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1. Abstract 

 

Recently, Mitchell et al. [1] demonstrated a microbial evolutionary analogy to the 

classical conditioning of Pavlov. In their work they showed how temporally 

connected changes in microorganisms' environment have been captured in gene 

expression programs during the course of evolution. For instance, they demonstrated 

how Escherichia coli, when exposed to lactose, partially activates its maltose operons, 

as in the gastrointestinal tract lactose could be used as a predictive signal to maltose. 

However, a useful temporal connection might not be always dependable, and from 

time to time the signal could appear without the following change. If such instances 

are frequent, microorganism could use the predictive signal in a non-deterministic 

manner, allowing a portion of the population to remain inactive, and thus lowering the 

cost in case that the anticipated change will not come, as a form of bet-hedging 

strategy. In my study, I sought to elucidate whether such strategy could be manifested 

in the evolutionarily-conditioned response of E. coli towards sugar. In order to do so, 

I examined the maltose operons activation in response to lactose and maltose at the 

single cell level using flow cytometry and fluorescent protein reporters for promoter 

activity. I saw that the distribution of activation of maltose promoters is much wider 

in the response to lactose compared to maltose. In addition, in certain conditions, the 

distribution becomes highly skewed to the right in response to lactose, as a portion of 

the population activates the maltose promoter to high levels. These results might 

imply a strategy combining evolutionary conditioning and bet-hedging, such that E. 

coli utilizes lactose as a predictive signal to maltose in a non-deterministic manner, in 

accord to the unpredictability in maltose arrival.   
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2. Introduction 

 

2.1 Evolutionary conditioning 

Most organisms are exposed to frequent changes in their environment. The changes 

are, in many cases, stochastic and unpredictable. However, some changes might be 

temporally connected to others. In those instances, it is possible to imagine that 

organisms will use the temporal connections between changes in order to prepare 

themselves for the future. To better illustrate this, suppose S1 and S2 are two changes 

in the environment, while S1 always precedes S2, and preparation for S2 in advance is 

beneficial. S2 could be, for instance, a stressful change that could be better handled 

with proper preparation, or, alternatively, the appearance of a valuable nutrient that 

requires special mechanism in order to be metabolized. In this scenario, the ability to 

use S1 as a signal for an early preparation for S2 may be advantageous. Thus, if this 

trait appears in the population it might be positively selected during evolution.  

During the last few years, examples for such predictive responses were shown in 

several microorganisms. In Saccharomyces cerevisiae, an asymmetrical cross-

protection was shown in which pre-exposure to heat shock or ethanol gives higher 

survival rates at oxidative stress, but not when the order of stresses is reversed [1]. 

This asymmetrical cross-protection was suggested to capture the order of the 

environmental changes which S. cerevisiae has been repeatedly exposed to during its 

evolution, where heat shock and ethanol stress precede an oxidative stress during 

wine production and the switch from fermentation and respiration [2]. In Escherichia 

coli, the transcriptional responses to elevation in temperature and oxygen limitation 

were found to be highly correlated [3]. It was suggested that this correlation reflects 

the coupling between those two conditions when E. coli enters its host. In Vibrio 

cholerae, genes that are induced during the late stages of infection were found to be 

important for the survival of the pathogen in the external environment [4]. Thus, 

while still in the host, V. cholerae activates genes that will help it to survive after the 

exit. In Candida albicans, exposure to glucose induces the oxidative and cationic 

stress responses [5]. It may imply preparation for the host immune response when the 

pathogen enters the bloodstream.  

As suggested by Mitchell et al. [1,6], the positive selection of the ability to prepare in 

advance to an environmental change based on early predictive signal, can be seen as 

an evolutionary analogy to the behavioral phenomenon of classical conditioning, first 
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demonstrated by Ivan Pavlov [7]. It will be referred here shortly as 'Evolutionary 

Conditioning'. Mitchell et al. farther applied this analogy for what Pavlov named 

'extinction', a process in which repeated exposures to S1 without the succeeding S2 

weaken the in-advance-preparation to S2 during exposure to S1. They suggested that 

such extinction could happen also for evolutionary conditioning. Providing the cost of 

preparation for S2 is high, such that wrong prediction could be detrimental, if the 

prediction usually results in false alarm this trait will be selected against.  

In addition to the S. cerevisiae example mentioned above, Mitchell et al. also 

demonstrated another example of evolutionary conditioning in E. coli.  

During its passage thorough the gastro-intestinal tract, E. coli is exposed to various 

nutrients in specific locations (Figure 1a). In the proximal part of the intestine the 

concentration of lactose is high and the concentration of maltose is low, while in the 

distal part maltose is high and lactose is low [8,9]. Using strains of the E. coli 

promoter-fused GFP library [10,11], Mitchell et al. showed that exposure to lactose 

activates the maltose metabolism operons, but exposure to maltose does not activate 

the lactose operon (Figure 1b). They also showed that pre-exposure to lactose gives 

fitness advantage on maltose. As in the S. cerevisiae example, the hierarchy of the 

sugar metabolism operon activation captures the order of the sugars to which E. coli 

was exposed during its evolution. In addition, they demonstrated, as an example for 

extinction, that constant exposure to lactose, without the succeeding maltose, weakens 

the maltose response and, correspondingly, the fitness advantage on maltose of 

bacteria that were pre-exposed to lactose. Tagkopoulos et al. [3] showed a similar 

example of extinction in the E. coli transcriptional responses to temperature elevation 

and oxygen limitation mentioned above: when E. coli was evolved in an environment 

in which temperature elevation was decoupled from oxygen limitation, the correlation 

between the transcriptional responses disappeared. 
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Figure 1 – Evolutionary conditioning in E. coli response towards lactose 

(a) Adapted from [8]. The human gastrointestinal tract, the proximal and the distal part of the small 

intestine are marked with bright circles. The presumed relative concentrations of lactose and maltose in 

each of the location are shown.  

(b) Adapted from [1]. Normalized GFP fluorescence level of strains from the promoter-fused GFP 

library in exposure to lactose and maltose. The normalization procedure was as follows [1]: (1) 

Subtraction of the media fluorescence and cell auto fluorescence; (2) GFP fluorescence was divided by 

the measured OD; (3) Normalized fluorescence was calculated as the average fluorescence measured in 

a time window of 1 hour of exponential growth. The normalized fluorescence is shown as fraction of 

the maximal fluorescence observed in each strain.    

