be due to 

changes in the gene regulation of the two species. More recently, Olson formulated 

the ‘less-is-more’ hypothesis, which emphasizes the importance of loss-of-function 

mutations in the generation of human-specific phenotypes (Olson 1999).  Two other 

genetic mechanisms of divergence that have been proposed to explain phenotypic 

differences between humans and chimpanzees are gene duplication and divergence, as 

well as non-synonymous substitutions in single-copy genes (Olson and Varki 2003). 

These hypotheses have been serving as a guide in the comparative analyses of the two 

species. However, studies conducted so far could not point to a single mechanism that 

is dominant in generating the phenotypic differences between humans and 

chimpanzees. Rather, all the above proposed mechanisms probably contributed to the 

divergence in physiologies: divergence in expression patterns (Gilad et al. 2006), loss-

of-function mutations (e.g. (Puente et al. 2005; Wang et al. 2006)), non-synonymous 

mutations (e.g. (Bustamante et al. 2005; Bakewell et al. 2007)), and gene duplication 

(Demuth et al. 2006). 
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8. Olfactory receptors 

Olfactory receptor (OR) genes provide the basis for the sense of smell, and with 

>1000 genes, are the largest gene superfamily in mammalian genomes (Buck and 

Axel 1991; Zhang and Firestein 2002). The completion of the human genome enabled 

the identification of the entire human OR gene repertoire (Glusman et al. 2001). At 

the time we began this study the number of OR genes identified in human was 862, 

56% of them carrying one or more coding-region disruptions, and hence annotated as 

nonfunctional pseudogenes. In mouse, and presumably in other mammals as well, 

although these pseudogenes are transcribed to form full-length transcripts, they do not 

produce functional OR proteins (Serizawa et al. 2003). The mouse and dog total OR 

repertoires are roughly the same size, and ~20% larger than that of human (Young et 

al. 2002; Zhang and Firestein 2002; Quignon et al. 2003; Olender et al. 2004). 

Moreover, the proportion of pseudogenes in mouse and dog is only ~20% (Young et 

al. 2002; Quignon et al. 2003). Thus, the number of putatively functional OR genes is 

three times larger in mouse and dog relative to human. However, when only 

apparently intact (putatively functional) OR gene repertoires of the three species are 

contrasted, it appears that although humans have a sharply reduced functional OR 

repertoire, more than 60% (150 out of 250) of the different OR gene subfamilies are 

shared by all three species (Quignon et al. 2003; Godfrey et al. 2004; Olender et al. 

2004). These observations led to the suggestion that humans sense a repertoire of 

odors that is comparable to that of dog and mouse, albeit with a diminished resolution 

(Godfrey et al. 2004; Malnic et al. 2004). 

Prior to the current study, Gilad et al. (Gilad et al. 2003b) analyzed the coding 

sequences of 50 OR genes in five different primates and found that the human lineage 

accumulated OR pseudogenes almost four times more rapidly than any nonhuman 

primate lineage. As a result, apes and Old World monkeys have many fewer OR 

pseudogenes than humans. Nonetheless, the proportion of OR pseudogenes in these 

nonhuman primates is still significantly higher than those of dog or mouse (Rouquier 

et al. 2000; Gilad et al. 2003b). Taken together, the data suggest that a deterioration of 

the olfactory repertoire occurred during primate evolution, with a particularly steep 

decline in the human lineage. 
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The second part of my research, performed in collaboration with Dr. Yoav Gilad 

(then at Yale University, New Haven, Connecticut, USA) and Dr. Gustavo Glusman 

(Institute of Systems Biology, Seattle, Washington, USA), was inspired by the 

completion of the genome of the chimpanzee. Our primary aim was to characterize 

the chimpanzee OR gene repertoire in comparison to the human repertoire. Modern 

humans and chimpanzees lead vastly different lifestyles, and one can assume these 

lifestyles require different olfactory capacities. Such a comparison might uncover the 

genetic basis for the presumed differing capacities. More specifically, we aimed to 

provide a better estimate of the fraction of OR pseudogenes in chimpanzee (previous 

estimates were based on only 50 (Gilad et al. 2003b) and 20  (Gilad et al. 2003a) OR 

genes), as well as identify subfamilies that have expanded or have been reduced in the 

human or chimpanzee lineages since their divergence. In addition, we wanted to 

investigate which human OR genes evolved under positive selection, in order to 

highlight genetic differences that might underlie differing olfactory capacities among 

humans and chimpanzees. Finally, we aimed to provide an estimate of the point in 

time when humans started the more rapid accumulation of pseudogenes (relative to 

other apes). 
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9. Methods 

1. Methods used for the comparative analysis of translation 

efficiency in yeast species 

1.1. Species analyzed 

For this study I used ascomycotic species whose genomes were completely 

assembled according to NCBI (http://www.ncbi.nlm.nih.gov/) at the time I began the 

study, and for which I could infer the tRNA gene repertoire reliably: Saccharomyces 

cerevisiae, Candida glabrata, Ashbya gossypii, Kluyveromyces lactis, Debaryomyces 

hansenii, Yarrowia lipolytica and Schizosaccharomyces pombe. I also included three 

additional species: Candida albicans, an important fungal pathogen, for which a high-

quality gene collection (including tRNA genes) was available (Braun et al. 2005); 

Saccharomyces bayanus, a Saccharomyces sensu stricto species (i.e. a species that is 

closely related to S. cerevisiae) that diverged from S. cerevisiae ~20 MYA, for which 

the overwhelming majority of ORFs are available (Kellis et al. 2004); and Aspergillus 

nidulans, a filamentous fungus with a high quality sequence. Since most of the species 

used are yeasts, I collectively refer to them in the text as yeast species. 

 

1.2. tRNA gene copy numbers 

For all species except C. albicans and S. bayanus the tRNA gene copy numbers 

were obtained by applying the tRNAscan-SE software version 1.1 (Lowe and Eddy 

1997),  which uses a hidden Markov model (HMM)-based approach, to the genome 

sequences. For A. nidulans the genome sequence was obtained from 

http://www.broad.mit.edu/annotation/genome/aspergillus_nidulans; chromosome 

sequences for the remaining seven species were obtained from GenBank 

(http://www.ncbi.nlm.nih.gov/Genbank). 

For S. bayanus I used the tRNA gene copy numbers of the closely related S. 

cerevisiae. Although a list of the tRNA genes for this species is available (Kellis et al. 

2004), the low total number of protein-coding genes available for it and the other two 

sensu stricto Saccharomyces species sequenced in the same project (less than 5,000 in 

each of the three species, compared to close to 6,000 in S. cerevisiae), indicates that 

the quality of the genome sequence may not be high enough to reliably determine the 

copy numbers of tRNA genes. The strong conservation of synteny (i.e. the preserved 

http://www.ncbi.nlm.nih.gov/
http://www.broad.mit.edu/annotation/genome/aspergillus_nidulans
http://www.ncbi.nlm.nih.gov/Genbank
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order of genes on chromosomes) between S. bayanus and S. cerevisiae (Kellis et al. 

2004) and the relatively short time that has passed since their divergence (~20 million 

years) makes the use of the tRNA gene copy numbers from S. cerevisiae a 

conservative choice. For C. albicans I extracted the tRNA gene counts from the 

Candida Genome Database (CGD) (Arnaud et al.) on August 14 2005. See Appendix 

1 for the data on gene copy numbers of tRNAs that decode sense codons in each of 

the species. 

 

1.3. Protein and coding sequences 

The C. albicans protein and coding sequences included in assembly Ca19 (Braun 

et al. 2005), were downloaded from http://candida.bri.nrc.ca on August 14 2005. This 

gene set corresponds to the haploid genome of C. albicans. S. cerevisiae and S. 

bayanus protein and coding sequences were downloaded from the Saccharomyces 

Genome Database (SGD) (Balakrishnan et al.) on June 16 2005. For S. bayanus 

several sequences may correspond to different fragments of the same ORF. I used the 

annotation of Kellis et al. (Kellis et al. 2004) to merge such fragments. Protein, gene 

sequences and gene structures from release 4 of the A. nidulans genome sequence 

(Galagan et al. 2005) were downloaded from 

http://www.broad.mit.edu/annotation/genome/aspergillus_nidulans. Using the gene 

sequences and the corresponding gene structures I obtained coding sequences for the 

A. nidulans genes. 

For the remaining six species, files in both fasta and UniProt formats were 

downloaded from Integr8 (Pruess et al. 2005). The UniProt format files were used to 

construct a dictionary, linking accessions of nucleotide sequences to their 

corresponding proteins. I downloaded, in EMBL format, all entries of the EMBL 

database (Kanz et al. 2005) that corresponded to the species in question and contained 

a “CDS” feature. A perl script utilizing BioPerl (Stajich et al. 2002) was then used to 

go over the EMBL format file to extract coding sequences of accessions 

corresponding, according to the dictionary, to sequences in the protein fasta file. 

Coding sequences were used only if their length was at least three times the length of 

the protein sequence. If the coding sequence was longer than this length, I assumed 

that this was due to an alternative initiation site in the sequence, and used the last N 

nucleotides, where N is the expected length for the coding sequence. For S. pombe 

http://candida.bri.nrc.ca/
http://www.broad.mit.edu/annotation/genome/aspergillus_nidulans
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there were many instances in which I couldn’t obtain the coding sequences of genes 

using the above-mentioned method. For those genes that had orthologs in one of the 

other genomes examined (see below) I obtained the coding sequence manually from 

the S. pombe section of GeneDB (Hertz-Fowler et al. 2004).  

The protein set of C. neoformans, which was used as an outgroup to establish 

orthology relationships (see below), was downloaded in fasta format from Integr8 

(Pruess et al. 2005). 

Finally, I removed mitochondrially-encoded sequences from all sequence sets. 

 

1.4. Calculation of the tRNA adaptation index (tAI) for coding sequences 

The tRNA adaptation index is described in detail in (dos Reis et al. 2004). Briefly, 

the method entails calculating a weight for each of the sense codons, derived from the 

copy numbers of all the tRNA types that recognize it (including wobble interactions). 

For a given coding sequence, the tAI value is then the geometric mean of the weights 

of all its sense codons (stop codons were ignored when encountered). The tAI of a 

coding sequence ranges from 0 to 1, with high values corresponding to high levels of 

translational efficiency. To calculate the tAI for coding sequences I used the codonR 

script supplied by (dos Reis et al. 2004), downloaded from 

http://people.cryst.bbk.ac.uk/~fdosr01/tAI/, which I modified to include the first 

codon, as well as other methionines. 

 

1.5. Calculation of the codon adaptation index (CAI) for coding 

sequences 

The codon adaptation index (CAI) is described in detail in (Sharp and Li 1987)). 

This index derives codon optimality weights from the coding sequences of a reference 

set of highly expressed genes. For a given coding sequence, the CAI value is then the 

geometric mean of the weights of all its individual codons. The CAI of a coding 

sequence ranges from 0 (low translation efficiency) to 1 (high translation efficiency). 

CAI values for all S. cerevisiae ORFs were calculated using the CodonW software 

(Peden JF, unpublished; http://www.molbiol.ox.ac.uk/cu), selecting “Saccharomyces 

cerevisiae Sharp and Cowe (1991) Yeast 7:657-678” as the CAI type. 

 

 

http://people.cryst.bbk.ac.uk/~fdosr01/tAI/
http://www.molbiol.ox.ac.uk/cu
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1.6. Calculation of Nc and the pathologies of this index 

The effective number of codons (Nc (Wright 1990)) is a measure of how far the 

codon usage of a coding sequence departs from equal usage of synonymous codons. 

In theory this index should yield values in the range 20 (for highly biased genes using 

only one codon per amino acid) to 61 (for genes that display equal usage of 

synonymous codons). However, in practice the equation for this index may yield 

values that are greater than 61. In order to understand how such ‘illegal’ values are 

obtained one must examine the definition of the index. For simplicity, the definition 

assumes a sequence coded by the ‘universal’ genetic code (although it can be easily 

modified to accommodate alternative codes). Under this code there are 2 amino acids 

with only one codon choice, 9 with two, 1 with three, 5 with four, and 3 with six. 

These represent five synonymous family (SF) types, designated as SF type 1, 2, 3, 4, 

and 6 according to the respective number of synonymous codon. For each amino acid 

we define its homozygosity (F) as follows:  



ˆ F 

n pi

2 1
i1

k



n 1
,  (1) 

where n is the total count for the amino acid within the gene, k is the SF type of the 

amino acid, and pi are the frequencies of the codons coding for the amino acid 

(



p1   pk 1). The effective number of codons for the amino acid, which should in 

principle range from 1 to k, is then given by 



 ̂N e 1/  ̂F  (2) 

The effective number of codons for the whole sequence is then calculated using 

the following equation: 



ˆ N c  2 
9

ˆ F 2


1

ˆ F 3


5

ˆ F 4


3

ˆ F 6
 (3) 

where 



ˆ F i  is the average homozygosity for amino acids of SF type i, taken only over 

those amino acids that are present within the sequence and are abundant enough so 

that both the numerator and the denominator in equation (1) are greater than 0. A 

notable exception is isoleucine: if this amino acid is missing or not abundant enough, 

then  



ˆ F 3 is computed as the average of 



ˆ F 2 and 



ˆ F 4 . If any of the other SF types is 

completely missing or not abundant enough then 



ˆ N c  should not be computed. 
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In order to understand how values of 



ˆ N c  can exceed their theoretical bounds I 

examine the homozygosity and corresponding effective number of codons for a single 

amino acid belonging to SF type k (k>1). 

If only one codon is used for the amino acid then, there exists 1ik, such that 

pi=1, and for all ji pj=0. Thus, we obtain 



ˆ F 
n 11

n 1
1, and therefore the effective 

number of codons for the amino acid will be 



 ̂N e 1, as expected. 

On the other hand, if the synonymous codons coding for the amino acid are used 

indiscriminately, then for all 1ik 



pi 
1

k
. Therefore, we obtain 



ˆ F 
n  k /k2 1

n 1


n /k 1

n 1


n  k

k  (n 1)


n 1

k  (n 1)


1

k
 (assuming k>1), which leads to 



 ̂N e  k , thus exceeding the theoretical boundary. It is of note that 



 ̂N e  k  may be 

obtained also when synonymous codon usage is very close to uniform (but not exactly 

uniform). 

Wright (Wright 1990) recognized that the values of 



ˆ N c  may exceed 61, but 

claimed that this would rarely occur, and would be due to a very extreme amino acid 

composition (where many amino acids are missing) or a very short gene. He 

suggested that in such cases the value of 



ˆ N c  should be revised to 61. However, in 

reality the tendency of the homozygosity to exceed 1/k when synonymous codon 

usage is uniform, or close to uniform, affects not only those sequences that obtain a 

value greater than 61 for 



ˆ N c . In fact, Marashi and Najafabadi (Marashi and 

Najafabadi 2004) claim that for an organism of intermediate GC content  



 ̂F 1/k  in 

about 25% of cases. Therefore, rather than accepting Wright’s suggestion of re-

adjusting those values that exceed 61, I chose to use the values obtained from the 

original equation. 

Nc was calculated with a modified version of the codonW program, supplied by 

(dos Reis et al. 2004),  which avoids the re-adjustment of values exceeding 61. The 

program was downloaded from  http://people.cryst.bbk.ac.uk/~fdosr01/tAI/. This 

version of codonW was further modified to accommodate the alternative yeast nuclear 

code used by D. hansenii (Tekaia et al. 2000) and C. albicans (Sugita and Nakase 

1999). 

 

http://people.cryst.bbk.ac.uk/~fdosr01/tAI/
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1.7. Calculation of  f1(Xg)-Nc 



f1(Xg)Nc is a function describing the amount of codon bias that is not 

explained by Xg,  the silent GC content, i.e. the GC content at the third codon position 

(f1(Xg) is the value of Nc that is expected based on Xg). The value of  this function 

was calculated using a script downloaded from 

http://people.cryst.bbk.ac.uk/~fdosr01/tAI/.  

 

1.8. Calculation of the significance of the observed correlation between 

f1(Xg)-Nc (or Nc) and tAI 

The significance of the observed correlation of 



f1(Xg)Nc (or Nc) with tAI was 

calculated by permuting the tAI weights of the sense codons 1000 times. Each such 

permutation was then used to compute the correlation of 



f1(Xg)Nc (or Nc) with the 

tAI values calculated using the randomized weights. The significance of the observed 

correlation was then calculated from the distribution of correlations obtained from the 

randomizations. All calculations were done using the R software for statistical 

computing (http://www.r-project.org). 

 

1.9. Construction of the multi-species matrix of translation efficiencies 

1.9.1. Generation of a table of orthologous groups 

Using the inparanoid algorithm (Remm et al. 2001), I constructed two-species 

ortholog lists for every pair of species in my sample (excluding A. gossypii, which 

was discarded previously, see Results), using C. neoformans, a basidiomycotic 

fungus, as an outgroup. There is a discrepancy between the inparanoid algorithm, as 

reported by Remm et al. (Remm et al. 2001), and the programs supplied by the 

authors at http://inparanoid.cgb.ki.se/: while the paper specifies that the matched 

segment between two sequences must cover at least 50% of the longer sequence for 

the sequences to be considered homologous, the program applies this cutoff to the 

shorter sequence. In order to avoid domain-level matches, I modified the inparanoid 

program to reflect the algorithm as presented in the paper. I used the modified version 

of the inparanoid program without bootstrapping to generate the two-species groups 

of orthologs. The MultiParanoid program (Alexeyenko et al. 2006) was used to merge 

these two-species ortholog lists into one matrix. The order of species in the input to 

the program was as follows: S. pombe, S. cerevisiae, A. nidulans, Y. lipolytica, C. 

http://people.cryst.bbk.ac.uk/~fdosr01/tAI/
http://www.r-project.org/
http://inparanoid.cgb.ki.se/
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albicans, K. lactis, C. glabrata, D. hansenii, and S. bayanus. With this order, two-

species ortholog lists with large evolutionary distances between the relevant species, 

such as S. pombe and A. nidulans, were processed before ortholog lists of close 

species, such as S. cerevisiae and C. glabrata. The output of the MultiParanoid 

program was converted into a matrix of orthologs where each row corresponds to a 

gene and each column to a species. Note that if duplication had occurred after the 

divergence of S. pombe and A. nidulans from the remaining species, there would be 

more than one gene representing the same species in the same orthologous group 

(row). Since I assume that all genes in a single orthologous group have the same 

function, I will henceforth refer to them as representing a single gene, even when 

there is more than one representative per species. Finally, I retained only those 

orthologous groups (rows in the table) that had representatives from both S. cerevisiae 

and S. pombe (2883 out of 6226 rows).  