 

2.2 Bet-hedging strategies in microorganism 

One of the aspects that were not checked by Mitchell et al. is how evolutionary 

conditioning is viewed at the single cell level.  

It is now known that heterogeneity can be found in microorganisms even in a 

population of genetically identical cells grown under the same conditions [12]. This 

type of phenotypic heterogeneity, that will be referred here generally as 'noise', could 

be a negative trait, as it weakens the bond between genotype and phenotype, and 

consequently the adaptation to the environment for which this genotype was selected. 

However, under certain conditions, noise could be thought to be advantageous at the 

population level, as eventually it could allow survival of more individuals under 

unpredictably changing environment [13]. This strategy in which one genotype 

stochastically leads to various phenotypes that cope differently with different 

environmental conditions is called in evolutionary theory 'bet-hedging', a term 

borrowed from gambling, in which one divides one's bets in order to minimize loss 
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while lowering the maximal potential gain. With the advancement of single cell 

analyses, bet hedging strategies of microorganisms begin to unravel.  

Below I list a few examples of phenotypic heterogeneity in isogenic population of 

microorganisms that were suggested to represent bet-hedging strategies. 

Persistence in E. coli  In 1944 it was discovered that a portion of a bacterial 

population remains alive after antibiotic treatment, but it is not due to genetic 

resistance as when they were re-cultured the new culture had the same survival 

percentage as the original one [14]. This phenomenon was termed 'persistence'. It was 

suggested that the persistent bacteria were cells that were in dormant stage during the 

antibiotic treatment, and that cells switch stochastically back and forth between the 

dormant and replicating states. Sixty years later, Balaban et al. [15] showed, using a 

microfluidic device, that this was indeed the case. Persistence can be seen as a bet 

hedging strategy, as the population splits between dividing cells and non-dividing, 

persistent, cells. While the dormant cells lower the mean fitness of the population in 

non stressful conditions as they do not divide, they constitute a subpopulation that can 

survive a stressful condition, such as exposure to antibiotic.  

Competence and sporulation in Bacillus subtilis During starvation an isogenic 

population of the gram-positive bacterium B. subtilis shows a complex behavior, as it 

splits to different subpopulations that respond differently to the stress. The different 

responses include: extracellular matrix production, motility, cannibalism, cell lysis 

that leads to nutrient release, growth arrest, and competence, the ability to take DNA 

from the environment [16]. Eventually, as the nutritional stress progresses, many (but 

not all) cells will undergo sporulation, the process of creation of a dormant highly 

resistant cell, and lysis of the mother cell. It was shown that competence is governed 

by the noisy expression of a master regulator that in turn, causes the cell to enter and 

exit the competent state, and that the switching rate between the two states fits the 

noise level in the master regulator expression [17,18]. In addition, sporulation was 

shown to be governed by bistable expression of a master regulator [19]. The high and 

low expression states of the master regulator were found to be heritable, and gave rise, 

respectively, to sporulating and non-sporulating lineages [20]. In S. cerevisiae, onset 

of meiosis, the first step in yeast sporulation, was also found to be governed by master 

regulator that variation in its production rates causes variability in the onset of meiosis 

[21].  
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Metabolic systems In 1957 it was discovered that the lactose operon of E. coli, 

when activated by intermediate levels of a synthetic non-metabolizable inducer, 

showed bistability among the population, some cells induced it to full extent, while 

other kept it off [22]. Since then, the bistability of the lactose operon was extensively 

analyzed both experimentally and theoretically; more details can be found in the 

discussion section 5.1. A similar phenomenon was discovered in the arabinose 

utilization system of E. coli [23] and in the galactose signaling network of S. 

cerevisiae [24]. These examples, when regarded as bet-hedging strategies, are a more 

subtle form of it than the examples above, as no growth arrest is involved. However, 

activating the metabolic system of one substrate might come at the expense of being 

able to metabolite another substrate that might be more valuable (e.g. glucose), and 

thus in unpredictable environments it might be better to have different portions of the 

population prepared for different sugars.   

Laboratory controlled examples In S. cerevisiae, researchers placed a uracil 

biosynthesis gene under a bistable promoter in two engineered strains that have 

different rates of stochastic switching [25]. They grew the two strains in a fluctuating 

environment in which in one state the expressing cells had higher fitness, and in the 

other they had lower fitness, and showed that the overall fitness of each of the strains 

is high when the rate of switching fits the environmental fluctuation rate. In 

Pseudomonas fluorescens, lab evolution in two alternating environments with 

bottleneck selection rounds, led to the development of cells that stochastically switch 

capsule production on and off and shown to have increased fitness in the selection 

regime of this study [26].  

 

2.3 Bet hedging in evolutionary conditioning 

These examples show that the stochastic nature of different cellular processes can 

create a phenotypic variability in an isogenic population of microorganism. Such 

heterogeneity may, in certain cases, help the population to cope better with the 

unpredictably changing environment.  

Returning to evolutionary conditioning, it is tempting to imagine a scenario in which 

evolutionary conditioning is combined with a bet hedging strategy. In natural 

environments it is likely that even if S1 and S2 are temporally connected, the 

connection might not be absolutely dependable. In such environments, from time to 

time, S1 could appear without the following S2. If the cost of futile preparation to S2 
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is sufficiently high, the uncertainty might be reflected in the distribution of the S2 

gene activation in response to S1. Namely, in response to S1 exposure, a portion of 

the population will activate its S2 genes, while another portion will remain inactive.  

For instance, it is possible that in the E. coli evolutionary conditioning example 

examined by Mitchell et al., the activation of maltose metabolism operons during 

lactose exposure will be noisy, as it is only likely, but not absolutely sure, that the cell 

will reach the maltose-rich environment. On the other hand, when exposed to maltose, 

cells might express those genes in a less noisy fashion, as there is no uncertainty in its 

occurrence. As can be seen in Figure 1b, the activation of the maltose operons in 

response to lactose is only partial. This might imply that in response to lactose all the 

cells in the population activate the maltose operons to an intermediate level, or, 

alternatively, that only part of the population activates the maltose operons, 

manifesting a sort of a bet-hedging strategy.  

In this study, I examined the evolutionarily conditioned response of E. coli towards 

sugars, in which maltose operons are activated in response to lactose exposure, at the 

single cell level. This allowed me to analyze the distribution of the maltose operon 

activation levels when the cells are exposed to lactose or to maltose, and to ask 

whether the distribution's shape might imply a sort of bet hedging strategy in this 

system. A possible manifestation of bet-hedging in this context could be a broader 

distribution of activation levels of the maltose operons in response to lactose, 

compared to maltose. 
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3. Methods 

3.1 Bacterial strains and plasmids 

E. coli MG1655 was used in all experiments. E. coli DH5α was used for cloning. 

Plasmids used for experiments and cloning are listed below (maps are in Figure 2): 

pUA66/pUA139 (Figure 2a) - The scaffolds used in [10,11] for construction of the 

promoter-fused GFP library are low copy SC101 origin of replication plasmids, with a 

kanamycin resistance gene, and GFP gene (gfpmut2) with a cloning site for the 

promoters upstream to it (XhoI-BamHI). pUA139 is the same as pUA66, except that 

the restriction sites are switched (originally used in [10,11] for cloning of opposite 

strand promoters using the same primers). Promoters were defined as the intergenic 

region upstream to a gene, plus 50-150 bp into the adjacent coding regions [10]. The 

eight library strains kindly provided by Prof. Uri Alon are listed in table 1. 

 

Table 1 – Strains from the promoter-fused GFP library [10,11] 

E. coli 

strain 
Plasmid Promoter 

Genomic coordinates of the 

cloned promoter 

(according to NCBI Reference 

Sequence: NC_000913.2) 

Operon 

MG1655 

pUA66 

malK 4244356 - 4244849 malK-lamB-malM 

malT 3550413 - 3551207 malT 

malZ 421509 - 421824 malZ 

malS 3735105 - 3735593 malS 

lacZ 365687 - 365438 lacZ-lacY-lacA 

σ
70

 A synthetic promoter 

containing a consensus σ70 

binding site. Sequence can be 

found in the supplemental data 

of [11]. 

- 

pUA139 
malP 3551209 - 3550413 malP-malQ 

malE 4244846 - 4244356 malE-malF-malG 

 

pZS2-123 (Figure 2b) - a three-color reporter scaffold [27], kindly provided by Prof. 

Michael Elowitz, containing YFP, RFP and CFP genes optimized for bacterial 
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expression, with promoter cloning sites upstream to each coding region (XhoI-BamHI 

for YFP, XmaI-AvrII for RFP, and SalI-XmnI for CFP). 

This plasmid, as the pUA66/pUA139 plasmids, is a low copy SC101 origin of 

replication, with a kanamycin resistance gene. 

 

 

 

Figure 2 - Schematic maps of pUA66 and pZS2-123 plasmids 

(a) pUA66, the scaffold of the promoter-fused GFP library [7,8]. P (blue region) stands for the varying 

gfpmut2 promoter region. pUA139 is the same as pUA66, except that the XhoI and BamHI restrictions 

sites are in opposite orientation.  

(b) pZS2-123, the three-color reported plasmid [26]. The original promoter of RFP was replaced by a 

synthetic promoter with a σ
70

 binding site from [8]. P (blue region) stands for the varying YFP 

promoter region that was replaced each time by one of the promoters from [7,8] mentioned in Table 1.  

Length of plasmids in base pairs does not include the varying promoter region.  

The promoters of the kanamycin resistance and CFP genes are not presented for simplicity. 
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3.2 Media 

For all flow cytometry and sorting experiments M9 supplemented medium was used 

(M9 Salts (MP Biomedicals), 1mM MgSO4, 0.1mM CaCl2, 0.05% casamino acids, 5 

ng/ml thiamine, and 0.1% carbon source). Carbon source was either glycerol or 

glucose. The glucose containing medium was supplemented with 20mM cyclic AMP 

(cAMP) to avoid glucose repression.  

Sugars, when added, are in the following final concentrations: maltose 5mM, lactose 

10mM (these concentrations were chosen by Mitchell et al. as the minimal 

concentration that allows maximal growth).  

Cultures for cloning were grown in LB medium (5gr/l Yeast extract (Becton 

Dickinson), 10gr/l triptone (Becton Dickinson), and 10gr/l NaCl). 

Kanamycin was added to all media (final concentration: 25µg/ml).  

 

3.3 Plasmid purification protocol 

As all plasmids were low-copy SC101 origin of replication plasmids, the yield of a 

standard miniprep protocol (QIAprep Spin Miniprep Kit, Qiagen) was too low for 

later cloning procedures. Thus, a modified protocol was used: 40ml of bacterial 

stationary culture (grown on LB + kanamycin medium) were divided to 4x10ml; from 

each 10ml DNA was then extracted using the miniprep kit protocol, with double 

volumes of P1, P2 and N3 buffers. After the neutralization (N3) step, supernatant 

from two tubes was loaded on one column (two columns in total) for purification. 

DNA was eluted using 150µl double-distilled water, and then the two columns were 

united and the water was evaporated using SpeedVac concentrator (SVC100H, 

Savant). Then, the pellet was re-suspended in 50µl TE buffer.  

 

3.4 Growth conditions and data acquisition in flow cytometry experiments 

Incubation temperature was either 37°C or 30°C throughout the experiment. 

Overnight culture was diluted 1:1000 into 5ml of fresh medium, grown for 1h and 

treated with sugar (maltose, lactose, or none) in the final concentration mentioned in 

section 3.2. Cells were farther incubated for 4 hours. During incubation samples were 

taken each hour, and measured using an LSR-II cytometer (Becton 

Dickinson). Acquisition was performed using the FACSDiva software (Becton 

Dickinson). Excitation lasers, emission filters and voltage settings for the 

photomultiplier tubes, which were used for the measurement of forward scatter (FSC), 
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side scatter (SSC) and each of the fluorescent proteins are listed in table 2. Threshold 

was based on a FSC-SSC 'AND' gate with varying values (200-1000). CFP could not 

be detected with either of the filters mentioned in table 2, using the original construct 

under constitutive promoter or under the regulation of the σ
70

 promoter. 

 

Table 2 – Laser, filters and voltage settings for the flow cytometry experiments 

Parameter Laser 
Filters 

Voltage 

settings 
LP BP 

FSC 488nm (Blue) - - 500 (Log) 

SSC 488nm (Blue) - 488/10 300 (Log) 

GFP/YFP 488nm (Blue) 505 525/50 416 (Log) 

RFP 561nm (Yellow-Green) 600 610/20 600 (Log) 

CFP 
405nm (Violet) 505 525/50 - 

405nm (Violet) - 470/15 - 

 

3.5 Flow cytometry data analyses 

All flow cytometry data processing was performed in Matlab (Mathworks), using a 

graphical user interface I developed (see results section 4.3 for more details on the 

GUI and the gating process). For the analysis in Matlab, the output from the LSR-II 

cytometer (binary .fcs files) was converted to text files using the freeware FCSExtract 

Utility (Dr. Earl F. Glynn, Stowers Institute for Medical Research). Other statistical 

analyses were performed using various Matlab built-in functions.  