 

1.9.2. Generation of a matrix of translational efficiencies across species 

I combined the orthologous groups table with the tAI values computed for all 

ORFs of the nine species to create a matrix of translational efficiencies across species. 

In cases where the orthologous group contained several paralogs I used the maximal 

tAI among the representatives of the species, reasoning that this tAI would be the 

most adequate surrogate measure for the maximal levels of the activity expected from 

members of the orthologous group. Cells for which there were no representative of the 

corresponding species were left empty. Each row in the table will henceforth be 

referred to as a profile. This matrix of translational efficiencies was then submitted for 

preprocessing at the GEPAS (Montaner et al. 2006) server v3.0 

(http://www.gepas.org): 73 profiles with more than 30% missing values (i.e. more 

than two missing values) were removed, missing values in the remaining 2810 

profiles were imputed using the KNNimpute algorithm with k=15 (this was necessary 

for 839 profiles). Each column was then standardized so that its mean and standard 

deviation were 0 and 1, respectively. The same standardization was then applied to the 

rows of the matrix, emphasizing the efficiency of genes relative to their orthologous 

counterparts, rather than efficiency relative to genes in the same species. 

 

 

 

http://www.gepas.org/
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1.10. Analysis of physically interacting pairs of proteins 

Pairs of physically interacting proteins were obtained from the work of von 

Mering et al. (von Mering et al. 2002) by filtering out those protein pairs that were 

marked as “previously annotated: no”. Thus, my set of physically interacting protein 

pairs was based upon a manually curated catalogue of proteins (Munich Information 

Center for Protein Sequences, MIPS (Mewes et al. 2002)) - the constituents of each 

pair within this set were both members in the same MIPS complex. The control set of 

non-interacting pairs was constructed by calculating all possible pairs using the 

proteins in the interacting pairs set, and then subtracting those pairs that are known to 

interact.  

 

1.11. Gene Ontology (GO) data 

The Gene Ontology (GO) database (Harris et al. 2004) was downloaded from 

http://www.geneontology.org on 23 August 2006. A file relating each S. cerevisiae 

ORF to GO terms (gene association file) was downloaded from SGD (Balakrishnan et 

al.) on the same date. The terms in the gene association file are the most specific 

descriptors of the ORF, and were expanded using the directed acyclic graph (DAG) 

structure of the GO database to generate for each ORF a comprehensive list of terms, 

containing both specific and general terms, that describe the ORF. Each GO term was 

considered to annotate any orthologous group (and corresponding translational 

efficiency profile) containing a S. cerevisiae gene that is associated with this term. If 

an orthologous group contained more than one S. cerevisiae gene then it was 

sufficient for one of these genes to be associated with the term in order to associate 

the whole orthologous group and the corresponding profile with the term. For the 

purpose of avoiding redundant statistical tests, I reduced the list of GO terms 

annotating my data to a non-redundant list, by arbitrarily choosing one representative 

term from each group of terms that annotate the exact same profiles in my data. Files 

listing all GO terms and their synonyms in my data (either when considering 

individual genes or orthologous groups) can be found under the Downloads section at 

http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl. 

 

 

 

http://www.geneontology.org/
http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl
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1.12. Intron data 

Data regarding introns in the genes of S. cerevisiae was obtained from SGD 

(Balakrishnan et al.) on April 9 2007. Note that SGD contains only introns that are 

found between coding exons (as opposed to 5’ UTR introns). For S. pombe and A. 

nidulans I computed the number of introns for a gene as the number of exons minus 

one.  For S. pombe a file relating genes to exon numbers was downloaded from the S. 

pombe Genome Project site at the Sanger Institute 

(http://www.sanger.ac.uk/Projects/S_pombe/); for A. nidulans exon numbers were 

inferred from the gene structure file, which was downloaded from the Aspergillus 

nidulans Database at the Broad Institute 

(http://www.broad.mit.edu/annotation/genome/aspergillus_nidulans/Home.html). 

 

1.13. Statistical analyses 

1.13.1. Cluster analysis 

Hierarchical clustering of the translational efficiency profiles was performed using 

the MATLAB/Math Works Inc. package. I used the Euclidean distance between 

normalized profiles as a distance measure and the average linkage algorithm for the 

construction of the hierarchical tree. The granularity of the clustering was chosen by 

eye. 

 

1.13.2. Calculation of functional enrichment for clusters 

In each cluster I checked for the enrichment of each of the non-redundant GO-

terms, conditional on there being at least one gene within the cluster that was 

annotated with this term, and that the term annotates at least three genes in the whole 

dataset. Enrichment was assessed using the one-sided hypergeometric test. I corrected 

for multiple testing using the False Discovery Rate (FDR) method (Benjamini and 

Hochberg 1995) with an FDR of 5%, pooling together the results from all clusters. 

Due to the hierarchical structure of the gene ontology the tests in this analysis are 

nested, making it difficult to account for the multiple testing. I therefore 

complemented the analysis with an empirical evaluation of the significance of 

enrichment. For each cluster I noted the indices of the genes that constitute the cluster. 

I then permuted the genes in the whole dataset 10,000 times, using for each 

permutation the gene indices of the clusters to create new clusters with the same size 

http://www.sanger.ac.uk/Projects/S_pombe/
http://www.broad.mit.edu/annotation/genome/aspergillus_nidulans/Home.html
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distribution and a random dispersion of the annotation among the clusters that 

conserves the hierarchy between the GO terms. For each permutation I counted the 

number of genes each of the tested terms annotates in each of the clusters. The 

empirical significance for the enrichment of a term T observed to annotate N genes in 

cluster C, was calculated as the number of permutations in which term T annotated at 

least N genes in cluster C, divided by 10,000. The Pearson correlation between the 

theoretical and empirical p-values, excluding cases where the empirical p-value was 0, 

was greater than 0.99. 

 

1.13.3. Analysis of the species-effect on translation efficiency 

I used the Friedman test (Rice 1995), a non-parametric analog of the two-way analysis 

of variance (ANOVA) without any replicates, to test for a difference of the median 

translation efficiency between species in a selected subset of the orthologous groups 

(Fig. 1). This test was applied both to the clusters obtained through hierarchical 

clustering, and to all sets of genes defined by a GO term that annotates all genes in the 

set, conditional on the set containing at least three genes. I corrected for multiple 

testing using the FDR method (Benjamini and Hochberg 1995) with an FDR of 5%, 

obtaining a significant species-effect on translational efficiency for 571 GO terms. As 

a control I repeated the Friedman tests for GO terms after randomizing the genes 

relative to the lists of GO terms associated with each gene. In contrast to the original 

assignment, in which there were 571 significant terms with an FDR of 5%, in the 

randomized case I found only 17 terms using the same FDR. 
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Fig. 1 Scheme for testing for a species effect on translation efficiency for a group of genes. The presented 

scheme can be applied to any group of genes (in my study I applied it to clusters of genes derived from the 

hierarchical clustering procedure, as well as groups of genes associated with various Gene Ontology (GO) 

(Harris et al. 2004) categories. A. The presence of a species effect on translation efficiency is tested using the 

Friedman test (Rice 1995). This test is based on the ranking of the values in each row; that is, for each gene, 

the species are ranked according to how efficiently they translate it (approximated by tAI). The matrix of 

ranks is then summarized and its significance is assessed. B. Stacked histograms of ranks representing two 

hypothetical gene sets: one in which there is no species effect on translation efficiency (the ranks are almost 

equally divided among the species; left) and one (corresponding to the matrix in A) where there is such an 

effect (the third species has an excess of high ranks; right). C. Once a species effect on translation has been 

established, an attempt is made to discover the source of the signal of differential efficiency using post hoc 

tests. For this purpose, the translation efficiency values for the group of genes in question are compared for all 

possible pairs of species. The conclusion that is drawn from these pairwise comparisons, after correction for 

multiple hypotheses testing, is presented as a species stratification.  

 

1.13.4. Post-hoc tests 

Each set of genes that was found to be statistically significant using the Friedman 

test (with an FDR of 5%) was further tested to find the source of difference in 

medians (Fig. 1). For this purpose I used the Wilcoxon signed-rank test (Rice 1995), 

applied to all pairwise comparisons among species (columns), using an FDR 

(Benjamini and Hochberg 1995) of 20% in the correction of multiple tests. Note that 
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for very small sets of genes the minimal p-value possible for the Wilcoxon signed-

rank test exceeds the threshold set by the multiple testing procedure. Therefore, for 

such small sets, the comparisons that obtained the minimal p-value possible for the 

test, considering the size of the set, were considered to be statistically significant. For 

those pairwise comparisons that turned out to be statistically significant, I used the 

median values for the species in the relevant set of genes to determine the direction of 

the relationship. These directional pairwise relationships were then utilized to order 

the species according to their relative translational efficiency for the set of genes 

considered. 
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2. Methods used for the comparison of the human and chimpanzee 

olfactory receptor repertoire 

2.1. Identification of chimpanzee OR genes 

We used Gene-IT’s Biofacet software (Gene-IT) to compare the chimpanzee 

genome draft (PCAP1026, NCBI Build 1.1, November 2003, 

http://www.ncbi.nlm.nih.gov/; R. Waterson, personal communication) to all human 

nucleotide sequences in HORDE v. 40 (http://bioportal.weizmann.ac.il/HORDE/), a 

database of OR gene sequences, with an expectation value cutoff of 0.00001. We 

selected all resulting alignments with a Smith-Waterman score >50 and over 70% 

identity and coalesced overlapping results, thus obtaining 1091 genomic segments. 

The most frequent length of these genomic segments was ~930 bp, corresponding to a 

complete OR gene (Pilpel and Lancet 1999). We generated a library of potential 

chimpanzee OR genes by extracting these genomic ranges, padding them with 200 bp 

in each direction (where possible) and masked repeats using RepeatMasker 

(http://repeatmasker.systemsbiology.net/). Using FASTX (Pearson et al. 1997), we 

compared each potential chimp OR gene to the intact protein sequences in HORDE 

v.40, with an expectation value cutoff of 0.01, and kept up to 10 results. We then used 

the protein match with highest identity to the query to reconstruct a conceptual 

translation for each chimpanzee OR gene. All chimpanzee OR sequences were 

submitted to the HORDE (http://bioportal.weizmann.ac.il/HORDE/) database. 

 

2.2. Phylogenetic  analysis 

We selected those human OR genes that had a nucleotide sequence of at least 800 

bp. Since the chimpanzee collection of ORs was more likely to contain fragments, we 

used an alternative criterion to select chimpanzee OR genes; if the conceptually 

translated nucleotide sequence was flanked on both side by untranslated sequence, 

then the conceptually translated region had to span at least 800 bp. Since the protein 

sequences of genes are better conserved than the nucleotide sequences, we chose a 

protein multiple-sequence alignment as a starting point for the phylogenetic analysis. 

We used ClustalX v1.83 (Chenna et al. 2003) in “Profile alignment” mode to align the 

conceptual translations of the selected OR genes against a template alignment – a 

previously published, manually curated, OR multiple sequence alignment that 

http://www.ncbi.nlm.nih.gov/
http://bioportal.weizmann.ac.il/HORDE/
http://repeatmasker.systemsbiology.net/
http://bioportal.weizmann.ac.il/HORDE/
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contained representatives from all OR families (Man et al. 2004). An overlap of at 

least 70 amino acids in the alignment was selected as a criterion to determine whether 

two genes could be compared. We scanned the resultant alignment for pairs of 

sequences that did not meet this criterion. We then excluded a minimal number of 

sequences from our set of human and chimpanzee genes, so that all pairs of sequences 

had an overlap that is longer than the cutoff. The remaining sequences, 694 from 

chimpanzee and 762 from human, were aligned against the template alignment. We 

used seaview (Galtier et al. 1996) to correct any obvious errors in the alignment. We 

manually added the protein sequence of bovine rhodopsin to the alignment, according 

to a previously published alignment (Man et al. 2004). We then back-translated the 

resultant protein sequence alignment into a nucleotide sequence alignment, from 

which we computed a distance matrix using only overlap regions for each pair of 

sequences. We constructed a phylogenetic tree with the neighbor program from the 

PHYLIP (Phylogeny Inference Package) package v.3.62 (Felsenstein, J. 2005. 

Distributed by the author. Department of Genome Sciences, University of 

Washington, Seattle), using bovine rhodopsin as an outgroup. Trees were drawn using 

TreeExplorer (K. Tamura;  

http://evolgen/biol.metro-u.ac.jp/TE/TE_man.html). 

 

2.3. Identification of human-chimpanzee orthologs 

We generated the human-chimpanzee OR gene ortholog list using a novel 

statistical approach for comparing and ranking sequence alignments. This method (1) 

generates all pairwise alignments between human and chimpanzee OR protein 

sequences, (2) sorts the alignments by ranking higher those with statistically 

significant higher identity levels (statistical significance is determined using a chi-

square test with categories being number of identical positions and number of non-

identical positions), or in the case of statistical equivalence, preferring longer 

alignments, and (3) generates the list of potential orthologs by scanning the ranked 

alignments, accepting best-matching human-chimpanzee pairs, and discarding pairs 

involving previously assigned sequences. 

 

 

 

http://evolgen/biol.metro-u.ac.jp/TE/TE_man.html
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2.4. Identification of shared and human-specific pseudogenes 

Using conceptual translation, we identified all of the coding region disruptions in 

human OR pseudogenes that are present in the human-chimpanzee OR ortholog list. If 

an uninterrupted ORF was found, the gene was annotated as intact. If no ORF was 

identified, the gene was annotated as a pseudogene. We then performed a pairwise 

alignment of the conceptual protein sequence of each human pseudogene with its 

conceptually translated chimpanzee ortholog. A coding-region disruption was 

considered to be “shared” between the two species if the same codon carried the 

mutation (a stop codon, or a single base pair insertion/deletion within a codon). In all 

cases, we noted how many coding-region disruptions are shared versus human 

specific. If no shared disruptions were found, the locus was inferred to be a human-

specific pseudogene. 

 

2.5. Estimation of the time since human rapid accumulation of OR 

pseudogenes began 

We assumed that the number of coding-region disruptions per locus is Poisson 

distributed (i.e., that disrupting mutations occur at a constant rate, are independent and 

infrequent). Let n be the number of genes with disruptions and T be the total number 

of observed disruptions in human-specific pseudogenes. We cannot directly observe 

the number of human OR genes that could have been disrupted (i.e. are under no 

constraint) but by chance were not. Instead, we observe all intact genes, a subset of 

which were not disrupted by chance and a subset of which are probably intact due to 

evolutionary constraint. Thus, we are missing information about the number of 

unconstrained loci with zero disruptions, X. Conditional on X loci with 0 disruptions, 



  T /(X  n). In order to estimate X and  jointly, we solved for the  that 

minimized the sum of 2 deviations (across classes, for zero to infinity observations), 

setting 



X  n  e[] /(1e[]) . To assess the error associated with our estimate of the 

mean, we performed the following bootstrapping procedure: we drew repeatedly from 

a Poisson distribution with mean 



 ̂0.451 (the mean number of disruptions observed 

for the human-specific pseudogenes) until there were n (or more) non-zero 

observations, then estimated the sample mean. As our ~95% confidence interval, we 

took the central 95 percentile of the distribution of sample means across 10,000 

replicates. 
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2.6. PAML analysis 

We used the PAML package (Yang 1997), with substitution model (4; HKY85), 

in order to infer the sequence ancestral to human and chimpanzee for each OR gene in 

the ortholog trio list. We also used PAML to assess the likelihood of two models of 

protein evolution given our data. The null model (H0), allows one Dn/Ds (i.e. the ratio 

of nonsynonymous to synonymous divergence) parameter for the entire tree, while the 

alternative model (H1) permits a separate Dn/Ds ratio for each lineage. We use a 

likelihood ratio test (LRT; see below) (Rice 1995) to test the null model and a 2 

distribution with two degrees of freedom to obtain p-values. Since sequence 

divergence between human and chimpanzee is only ~1% ("The Chimpanzee 

Sequencing and Analysis Consortium" 2005), in some cases there were no sequence 

differences in one or more substitution categories (synonymous or nonsynonymous 

substitutions) in one or more lineages. In these cases, we could not estimate 

meaningful Dn/Ds ratios for all the lineages, and we therefore excluded these loci 

from the analysis. 

 

2.7. Likelihood ratio test (LRT) 

The likelihood ratio test (LRT) (Rice 1995) is used to compare the goodness-of-fit 

between two models: a null model (H0) and an alternative model (H1). The LRT is 

calculated by first computing the likelihood scores of the two models, L0 and L1 for 

the null and alternative model, respectively. The LRT statistic is then calculated as: 



  2 ln L1 ln L0 . When  is larger than some predefined cutoff value (determined 

from the null distribution for ) the null model H0 is rejected in favor of the 

alternative model H1. When the two models compared are nested within each other, 

i.e. H0 is a special case of H1, then the 2 distribution is a good approximation of the 

null distribution of , with the number of degrees of freedom being the difference in 

number of free parameters between the two models. 
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3. Results 

1. Selection for translation efficiency and its relation to species 

divergence in yeasts 

In comparing the translation efficiency among the genes of different ascomycotic 

species, I focused on one aspect of the translation process,  namely elongation of the 

nascent peptide, with the efficiency of this process for a certain gene being gauged by 

its codon usage. For the purpose of the study, I selected ten ascomycotic fungal 

species whose genomes have been fully sequenced. My sample of species spans a 

wide range of evolutionary distances, with dates of divergence ranging from ~20 

MYA  between S. cerevisiae and S. bayanus to 350-1,000 MYA between S. pombe 

and the hemiascomycotic species (Berbee and Taylor 2001). As most of the species I 

used are yeasts, I will henceforth refer to them as yeast species. 

The ideal choice of species for the analyses described in this work is far from 

trivial. On the one hand, too remote species may have too few shared orthologs. On 

the other hand, in very close species orthologs may present translational efficiencies 

that are close merely due to phylogenetic relatedness. This means that not all species 

contribute equally and non-independently. These two considerations were taken into 

account when choosing species for analysis. Thus, I excluded from analysis some 

Saccharomyces sensu stricto  species that are closer to S. cerevisiae than is S. bayanus 

(c.f. S. paradoxus), and included in the analysis only ascomycotic fungi. 

 

1.1. Slow evolution of tRNA repertoires in ascomycotic yeasts 

The translation efficiency of a coding sequence is commonly gauged by the extent 

of its adaptation to the cellular tRNA pools (Sharp and Li 1987; dos Reis et al. 2004), 

which serves as a surrogate measure for the speed of elongation during translation. An 

investigation of the evolution of cellular tRNA repertoires is therefore pertinent to the 

study of translational selection among related species. Experimental data regarding 

the concentrations of the various tRNA types in the cell is available for only one 

species in my sample (S. cerevisiae (Ikemura 1982)). However, relying on the 

observation that the in vivo concentration of a tRNA type is highly proportional to the 

number of gene copies coding for it, facilitates the investigation of the tRNA pools of 

any species that has been fully sequenced, and in particular the species in my sample. 
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Using a HMM-based approach (Lowe and Eddy 1997) I was able to reliably obtain 

the tRNA gene copy numbers for nine of the ten species (Appendix 1). The total size 

of the repertoire (counting only tRNAs decoding sense codons) ranges from 133 (C. 

albicans) to 510 (Y. lipolytica) genes. Despite this wide range of repertoire sizes the 

distribution of gene copy numbers among the different anticodons tends to be highly 

correlated between pairs of species (Table 1). This extremely slow evolution of the 

tRNA repertoire among the species analyzed is expected since changes in dominance 

of the different codons encoding for the same amino acid may be highly pleiotropic, 

affecting the translation efficiency of many genes in the genome. It can be concluded 

that the codon usage of orthologous genes in these yeast species evolved against a 

very slowly evolving, or essentially invariant, tRNA pool. Interestingly, although all 

species pairwise correlations are statistically significant, the correlations between the 

tRNA repertoires of A. nidulans and Y. lipolytica and those of the hemiascomycotic 

species (all species in our sample except A. nidulans and S. pombe are 

hemiascomycotic) stand out as much lower than among the rest of the species pairs 

(Table 1). However, closer examination (Fig. 2) reveals that these low correlations are 

a result of a minority of outlying anticodons that represent cases of dominance shifts 

between synonymous anticodons. For example, while in Y. lipolytica (and in A. 

nidulans) the codon CAG for glutamine corresponds to the highly abundant tRNA, in 

S. cerevisiae (and in the rest of the analyzed species, except A. gossypii, which has 

equal numbers of tRNA genes for both glutamine anticodons), another codon, CAA, 

for this amino acid corresponds to the high copy number tRNA. Due to the pleiotropic 

effects of potential changes in the tRNA pool on cellular protein concentrations I 

expect that the unusual decoding seen in Y. lipolytica and A. nidulans arose very 

gradually, perhaps through an intermediate stage of redundancy, where the old and 

new major tRNAs co-existed in similar proportions during the time in which the 

coding sequences changed their codon preference. The identification of such 

intermediate redundant stages may require genome sequences of additional species, 

which are optimally distant from the currently available species. In that respect this 

process may bear similarity to the dominance switch process that was recently 

inferred to have occurred in the promoters of the ribosomal protein genes in yeast, that 

through a redundant intermediate stage have switched between two different 

transcription factor regimes (Tanay et al. 2005). 
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  Sc Cg Kl Ag Dh Ca Yl An Sp 

Sc - 0.97 0.98 0.87 0.95 0.9 0.58 0.66 0.8 

Cg 7.78E-33 - 0.97 0.9 0.91 0.84 0.62 0.69 0.81 

Kl 4.44E-37 2.31E-33 - 0.87 0.93 0.89 0.55 0.62 0.77 

Ag 1.43E-17 3.43E-20 7.25E-18 - 0.79 0.73 0.68 0.77 0.81 

Dh 2.29E-28 1.98E-21 1.40E-23 1.25E-12 - 0.88 0.56 0.64 0.77 

Ca 6.65E-21 1.57E-15 2.38E-19 3.90E-10 3.61E-18 - 0.47 0.56 0.7 

Yl 3.48E-06 5.91E-07 1.36E-05 1.21E-08 1.19E-05 3.33E-04 - 0.84 0.82 

An 4.72E-08 1.09E-08 6.34E-07 9.84E-12 1.90E-07 1.26E-05 2.42E-15 - 0.93 

Sp 5.51E-13 1.68E-13 1.27E-11 1.15E-13 1.33E-11 4.15E-09 5.43E-14 1.14E-23 - 

Table 1. Correlations among the tRNA repertoires of the various species. The correlation 

coefficients were calculated using the MATLAB/Math Works Inc package, utilizing 54 tRNA species: all 

tRNAs decoding sense codons, excluding those tRNAs that are assumed to be absent in all living species. 

The upper triangle contains the Pearson correlation coefficients; the lower triangle contains the 

corresponding p-values. Species abbreviations: Sc – S. cerevisiae; Cg – C. glabrata; Kl – K. lactis; Ag – 

A. gossypii; Dh – D. hansenii; Ca – C. albicans; Yl – Y. lipolytica; An – A. nidulans; Sp – S. pombe. The 

correlations of Y. lipolytica and A. nidulans with the hemiascomycotic species (all species in our sample 

except A. nidulans and S. pombe are hemiascomycotic), which  stand out as being much lower than the 

rest of the observed correlations, are highlighted in red. 

 

 

Fig. 2 Comparison of the tRNA gene repertoires of S. cerevisiae and Y. lipolytica. The gene copy 

numbers for each tRNA and each species were determined from the whole genome sequence using an 

HMM-based approach  (Lowe and Eddy 1997) (see Methods). For each anticodon the gene copy 

number in S. cerevisiae (x-axis) and Y. lipolytica (y-axis) is displayed. The points are annotated with 

the one-letter symbol of the amino acid the anticodon translates. The Pearson correlation between the 

two tRNA gene repertoires is 0.58 (p=3.48e-06). The balance-swaps among anticodons translating 

glutamic acid (E), proline (P), glutamine (Q), arginine (R), and leucine (L) can be clearly seen. These 

switches in dominance of tRNA species are accompanied by corresponding changes in the usage of 

the codons they translate. For example, in S. cerevisiae there are nine genes encoding a tRNA bearing 

the anticodon of CAA (encoding glutamine – Q), and only one tRNA gene for the anticodon of CAG, 

the second codon for Q. Accordingly, S. cerevisiae uses CAA to encode Q 79,139 times (69% of the 

time) and CAG only 36,234 times. In Y. lipolytica, on the other hand, there are only three genes for 

tRNAs bearing the anticodon of CAA and 15 genes for the tRNAs bearing the anticodon of CAG. Y. 

lipolytica uses CAA to encode Q only 30,507 times (23% of the time), whereas CAG is used 100,228 

times. 
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1.2. The relationship between translation efficiency and experimentally-

determined protein and mRNA levels 

While the tRNA pool largely evolves very slowly, it is possible that individual 

genes and gene modules evolved different extents of adaptation to that pool in 

different species. As a preliminary step towards the comparison of translational 

efficiency of genes among the species, I assessed the ability of translation elongation 

efficiency to predict protein levels, since such a comparison is pertinent to phenotypic 

divergence only if translation efficiency bears some relevance to protein levels. I 

chose the tRNA adaptation index (tAI) (dos Reis et al. 2004), an index which scores 

coding sequences based on the optimality of the codons they use, as a measure of 

translation efficiency of a gene. The individual codon scores are based on the 

availability of each of the tRNAs, as approximated by its gene copy number (available 

in Appendix 1), in a procedure that also incorporates codon-anticodon wobble 

interactions.  

The relationship between translation efficiency and gene expression levels has 

been examined previously (Coghlan and Wolfe 2000; Jansen et al. 2003; Friberg et al. 

2004; Goetz and Fuglsang 2005; Supek and Vlahovicek 2005). However, tAI was 

developed relatively recently for the purpose of inferring the presence of selection for 

translation efficiency in a genome (dos Reis et al. 2004), and has not been examined 

to date for its capacity to predict gene expression levels. Since my study largely relied 

on tAI as a surrogate measure for protein levels, I decided to re-examine the 

correlation between translation efficiency and protein expression levels using tAI. In 

the following, all quantities were log-transformed in order to achieve a distribution of 

values that is more normal in nature, thus allowing standard linear model analyses. 

 

1.2.1. tAI as a predictor of S. cerevisiae protein and transcript levels measured 

in rich-medium conditions 

 Using experimentally-determined protein levels of almost 4000 open reading 

frames (ORFs) (Ghaemmaghami et al. 2003) I obtained a statistically significant 

positive correlation (Pearson r=0.63; p<1e-363) between tAI values and the 

corresponding protein levels (Fig. 3A). The same analysis using a different data set 

constituting 150 proteins (Greenbaum et al. 2002), yielded similar results (Fig. 3B). 

The correlation between the values of CAI (Sharp and Li 1987), a closely related  
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Fig. 3 Relationship between translation efficiency 

values and experimentally determined protein levels 

obtained in S. cerevisiae grown under rich-medium 

conditions. A. comparison between translation 

efficiency assessed by tAI (dos Reis et al. 2004) and 

protein levels from Ghaemmaghami et al. 

(Ghaemmaghami et al. 2003) (Pearson r=0.63;p<1e-

363). B. comparison between translation efficiency 

assessed by tAI and protein levels from Greenbaum et 

al. (Greenbaum et al. 2002) (Pearson r=0.62; p=3.30e-

17). C. comparison between translation efficiency 

assessed by CAI (Sharp and Li 1987) and protein 

levels from Ghaemmaghami et al. (Ghaemmaghami et 

al. 2003)  (Pearson r=0.62;p<1e-363). The quantities in 

all panels have been log-transformed in order to 

achieve a distribution of values that is more normal in 

nature, thus allowing standard linear model analyses. 

 

index of translation efficiency, and protein levels is comparable to the correlation 

between tAI values and protein levels (r=0.62;p<1e-363; Fig. 3C). 

Comparison of genome-wide mRNA (Holstege et al. 1998) and protein 

(Ghaemmaghami et al. 2003) levels obtained under similar conditions yielded a 

statistically significant positive correlation (Pearson r=0.62;p<1e-363; Fig. 4A). 

However, as seen, despite a considerable correlation, similar mRNA levels still 

correspond to a wide range (up to 20-fold difference) of protein levels, and the same 

protein level may be obtained by transcripts that span a broad range of expression 

values (Gygi et al. 1999). A recent study analyzed experimentally the half-lives of 

thousands of S. cerevisiae proteins (Belle et al. 2006). The differential stability of the 

different proteins, demonstrated by the above study, may account for the only limited 

correlation, yet it is conceivable that different levels of translational efficiency may 

explain some of the discrepancy between mRNA and protein levels. Therefore, the 

tAI could potentially provide complementary information to mRNA levels when 

predicting protein levels. To examine this hypothesis, I computed a multiple linear  
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Fig. 4 Prediction of S. cerevisiae protein levels 

using both mRNA and translation efficiency (tAI). 
Protein and mRNA levels are from (Ghaemmaghami et 

al. 2003) and (Holstege et al. 1998), respectively, and 

were obtained from S. cerevisiae grown in rich-medium. 

A. comparison between experimentally determined 

mRNA and protein levels (Pearson r=0.62; p<1e-363). 

B. comparison of protein levels, predicted using multiple 

linear regression utilizing tAI (dos Reis et al. 2004) and 

mRNA levels, with experimentally-determined protein 

levels (Pearson r=0.68; p<1e-363). C. comparison of tAI 

and experimentally determined mRNA levels (Pearson 

r=0.72; p<1e-363). The quantities in all panels have been 

log-transformed in order to achieve a distribution of 

values that is more normal in nature, thus allowing 

standard linear model analyses. 

 

regression model utilizing both tAI and mRNA levels (Holstege et al. 1998) to predict 

the protein levels (Ghaemmaghami et al. 2003) (Fig. 4B). The model’s improvement 

over the individual predictors seems quite modest, with the Pearson correlation 

coefficient of the fitted values with the protein levels being 0.68 (p<1e-363). This is in 

line with the statistically significant positive correlation between tAI and mRNA 

levels (Fig. 4C; r=0.72; p<1e-363), a correlation that is higher than the correlation 

coefficients of each of these two separate factors with protein levels. However, 

computation of the partial correlations indicates that each of the individual variables 

makes a significant contribution: the partial correlation of tAI with the protein levels, 

at fixed mRNA levels is r=0.35 (p=4.14e-105); and a partial correlation of r=0.30 

(p=1.21e-76) is seen for the mRNA and protein levels, given the tAI. I further 

demonstrated the significant relationship of tAI to protein levels by computing the 

correlation between tAI and protein levels for groups of genes having the same 

mRNA levels (Fig. 5A). Using only mRNA populations that correspond to at least 20 

genes, I obtained 29 groups of genes, accounting for 3063 out of 3463 genes that have 

a value for all three measures (mRNA, protein and tAI). In all cases the correlation 

coefficients between tAI and protein levels are positive, and in 26 out of 29 groups  
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Fig. 5 Correlation of translation efficiency (tAI) with protein levels when mRNA levels are held constant. 

A. Pearson correlations between tAI (dos Reis et al. 2004) and S. cerevisiae protein levels obtained under rich 

medium conditions (Ghaemmaghami et al. 2003), using sets of genes where in each set all genes have the same 

mRNA level (Holstege et al. 1998). In the calculation of the correlations both tAI and protein levels were log-

transformed in order to achieve a distribution of values that is more normal in nature, thus allowing a standard 

linear model analysis. Red points denote statistically significant correlations (p<=0.05). Only mRNA levels 

corresponding to at least 20 proteins were used. The points shown account for 3063 out of 3463 genes for 

which we have both protein and mRNA data. The set sizes are (mRNA levels are given in parentheses): 85 

(0.1), 269 (0.2), 312 (0.3), 311 (0.4), 288 (0.6), 233 (0.7), 211 (0.8), 147 (0.9), 134 (1.0), 121 (1.1), 118 (1.2), 

108 (1.3), 74 (1.5), 72 (1.6), 65 (1.7), 66 (1.8), 59 (1.9), 50 (2.0), 37 (2.1), 39 (2.2), 41 (2.2), 37 (2.5), 33 (2.6), 

27 (2.7), 27 (2.8), 22 (2.9), 31 (3.1), 25 (3.4), 21 (3.5). B. Comparison of tAI and protein levels 

(Ghaemmaghami et al. 2003) for 121 genes in which mRNA levels (Holstege et al. 1998) equal 1.1 

molecule/cell (Pearson r=0.38; p=1.57e-05).  

 

they are statistically significant (p<=0.05). Interestingly this correlation tends to 

increase with mRNA levels. Fig. 5B shows a typical scatter-plot of tAI vs. protein 

levels for the population of mRNAs that are present on average in 1.1 molecules per 

cell. The fact that even genes with similar levels of mRNA display a positive 

correlation between tAI and protein levels means that the adaptation to the tRNA pool 

is not merely meant to facilitate the translation of a highly abundant mRNA that needs 

to produce a large amount of protein. Rather, this adaptation is a crucial component 

that given the mRNA level can produce significant additional modulation in 

determining protein levels. 

 

1.2.2. tAI as a predictor of maximal potential protein levels 

Examination of the scatter-plot of tAI vs. protein levels for S. cerevisiae in rich 

medium conditions (Fig. 3) revealed that although the correlation between these two 

variables is statistically significant, similar to the observation for mRNA levels (Gygi 

et al. 1999), tAI is not an accurate quantitative predictor for protein levels, e.g. 

proteins of the same tAI values may range in their protein levels by as much as 2,267 

fold. A possible explanation for the inaccuracies in the predictions of the tAI is that, 

whereas protein and transcript levels vary across different conditions, the tAI, as a 
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measure derived from sequence information alone, is independent of conditions. 

Therefore, it is possible that tAI is an indicator of the maximal potential protein 

levels, rather than the protein levels at a specific condition. This hypothesis was also 

presented by Carbone and Madden (Carbone and Madden 2005), who supported it 

with two examples, the seripauperin gene family and the hem13 gene.  In both 

examples transcript levels, measured under rich-medium conditions (Holstege et al. 

1998), are lower than would be expected from the translation efficiency of the 

respective coding sequences, but the literature indicates that the proteins are highly 

translated under certain conditions.  

To further examine the validity of the above hypothesis I capitalized on the many 

microarray experiments of recent years, as compared to few proteomic studies. The 

fact that high mRNA levels generally correspond to high protein levels, allows us to 

make a comparison of tAI with mRNA levels rather than protein levels. I examined 24 

outlier genes from the scatter plot of the correlation between the tAI and mRNA 

levels, i.e. genes that exhibited relatively high tAI (tAI>0.5; log10(tAI)>-0.301), but 

transcript levels that are lower than would be expected, and looked for experiments 

where these outliers were induced. This analysis is obviously limited to the conditions 

covered by experiments published to date, and therefore doesn’t necessarily cover all 

the conditions yeast cells may experience. However, despite this limitation, in the 

majority of cases (21 out of 24 cases) I could find a condition under which the ORF 

was at least two-fold induced, with the lowest maximal induction being 3.4-fold for 

YLR461W (PAU4), a member of the seripauperin family, during the unfolded protein 

response (Travers et al. 2000). In many cases I could find an experiment for which the 

product of the mRNA at log-phase in rich medium conditions (Holstege et al. 1998) 

and the fold-induction value was in line with the expected mRNA level. For example, 

YPL240C (HSP82), a cytoplasmic chaperone of the HSP90 family with a relatively 

high tAI value of 0.60, but very modest transcript levels under rich-medium 

conditions (Holstege et al. 1998), is induced 11.7-fold during a heat shock experiment 

from 21C to 37C (Gasch et al. 2000). Thus, available data support the hypothesis of 

tAI as an indicator of maximal protein levels under all possible conditions 

encountered by the cell. 
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1.3. tAI as a predictor of translational selection in a genome 

The application of the tAI to the sequences of a genome is useful only if 

translational selection has played a significant part in shaping the codon usage of the 

genome. Thus, before selecting species for a multi-species analysis I checked whether 

translational selection can be detected in their genome.  