 

3.6 Cell sorting experiment 

Growth conditions in the sorting experiment were similar to those used in the flow 

cytometry experiments (section 3.4 above), M9 carbon source was glycerol. 

Overnight culture grown at 37°C (containing ~5x10
8
 cells/ml), was diluted 1:1000 

into 60ml of fresh medium, grown for 1h at 37°C, then treated with 10mM lactose, 

and incubated for additional ~3 hours at 37°C (final concentration is roughly 4x10
6
 

cells/ml). Then, the culture was centrifuged, and the pellet was re-suspended in 6ml of 

fresh lactose containing medium (in order to concentrate the culture to roughly 4x10
7
 

cells/ml). Sorting was performed using the FACSAriaII cell sorter (Becton 
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Dickinson), and the FACSDiva software. The sheath fluid for the sorting was the 

M9+Glycerol+lactose medium itself. Roughly 50,000 cells per second were sorted (in 

the 'Yield' mode of the instrument). Gating procedure for sorting is described in 

results section 4.2.2. The sorted cells (3x10
7
 cells for each of the two sorted 

populations, in a volume of about ~120ml) were centrifuged and re-suspended in 

10ml M9+Glycerol+5mM maltose (concentration of 3x10
6
 cells/ml). Then, a 96 well 

flat-bottom plate was prepared in a "checkerboard pattern" of the two sorted 

population (100µl of culture in each well), and 50µl of oil was added on top. The 

bacteria were grown in an Infinite F500 plate reader (Tecan Group), at 37°C, for 6 

hours, during which OD and YFP levels were measured in 18 minutes intervals.  
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4. Results 

 

4.1 Methodology development and assessment 

4.1.1 Experimental design 

In order to examine the distribution of activation of maltose operons in response to 

lactose and to maltose, I repeated Mitchell et al. experiments, but this time measuring 

the fluorescence level using flow cytometry, rather than a plate reader as was used in 

their study, in order to have a single cell resolution.  

The maltose regulon consists of ten genes organized in five operons (malPQ, 

malEFG, malK-lamB-malM, malZ and, malS, will be noted here by the first gene of 

each operon), all regulated by one transcription activator, MalT (more details can be 

found in Discussion section 5.1). The promoter activity of the five maltose regulon's 

operons, malT promoter, and the lactose operon, were examined using the 

corresponding strains from the promoter-fused GFP library [10,11], each harboring a 

plasmid with GFP under the regulation of the specific operon's promoter. 

Two types of supplemented minimal media were used, which differ in the added 

carbon source: glycerol or glucose (See Methods section 3.2 for more information). 

Mitchell et al. used the two media as they have different advantages and gave similar 

yet distinct results. As general transcription in the bacterial cell is affected by growth 

rate, it was important to minimize the growth rate differences between cultures that 

were treated with the various sugars. Therefore, Mitchell et al. used glucose as a 

background carbon source, as the addition of another sugar, such as maltose or lactose 

does not affect growth rate. However, glucose leads to repression of many sugar 

operons in E. coli, among which lactose and maltose, and thus cAMP was added in 

order to cancel the repression [11]. On the other hand, both glucose and cAMP affects 

the maltose regulon directly (see discussion section 5.1), and in order to control for 

this effect, Mitchell et al. used also glycerol as an alternative background carbon 

source, which does not require cAMP, but adding maltose or lactose to it would affect 

growth rate. Here, I used the two types of media as well.  

In contrast to a plate reader, which provides proper conditions for growth, such as 

constant temperature and shaking, during the measurements, flow cytometers are not 

applicable for time course experiments directly. Thus, a sample was taken from a 

culture grown under the optimal conditions each hour, for a total time of four hours 

(five time points including zero). Each of the strains was measured in three cultures, 
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one treated with maltose, the other in lactose, and the third served as a control (see 

Methods section 3.4). 

 

4.1.2 Modification of a three-color reporter plasmid for the current research 

After preliminary results were obtained, we realized that a general cellular state 

reporter is needed, as in the moment of measurement cells in the population might be 

in different states, affecting generally the transcription and translation in the cell. Such 

influences might be, for instant, different size, number of ribosomes and RNA 

polymerases, and cell cycle stage. Thus some of the variability in GFP expression 

stems from these general differences between cells, and thus normalization to a 

general cellular state reporter will leave those differences out of the fluorescence 

variance. 

The promoter chosen for general cellular state reporting was a synthetic promoter, 

constructed by Kaplan et al. [11], which contains a binding site for σ
70

, the 

housekeeping sigma factor in E. coli. σ
70

 is active throughout the exponential phase 

and its activity decreases when the bacteria enter stationary phase [28], thus the 

synthetic promoter that contains σ
70

 binding site can be used as a general cellular state 

reporter during the exponential phase, which is the growth phase of the bacteria in all 

experiments. 

Recently, a three-color reporter plasmid was constructed [27] (see Figure 2b for a 

map). This construct contains genes for three fluorescent proteins: YFP, RFP and 

CFP, under the control of three separate promoters, each with bordering restriction 

sites, which facilitate modifications and replacement using restriction enzymes 

cloning techniques. Thus, one of the fluorescent proteins could be used as a general 

cellular state reporter, and the two others could be used for simultaneously examine 

two promoters of interest in the same cell, allowing to elucidate potential coordination 

between the two. However, CFP was not detected in the flow cytometry, not in the 

original plasmid, where it is under a constitutive promoter, and not when this 

promoter was replaced with the σ
70 

synthetic promoter. Therefore it could not be used 

in this experimental system, and following two promoters simultaneously in the same 

cell was not possible. 

The RFP was used as a general cellular state reporter. The promoter of the original 

plasmid was replaced with the σ
70

 synthetic promoter mentioned above. For that, the 

synthetic promoter region from the promoter-fused GFP library plasmid was 
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amplified using PCR, with primers bordering this region but that contained the 

restriction sites needed for integration into the three-color reporter plasmid. The PCR 

product was then cut with the proper restriction enzymes and ligated to the cut three-

color reporter plasmid.  