If translational selection were the main force shaping codon usage, sequences 

showing high bias in their codon usage would typically be those that were selected for 

optimal translation efficiency. However, codon usage is largely affected by the silent 

GC content (Xg), i.e. the percentage of codons that have guanine or cytosine at their 

third nucleotide position. dos Reis et al. (dos Reis et al. 2004) have suggested testing 

for the presence of translational selection in a genome by assessing the correlation 

between the extent of adaptation of a coding sequence to the tRNA pool and the bias 

in codon usage that is unaccounted for by silent GC content. More specifically, they 

suggested testing for the correlation between tAI and f(Xg)-Nc, where Nc is the 

observed effective number of codons (Wright 1990) , and f(Xg) is a function 

predicting the effective number of codons based solely on Xg. Since f(Xg) represents 

a lower-bound on the amount of bias a sequence can display, and the amount of bias is 

negatively correlated with Nc (and f(Xg)), it is expected that for most sequences 

f(Xg)-Nc would be non- negative, and that greater differences would be observed 

when f(Xg) accounts poorly for the observed bias. And, since higher values of tAI are 

predictive of greater extent of adaptation to the tRNA pool (as approximated by the 

tRNA gene copy numbers), a strong positive correlation between f(Xg)-Nc and tAI 

would indicate co-adaptation between codon usage and the tRNA pool. I applied this 

test to the ten yeast species in my sample and found statistically significant 

correlations between f(Xg)-Nc and tAI, thus concluding translational selection to be 

present in all of them (Table 2; Fig. 6 and Appendix 2). In spite of this, it may be that 

while translational selection shaped the residual codon bias in coding sequences left 

after accounting for the effect of silent GC, mutation pressure has been so strong that 

the effect of translational selection on the overall codon bias in the sequence might be 

minute. In such a case, changes in protein levels may be achieved in different ways, 

for example by raising the levels of transcript. This suggests that the test by do Reis et 

al. may not be appropriate for testing the extent of the effect of translational selection  
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species 

correlation of tAI 

with f1(Xg)-Nc significance 

correlation of tAI 

with Nc significance 

A. gossypii 0.60 <0.001 -0.38 0.384 

A. nidulans 0.58 <0.001 -0.68 <0.001 

C. albicans 0.63 0.003 -0.65 0.005 

C. glabrata 0.86 <0.001 -0.79 <0.001 

D. hansenii 0.78 <0.001 -0.75 <0.001 

K. lactis 0.85 <0.001 -0.83 <0.001 

S. bayanus 0.81 <0.001 -0.73 <0.001 

S. cerevisiae 0.81 <0.001 -0.79 <0.001 

S. pombe 0.83 <0.001 -0.66 <0.001 

Y. lipolytica 0.83 <0.001 -0.84 <0.001 

Table 2. Correlation of translation efficiency (tAI) with overall codon bias for the ten yeast 

species analyzed. Pearson correlations and their significance, computed over all nuclear-encoded 

coding sequences, are shown for the comparison of tAI with the overall codon bias after accounting for 

the effect of silent GC content (f1(Xg)-Nc) and for the comparison of tAI with overall codon bias (Nc). 

The significance of the correlations was computed by comparing them to 1000 correlations obtained 

using tAI values that were computed from randomized codon weights (see Methods). 

 

 

Fig. 6 tAI vs. f1(Xg)-Nc for S. cerevisiae (A) and A. gossypii (B) 

 

 

 

Fig. 7 tAI vs. Nc for S. cerevisiae (A) and A. gossypii (B) 

 

in shaping codon usage, and as a consequence on expression. Therefore, to 

test the contribution of translational selection to overall codon usage, I 

tested the correlation between tAI and Nc. This time I expected strong 

negative correlation if codon usage is highly adapted to the cellular tRNA 

pools. I found that for nine of the species this correlation was statistically 

significant (Table 2; Fig. 7A and Appendix 3). However, for A. gossypii the 

magnitude of correlation was low and insignificant (Table 2; Fig. 7B), 
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suggesting that for this species tAI would not be a good predictor of 

expression levels. I  therefore excluded A. gossypii from all subsequent 

analysis that involved multiple species. 

 

1.4. Relationship between the translation efficiencies of physically 

interacting proteins 

To validate the use of the tAI (dos Reis et al. 2004) for functional inferences I 

examined the relationship between the translational efficiencies of physically 

interacting pairs of proteins, as designated by tAI. First, I compared the translational 

efficiencies of the physically interacting proteins within a single species. For this 

purpose I used a manually-curated set of about 2,300 experimentally-determined 

physically interacting protein pairs obtained from the work of von Mering et al. (von 

Mering et al. 2002). I expected that physically interacting pairs of proteins would be 

found in similar quantities in vivo. This expectation is supported by the fact that for 

protein levels measured in S. cerevisiae in rich-medium (Ghaemmaghami et al. 2003), 

~85% of  physically interacting pairs show protein levels of the same order of 

magnitude, and overall the fold-differences within physically interacting pairs are 

significantly smaller than those found within a control set of non-interacting pairs 

(p=2.16e-42; Wilcoxon-Cox rank sum test). I then compared the distribution of 

squared tAI differences of the interacting pairs with the differences obtained from a 

control set of non-interacting pairs. I found the squared differences among the 

physically interacting pairs to be significantly smaller than those found in the set of 

non-interacting pairs (p<1e-174; Wilcoxon-Cox rank sum test; Fig. 8A). Thus, S. 

cerevisiae physically interacting pairs of proteins show both similar protein levels in 

vivo and similar translation efficiencies.  

I next examined the behavior of translation efficiencies of physically interacting 

protein pairs across the nine species that were found to be under translational 

selection. For this purpose I constructed a matrix of over 2,800 orthologous groups 

that are inferred to have been present in their last common ancestor. In this matrix the 

i,jth element contains the inferred translation efficiency of gene i in species j, as 

calculated by the tAI (dos Reis et al. 2004) (subject to further normalization, see 

Methods). It is expected that the levels of physically interacting pairs of proteins 

would vary across species and conditions in a coordinated manner. In this respect the 
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Fig. 8 Physically interacting proteins tend to have similar translational efficiencies across species. 

A. Histogram of squared tAI differences among physically interacting protein pairs (von Mering et al. 

2002) (red) and among non-interacting pairs of proteins (blue; see Methods). B. Histogram of Pearson 

correlations among the across-species translation-efficiency profiles of physically interacting protein 

pairs (von Mering et al. 2002) (red) and among non-interacting pairs of proteins (blue; see Methods). 

 

prediction of protein levels from coding sequences seems problematic, since these 

predictions are condition-independent. Yet, recent studies (Fraser et al. 2004; 

Lithwick and Margalit 2005), using CAI (Sharp and Li 1987) as a predictor of protein 

expression levels, showed that profiles of predicted expression levels across species 

tended to be correlated for functionally interacting protein pairs. I filtered out from the 

data of Von Mering et al. (von Mering et al. 2002) pairs of paralogs that belong to the 

same orthologous group (i.e. are a result of a duplication that occurred after the 

divergence of the analyzed species from each other), leaving me with about 1,700 

pairs of physically interacting proteins. I then compared the Pearson correlation 

among the profiles (rows in the matrix of translation efficiencies) corresponding to the 

interacting pairs with correlations obtained for a control set of non-interacting pairs. 

The correlations among the profiles of physically interacting pairs were significantly 

higher than those found for non-interacting pairs (p<1e-100; Wilcoxon-Cox rank sum 

test; Fig. 8B). Protein pairs that interact in S. cerevisiae and that have similar tAI in 

this species but not in some of the more remote species may represent cases of 

physical interactions that evolved after the divergence of the species. 

 

1.5. Translation efficiency across species correlates with the glucose 

repression phenotype 

Given the comparative translation efficiency matrix I could examine relationships 

between gene functions and lifestyle properties of the different yeasts. A recent 

analysis established among yeast species a connection between the presence vs. 
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absence of the glucose repression phenotype and transcription regulation of the 

cytosolic vs. the mitochondrial ribosomal proteins (CRPs and MRPs, respectively) 

(Ihmels et al. 2005). Glucose repression is the preference of metabolizing glucose 

through fermentation rather than respiration even under aerobic conditions (Barnett 

and Entian 2005). One of the groups of genes repressed by glucose under this 

phenotype is the MRPs (Barnett and Entian 2005). Ihmels et al. (Ihmels et al. 2005) 

found that yeasts that do not display the glucose repression phenotype maintained the 

capacity to co-regulate the two types of ribosomes, while the yeasts that prefer 

fermentation over respiration have lost this capacity. This motivated me to examine 

the translation efficiency of the MRPs and CRPs in the species in my dataset, in 

which four species display the glucose repression phenotype. I found that each of 

these two groups of genes shows a strikingly coherent, yet markedly different pattern 

of relative translational efficiencies across the species (Fig. 9A and 9B). Interestingly, 

the MRPs show the lowest translational efficiency in the four species that display 

glucose repression (Fig. 9A). This likely reflects the reduced need of these species for 

MRP genes, which function to synthesize components utilized in oxidative energy 

metabolism. In addition to the ribosomal components, I checked whether translation 

efficiency of metabolic enzymes that are needed either for fermentation or respiration 

segregate according to the glucose repression phenotype. Specifically, I examined the 

tricarboxylic acid (TCA) cycle and the glycolytic genes (Fig. 9C and 9D, 

respectively). As expected, I found the glycolytic enzymes to have maximal 

translation efficiency in the four species that exhibit the glucose repression phenotype, 

while the TCA cycle genes show the highest translation efficiency in the five other 

species. These results cannot be simply explained by the species phylogeny, since in 

the species tree neither group of species is monophyletic (Fig. 9E). Specifically, S. 

pombe and the other three species that display glucose repression seem to have 

converged upon similar translation efficiency profiles of the above genes, despite the 

fact that S. pombe (together with A. nidulans) is farthest away from these species (Fig. 

9A-D).  



 

 43 

 

Fig. 9 The translation efficiency profiles of mitochondrial and cytosolic ribosomal proteins, 

glycolysis, and tricarboxylic acid cycle display coherent patterns. The relative translational 

efficiencies across species (normalized tAI; see Methods) of the mitochondrial ribosomal proteins 

(MRPs, A), cytosolic ribosomal proteins (CRPs, B), tricarboxylic acid (TCA) cycle (C), and glycolysis 

genes (D) are shown on heat maps. A colorbar specifies the values indicated by the colors. Note that for 

panels B to D the range of values is only from -2 to 2. Both rows (genes) and columns (species) have 

been sorted by average linkage hierarchical clustering, with Euclidean distance as a distance measure. 

The clustering of the species is indicated by dendrograms. E. Topology of the phylogenetic tree of the 

species analyzed based on 18S rRNA (Prillinger et al. 2002).; the branch lengths are not proportional to 

time. In all panels species displaying the glucose repression phenotype are colored in blue, whereas the 

other five species are colored in red. It can be seen that the translation efficiency profiles of MRPs, TCA 

cycle and glycolysis genes segregate according to the glucose repression phenotype.  
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1.6. Cluster analysis of translation efficiency across species 

I next clustered all the genes in the multi-species translation efficiency matrix. 

Clustering is commonly used in the analysis of microarray data to identify co-

expressed genes and generate hypotheses as to the involvement of these genes in the 

conditions or species examined (Boutros and Okey 2005). Analogously, I used 

hierarchical clustering of the genes and species in the translation efficiency matrix and 

partitioned them into 40 clusters (Fig. 10; see Methods). It is of note that the species 

dendrogram resulting from the clustering procedure bears only limited resemblance to 

the underlying species tree (Fig. 10A vs. Fig. 9E), suggesting that the evolution of the 

tAI values reflects more than mere evolutionary drift. 

I next turned to analyze the 40 clusters of genes that were obtained. I used the 

Friedman test (Rice 1995) (Fig. 1), a non-parametric analog of the two-way analysis 

of variance (ANOVA) without replicates, to test, in each cluster, the null hypothesis 

that there are no differences in the translational efficiency (tAI) of orthologous genes 

(rows) across species (columns), and found that in all 40 clusters there is a species-

effect on relative translational efficiencies (the worst p-value among the 40 clusters 

was 7e-05; Appendix 4). I then performed post-hoc tests (Fig. 1), utilizing the 

Wilcoxon signed rank test (Rice 1995), to find all pairs of species for which the genes 

of the cluster differ significantly in their translational efficiencies. In all clusters I was 

able to stratify the species into at least two groups that differ in translational 

efficiency, based on the results of these tests and the median values for the genes in 

the cluster (Appendix 4). 

In an effort to shed light on phenotypic differences that might be implied by the 

species stratification in each cluster, I looked for enrichments of functional terms from 

the Gene Ontology (GO) database (Harris et al. 2004) in each of the clusters. I found 

such enrichments in 22 of the clusters, including the pathways and modules shown in 

Fig. 9 (a complete list of the functional enrichments can be found at 

http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl under the 

“Supplementary Tables” section ). Fig. 11 shows representative clusters, along with 

dendrograms depicting similarity between species using the tAI of the genes in each 

cluster. Here, too, it is apparent that using particular gene sets for species clustering 

results in significant distortions relative to the phylogenetic species tree. 

http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl
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Fig. 10 Two-way hierarchical clustering of the multi-species translation efficiency profiles into 40 

clusters. The 2810 translation efficiency profiles are shown with genes and species ordered according to 

the clustering. The clustering of the species, ordered by their translation efficiency profiles across genes, 

differs from the accepted phylogeny for these species (Prillinger et al. 2002) (Fig. 9E). The numbering of 

the clusters is indicated. I note some highly significant functional enrichments (p-values result from one-

sided hypergeometric tests). I. cytosolic ribosome (sensu Eukaryota): 47/96 (p=2.19e-23) of the genes 

annotated with this term are contained in cluster #9 and 18/96 (p=5.86e-09) genes are contained in cluster 

#13. II. ribosome biogenesis: 14/186 (p=2.73e-07) genes are contained in cluster #14 and 21/186 

(p=9.17e-08) are contained in cluster #33. III. mitochondrial part: 97/286 (p=8.99e-38) genes are 

contained in cluster #27; oxidative phosphorylation: 20/24 (p=3.93e-18) genes are contained in cluster 

#27; aerobic respiration: 23/50 (p=3.42e-12) genes are contained in cluster #27; tricarboxylic acid cycle: 

10/14 (p=1.98e-08) genes are contained in cluster #27. IV. mitochondrial ribosome: 29/55 (p=3.57e17) 

genes are contained in cluster #27 and 18/55 (p=3.71e-07) genes are contained in cluster #40. V. rRNA 

processing: 20/146 (p=6.87e-09) genes are contained in cluster #33 and 22/146 (p=1.18e-09) genes are 

contained in cluster #37; nucleolus: 21/181 (p=5.64e-08) genes are contained in cluster #33 and 24/181 

(p=2.67e-09) genes are contained in cluster #37; RNA metabolism: 29/345 (p=1.51e-07) genes are 

contained in cluster #33 and 37/345 (p=1.95e-11) are contained in cluster #37. 
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Fig. 11 Clustering of the yeast species according to their translation efficiency in a number of 

clusters. Dendrograms and bar plots of the translation efficiency profiles of three of the clusters of Fig. 

10 are shown: A. #27 B. #9 and C. #37. The dendrograms represent the clustering of the species 

according to the translation efficiency values of the genes in the various clusters. The bar plot shows the 

mean translation efficiency value for the genes in the cluster for each species, with error bars indicating 

the standard deviation. The order of the species in the bar plots is according to the relevant dendrogram. 

In A (cluster #27) species displaying the glucose repression phenotype are colored in blue, whereas 

those that do not display this phenotype are colored in red. 

 

1.7. Supervised analysis of translation efficiency across species 

Despite experimenting with various numbers of clusters, I did not identify a value 

that gives rise to a simple one-to-one correspondence between GO terms and cluster. 

This resulted from either splitting of genes with the same GO terms among multiple 

clusters (in the case of a high number of clusters), or the generation of incoherent 

clusters (where a small number of clusters was attempted). I therefore turned to a 
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supervised approach. For each non-redundant GO term (see Methods) I examined the 

profiles of the group of genes associated with it and, using the Friedman test (Rice 

1995) (Fig. 1), checked for a species effect on translational efficiency. I found 571 

terms that display a significant species effect with a false discovery rate (FDR)  

(Benjamini and Hochberg 1995) of 5% (see Methods for a comparison with results 

obtained with randomized data). For 273 out of 571 of these terms I was able to 

stratify the species based on the translational efficiency values of the genes into two 

or more groups (Fig. 1), utilizing post-hoc Wilcoxon signed rank tests  (Rice 1995)  

(Table 3; for a complete listing of the results see the “Additional Tables” section of 

http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl). Consistent with my 

previous analysis I observed that for terms related to respiration the species 

stratification indicated a tendency for lower translational efficiencies in the species 

displaying the glucose repression phenotype, whereas for the term glycolysis the 

analysis pointed at higher translational efficiencies for these species (Table 3). 

Interestingly, according to this analysis the cytosolic ribosome shows higher levels of 

translational efficiency in the four species exhibiting glucose repression compared to 

the other five species (Table 3). 

http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl
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Species stratification GO category 

number 

of 

profiles 

Friedman 

test 

p-value 

S. cerevisiae, S. bayanus, S. pombe < C. glabrata < 

K. lactis, D. hansenii, C. albicans, A. nidulans <  

Y. lipolytica 

aerobic respiration* 50 <1.11e-16 

mitochondrion* 607 <1.11e-16 

S. pombe < S. cerevisiae, S. bayanus < C. glabrata < 

A. nidulans < K. lactis, C. albicans < D. hansenii <  

Y. lipolytica 

mitochondrial 

ribosome* 55 <1.11e-16 

 