Then, the YFP promoter was replaced with the different maltose and lactose operon 

promoters to create seven different plasmids each containing YFP under one of the 

seven promoters (Table 1, methods section 3.1). For most promoters, the bordering 

restriction sites in the two construct are the same, so cloning did not involve a PCR 

amplification step, but a restriction reaction and purification of the proper band from 

the gel, followed by ligation into the cut three-color plasmid. Only malP and malE 

promoters, whose restriction sites are in the opposite orientation, were amplified by 

PCR with primers containing the reverse restriction sites.  

For each plasmid, several clones were first examined for correct integration in colony 

PCR using primers from both sides of integration site on the three-color reporter 

plasmid. Positive colonies were validated by sequencing. 

In order to examine the potential influence of each of the two different plasmids on 

the expression of the fluorescent protein, strains containing the same promoter from 

the promoter-fused GFP library and from the cloned three-color plasmid were 

examined in the same experiment. Figure 3 presents the Pearson correlation 

coefficient between the mean fluorescence values of the two type of plasmids for each 

promoter across the various treatments and time points. Pearson correlation was 

chosen as it is affected by the relative change in fluorescence rather than the absolute 

value, and an intrinsic difference between GFP and YFP absolute fluorescence is 

expected. As can be seen, for most promoters the correlation coefficients are close to 

1, thus the different plasmids do not affect the relative mean fluorescence dynamics. 

However, malZ and malS each have a non-significant low correlation coefficient on 

one of the temperatures. The low correlation in only one of the experiments may 

imply on mixed population, as only one colony was taken for each experiment. In 

addition, in the verification sequencing results - the one malZ colony sent for 

sequencing gave malS sequence and the one malZ colony gave malS sequence, which 

may support the notion of mixed populations. 
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Figure 3 – Pearson correlation coefficients between mean fluorescence of promoter-fused GFP 

library and the cloned three-color plasmid strains 

The Pearson correlation coefficients were calculated using the 5 time points and the three treatments as 

one 15 point vector. Gating was based only on FSC-SSC (see section 4.1.4). Pearson correlation 

coefficients with p-value lower than 0.01 are marked with asterisks.    

 

 

4.1.3 A Matlab graphical user interface for display and analysis of flow cytometry 

data 

Many flow cytometry users use one of the commercially available softwares for their 

data analysis, such as FACSDiva (Becton Dickinson), FlowJo (Tree Star) and FCS 

Express (De Novo Software). These software are indeed adequate for the purposes of 

many flow cytometry experiments. However for the current aim, a few features that 

are required for proper analysis are missing in any of those softwares: (1) Gating can 

be done only by defined shapes (ellipses, polygons, lines) drawn on the plot, without 

the ability to give a numeric value, or a custom shape; (2) Limited control over 

visualization of one-dimensional histograms and two-dimensional dot plots and 

contour plots; (3) Statistical measures of the population regarding only one parameter 

at a time (e.g. no way to know what is the X,Y values of most dense point on a two-

dimensional contour plot); (4) Inability to perform math operations on parameters, 

such as calculate the ratio between two parameters for each cell (e.g. YFP-to-RFP 

ratio). 

Matlab language is suitable for all of the analysis processes mentioned above, as well 

as for handling large matrices such as flow cytometry data. While Matlab has some 

programs designate to biological data analysis (microarrays, bioinformatics etc.), 

there is no existing program for comprehensive flow cytometry data analysis.  
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As none of the available commercial software had the essential features mentioned 

above, I decided to build a new flow cytometry program in Matlab, based on the 

commercial softwares, with the addition of the missing features. To make it more 

easy-to-use without the need to delve into the code, the program was designed as a 

graphical user interface. It will be uploaded to Matlab File Exchange site (Matlab 

Central, http://www.mathworks.com/matlabcentral/fileexchange/) for the use and 

development of other Matlab flow cytometry users.  

Screenshots of the graphical user interface are presented in Figure 4. 

 

Figure 4 – Screenshots of the Matlab graphical user interface 

 

 

a – Main window. The main window of the graphical user interface enables to present two-

dimensional dot plots and one-dimensional histograms of each of the parameters with custom-defined 

limits, transformations (logarithmic, 'logicle' [29]), and number of bins; gating according to different 

shapes, limits or distance from the center; logical operations on gates (intersect, union, inverse and 

exclusive-or); filtering of cells having extreme values and according to time of the read; mathematical 

operations on the parameters; and moving from file to file while keeping the same settings for easy 

comparison.  
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b – Gating according to cell density. A tool for gating according to specified distance from the center 

of two-dimensional distribution. The center is defined as the point of highest cell density, but can be 

moved manually. Expansion of the gate can be either done by setting a radius around the center, 

defined in terms of the units on the two axes of the plot, or according to contour lines of cell density 

defined with Matlab's 'contourc' function. On the left the contour plot is presented, colors present 

number of cells per area, on the right a plot of number of cells and area as a function of distance from 

the center is presented. The user can choose the specific distance according to which the gate will be 

defined.  

 

Figure 4 
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c - Gating on one-dimensional histogram  

On a one-dimensional histogram view of the main window it is possible to define a gate according to 

specified limits. The figure shows the main window (see a) in gating mode with most of the buttons 

being hidden or inactivated in order to prevent misuse. The mean and other statistical measures are 

presented in a table in the main window regular mode (not shown). The default was defined as mean 

fluorescence value ± 5% of this value, but those limits can be changed.  

  

- 19 - - 19 - 

Figure 4 



 

4.1.4 Gating procedure and influence on between-repetition coefficient of variation 

Gating in flow cytometry, refers to selection of subpopulation of cells for further 

analysis based on one or more of the measured parameters. Gating is performed in 

order to minimize the variation in the physiological state of cells. Here, the gating was 

designed both on FSC and SSC, which correlates with different physiological states 

(cell size and granularity, respectively), and on RFP fluorescence, whose expression 

under the σ
70

 synthetic promoter is used as a general cellular state reporter (see 

section 4.1.2). 

Using the Matlab graphical user interface described in the previous section, gating 

was performed in the following steps: (1) On FSC-SSC contour plot, an area around 

the center of distribution of cells was defined based on the density (see Figure 4b as 

an example). (2) On the RFP histogram of the FSC-SSC gated population, an area of 

the mean fluorescence value ±5% of this value was defined (see Figure 4c).  

In order to inspect the influence of gating, I examined the variation between 

experiment repetitions in statistical measures such as mean, noise (variance divided 

by mean square) and skewness (a measure of asymmetry of a distribution) of the 

fluorescence distribution, which will be analyzed thoroughly in section 4.2.1. Figure 5 

presents the reproducibility in estimating those statistical measures, measured as the 

between-repetition mean-normalized standard deviation (Coefficient of variation) of 

each of the statistical measures. As can be seen, the reproducibility of each of the 

measures is the highest when the FSC-SSC+RFP gate is applied.  

The analyses include only malK and malP as only for them the experiment was 

repeated, for reasons mentioned in next section.  
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Figure 5 – The influence of gating on the between-repetition mean-normalized standard 

deviation 

The average of between-repetition mean-normalized standard deviation was calculated in the following 

way: (1) the different statistical measures (mean, noise, skewness) were extracted from the 

fluorescence distributions (YFP-to-RFP ratio) of each time point of each treatment in the four 

repetitions; (2) the mean and standard deviation of these statistical measures in the four repetitions for a 

given time point and a given treatment were calculated; (3) the ratio between the mean and standard 

deviation was calculated to get the between-repetition mean-normalized standard deviation for a given 

time point and a given treatment (for the skewness  measure that can have a negative value, the most 

negative value of it in all the data was added to each of the values for the ratio calculations); (4) The 

average of these ratios was calculated to get the average between-repetition mean-normalized standard 

deviation. Noise was calculated as variance divided by mean square. 

 

4.1.5 Agreement with Mitchell et al. results  

In order to compare the results of the current study to the results of Mitchell et al., I 

regarded only the mean of the fluorescence distributions in each of the time points of 

each of the treatments. Figure 6 presents the results of this study compared to Mitchell 

et al. results. This analysis was performed using the FSC-SSC+RFP gated population, 

and the mean of the YFP to RFP ratio. Yet, since in the plate reader experiments of 

Mitchell et al. there was no gating, nor an additional fluorescent protein for 

normalization, a more legitimate comparison will be to use the ungated population 

and the YFP fluorescence alone. In practice though, using the ungated population and 

unnormalized YFP gave similar results regarding the normalized mean, with larger 

standard deviations (not shown). 

As can be seen, malP and malK, the two promoters that show the highest relative 

activation in response to lactose in Mitchell et al. study, exhibit the same phenomenon 

here, namely, lactose exposure leads to partial activation of the promoter. However 

the gaps between the lactose treated and the control sample are much smaller here 
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than the gaps in Mitchell et al. results, and in the other promoters there is no apparent 

gap. Therefore I decided to focus on malP and malK promoters in further 

experiments. The malT promoter (not shown), in consistence with Mitchell et al., 

showed no activation in response to lactose or to maltose. 

The experiments in the current study were performed at 37°C, while the experiments 

of Mitchell et al. were performed at 30°C. Using 30°C in the flow cytometry 

experiments gave no activation of any of the promoters in the glucose media, thus I 

decided to perform all the experiments at 37°C. Using 37°C also has the advantage of 

being the physiologically relevant temperature. 
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a – M9 + Glucose + cAMP as the growing medium 

 

Mitchell et al. 

         

 

b – M9 + Glycerol as the growing medium 

 

Mitchell et al. 

   

 

Figure 6 – Comparison to Mitchell et al. results 

Mitchell et al. results are adapted from [1]. In each plot, mean fluorescence is normalized to the 

maximal mean fluorescence measured in the various treatments.  

In Mitchell et al. the values are calculated based on four repetitions, and error bars represent the 

standard deviation.  

In the current study, the mean of the fluorescence (YFP-to-RFP ratio) distribution of the FSC-

SSC+RFP gated population was determined and normalized as mentioned above, using the 3 hours 

time point of each treatment. For malK and malP only, the mean fluorescence value was calculated as 

the mean of mean fluorescence values of four repetitions, the error bars represent the standard 

deviation of these values. 
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4.2 Single cell measurements and analysis of E. coli evolutionarily conditioned 

response towards sugars 

 

4.2.1 Distribution of maltose promoter activity in response to lactose and maltose 

Having established a measurement system for the promoter activities in flow 

cytometry, I could proceed to my original goal - examination of the distribution of 

promoter activity levels in the population, rather than the mere mean, in order to 

explore the feasibility of a sort of bet-hedging strategy in the response of the maltose 

operons to lactose.  

Figure 7 presents an example of the fluorescence (YFP to RFP ratio) distribution in 

each time point of the various treatments in one out of four experimental repetitions of 

malP promoter in the glucose (Figure 7a) and glycerol (Figure 7b) media, and malK 

on the glucose medium (Figure 7c). As can be seen, the partial activation of the 

maltose operons, in terms of mean fluorescence, in response to lactose compared to 

the response to maltose is present in those three examples. Interestingly, the shape of 

the distribution varies in the different treatments as well. In general, the distribution is 

much broader in the lactose treated samples, than in the maltose or the control 

samples, and has higher level of noise accordingly (noise is defined as the variance 

divided by the mean square in all analyses). In addition, in the case of malP in the 

glucose medium, the distribution becomes highly asymmetrical, and has a long right 

tail, and thus high positive skewness, indicating that a relatively large portion of the 

population that displays high expression of malP in treatment with lactose.  

Figure 8 summarizes the three statistical measures for distributions such as those that 

are presented in Figure 7, on the four repetitions, of the two promoters and two media. 

Here, again, the mean measure shows the partial activation of the maltose operons in 

response to lactose in all cases, but malK on glycerol, which shows no partial 

activation. In malK on glucose, and malP, which show partial activation, the noise 

level is much higher in the lactose treated samples, compared both to maltose and the 

non-treated samples. And finally, for malP on glucose, the skewness, is positive and 

much higher in the lactose treated samples, and implies on right tailed distribution, 

which corresponds to cells that show high expression level. malP on glycerol and 

malK on glucose do not show a right tail in the logarithmic scaled histograms in 

figure 7, but do show higher skewness when skewness was calculated based on the 

original, non-transformed, values.  
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Finally, Figure 9 displays the noise as a function of the mean fluorescence of malK on 

glucose, and malP on both media. As it is known that noise scales with mean: until a 

certain value genes with higher mean generally have lower noise [30-32], it was 

interesting to see whether such a scaling appears in the noise and mean values of the 

maltose operons in the various treatments and time points. One major difference 

between the common measurements of noise and this study is that usually noise is 

measured in steady state, while here I show the change in noise throughout activation. 