S. bayanus < S. cerevisiae, S. pombe < C. glabrata < 

D. hansenii, Y. lipolytica < C. albicans <  

K. lactis, A. nidulans 

oxidative 

phosphorylation* 24 <1.11e-16 

S. cerevisiae, S. bayanus, S. pombe < C. glabrata < 

D. hansenii, C. albicans, Y. lipolytica, A. nidulans < 

K. lactis 

mitochondrial 

electron transport 

chain* 17 6.22e-15 

respiratory chain 

complex III (sensu 

Eukaryota)* 7 1.41e-06 

S. cerevisiae, S. bayanus < C. glabrata, S. pombe < 

K. lactis, D. hansenii, C. albicans, Y. lipolytica,  

A. nidulans 

tricarboxylic acid 

cycle* 14 5.87e-11 

Y. lipolytica < C. albicans < D. hansenii < K. lactis, 

A. nidulans < S. bayanus, C. glabrata, S. pombe <  

S. cerevisiae 

cytosolic ribosome 

(sensu Eukaryota) 96 <1.11e-16 

Y. lipolytica < K. lactis, D. hansenii, C. albicans, A. 

nidulans < S. cerevisiae, S. bayanus, C. glabrata,  

S. pombe glycolysis* 11 9.28e-11 

S. cerevisiae, S. bayanus, C. glabrata, K. lactis, D. 

hansenii, C. albicans, Y. lipolytica, S. pombe <  

A. nidulans 

spliceosome 

complex* 41 4.41e-08 

S. cerevisiae, S. bayanus, C. glabrata, K. lactis, D. 

hansenii, C. albicans, Y. lipolytica < S. pombe <  

A. nidulans 

nuclear mRNA 

splicing, via 

spliceosome* 52 7.83e-08 

snRNP U1* 12 1.76e-05 

S. cerevisiae, S. bayanus, C. glabrata, K. lactis, D. 

hansenii, C. albicans, Y. lipolytica <  

A. nidulans, S. pombe mRNA processing* 79 4.32e-07 

S. cerevisiae, S. bayanus, C. glabrata, K. lactis, D. 

hansenii, C. albicans, A. nidulans, S. pombe <  

Y. lipolytica 

organic acid 

metabolism* 200 0.0024 

Y. lipolytica < K. lactis, D. hansenii, C. albicans <  

C. glabrata < S. cerevisiae, S. bayanus, A. nidulans, 

S. pombe 

M phase 126 <1.11e-16 

cell cycle 216 <1.11e-16 

Y. lipolytica < S. cerevisiae, C. glabrata, K. lactis, D. 

hansenii, C. albicans, A. nidulans, S. pombe <  

S. bayanus 

DNA metabolism 285 <1.11e-16 

transcription 270 <1.11e-16 

nucleoplasm 224 <1.11e-16 

nuclear part 608 <1.11e-16 

nuclear 

chromosome 104 6.66e-16 

transcription from 

RNA polymerase II 

promoter 165 4.77e-15 

DNA replication 78 1.67e-07 

A. nidulans, S. pombe < C. albicans < C. glabrata, K. 

lactis < S. cerevisiae < S. bayanus, D. hansenii,  

Y. lipolytica ribosome biogenesis 186 <1.11e-16 

D. hansenii, Y. lipolytica < S. cerevisiae, S. bayanus, 

C. glabrata, K. lactis, C. albicans, A. nidulans,  

S. pombe 

response to stimulus 323 3.00e-14 

DNA repair 110 8.15e-12 

meiosis 62 1.50e-11 
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Species stratification GO category 

number 

of 

profiles 

Friedman 

test 

p-value 

response to stress 258 8.55e-10 

chromosome, 

pericentric region 34 7.45e-06 

autophagy 21 1.66e-05 

D. hansenii, C. albicans, Y. lipolytica < S. cerevisiae, 

S. bayanus, C. glabrata, K. lactis, A. nidulans,  

S. pombe 

telomere 

maintenance 168 7.17e-11 

meiotic 

recombination 26 5.07e-07 

A. nidulans < S. cerevisiae, S. bayanus, C. glabrata, 

K. lactis, D. hansenii, C. albicans, Y. lipolytica,  

S. pombe 

vesicle-mediated 

transport 198 1.26e-09 

secretion 138 1.15e-08 

Golgi vesicle 

transport 97 5.44e-07 

ER to Golgi vesicle-

mediated transport 55 7.20e-06 

actin cytoskeleton 53 4.05e-05 

cortical cytoskeleton 38 1.64e-04 

threonine 

metabolism 6 3.97e-04 

S. cerevisiae, S. bayanus, C. glabrata, K. lactis, Y. 

lipolytica, A. nidulans, S. pombe <  

D. hansenii, C. albicans 

proteasome complex 

(sensu Eukaryota) 43 1.94e-09 

C. glabrata, K. lactis, C. albicans, Y. lipolytica,  

A. nidulans, S. pombe <  

S. cerevisiae, S. bayanus, D. hansenii 

helicase activity 56 7.07e-09 

DNA-directed RNA 

polymerase activity 31 1.27e-08 

C. albicans, A. nidulans, S. pombe < S. cerevisiae, S. 

bayanus, C. glabrata, K. lactis, D. hansenii,  

Y. lipolytica 

RNA modification 49 1.75e-07 

RNA 

methyltransferase 

activity 21 5.40e-06 

C. glabrata < S. cerevisiae, S. bayanus, K. lactis, D. 

hansenii, C. albicans, Y. lipolytica, A. nidulans,  

S. pombe 

pyrophosphatase 

activity 176 1.34e-05 

regulation of pH 17 0.0001 

Table 3. Species stratification patterns according to translational efficiencies for various GO 

categories. The genes associated with each of the GO terms appearing in the table display a species 

effect on translation efficiency. Pairwise significant relationships between species have been 

summarized as a species stratification. Note that the same stratification may be implied by several GO 

categories. GO categories for which the implied species stratification is related to a known phenotype 

discussed in the text, are marked by an asterisk (‘*’). For the remaining GO categories no phenotypic 

explanation is currently available. 

 

The above analysis revealed additional instances, beyond the glucose repression 

phenotype, in which the patterns of translational efficiencies of genes annotated with a 

certain term could be linked to a known phenotypic difference between the organisms. 

For example, the orthologous groups annotated with the terms “mRNA processing”,  
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Fig. 12 The translation efficiency profiles of genes related to mRNA splicing is consistent with the 

number of introns in the genomes of species. A boxplot of the relative translational efficiencies 

(normalized tAI; see methods) of the genes annotated with the GO term “nuclear mRNA splicing, via 

spliceosome” (52 genes; p=7.83e-08; Friedman test) is shown. Species are sorted in ascending order of 

median of translation efficiencies for this groups of genes. The genes belonging to this group show higher 

translation efficiency in A. nidulans and S. pombe (highlighted in red), relative to the other seven species, 

in concordance with the high proportion of introns in these two species (see text).  

 

“nuclear mRNA splicing, via spliceosome”, “spliceosome complex”, as well as other 

splicing related terms, displayed the highest translational efficiencies in A. nidulans, 

followed by S. pombe, while the rest of the species show significantly lower values 

(Fig. 12). Strikingly, this order perfectly corresponds to the number of intron 

containing genes in the various genomes. In A. nidulans 9,227 genes (~85% of the 

genes in the genome) contain altogether 24,824 introns; in S. pombe 2,173 genes 

(~50% of the genes in the genome) contain a total of 4,548 introns. In contrast, in S. 

cerevisiae only 261 genes (~5% of the genes) contain a total of 270 introns, and in C. 

albicans the proportion of intron-containing genes is predicted to be only 3% (Nantel 

2006). Thus, I can predict that the fraction of intron-containing genes in the genomes 

of the remaining five species, which translate the splicing-related genes relatively 

inefficiently, is low, perhaps similar to those of S. cerevisiae and C. albicans. 
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 S. cerevisiae 

genome 

S. cerevisiae 

mRNA 

measurements 

S. pombe 

genome 

S.  pombe 

mRNA 

measurements 

total number of genes 5869 5048 4766 1342 

number of CRPs  129 123 118 104 

average number of introns per 

gene 
0.046 0.23 0.93 0.59 

average number of introns per 

CRP gene 
0.67 0.67 0.61 0.62 

average number of introns per 

non-CRP gene 
0.032 0.028 0.96 0.95 

Table 4. Summary of gene data for S. cerevisiae and S. pombe. Summarized are the gene numbers 

and average number of introns per gene for the whole genome and for datasets of mRNA 

measurements for the two species. Only genes for which we have information regarding the number of 

introns are counted. The mRNA measurements are from (Holstege et al. 1998) and (Schmidt et al. 

2007) for S. cerevisiae and S. pombe, respectively. Special attention is given to the CRPs, as despite 

their small percentage within the genome (~2% in both species) they account for a substantial share of 

the transcripts within the cell (~30% in both species). 

 

In S. cerevisiae the cytosolic ribosomal protein (CRP) genes  account for 30% of 

the mRNA molecules in the cell under rich medium conditions (Holstege et al. 1998), 

and because ~75% of the CRP genes contain introns, and these genes are short lived, 

about 40% of S. cerevisiae transcripts are spliced (Warner 1999). This contrasts with 

the fact that only about 5% of the S. cerevisiae genes contain introns. I was therefore 

concerned that, while the number of genes with introns is significantly smaller in S. 

cerevisiae compared to S. pombe and A. nidulans, this result may not hold for the 

number of splicing events taking place in the cell. To address this concern I compared 

the intron-content of transcripts in S. cerevisiae to that of  S. pombe, using the datasets 

of Holstege et al, (Holstege et al. 1998) and Schmidt et al. (Schmidt et al. 2007), for S. 

cerevisiae and S. pombe, respectively (both datasets were obtained under rich medium 

conditions). Despite the fact that the dataset published by Schmidt et al. (Schmidt et 

al. 2007) contains mRNA levels for only about 30% of S. pombe genes, it seems 

representative of the entire genome in terms of its intron numbers (Table 4), and like 

in S. cerevisiae, the CRP genes account for 32% of the transcripts. I found that S. 

cerevisiae transcripts contain an average of 0.23 introns per transcript. In contrast, in 

S. pombe, even though the average number of introns per CRP gene is lower than in S. 

cerevisiae (Table 4), the average number of introns per transcript is 0.59, more than 

twice than the amount found for S. cerevisiae. For A. nidulans since CRP genes 

contain an average of 2.6 introns per gene, and the remaining genes contain an 
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average of 2.3 introns per gene, it can safely be assumed that the average number of 

introns per transcript would significantly exceed the corresponding numbers for both 

S. cerevisiae and S. pombe. It is worth noting that in S. cerevisiae ribosomal proteins 

are repressed as part of the stress response (Gasch et al. 2000). Therefore, since CRP 

genes in S. cerevisiae contain a much higher proportion of introns than the rest of the 

genes (Table 4), the average number of introns per transcript calculated here, based on 

measurements taken under rich medium conditions, is an upper bound for this 

quantity across conditions. In contrast, in S. pombe and A. nidulans the average 

number of introns in CRPs is lower than (S. pombe) or similar to (A. nidulans) the 

average number of introns in the rest of the genes, so that in these species the average 

number of introns per transcript would be similar or even higher in other conditions. 

In conclusion, as indicated by the translation efficiencies of the genes participating in 

mRNA splicing, A. nidulans requires the most splicing events, followed by S. pombe, 

and then S. cerevisiae. It is predicted that the remaining species in the dataset will 

require a proportion of splicing events that is similar to that of S. cerevisiae. 

As an additional example for a relationship between a known species 

characteristic and the translational efficiency of the relevant gene set, I found the 

genes annotated with “organic acid metabolism” to be of higher translational 

efficiency in Y. lipolytica compared to the rest of the species (Fig. 13, Table 3). This 

is in line with the use of this yeast for the industrial production of organic acids, such 

as 2-ketoglutaric acid and citric acid (Barth and Gaillardin 1997). 
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Fig. 13 Organic acid metabolism genes are translated more efficiently in Y. lipolytica, a yeast used 

for the industrial production of organic acids. For each gene associated with the GO category “organic 

acid metabolism” the species were given ranks according to how efficiently they translate the gene (the 

species translating the gene the least efficiently was given a rank of 1; the species translating the gene the 

most efficiently was given a rank of 9). The ranks of the species for all 200 genes associated with this 

category were summarized as a histogram. For clarity the ranks were grouped into three groups: 1-3 (red); 

4-6 (yellow); and 7-9 (blue). Species are ordered in ascending order of the median of their translation 

efficiency for this group of genes. It can be seen that Y. lipolytica, a species used for the industrial 

production of organic acids (Barth and Gaillardin 1997), tends to have higher ranks than other species, and 

thus translates these genes more efficiently (p=0.0024; Friedman test). 

 

My data also contains some highly significant patterns that I cannot presently 

explain by known phenotypic differences among the species (Table 3, as well as the 

complete listing of the supervised analysis results found under the “Additional 

Tables” section in http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl). As 

an example, the genes of the M phase of the cell cycle were found to exhibit the 

following order of translational efficiencies: Y. lipolytica < K. lactis, D. hansenii, C. 

albicans < C. glabrata < S. cerevisiae, S. bayanus, A. nidulans, S. pombe (Table 3, 

Fig. 14A). In search for particular M-phase related genes that gave rise to this signal, I 

clustered (using the kmeans algorithm (MacQueen 1967)) the 126 translational 

efficiency profiles of genes associated with this GO category into five clusters. One of 

the clusters, which contains 33 profiles, resembles the above-mentioned pattern (Fig. 

14B, Appendix 5). Interestingly, this cluster is composed of genes that belong to 

meiosis as well as genes that participate in mitosis. Although not much is known 

about the physiology of most of the species in my sample, the species stratification 

found for these genes, as well as other significant patterns, could be used to raise 

predictions that would direct future research of these species. 

http://longitude.weizmann.ac.il/pub/papers/Man2007_tai/suppl
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Fig. 14 The translation efficiency profiles of genes related to the M-phase of the cell cycle. Shown 

are boxplots of the relative translational efficiencies (normalized tAI; see Methods) of two groups of 

genes: A. genes annotated with “M phase” (126 profiles). Species are ordered in ascending order of the 

median translation efficiency for this group of genes. B. a subset of 33 of these profiles that resembles 

the species stratification implied statistically by the M phase genes (Table 3). Species are ordered as in 

A.  
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2. A comparison of the human and chimpanzee olfactory receptor 

gene repertoires 

2.1. The chimpanzee OR repertoire 

We identified 1,091 putative OR genes in the draft of the chimpanzee genome. Of 

these, 192 sequences were shorter than 300 bp (corresponding to 1/3 of the entire OR 

protein length), and were therefore excluded from subsequent analyses. Of 899 

chimpanzee OR genes, 353 (39%) have an uninterrupted (intact) open reading frame, 

and hence, may be considered functional. This fraction of intact chimpanzee OR 

genes may be an underestimate due to sequencing errors that have been incorporated 

into the chimpanzee genome assembly and that appear to disrupt coding regions. In 

order to test this possibility, we used the previously published sequences of 30 

chimpanzee intact OR genes (Gilad et al. 2003b) and compared them with the 

corresponding sequences in the chimpanzee genome draft. We found an average of 

0.71% sequence differences between the sequences obtained by Gilad et al. (Gilad et 

al. 2003b) and those of the chimpanzee assembly. Seven (23.3%) of the OR genes 

annotated as “intact” by Gilad et al. (Gilad et al. 2003b) contain either nonsense 

mutations or single base-pair insertions/deletions in the chimpanzee assembly that 

lead to one or more in-frame premature stop codons. If these disruptions are in fact 

sequencing errors, then, extrapolating to the whole repertoire, the corrected fraction of 

intact genes in the chimpanzee OR gene repertoire is ~50%.  

Next, we used the full-length (>800 bp) OR sequences from human and chimpanzee 

to build a distance-based phylogenetic tree of both OR gene repertoires (Fig. 15). 

Following the family-subfamily classification of OR genes (Glusman et al. 2000; 

Glusman et al. 2001), the overlap of the represented OR subfamilies in the repertoires 

of human and chimpanzee is nearly complete (Fig. 15), and in particular, in most OR 

subfamilies, there is a human ortholog for almost every chimpanzee OR gene. 

However, there are also some species-specific expansions. We note here the largest 

expansions. A chimpanzee expansion within OR subfamily 4C (Fig. 16A), and three 

human expansions  in subfamilies 2A, 4F (also noted by Linardopoulou et al. 

(Linardopoulou et al. 2001)), and 6C (Fig. 16B,C,D). The sequence similarity 

between the human-specific OR genes in subfamily 6C is only 70%. This suggests 
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that these genes existed in the common ancestor of human and chimpanzee, and that 

their orthologs were either deleted from the chimpanzee genome, or were not found 

by us (possibly due to properties of the assembly). In addition, the chimpanzee has 

roughly ~60% more loci from the 7E subfamily compared with human (84 and 132 

7E OR genes in human and chimpanzee, respectively). The 7E OR subfamily in 

human consists almost entirely of pseudogenes (Newman and Trask 2003); similarly, 

there is only one intact OR gene among the chimpanzee 7E OR subfamily sequences. 

 

 

 

Fig. 15 A neighbor-joining tree of the olfactory receptor repertoires of human and chimpanzee. 
The sequence of the bovine rhodopsin protein was used as outgroup (indicated as OPSD_BOVIN). 

Numbers indicate the different OR gene families. Human external branches are red, chimpanzee ones 

are blue.  
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Fig. 16 Distance matrix trees for specific OR subfamilies in human and chimpanzee. The first letter 

of the OR name indicates the species name (H and C for human and chimpanzee, respectively). Human 

OR sequence H5U512 was used as an outgroup in all cases. A. subfamily 4C: 20 human sequences (10 

intact) and 27 chimpanzee sequences (12 intact) B. Subfamily 2A: 14 human sequences (nine intact) and 

nine chimpanzee sequences (seven intact) C. Subfamily 4F: 16 human sequences (nine intact) and 11 

chimpanzee sequences (four intact) D. Subfamily 6C: 17 human sequences (10 intact) and nine 

chimpanzee sequences (seven intact). 
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2.2. OR genes under selection 

Previous studies of human and chimpanzee OR genes indicated that this gene 

superfamily evolves under different selection pressures in each species (Gilad et al. 

2003a). The availability of the complete chimpanzee OR gene repertoire enabled us to 

ask whether we can identify specific OR genes that may have been a target of natural 

selection in one of the species. Specifically, we used an analysis that is sensitive to 

differences between the species in the type of selection pressures acting on a given 

locus. 

As a starting point for our analysis, we used the previously published set of 

human-mouse OR gene orthologs (Man et al. 2004). We then used the “reciprocal best 

hit” human-chimpanzee OR gene list in order to identify the corresponding 

chimpanzee orthologs. Thus, we obtained clear human-chimpanzee-mouse ortholog 

trios for 201 OR genes. By using the mouse ortholog as the outgroup, we were able to 

estimate the OR gene sequences of the human-chimpanzee common ancestor, and 

thereby infer lineage-specific substitutions for each OR gene. 

In order to test for differences in selection pressures among the species, we 

compared the rate of synonymous and nonsynonymous divergence on each lineage. 

Under the null model, there is a single ratio of nonsynonymous to synonymous 

divergence (Dn/Ds) for the trio of species. Under the alternative, each lineage is 

allowed a separate Dn/Ds ratio. For each OR gene, we maximized the likelihood of 

the parameters given the data. We then used a likelihood ratio test (LRT) (Rice 1995) 

to test the null model. In this way, we could reject the null model for 52 OR genes (p 

< 0.05; 5 genes are expected to be significant by chance, after excluding genes with 

zero counts in any class of substitutions).  

Since our main goal in this section was to identify specific genes that are most 

likely to evolve under positive selection, we concentrated on 18 OR genes that were 

significant at a false discovery rate (FDR) (Benjamini and Hochberg 1995) of 1% 

(Table 5). A significant LRT result could reflect differences in selective constraint 

between orthologs, or might result from positive selection acting on an OR gene in 

only one of the lineages. We inspected the Dn/Ds values for each of these OR genes 

on individual lineages to help interpret the rejection of the null model. In six cases, the 

Dn/Ds value for substitutions on the chimpanzee lineage was below one, while the 

Dn/Ds value for the human lineage was  
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Locus (human name) human a Dn/Ds 

 Chimpanzee a 

Dn/Ds LRT P value b 

OR52H1 2.80 0.97 34.24 0.000001 

OR5M3 0.78 0.48 25.98 0.000002 

OR5M8 0.47 1.13 21.34 0.000023 

OR11L1 1.00 0.78 20.23 0.000040 

OR1L8 0.66 1.20 19.01 0.000074 

OR52B2 0.79 0.33 18.26 0.000108 

OR4F29 0.48 3.20 17.30 0.000175 

OR6K2 2.03 0.71 17.13 0.000190 

OR51G1 1.35 0.69 15.76 0.000378 

OR4D11 1.73 0.68 15.76 0.000379 

OR10G7 0.60 1.14 15.34 0.000468 

OR4C11 0.67 0.84 15.11 0.000525 

OR5AP2 1.10 0.92 14.19 0.000829 

OR4D10 0.65 0.94 14.16 0.000841 

OR51Q1 0.78 0.94 13.70 0.001059 

OR56B2P 0.62 2.49 13.29 0.001297 

OR1P1P 1.60 0.33 13.08 0.001444 

OR4F13P 2.20 0.43 12.91 0.001576 

Table 5. LRT results and Dn/Ds value for human and chimpanzee OR genes 

aDn/Ds values that seem indicative of positive selection are in bold. 

bP values of the Likelihood Ratio test (LRT) of the null vs. alternative models. 