In addition, the noise measured here is the pathway specific noise and the intrinsic 

noise, as the RFP normalization is supposed to buffer the extrinsic noise. Moreover, 

the scaling was shown in translational fluorescent protein fusion, while in this study 

noise and mean of promoter activity were measured. And lastly, having only 15 points 

(5 time points x 3 treatments) compared to the hundreds of genes measured in the 

studies that showed the scaling phenomenon, it is not likely to see such scaling, and 

indeed there is no such scaling, as can be seen in Figure 9.  

Nonetheless, Figure 9 exhibits interesting features. As can be seen, there is an 

elevation in the mean together with elevation in noise in all of the lactose-treated 

samples. In addition, when comparing points in which the various treatments that 

produce similar mean values, the lactose-treated samples have higher noise.   

The normalization by RFP did not change the general trend in malP, and did change it 

on malK, as the unnormalized YFP fluorescence mean becomes smaller from a certain 

point in time. 
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a – malP on M9+Glucose+cAMP 
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b – malP on M9+Glycerol 
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c – malK on M9+Glucose+cAMP 
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Figure 7 –Histograms of malP and malK fluorescence 

Histograms of the YFP-to-RFP ratio of each of the cells in the FSC-SSC+RFP gated population, in the 

five time points of the three treatments. The histograms are in logarithmic scale and contain 1,024 bins. 

The Y axis is the percentage of the counts on a specific bin from the total number of counts. The right 

plot on each page is a close-up on Y axis (~x10 magnification on the Y axis alone). The mean, noise 

and skewness parameters appear on each plot. Skewness was calculated using the Matlab 'skewness' 

function. Noise was defined as the variance divided by the mean square. The mean is marked on each 

plot with a gray line.  
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a – malP on M9+Glucose+cAMP 

 

  

b – malP on M9+Glycerol 
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c – malK on M9+Glucose+cAMP 

 

  

d – malK on M9+ Glycerol 
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Figure 8 – Summary plots of mean, noise and skewness of the fluorescence distributions of malK 

and malP  

Light lines represent the mean, noise and skewness values of the fluorescence (YFP-to-RFP ratio) 

distributions of the four repetitions. Bold lines represent the mean value of each of the measures in the 

specific time points of the four repetitions, and error bars are the standard deviation of these values. 

Skewness was calculated using the Matlab 'Skewness' function. Noise was defined as the variance 

divided by the mean square. 
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Figure 9 – Noise as a function of mean  

Log scale plots of noise against mean values of fluorescence distributions. Light lines represent the 

values of the four repetitions. Bold lines represent the mean values of the [mean,noise] values of the 

four repetitions, and error bars are the standard deviation of these values on each of the axes. Arrows 

represent time flow. 

Upper panels present the mean and noise values based on YFP-to-RFP ratio distributions, while the 

lower panels present the mean and noise values based on YFP distribution. Noise was defined as the 

variance divided by the mean square. 

 

 

4.2.2 Sorting experiment (preliminary results) 

For a bet hedging strategy, it is necessary to show a direct link to fitness. In this case, 

it is essential to show that the cells that express the maltose operons highly in 

response to lactose have higher fitness in maltose compared to cells that expressed 

their maltose genes lowly. In order to compare the fitness of the two populations on 

maltose, I used a cell sorter to separate between the high and low expressing cells that 

were exposed to lactose, and then grew them on maltose and extracted their growth 

curves (see methods section 3.6 for more information). 

Gates for the sorting were defined in the FACSDiva software as it is the only software 

that is connected to the cell sorter, thus I could not use the Matlab GUI and used the 

FACSDiva gating tools instead. First, a gate for the central region of the FSC-SSC 

distribution was defined in a similar way to the definition in the Matlab GUI. Second, 

a gate for the main area of the RFP distribution was defined (roughly the 

mean±~10%) on the histogram of RFP values. Lastly, on the YFP histogram of the 

gated cells, two gates were defined for the sorting: (1) right tail gate (~20% of the 

gated population from the highest fluorescence values), and (2) left tail gate close to 

the center of the population (~20% of the gated population, the right border of the 

gate was at a distance of ~3,000 fluorescence units from the left border of the right 

tail gate, and the left border was defined accordingly to reach to ~20% of the gated 

population). The YFP and RFP gates were changed during the experiment to 

accommodate the apparent shift in fluorescence. 

The sorted cells were then grown for 6 hours in a plate reader, and their growth curves 

were extracted and presented in Figure 10. Figure 10a presents the mean OD of all the 

wells of each population as a function of time, and a linear fit on each of the curves. 

As can be seen, there is a very small difference between the two curves, the left tail 

curve, i.e. the low expressing cells, have slightly higher slope, namely, growth rate 

was slightly higher in the population of lower promoter activity level, in contrast to 
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the expectations from a bet-hedging scenario. Figure 10b presents a mean normalized 

OD, which is the OD of each well divided by the mean OD of the four surrounding 

wells which are of the other population (according to 'checkerboard' pattern). This 

procedure is done to reveal small differences that might be masked by variability that 

is caused by uncontrolled effects of the location of wells on the plate on growth rate. 

As can be seen, the right tail cells show a decrease in their normalized OD levels, thus 

the right tail cells have a lower growth rate on maltose, again, opposite than expected. 

One possible reason for the negative results is the time passed between activation and 

sorting (~4 hours) in which cells could change their maltose operon activation levels. 

YFP fluorescence level of the two populations, as measured using the plate reader was 

almost identical (not shown). In the discussion section 5.2, another explanation is 

given to these negative results. 

 

 

     

 

Figure 10 – Growth curves on maltose of the sorted cells 

Growth curves of cells sorted according to their YFP expression (malP promoter). (a) The mean OD of 

all the wells of each population, error bars presents the standard deviation. A linear fit is marked with a 

black line. (b) Mean normalized OD, which is the OD of a well divided by the mean OD of the four 

surrounding wells (above, below and to the sides of a given well) from the other population, averaged 

by these ratios from all the wells of a given populations, error bars presents the standard deviation of 

these ratios.  
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5. Discussion 

 

In this study, I continued the study of Mitchell et al. and explored evolutionary 

conditioning of E. coli response towards sugars at the single cell level.  