 

higher than 1.2 (Table 5). This suggests that the rejection of the null model in these 

cases is due to positive selection driving the evolution of the human, but not the 

chimpanzee OR gene. Similarly, we find three cases for which it seems that the 

chimpanzee, but not the human gene, has evolved under positive selection. In nine 

cases, the rejection of the null model may be due to strong purifying selection on one 

lineage (possibly the mouse) and relaxed constraint on at least one of the others. 

 

2.3. Estimating the age of human pseudogenes 

We identified 761 clear cases of human-chimpanzee OR gene orthologous pairs 

(see Methods). Of these, the number of apparent pseudogenes in human and 

chimpanzee is 403 and 440, respectively. Using the “conceptual translation” of coding 

sequences to protein (i.e. the inferred protein sequences, allowing for frameshifts and 

stop codons, based on a library of related protein sequences) we identified all coding-

region disruptions in each pseudogene. We then defined two groups of human OR 

pseudogenes as follows: (1) shared pseudogenes, i.e., those that share at least one 

coding-region disruption with their chimpanzee ortholog, and hence were most likely 

pseudogenes in the human-chimpanzee common ancestor, and (2) human-specific 

pseudogenes, i.e., those that do not share any disruption with their chimpanzee 
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orthologs, and most likely were intact in the common ancestor of human and 

chimpanzee. 

Species-specific and shared coding-region disruptions in OR genes have been 

described in the past (Rouquier et al. 1998). Here, we concentrated on human-specific 

disruption in the shared pseudogenes (by definition, at least one disruption in these 

loci is shared with chimpanzee, but any additional ones may be human specific). We 

assume that these disruptions are neutral mutations, as they occurred in pseudogenes. 

As expected under the hypothesis of a neutral molecular clock, the number of human-

specific disruptions per shared pseudogene appears to be approximately Poisson 

distributed (Fig. 17). If we fit a Poisson distribution to the data, the estimate of the 

mean is 



 ̂0.701 disruptions per gene (~1 kb) since the divergence of human and 

chimpanzee. Assuming six million years (MY) since the common ancestor of a human 

and chimpanzee sequence, this corresponds to a neutral OR gene disruption rate of 



0.701

6 106
1.17 106

 disruptions per gene per year. This calculation provides a general 

estimate of the rate at which neutral gene disruptions accumulate in OR genes, and 

possibly in other human genes with similar GC content. 

Next, we tabulated the number of coding-region disruptions in the human-specific 

pseudogenes. Interestingly, we could not reject a Poisson distribution for these 

disruptions either (by using a 2 test, excluding the class corresponding to zero 

disruptions, p=0.58), meaning that coding sequence disruptions have been 

accumulating along these sequences independently of each other. This implies that the 

first coding sequence disruption that appeared in each of these pseudogenes was as 

selectively neutral as the remaining disruptions within the sequence. We then 

proceeded by assuming that at a certain point in human evolution, a subset of OR 

genes became unnecessary and were free to accumulate coding-region disruptions. In 

order to estimate this time point, we used the mean of the Poisson distribution, which 

we estimated to be 0.451. Under our model, assuming 6 MY since the common 

ancestor of a human and a chimpanzee sequence, we estimate that the relaxation of 

selective constraint started (0.451/0.701)6 MYA = 3.86 MYA, with 3.28-4.56 MY as 

rough 95% confidence intervals (obtained by parametrical bootstrapping 10,000 

times; see Methods). Thus, we can reject the hypothesis that OR genes have been 

accumulating disruptions at a neutral rate over the past 6 MY. This hypothesis can  
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Fig. 17 The distribution of human-specific OR gene disruptions in pseudogenes shared among 

humans and chimpanzees. The broken line is the Poisson fit for the data (=0.701). 

 

also be rejected by testing whether the Poisson distribution obtained for neutral 

disruptions over 6 MY fits the data for human-specific disruptions; it does not (p < 

0.01). 
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3. Discussion 

Both studies presented here have revealed differences among the coding 

sequences of different species that may take part in their phenotypic divergence. For 

the analysis of translational efficiency among yeast species I have found many groups 

of functionally related genes that show higher translation efficiency in one group of 

species relative to the other species. Among these, I found cases where the patterns of 

translation efficiency for the group of genes were in concordance with a phenotype. 

However, in many cases the patterns I found, though very significant statistically, 

could not be explained by known phenotypic differences and may open avenues to 

further investigation into the physiology of the species analyzed. Altogether I found 

extensive selection on synonymous codon usage that modulates translation according 

to gene function and phenotype. I conclude that, like factors such as transcription 

regulation, translation efficiency affects and is affected by the process of species 

divergence. 

The comparison of the human and chimpanzee olfactory repertoires also revealed 

differences between the two species. As previously predicted, the proportion of 

functional OR genes in the human repertoire is much smaller than the corresponding 

proportion in the chimpanzee repertoire, implying that the human sense of smell is 

indeed diminishing at a greater rate than the chimpanzee sense of smell.  We were 

also able to rule out the possibility that humans have been accumulating OR 

pseudogenes at a constant neutral rate since their divergence from chimpanzees. A 

possible interpretation of this finding is that the changes in human lifestyle that 

allowed such a deterioration of the OR repertoire did not occur immediately with the 

human-chimpanzee divergence. The comparison of the two repertoires also revealed 

two chimpanzee-specific OR subfamily expansions and three expansions specific to 

humans were found, as well as several examples in each of the species where an OR is 

evolving under positive selection in one species but not the other. Thus, we conclude 

that, despite the overall relaxation of constraint on human olfaction, the evolution of 

the OR gene repertoires of both species was shaped by species-specific sensory 

requirements.  

The two studies also revealed conserved aspects among the species. The analysis 

of the yeast species revealed that the proportions of tRNA genes, which serve as a 
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surrogate measure for the cellular tRNA pools, are largely conserved among the 

analyzed species. This means that the evolution of translation efficiency occurs 

mainly in a distributive fashion, whereby each gene adapts its coding sequence to an 

essentially invariable tRNA pool. In the comparison of the OR gene repertoires of 

human and chimpanzee, we found that the overwhelming majority of the chimpanzee 

OR genes have one human ortholog, so that the overall structure of the repertoire is 

conserved. 

Some differences between the two studies are also of note. One major difference 

is the type of signals analyzed. The analysis of translation efficiency focused on subtle 

signals at the level of synonymous codon usage that are many times considered 

neutral. On the other hand, the comparison of the olfactory repertoire focused, mainly, 

on very crude signals: open-reading frame disruptions that obviously prevent the 

formation of a functional protein and the expansion of certain subfamilies in one 

species or the other. Another major difference between the studies is the degree of 

interpretation one can give to their results. The extensive annotation of the S. 

cerevisiae genome and the fact that yeast are model organisms that are relatively easy 

to research has allowed me to make specific associations between the translation 

efficiency of groups of genes and the phenotype of these yeasts. Moreover, some of 

the statistically significant results, which could not be explained at present, may be 

explained by future experiments. In contrast, the olfactory system is considered a 

difficult system to study experimentally with the result being that ligands have been 

found for only a very small fraction of known OR sequences (c.f. (Kajiya et al. 2001; 

Hatt 2004)). This problem is complicated by the fact that the olfactory system is a 

combinatorial one where the same receptor recognizes multiple odorants and the same 

odorant is recognized by multiple receptors, albeit with different affinities (Malnic et 

al. 1999; Kajiya et al. 2001). Therefore, for the comparison of the olfactory repertoires 

of human and chimpanzee, although we can detect differences that may be attributed 

to divergences of sensory requirements, not only is it impossible at present to interpret 

the exact phenotypic meaning of these differences, but it is also unlikely that we will 

be able to interpret them in the near future.  

Finally, a pertinent question is whether the tools used in the first project could be 

applied to the species in the second project, and vice versa. The comparison of 

translation efficiency between the genes of human and chimpanzee is problematic, for 

two reasons. First, it is not clear that translational selection has had a significant 
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impact on the codon usage of genes in vertebrate genomes (see the subsection entitled 

“Comparative analysis of translation efficiency in other species” below). Second, 

since human and chimpanzee have diverged only recently in evolutionary terms the 

tAI of their genes is probably insufficiently diverged, which greatly reduces the 

chance that a comparison between the translation efficiency of orthologs from these 

two species would be meaningful. On the other hand, the tools used in the comparison 

between the human and chimpanzee olfactory receptor repertoires can be employed, 

albeit to a limited extent, for the comparison of the yeast species analyzed in the first 

project. Since yeast species do not  have olfactory receptors, such analyses would be 

employed to yeast gene families in general. A survey of pseudogenes in S. cerevisiae 

(Harrison et al. 2002) indicated most pseudogenization events have occurred in 

evolutionarily young ORFs, as opposed to ancient ORFs that are conserved between 

species. So, based on this early report, it would appear that very little phenotypic 

variation among yeast species is due to pseudogenization. However, since this 

pseudogene survey was conducted only in one yeast species, it may be worthwhile to 

repeat it in the other yeast species analyzed here to examine whether 

pseudogenization has played a part in phenotypic divergence in these species. A more 

promising avenue for the investigation of phenotypic divergence in yeasts, which is in 

line with the human-chimpanzee comparison, is to look for expansions/contractions of 

protein families in these species. For example, in a comparison of five of the species 

in our sample, Dujon et al. found hundreds of cases of families that were present in all 

species albeit with a different number of representatives, and in fourteen cases the 

expansion was found to be statistically significant  (Dujon et al. 2004). Such 

expansions may shed light on phenotypic differences among the yeast species I 

analyzed. Finally, the maximum likelihood framework, which was utilized to suggest 

OR coding sequences that have evolved under positive selection in human or 

chimpanzee, can be applied to yeast orthologs, as long as the analyzed genes are not 

too diverged in sequence. This would probably mean that the analysis could be useful 

in comparing close species pairs such as S. cerevisiae and C. glabrata, but would be 

meaningless in the comparison of more distant species pairs such as S. cerevisiae and 

S. pombe. 

Aspects specific to each of the two parts of the research are discussed below. 



 

 65 

1. Selection for translation efficiency and its relation to species 

divergence in yeast 

1.1. tAI as a predictor of protein levels 

In this study I used tAI (dos Reis et al. 2004) as a surrogate measure for protein 

levels. The comparison of tAI values with observed protein levels was statistically 

significant, indicating that this theoretical index captures an aspect of coding 

sequences that is relevant to protein levels. Moreover, the statistical significance of 

the partial correlation between tAI and protein levels, whilst controlling for mRNA 

levels, indicates that tAI adds information that cannot be obtained from mRNA levels. 

Nevertheless, genes with vastly different protein levels obtain the same tAI, and vice 

versa. Setting aside the contribution of errors in measurements to the discordance 

between observations and predictions, there are three possible, non-exclusive, reasons 

for the lack of accuracy in protein level predictions that are based on tAI. First, tAI 

focuses on one aspect of the maintenance of protein levels, namely translation. As a 

result, the effect of other factors that are known to contribute significantly to steady-

state protein levels, namely transcript levels and protein half-lives (Belle et al. 2006), 

are neglected. Second, tAI attempts to quantify the efficiency of a specific aspect of 

translation, i.e. the effect of codon usage on the elongation of the nascent peptide. 

However, there are other facets of the translation process that can be utilized in the 

regulation of protein levels. These include the initiation of translation, which is 

considered a rate-limiting step in the translation process (Preiss and Hentze 2003), as 

well as the density of translating ribosomes on transcripts, which is different for 

different genes (Arava et al. 2003). Finally, tAI may not model accurately the effects 

of codon usage on the efficiency of peptide elongation. For instance, the relative 

strength of the wobble interaction of tRNAs with non-cognate codons was optimized 

based on transcript levels, rather than on protein levels (dos Reis et al. 2004), thus 

focusing on the demand for the various tRNAs rather than the resultant protein levels. 

It is possible that using the required protein levels instead would yield a more accurate 

model of anticodon-codon interactions. In addition, tAI assumes that only the overall 

codon composition of the coding sequence is relevant for the purposes of translation 

efficiency, so that any two equal-length sequences containing the exact same codon 

composition, would obtain the same tAI score. However, it has been observed that 

codon bias is not uniform along sequences (Qin et al. 2004), so it is possible that an 
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index that would take into account not only the overall codon composition, but also 

the dispersion of the codon bias along the sequence, would show an improved 

performance over tAI. On the other hand, the pattern of dispersion of codon bias 

along the sequence does not seem to be universal, with D. melanogaster showing a 

different pattern than S. cerevisiae and E. coli, and the effect of expression level on 

overall codon usage bias is more pronounced than its effect on the shape of the spatial 

distribution (Qin et al. 2004). Thus, it seems that the incorporation of spatial patterns 

of codon bias into translation efficiency calculations would not be trivial, and it is not 

clear that such an effort would lead to great improvement in predictions. All this being 

said, my work has shown that tAI, despite being a very crude predictor of protein 

levels, contains enough information to make predictions regarding the phenotypes of 

species. 

 

1.2. Comparison to other studies that investigated the relationship 

between translation efficiency and the lifestyles of species 

In addition to my work, only one study has investigated the relationship between 

the translation efficiency of individual genes and the lifestyles of the species in whose 

genome they reside (Carbone and Madden 2005). Using conformance to the 

dominating codon bias in the genome as a measure of translation efficiency (Carbone 

et al. 2003), Carbone and Madden investigated the relationship between translation 

efficiency of genes and the lifestyles of thirteen prokaryotes and one eukaryote (S. 

cerevisiae). Contrary to my study, they chose to limit themselves to the metabolism of 

the investigated species, analyzing metabolic pathways that were found in them. In 

addition, rather than looking at the values of individual genes they chose to 

summarize the translation efficiency of a pathway by its mean value of codon bias. 

Similar to my study, the pathways of each organism were then given a score that 

reflects its rank among the other pathways. Pathways with a high relative score were 

then inferred to be central to the metabolism of the relevant species. These relative 

scores allowed the authors to examine pathways that display similar behavior among 

the analyzed organisms, as well as pathways that behave differentially. Since each 

pathway was summarized by a single number, which was further simplified into a 

color code, the comparisons made among the organisms were, in contrast to my study, 

qualitative in nature. Such a qualitative comparison probably limits the power of 
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analyses. On the other hand, the fact that a single number summarized the pathways 

freed the authors of the need to perform an extensive ortholog analysis that would 

have most likely been complicated due to the high divergence between the species 

they analyzed. Another difference between my study and the study of Carbone and 

Madden was the fact that in my study species that did not show a significant trend of 

translational selection were excluded from the comparative analysis, whereas Carbone 

and Madden included some species which, according to their criteria, do not show 

translational codon bias. Their claim was that, even in the genomes of such 

organisms, genes that are central to the metabolism of the relevant species show 

codon bias relative to the rest of the genome. Since in my comparative analyses I 

normalized translation efficiency values also across species, I was concerned that 

noise inserted by species that do not show statistically significant translational 

selection in their genome would reduce the power of the analyses that were more 

quantitative in nature. Indeed, in earlier analyses, where A. gossypii was included, 

some of the results that were shown here were also obtained, albeit with less 

significant p-values (results not shown). A final difference between the two studies is 

my use of tAI, rather than conformance to the dominant codon bias in the genome 

(Carbone et al. 2003), to measure translation efficiency of coding sequences. which 

alleviated the need to speculate on the identity of the highly expressed genes in each 

species. This methodological choice was crucial since it turns out that the classical 

genes that are assumed to be high in all species (CRPs, glycolysis etc.) showed a lot 

of variance among species. As a bonus, the use of tAI, which relies on the 

composition of the tRNA pool, led me to investigate the evolution of the tRNA pools 

of the species analyzed, exposing the fact that this pool remains relatively constant.  

In summary, my study is distinguished from that of Carbone and Madden 

(Carbone et al. 2003) by a narrower and more conservative choice of species on my 

part. On the other hand, in my analyses I used a broader range of categories of genes, 

allowing me to observe, as well as make predictions, regarding differences that are 

related to non-metabolic processes. Also, by using more closely related species, in 

which orthology relationships are more easily inferred, as well as by utilizing the 

values of individual genes, rather than summary values, to compare gene groups 

among species, I was able to obtain results that are more quantitative in nature. 
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1.3. Comparative analysis of translation efficiency in other species 

The methodology developed in my study opens another avenue to investigate the 

genes underlying phenotypic divergence. I anticipate that the kind of analyses 

performed in the current study could in future be extended to other groups of species. 

However, the analysis may not be applicable to any group of species - a number of 

criteria would have to be considered when selecting species for analysis. First, only 

species with a complete genome sequence can be considered for analysis. This 

requirement is necessary both for the inference of the tRNA gene copy numbers 

(although if experimentally-determined abundances of tRNAs are available, these can 

be used in the calculation of tAI instead of tRNA gene copy numbers) and for the 

inference of orthologs with other species in the sample. Second, a number of 

phylogenetically close (although not too close) species should be available for 

analysis. A time of divergence among species that is too large probably entails a very 

small proportion of shared genes, which makes it likely that most differences among 

the species are due to different gene repertoires, rather than differences in the 

expression of shared genes. On the other hand, the comparison of translation 

efficiencies between species that are too close to each other in evolutionary terms may 

not be meaningful, as they may not be sufficiently diverged in tAI. Third, in order to 

be able to interpret the results of the comparison of translation efficiencies among 

species, at least one species should have an extensively annotated genome sequence. 

Finally, it should be ascertained that translational selection is a significant contributor 

to the codon usage patterns of each of the species in the sample.  

While the first three criteria may present a problem in analyzing a species of 

particular interest, this would probably be a transient problem that may be resolved as 

more genomes are sequenced and annotated. However, the final criterion is one that 

examines a property of a genome that is permanent, and therefore if the species of 

interest does not fulfill it, it is permanently barred from being analyzed by the current 

methodology. The issue of how to determine whether a species passes this last 

criterion is therefore of special importance. On the one hand, translational selection 

has been inferred in a large number of species from all kingdoms of life, so that 

potentially the number of species to which the comparative translation efficiency 

analysis can be applied is very large. On the other hand, different authors inferred 

translational selection using different methods and their results are sometimes 
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contradictory (for example, Pan et al. (Pan et al. 1998) inferred that the genome of H. 

influenza experienced translational selection, but this result was contradicted by the 

test proposed by dos Reis et al. (dos Reis et al. 2004)). Notably, vertebrates are a 

group of species in which the existence of translational selection is particularly 

controversial. In species belonging to this group multivariate analyses have shown 

that variability in codon usage of a gene is governed mainly by Xg, the GC content at 

the third codon position (Kanaya et al. 2001; Musto et al. 2001), which is strongly 

correlated with the GC content of the isochore in which it is located (reviewed in 

(Bernardi 2000; Eyre-Walker and Hurst 2001)). The fact that Xg (and thus codon 

usage) as well as introns and intergenic regions seem to be influenced to the same 

extent by the GC content of the isochore implies that translational selection is unlikely 

to have a significant impact on codon usage in vertebrates. Indeed, the absence of 

translational selection in vertebrate genomes was supported by a number of papers 

(c.f. (Urrutia and Hurst 2001; Semon et al. 2006)). However, other papers found 

evidence for translational selection in vertebrate genomes (c.f. (Musto et al. 2001; 

Comeron 2004; Comeron 2006; Kotlar and Lavner 2006)), although some admitted 

that this selection is weak (Musto et al. 2001; Comeron 2004; Comeron 2006). In this 

study I compared the extent of adaptation of coding sequences to the tRNA pools to 

general codon bias, as a test for the significant effects of translational selection on 

codon usage in the genome. This test doesn’t attempt to isolate translational selection 

from other evolutionary forces, which may influence codon usage in a way that is 

synergistic or antagonistic to translational selection. Rather, it tests whether the 

observed codon usage is adapted to the tRNA pools, irrespective of the evolutionary 

forces that have led to this situation. I suggest that future similar studies would 

employ a similar strategy in selecting species that are appropriate for analysis.  

Finally, since tRNA pools may differ among tissues (Dittmar et al. 2006), 

developmental stages (White et al. 1973) and perhaps even environmental conditions, 

the methodology may be modified to accommodate new experimental data. For 

instance, as experimental data regarding tRNA abundances for different tissues, 

developmental stages or conditions accumulates, one may use the maximal tAI that 

can be obtained using any of the available pools, rather than the theoretical tAI that is 

based on the tRNA gene copy numbers, as a surrogate measure for maximal protein 

levels. This maximal tAI can then be used both in the test for translational selection 

and in the comparison among species. Alternatively, one can compare the translation 
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efficiency in the same tissue or environmental condition across species, by using tAI 

values computed using the tRNA pools determined experimentally for this specific 

tissue or condition. A serious disadvantage of such approaches is that that they require 

experimental data regarding the tRNA pools of all the analyzed species, a requirement 

that was waived in the current study.  
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2. A comparison of the human and chimpanzee olfactory gene 

repertoires 

We analyzed the complete chimpanzee OR repertoire and compared it with the 

repertoire of OR genes in human. Our comparison yielded several findings that could 

underlie the hypothesized differences in olfactory phenotypes among humans and 

chimpanzees.  

Confirming predictions that were based on small sample sizes (Gilad et al. 2003a; 

Gilad et al. 2003b), we find that the fraction of OR pseudogenes is significantly 

greater in humans. This finding is supported by the recent observation that human-

specific pseudogenes are enriched for ORs (Wang et al. 2006). Species-specific 

inactivation of a gene can lead to a loss of a function, e.g. the Trypanosoma lytic 

factor HPR, which has been inactivated in chimpanzee but not in human, likely 

explains the susceptibility of chimpanzees to T. brucei infections (Puente et al. 2005). 

On the other hand, inactivation of genes can also confer a selective advantage and 

thus be driven to fixation by positive selection, as has been shown for CASPASE12, 

whose null allele confers protection from severe sepsis in humans (Wang et al. 2006). 

In our study we observed that the distribution of number of inactivating mutations per 

gene in human-specific OR pseudogenes fits a poisson distribution, implying that the 

first inactivating mutation in each of these pseudogenes was selectively neutral. Thus, 

it is unlikely that any of the human-specific OR pseudogenes conferred a selective 

advantage to humans, and that the pseudogenization process only led to loss of 

olfactory capabilities. It is interesting to note that the relaxation of constraints in the 

human lineage is not common to all chemosensory functions. For instance, Parry et al. 

analyzed the T2R family of bitter taste receptors in humans, bonobos and 

chimpanzees and did not find a human-specific loss of the amount of functional genes 

(Parry et al. 2004). 

We also noted species-specific expansions/contractions among subfamilies of 

ORs. Such differences in OR family sizes between human and chimpanzee have been 

also noted by a recent study  that examined the evolution of gene family sizes in 

mammalian species (Demuth et al. 2006). The observed expansions/contractions 

include both intact OR genes as well as pseudogenes and are probably the product of a 

neutral process of duplication and deletion (Nei et al. 2000). Alternatively, these 
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expansions could be the result of species-specific sensory needs, as the number of 

functional genes within any given OR subfamily may be proportional to the breadth of 

binding sites within a subfamily (Malnic et al. 1999). 

Lastly, we suggest a number of OR genes, both in human and in chimpanzee, as 

probable candidates for adaptations, as they may have evolved under positive 

selection. Previously, Gilad et al. (Gilad et al. 2003a) suggested that OR genes in 

human evolve under positive selection, but no evidence was found for such adaptation 

in chimpanzee. The authors found that most chimpanzee intact OR genes evolve 

under strong evolutionary constraint and suggested that this may reduce the power to 

detect positive selection in small-scale studies. Here, we took advantage of the 

identification of 201 human-chimpanzee-mouse ortholog trios, to detect rapidly 

evolving proteins in human and chimpanzee. Our findings are in line with an earlier 

study that, using an approach similar to ours, looked for evidence for natural selection 

in either the human or chimpanzee lineage within a very large collection of genes, and 

found an enrichment for ORs among the genes that were highlighted (Clark et al. 

2003). The signature of selection on OR genes can be corroborated by the analysis of 

polymorphism data (e.g., (Hamblin and Di Rienzo 2000; Hamblin et al. 2002)). 

Targets of selection identified from the analysis of polymorphism and divergence are 

promising candidate for human- and chimpanzee-specific chemosensory traits. 

Indeed, a recent study, which compared human polymorphism data and fixed 

differences between humans and chimpanzees, also pinpointed a number of  olfactory 

genes as candidates for adaptations in the human lineage (Bustamante et al. 2005). A 

natural next step is to collect data from additional primates to establish whether 

selective pressures are truly exclusive to one species. Finally, studies to associate OR 

genes to their primary odorants will determine whether the genes identified in this 

study indeed underlie species-specific sensitivity. 

 

2.1. The chimpanzee OR repertoire 

On a first pass, the number of chimpanzee genomic segments that our algorithm 

identified as OR gene candidates is 26% higher than the number of human OR genes. 

Moreover, we could only find clear human orthologs (see Methods) for 761 (69%) of 

the chimpanzee candidate OR genes. However, when we only considered the 899 

chimpanzee OR sequences that are longer than 300 bp, the size of the chimpanzee OR 
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repertoire becomes similar to that of human, and the proportion of chimpanzee loci 

with a human ortholog is 85%. This suggests that many of the short sequences 

identified as OR genes result from imperfections of the chimpanzee genome 

assembly. It is not improbable that these sequences should have been collapsed in the 

assembly, rather than be represented as unique (short) genomic segments. It may also 

be that some of the short OR candidates are not ORs after all, and would not have 

been included in our putative chimpanzee OR gene repertoire if we had used a more 

stringent cutoff in our searches against the chimpanzee genome. 

The discrepancy in ortholog matches does not completely disappear when the 

chimpanzee short sequences are excluded. In most remaining cases, we can explain 

the lack of an ortholog for ~15% of OR genes by lineage-specific 

expansions/contractions. We also noted a difference between human and chimpanzee 

in the size of the 7E OR subfamily. This OR subfamily consists almost exclusively of 

pseudogenes and was shown to have expanded in the human lineage (Newman and 

Trask 2003). Our findings suggest a similar, even more pronounced, expansion of 

family 7E in chimpanzee. The selective advantage of this expansion, if any, is unclear. 

 

2.2. Relaxation of constraint on the human lineage 

We used the previously published sequence of 30 chimpanzee intact OR genes 

(Gilad et al. 2003b) in order to estimate the number of sequencing errors that lead to 

an apparent coding region disruption in the chimpanzee genome draft. Our corrected 

estimate of the proportion of pseudogenes in the chimpanzee OR repertoire (~50%) is 

still significantly higher than the estimate of 32-38% from Gilad et al. (Gilad et al. 

2003a; Gilad et al. 2003b). This is probably due to the high number of subfamily 7E 

OR pseudogenes in chimpanzee. OR genes from this subfamily were excluded from 

the analysis of Gilad et al. (Gilad et al. 2003a; Gilad et al. 2003b), since a recent 

expansion has been observed for this subfamily (Newman and Trask 2003), and, 

except for one sequence, all of the 7E ORs are pseudogenes. If we exclude the 7E 

subfamily from our analysis, the proportion of pseudogenes in human and chimpanzee 

are 51% and 41%, respectively. These values are within the 95% CI of the 

observations of Gilad et al. (Gilad et al. 2003a; Gilad et al. 2003b). We note that if we 

underestimated the number of sequence errors that result in an apparent disrupted 

coding region, the correct proportion of OR pseudogenes in chimpanzee may be 
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lower. Thus, the use of the entire repertoire confirms that a greater proportion of OR 

genes evolve under no or little constraint in humans relative to chimpanzees. 

In our attempt to date the time since humans have started to rapidly accumulate 

OR pseudogenes, we made the simplistic assumption that all human intact OR genes 

were under evolutionary constraint until some point in human evolution. Then, a 

subset of OR genes became unnecessary, and hence neutrally evolving. We know, 

however, that not all ORs are under constraint in nonhuman primates (Gilad et al. 

2003b). Thus, a more realistic model might include a background rate of OR 

disruptions for all primates, with additional sets of OR genes becoming unnecessary at 

various time points during human evolution. Unfortunately, without additional 

information, it is difficult to make inferences about such a model. However, by 

assuming no background rate of OR gene disruptions in our calculation, our estimate 

is an upper bound on the time since humans experienced relaxed evolutionary 

constraint relative to other primates. Hence, we are able to exclude the possibility that 

humans have been accumulating OR pseudogenes at a neutral rate since the 

divergence of these two species. 

Another assumption made in this analysis was that any OR gene with an 

uninterrupted ORF is intact. This approach probably results in an underestimate of the 

proportion of pseudogenes, as not all OR genes with an intact coding region are 

functional. Mutations in promoter or control regions of OR genes may lead to reduced 

or no expression. Similarly, radical missense mutations in highly conserved positions 

of the OR protein may result in dysfunction (Young et al. 2002; Menashe et al. 2003). 

Although it is known that there are several highly conserved positions among OR 

genes, it is not always straightforward to ascertain which, if any, of these positions is 

necessary to retain function. Some changes will alter, rather than completely abolish 

the function of the receptor (Gaillard et al. 2004). We therefore chose the most 

straightforward definition of a pseudogene, a gene without a full open reading frame. 

In the future, this analysis may be repeated using a wider definition of OR 

pseudogenes, for instance through the use of  the tool provided by Menashe et al. 

(Menashe et al. 2006). 
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2.3. Positive selection on OR genes 

We analyzed, using a maximum-likelihood based methodology, 201 human-

chimpanzee-mouse ortholog trios. We find 52 OR genes whose phylogenetic trees are 

significantly more likely under a model where Dn/Ds varies among evolutionary 

lineages. A significant LRT result could reflect differences in selective constraint 

between orthologs, or might result from positive selection acting on an OR gene in 

only one of the lineages. By inspecting the data further, we highlighted several OR 

genes, both in human and in chimpanzee, which have probably evolved under positive 

selection. These OR genes have experienced, on average, seven amino acid 

substitutions per gene. Interestingly, in some cases (OR4D11 and OR1P1P in human, 

and OR1L8 in chimpanzee), we find that amino acid substitutions occurred in the 

putative binding site of the OR protein (Man et al. 2004). These changes may have 

functional significance. However, in the other OR proteins that are inferred to have 

evolved under selection, amino acid substitutions are scattered with no clear pattern. 

In addition, we find several substitutions in positions that are otherwise extremely 

conserved across OR proteins (such as the DRY motif) (Buck and Axel 1991). 

Substitutions in these positions may result in a dysfunctional receptor (Young et al. 

2002). We are unable to provide a satisfactory explanation for our observation of 

Dn/Ds ratios well above one for these genes. 
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3. Statement of independent collaboration 

The research in the first project described in this thesis was the product of my 

independent efforts. The second project described herein is the product of a 

collaboration between myself and Dr. Yoav Gilad (then at Yale University, New 

Haven, Connecticut, USA) and Dr. Gustavo Glusman (Institute of Systems Biology, 

Seattle, Washington, USA). The contribution of each of the participants was as 

follows. Dr. Yoav Gilad conceived the idea for the analysis and performed the 

calculation of the time since human rapid accumulation of OR pseudogenes began. 

Dr. Gustavo Glusman identified the chimpanzee OR genes in the chimpanzee genome 

draft, as well as the human-chimpanzee ortholog pairs. I performed the phylogenetic 

analysis, the identification of shared and human-specific pseudogenes, the bootstrap 

analysis for the estimation of the time since human rapid accumulation of OR 

pseudogenes began, and the PAML analysis for the identification of ORs evolving 

under positive selection.  
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4. Appendices 

1. Appendix 1 – The tRNA repertoires of the yeast species analyzed 

The gene copy numbers of all tRNA species in nine yeasts were determined using 

an HMM-based approach (Lowe and Eddy 1997) (see Methods). Rows that 

correspond to the seven tRNAs that are assumed to be absent in all living species (due 

to the structure of the genetic table and wobble interactions, which imply that their 

presence may result in mistranslation of some codons) are shown in red. The first 

three columns show, respectively, the anticodon borne by the tRNA, the codon that is 

perfectly decoded by the anticodon, and the amino acid that corresponds to the codon. 

Species abbreviations: Sc – S. cerevisiae; Cg – C. glabrata; Kl – K. lactis; Ag – A. 

gossypii; Dh – D. hansenii; Ca – C. albicans; Yl – Y. lipolytica; An – A. nidulans; Sp 

– S. pombe. 

anticodon codon 

amino 

acid Sc Cg Kl Ag Dh Ca Yl An Sp 

AAA TTT F 0 0 0 0 0 0 0 0 0 

GAA TTC F 10 6 5 6 8 5 17 5 5 

TAA TTA L 7 3 3 2 9 5 1 1 2 

CAA TTG L 10 8 7 7 4 6 3 2 4 

AGA TCT S 11 9 6 7 7 4 21 5 7 

GGA TCC S 0 0 0 0 0 0 0 0 0 

TGA TCA S 3 2 2 2 3 3 2 1 2 

CGA TCG S 1 1 1 3 1 1 4 2 1 

ATA TAT Y 0 0 0 0 0 0 0 0 0 

GTA TAC Y 8 6 5 4 6 5 14 5 4 

ACA TGT C 0 0 0 0 0 0 0 0 0 

GCA TGC C 4 3 3 3 4 2 8 3 3 

CCA TGG W 6 5 4 5 4 2 13 3 3 

AAG CTT L 0 0 0 0 2 2 21 6 5 

GAG CTC L 1 1 1 1 0 0 0 0 0 

TAG CTA L 3 4 2 4 0 0 2 2 1 

CAG CTG L 0 0 0 0 1 1 13 3 1 

AGG CCT P 2 1 1 1 1 1 21 6 6 

GGG CCC P 0 0 0 0 0 0 0 0 0 

TGG CCA P 10 7 7 7 7 5 3 2 2 

CGG CCG P 0 0 0 0 0 0 2 2 1 

ATG CAT H 0 0 0 0 0 0 0 0 0 

GTG CAC H 7 6 4 5 5 3 12 5 4 

TTG CAA Q 9 6 6 4 7 5 3 2 4 

CTG CAG Q 1 2 1 4 1 1 15 5 2 

ACG CGT R 6 4 3 4 5 2 1 9 8 

GCG CGC R 0 0 0 0 0 0 0 0 0 

TCG CGA R 0 0 0 0 0 0 25 2 1 

CCG CGG R 1 1 1 2 1 1 0 2 1 

AAT ATT I 13 9 7 9 9 5 26 7 8 

GAT ATC I 0 0 0 0 0 0 0 1 0 

TAT ATA I 2 2 1 1 2 1 1 1 1 

CAT ATG M 10 7 6 8 7 4 18 7 7 

AGT ACT T 11 9 6 7 8 6 22 6 7 

GGT ACC T 0 0 0 0 0 0 0 0 0 

TGT ACA T 4 3 2 2 2 2 3 2 2 

CGT ACG T 1 1 1 2 1 1 2 2 1 
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anticodon codon 

amino 

acid Sc Cg Kl Ag Dh Ca Yl An Sp 

ATT AAT N 0 0 0 0 0 0 0 0 0 

GTT AAC N 10 9 6 6 8 4 16 7 6 

TTT AAA K 7 3 4 3 7 5 4 3 3 

CTT AAG K 14 12 9 9 12 2 34 8 9 

ACT AGT S 0 0 0 0 0 0 0 0 0 

GCT AGC S 2 3 2 3 2 2 6 4 3 

TCT AGA R 11 9 7 6 10 5 4 2 2 

CCT AGG R 1 1 1 1 1 1 1 2 1 

AAC GTT V 14 10 7 8 11 6 24 8 9 

GAC GTC V 0 0 0 0 0 0 0 0 0 

TAC GTA V 2 2 1 2 1 1 2 1 2 

CAC GTG V 2 1 2 4 1 1 8 2 1 

AGC GCT A 11 10 7 7 7 7 30 8 9 

GGC GCC A 0 0 0 0 0 0 0 0 0 

TGC GCA A 5 5 3 4 4 2 4 2 2 

CGC GCG A 0 0 0 2 1 0 2 3 1 

ATC GAT D 0 0 0 0 0 0 0 0 0 

GTC GAC D 16 9 8 10 9 7 28 9 8 

TTC GAA E 14 9 8 3 9 7 6 3 4 

CTC GAG E 2 3 2 8 1 1 27 8 6 

ACC GGT G 0 0 0 0 0 0 0 0 0 

GCC GGC G 16 12 7 11 11 6 30 11 8 

TCC GGA G 3 2 2 2 4 2 11 3 3 

CCC GGG G 2 1 1 2 1 1 0 1 1 

Total   273 207 162 191 205 133 510 184 171 

 



 

 89 

2. Appendix 2 – Comparison of the effective number of codons after 

accounting for silent GC content (f1(Xg)-Nc) and the tRNA 

adaptation index (tAI) for the coding sequences of the ten yeast 

species analyzed 

tAI and f1(Xg)-Nc were computed for all nuclear-encoded coding sequences (see 

Methods). A. S. cerevisiae B. S. bayanus C. C. glabrata D. K. lactis E. A. gossypii F. 

D. hansenii G. C. albicans H. Y. lipolytica I. A. nidulans J. S. pombe 
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3. Appendix 3 – comparison of the effective number of codons (Nc) 

and the tRNA adaptation index (tAI) for the coding sequences of 

the ten yeast species analyzed 

tAI and Nc were computed for all nuclear-encoded coding sequences (see 

Methods). A. S. cerevisiae B. S. bayanus C. C. glabrata D. K. lactis E. A. gossypii F. 

D. hansenii G. C. albicans H. Y. lipolytica I. A. nidulans J. S. pombe 
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4. Appendix 4 – Results of Friedman test and post-hoc analysis for 

the forty clusters of translation efficiency profiles 

For each cluster I performed the Friedman test, and if the p-value was significant 

(using a FDR (Benjamini and Hochberg 1995) of 5%) I followed with post-hoc tests 

for all pairwise comparisons. The results of the post-hoc tests are summarized as a 

species stratification. A ‘<’ sign indicates that each of the species to the left of this 

sign obtained a significant p-value (using a FDR of 20%) in the comparison of their 

translation efficiency values with those of each of the species on the right of the sign, 

and the medians of the values for the species on the left are smaller than those of the 

species on the right. Cluster numbers are as in Fig. 10. 

cluster# 

cluster 

size 

Friedman 

test 

p-value conclusion from post-hoc tests 

1 14 5.04E-12 
K. lactis < Y. lipolytica < S. bayanus < S. cerevisiae, C. glabrata,  

D. hansenii, A. nidulans, S. pombe < C. albicans 

2 64 <1.11E-16 
Y. lipolytica < S. cerevisiae, S. bayanus < A. nidulans <  

C. glabrata, K. lactis < D. hansenii < S. pombe < C. albicans 

3 37 <1.11E-16 
S. bayanus < S. cerevisiae, K. lactis, D. hansenii, C. albicans,  

Y. lipolytica < S. pombe < C. glabrata, A. nidulans 

4 7 7.02E-05 
S. bayanus, C. glabrata, K. lactis, D. hansenii, C. albicans,  

Y. lipolytica, A. nidulans, S. pombe < S. cerevisiae 

5 40 <1.11E-16 
C. albicans, Y. lipolytica < A. nidulans < S. cerevisiae, S. bayanus < 

C. glabrata < K. lactis, S. pombe < D. hansenii 

6 11 1.66E-09 
C. glabrata < C. albicans, Y. lipolytica < S. cerevisiae, S. bayanus, 

K. lactis, D. hansenii, A. nidulans, S. pombe 

7 147 <1.11E-16 
Y. lipolytica < D. hansenii < C. albicans < S. cerevisiae, S.bayanus, 

C. glabrata, K. lactis < S. pombe < A. nidulans 

8 100 <1.11E-16 
D. hansenii < Y. lipolytica < C. glabrata < K. lactis, C. albicans < 

S. bayanus, A. nidulans < S. cerevisiae, S.pombe 

9 281 <1.11E-16 
C. albicans < Y. lipolytica < D. hansenii < K. lactis < C. glabrata < 

A. nidulans < S. cerevisiae, S. bayanus, S. pombe 

10 70 <1.11E-16 
D. hansenii < S. bayanus, C. albicans, Y. lipolytica, A. nidulans <  

S. cerevisiae, C. glabrata, K. lactis < S. pombe 

11 56 <1.11E-16 
C. albicans < K. lactis < D. hansenii < S. cerevisiae, S. bayanus,  

C. glabrata < Y. lipolytica, A. nidulans < S. pombe 

12 119 <1.11E-16 
Y. lipolytica < K. lactis < C. glabrata, D. hansenii, A. nidulans <  

C. albicans < S. cerevisiae, S. pombe < S. bayanus 

13 105 <1.11E-16 
Y. lipolytica < A. nidulans < D. hansenii, C. albicans, S. pombe <  

C. glabrata, K. lactis < S. cerevisiae, S. bayanus 

14 43 <1.11E-16 
A. nidulans < Y. lipolytica, S. pombe < C. glabrata, C. albicans <  

K. lactis < S. cerevisiae < S. bayanus < D. hansenii 

15 67 <1.11E-16 
Y. lipolytica < S. pombe < C. glabrata, A. nidulans < K. lactis <  

S. cerevisiae, S. bayanus < D. hansenii < C. albicans 

16 73 <1.11E-16 
A. nidulans < K. lactis, Y. lipolytica < S. cerevisiae, S. bayanus,  

C. glabrata, D. hansenii, C. albicans < S. pombe 

17 67 <1.11E-16 
K. lactis, D.hansenii < A. nidulans < C. albicans, Y. lipolytica,  

S. pombe < C. glabrata < S. cerevisiae, S. bayanus 

18 20 <1.11E-16 
C. glabrata, K. lactis, D. hansenii, S. pombe < A. nidulans <  

Y. lipolytica < S. bayanus < S. cerevisiae, C. albicans 

19 45 <1.11E-16 
D. hansenii < K. lactis, Y. lipolytica, A. nidulans < C. glabrata <  

S. cerevisiae < S. bayanus, S. pombe < C. albicans 

20 26 5.46E-13 
C. glabrata < S. cerevisiae, S. bayanus, K. lactis, D. hansenii,  

Y. lipolytica, A. nidulans, S. pombe < C. albicans 

21 13 3.60E-11 
K. lactis < S. cerevisiae, C. glabrata, C. albicans, Y. lipolytica,  

S. pombe < S. bayanus, D. hansenii, A. nidulans 
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cluster# 

cluster 

size 

Friedman 

test 

p-value conclusion from post-hoc tests 

22 61 <1.11E-16 
C. glabrata < S. cerevisiae, Y. lipolytica < S. bayanus, K. lactis,  

S. pombe < D. hansenii < C. albicans < A. nidulans 

23 82 <1.11E-16 
S. pombe < K. lactis < S. cerevisiae, C. albicans < C. glabrata <  

S. bayanus, D. hansenii < Y. lipolytica < A. nidulans 

24 38 <1.11E-16 
D. hansenii, S. pombe < K. lactis < S. cerevisiae < S. bayanus,  

C. glabrata, C. albicans, Y. lipolytica < A. nidulans 

25 56 <1.11E-16 
S. bayanus, K. lactis < S. cerevisiae, C. glabrata, A. nidulans <  

S. pombe < D. hansenii, Y. lipolytica < C. albicans 

26 95 <1.11E-16 
C. glabrata < S. cerevisiae < S. bayanus < K. lactis < D. hansenii, 

C. albicans, A. nidulans < Y. lipolytica, S. pombe 

27 251 <1.11E-16 
S. bayanus < S. cerevisiae < C. glabrata, S. pombe <  

K. lactis, D. hansenii, C. albicans, A. nidulans < Y. lipolytica 

28 40 <1.11E-16 
D. hansenii < S. cerevisiae, S. bayanus, C. glabrata, K. lactis,  

C. albicans, A. nidulans, S. pombe < Y. lipolytica 

29 18 2.22E-16 
C. glabrata, D. hansenii, C. albicans < S. pombe < S. cerevisiae,  

S. bayanus, K. lactis, A. nidulans < Y. lipolytica 

30 11 2.61E-10 
S. bayanus, D. hansenii, C. albicans, A. nidulans < 

 S. cerevisiae, C. glabrata, S. pombe < K. lactis, Y. lipolytica 

31 26 <1.11E-16 
C. albicans < S. cerevisiae, S. bayanus, S. pombe <  

D. hansenii, Y. lipolytica, A. nidulans < C. glabrata, K. lactis 

32 60 <1.11E-16 
C. albicans < C. glabrata < S. cerevisiae, S. bayanus, K. lactis,  

S. pombe < Y. lipolytica, A. nidulans < D. hansenii 

33 87 <1.11E-16 
C. albicans < A. nidulans < S. pombe < K. lactis < C. glabrata <  

D. hansenii < S. cerevisiae, Y. lipolytica < S. bayanus 

34 7 1.39E-06 
S. cerevisiae, K. lactis < S. bayanus, D. hansenii, C. albicans,  

Y. lipolytica, A. nidulans < S. pombe < C. glabrata 

35 30 <1.11E-16 
K. lactis, A. nidulans, S. pombe < S. cerevisiae, S. bayanus <  

D. hansenii, C. albicans, Y. lipolytica < C. glabrata 

36 87 <1.11E-16 
A. nidulans < D. hansenii, S. pombe < S. cerevisiae, S. bayanus,  

C. glabrata, K. lactis, C. albicans, Y. lipolytica 

37 96 <1.11E-16 
S. pombe < A. nidulans < C. albicans < S. cerevisiae, K. lactis,  

D. hansenii, Y. lipolytica < C. glabrata < S. bayanus 

38 36 <1.11E-16 
A. nidulans, S. pombe < S. bayanus < Y. lipolytica <  

S. cerevisiae, D. hansenii < C. glabrata, K. lactis < C. albicans 

39 78 <1.11E-16 
S. pombe < S. cerevisiae, C. glabrata, K. lactis, A. nidulans <  

S. bayanus < D. hansenii, Y. lipolytica < C. albicans 

40 246 <1.11E-16 
S. pombe < A. nidulans < S. cerevisiae, C. glabrata < S. bayanus < 

K. lactis < D. hansenii, C. albicans < Y. lipolytica 
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5. Appendix 5 – List of M-phase genes most-representative of the 

ranking of species found by the Friedman test and post-hoc 

analyses for all the M phase genes 

The genes of the M phase of the cell cycle constitute an example of a highly 

significant pattern that cannot presently be explained by a known pheynotypic 

difference among the species analyzed. These genes were found to exhibit the 

following order of translational efficiencies: Y. lipolytica < K. lactis, D. hansenii, C. 

albicans < C. glabrata < S. cerevisiae, S. bayanus, A. nidulans, S. pombe., (Table 3, 

Fig. 14A). In search for particular M-phase related genes that gave rise to this signal, I 

clustered (using kmeans (MacQueen 1967)) the 126 translational efficiency profiles of 

genes associated with this GO category into five clusters. One of the clusters, that 

contains 33 profiles, resembles the above pattern (Fig. 14B). The members of this 

cluster are listed below. In most cases each gene represents one profile in the 

translation efficiency profile. However, in one case two genes (YHR115C and 

YNL116W), which are highly similar in sequence and redundant in function, were 

grouped into the same orthologous group, and thus represent the same profile. All data 

regarding the genes was obtained from the SGD database (Balakrishnan et al.). 

Systematic 

name 

Gene Aliases Description 

YGL183C MND1  Protein required for recombination and meiotic nuclear 

division; forms a complex with Hop2p, which is involved in 

chromosome pairing and repair of meiotic double-strand breaks 

YGL194C HOS2 RTL1 Histone deacetylase required for gene activation via specific 

deacetylation of lysines in H3 and H4 histone tails; subunit of 

the Set3 complex, a meiotic-specific repressor of sporulation 

specific genes that contains deacetylase activity 

YNL172W APC1  Largest subunit of the Anaphase-Promoting 

Complex/Cyclosome (APC/C), which is a ubiquitin-protein 

ligase required for degradation of anaphase inhibitors, 

including mitotic cyclins, during the metaphase/anaphase 

transition 

YDR118W APC4  Subunit of the Anaphase-Promoting Complex/Cyclosome 

(APC/C), which is a ubiquitin-protein ligase required for 

degradation of anaphase inhibitors, including mitotic cyclins, 

during the metaphase/anaphase transition 

YGL003C CDH1 HCT1 Cell-cycle regulated activator of the anaphase-promoting 

complex/cyclosome (APC/C), which directs ubiquitination of 

cyclins resulting in mitotic exit; targets the APC/C to specific 

substrates including CDC20, ASE1, CIN8 and FIN1 

YGR225W AMA1 SPO70 Activator of meiotic anaphase promoting complex (APC/C); 

Cdc20p family member; required for initiation of spore wall 

assembly; required for Clb1p degradation during meiosis 

YOR351C MEK1 MRE4 Meiosis-specific serine/threonine protein kinase, functions in 

meiotic checkpoint, phosphorylates Red1p, interacts with 

Hop1p; required for meiotic recombination and normal spore 

viability 
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Systematic 

name 

Gene Aliases Description 

YPR025C CCL1  Cyclin associated with protein kinase Kin28p, which is the 

TFIIH-associated carboxy-terminal domain (CTD) kinase 

involved in transcription initiation at RNA polymerase II 

promoters 

YMR190C SGS1  Nucleolar DNA helicase of the RecQ family involved in 

maintenance of genome integrity, regulates chromosome 

synapsis and meiotic crossing over; has similarity to human 

BLM and WRN helicases implicated in Bloom and Werner 

syndromes 

YHR039C MSC7  Protein of unknown function, green fluorescent protein (GFP)-

fusion protein localizes to the endoplasmic reticulum; msc7 

mutants are defective in directing meiotic recombination events 

to homologous chromatids 

YGR188C BUB1  Protein kinase that forms a complex with Mad1p and Bub3p 

that is crucial in the checkpoint mechanism required to prevent 

cell cycle progression into anaphase in the presence of spindle 

damage, associates with centromere DNA via Skp1p 

YHR115C DMA1 CHF1 Protein involved in regulating spindle position and orientation, 

functionally redundant with Dma2p; homolog of S. pombe 

Dma1 and H. sapiens Chfr 

YNL116W DMA2 CHF2 Protein involved in regulating spindle position and orientation, 

functionally redundant with Dma1p; homolog of S. pombe 

Dma1 and H. sapiens Chfr 

YLR234W TOP3 EDR1 DNA Topoisomerase III, conserved protein that functions in a 

complex with Sgs1p and Rmi1p to relax single-stranded 

negatively-supercoiled DNA preferentially, involved in 

telomere stability and regulation of mitotic recombination 

YPL022W RAD1 LPB9 Single-stranded DNA endonuclease (with Rad10p), cleaves 

single-stranded DNA during nucleotide excision repair and 

double-strand break repair; subunit of Nucleotide Excision 

Repair Factor 1 (NEF1); homolog of human XPF protein 

YER179W DMC1 ISC2 Meiosis-specific protein required for repair of double-strand 

breaks and pairing between homologous chromosomes; 

homolog of Rad51p and the bacterial RecA protein 

YPL122C TFB2  Subunit of TFIIH and nucleotide excision repair factor 3 

complexes, involved in transcription initiation, required for 

nucleotide excision repair, similar to 52 kDa subunit of human 

TFIIH 

YPL008W CHL1 CTF1, 

LPA9 

Conserved nuclear protein required to establish sister-

chromatid pairing during S-phase, probable DNA helicase with 

similarity to human BACH1, which associates with tumor 

suppressor BRCA1; associates with acetyltransferase Ctf7p 

YOR058C ASE1 YOR29-09 Mitotic spindle midzone localized microtubule-associated 

protein (MAP) family member; required for spindle elongation 

and stabilization; undergoes cell cycle-regulated degradation 

by anaphase promoting complex; potential Cdc28p substrate 

YDR386W MUS81 SLX3 Helix-hairpin-helix protein, involved in DNA repair and 

replication fork stability; functions as an endonuclease in 

complex with Mms4p; interacts with Rad54p 

YML032C RAD52  Protein that stimulates strand exchange by facilitating Rad51p 

binding to single-stranded DNA; anneals complementary 

single-stranded DNA; involved in the repair of double-strand 

breaks in DNA during vegetative growth and meiosis 

YOR368W RAD17  Checkpoint protein, involved in the activation of the DNA 

damage and meiotic pachytene checkpoints; with Mec3p and 

Ddc1p, forms a clamp that is loaded onto partial duplex DNA; 

homolog of human and S. pombe Rad1 and U. maydis Rec1 

proteins 

YNL082W PMS1  ATP-binding protein required for mismatch repair in mitosis 

and meiosis; functions as a heterodimer with Mlh1p, binds 

double- and single-stranded DNA via its N-terminal domain, 

similar to E. coli MutL 
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Systematic 

name 

Gene Aliases Description 

YBR160W CDC28 CDK1, 

HSL5, 

SRM5 

Catalytic subunit of the main cell cycle cyclin-dependent 

kinase (CDK); alternately associates with G1 cyclins (CLNs) 

and G2/M cyclins (CLBs) which direct the CDK to specific 

substrates 

YDR180W SCC2  Subunit of cohesin loading factor (Scc2p-Scc4p), a complex 

required for the loading of cohesin complexes onto 

chromosomes; involved in establishing sister chromatid 

cohesion during DSB repair via histone H2AX 

YPR056W TFB4  Subunit of TFIIH complex, involved in transcription initiation, 

similar to 34 kDa subunit of human TFIIH; interacts with Ssl1p 

YML095C RAD10  Single-stranded DNA endonuclease (with Rad1p), cleaves 

single-stranded DNA during nucleotide excision repair and 

double-strand break repair; subunit of Nucleotide Excision 

Repair Factor 1 (NEF1); homolog of human ERCC1 protein 

YNL025C SSN8 GIG3, 

NUT9, 

SRB11, 

UME3, 

RYE2, 

CycC 

Cyclin-like component of the RNA polymerase II holoenzyme, 

involved in phosphorylation of the RNA polymerase II C-

terminal domain; involved in glucose repression and telomere 

maintenance.  

YER173W RAD24 RS1 Checkpoint protein, involved in the activation of the DNA 

damage and meiotic pachytene checkpoints; subunit of a clamp 

loader that loads Rad17p-Mec3p-Ddc1p onto DNA; homolog 

of human and S. pombe Rad17 protein 

YKL049C CSE4 CSL2 Centromere protein that resembles histones, required for proper 

kinetochore function; homolog of human CENP-A 

YJR053W BFA1 IBD1 Component of the GTPase-activating Bfa1p-Bub2p complex 

involved in multiple cell cycle checkpoint pathways that 

control exit from mitosis 

YOR014W RTS1 SCS1 B-type regulatory subunit of protein phosphatase 2A (PP2A); 

homolog of the mammalian B' subunit of PP2A 

YBR073W RDH54 TID1 DNA-dependent ATPase, stimulates strand exchange by 

modifying the topology of double-stranded DNA; involved in 

the recombinational repair of double-strand breaks in DNA 

during mitosis and meiosis; proposed to be involved in 

crossover interference 

YPL194W DDC1  DNA damage checkpoint protein, part of a PCNA-like 

complex required for DNA damage response, required for 

pachytene checkpoint to inhibit cell cycle in response to 

unrepaired recombination intermediates; potential Cdc28p 

substrate 

 

6.  