One of the possibilities I wanted to investigate is the existence of a sort of a bet-

hedging strategy in this system. In Mitchell et al. study, bet-hedging was presented as 

the opposing strategy to evolutionary conditioning, as in pure bet-hedging there are no 

predictions, cells switch stochastically between states and a portion of the population 

is always prepared for environmental change, while in evolutionary conditioning cells 

use external signals in order to activate their response to the sequential environmental 

change. However, a combination of these two extreme strategies is also possible. In 

such a combined strategy, cells will use an external signal in order to activate the 

response to the sequential environmental change, but they will do it in a stochastic 

manner, some cells will be activated while others will not. This strategy may be 

advantageous in environments in which the signal and the following change are 

connected, but it is not guaranteed that the following change will always come. Such 

environments might be more common than environments in which the connection is 

absolute. 

Bet-hedging strategy would be manifested in this system if the signal causes wider 

activation distribution than the environmental state to which this response is directed. 

In the most prominent manifestation, it will lead to a bimodal distribution in which a 

portion of the population will be activated, and another portion will remain inactive. 

Using flow cytometry, I examined the activation distribution of cells harboring a 

fluorescent protein reporter plasmid for various maltose operon promoters in response 

to lactose and maltose. In accord with Mitchell et al. results, lactose leads only to 

partial activation of the maltose operons regarding the mean fluorescence. However 

the activation distribution is much wider in the lactose treated cells. In the case of 

malP in the glucose medium, the symmetry of the distribution is also disrupted in 

response to lactose, and an extended right tail of highly activated cells appears. 

Nonetheless, true bimodal distribution could not be identified in any of the treatments. 

The noise as a function of mean plots present elevation in mean coupled with 

elevation in noise in the lactose-treated samples, and points having similar means 

show higher noise in the lactose-treated samples, not according to the general scaling 

between noise and mean. 
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These findings might imply a combined conditional-bet-hedging strategy in this 

system. In the next sections I will discuss a possible molecular mechanism for the 

evolutionary conditioning, aspects of the sorting experiment, and future directions.  

 

5.1 A possible mechanism for the partial maltose operons activation in response to 

lactose 

One of the questions not fully addressed in Mitchell et al. study, is how 

mechanistically the activation of maltose operons in response to lactose is achieved. 

This question is even more critical in respect to the current study, as another question 

arises, how does the same promoter give rise to different activity distributions, and 

noise levels in particular, in response to different stimuli?  

In order to try and address these two questions, I will first describe here, briefly, the 

maltose regulon. A comprehensive review can be found in [33]. The maltose regulon 

functions in the metabolism of maltodextrins, polymers of glucose molecules joined 

in an α(1→4) bond, among which is maltose that consists of two such molecules. It 

has a complex network of regulation which has been the subject of an ongoing 

research since Jacob and Monod, and some parts of it are still missing. Here, only a 

few of the nodes and edges of this network will be described (Figure 11).  

MalT, the transcription activator of the maltose regulon, as other sugar operons in 

bacteria, is under catabolite repression, and thus its transcription depends on the 

presence of the complex of Catabolite Activator Protein (CAP) and cAMP whose 

concentration is low in glucose rich environment. Conversely, it is also under the 

regulation of a global repressor, Mlc, which, when glucose is transported, binds to the 

unphosphorylated glucose transporter and thus relieves the repression. MalT activity 

as a transcription activator depends on the presence of ATP and the inducer molecule. 

The inducer molecule in the maltose regulon is not maltose itself, as in the lactose 

operon, but maltotriose, a maltodextrin consists of three glucose molecules. 

Maltotriose is present in the cell even in the absence of maltodextrins in the media as 

a product of glycogen metabolism and gluconeogenesis. The maltose metabolism end 

products, glucose and glucose-1-phosphate are thought to be used for the endogenous 

formation of maltotriose. The regulon's cytoplasmic metabolic enzymes (MalP, MalQ 

and MalZ) also affect maltotriose concentration. In addition to the transcriptional 

regulation, MalT activity is regulated by interaction of at least three proteins, one of 

them is MalK, a subunit of the maltose transporter: when it is not bound to the 
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transporter, it binds to MalT and inhibits its activity as a transcription activator, thus 

the maltose regulon will be fully activated only when maltodextrins are transported 

into the cell, and MalK participates in the transporting. 

 

 
Figure 11 – Schematic representation of part of the regulation network in the maltose regulon 

(a) The transcriptional regulation network. MalT, the activator of the maltose regulon, is under the 

regulation of CAP-cAMP complex, which activated its transcription, and Mlc, which repress its 

transcription. Glucose uptake leads to the repression of adenylate cyclase (not shown), and thus lowers 

the intracellular cAMP levels and the activation of malT transcription by CAP-cAMP complex. In 

addition, glucose uptake leads to dephosphorylation of the glucose transporter PtsG, to which Mlc can 

bind in the unphosphorylated state, thus lowering the repression of malT transcription by Mlc. (b) Post-

transcriptional regulation. MalT functions as a transcription activator only in its active form. Its 

inducer is maltotriose, which is produced in higher rate in response to uptake of maltose, and maybe 

trehalose and lactose as well. In addition, MalT is inhibited by MalK, a subunit of the maltose 

transporter, when maltose is not transporter to the cell. When the transporter is active, MalK binds to 

the transporter and releases MalT.  

 

This network, which is not yet fully characterized, could be the basis of complex 

responses of the maltose regulon to various stimuli. For instance, besides lactose, also 

trehalose was shown to partially activate the maltose regulon. Trehalose is a 

disaccharide that like maltose consists of two glucose molecules, linked in an 

α(1→1)α bond. It was suggested that the products of trehalose metabolism, glucose 

and glucose-6-phosphate (which then can be converted to glucose-1-phosphate) are 

used for intracellular maltotriose production as in the case of maltose and thus lead to 

the activation of the maltose regulon [33].  
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Lactose metabolism end products are glucose and glucose-1-phosphate as well, so 

activation of the maltose regulon by lactose might be reached by its metabolism. Two 

unpublished findings in Mitchell et al. study are in accord with metabolism-dependent 

activation: (1) lacZ deletion mutants do not show maltose regulon activation in 

response to lactose; (2) IPTG, a synthetic inducer of the lactose operon does not 

activate the maltose regulon. One complication is the result of the extinction 

experiment - lab evolution under constant lactose without maltose that caused 

disappearance of the maltose activation in response to lactose, while leaving the 

maltose regulon responsive to maltose. If this is indeed a simple metabolic activation, 

and given that metabolism has not been changed, a distinct mechanism is required to 

achieve extinction. However, in such an elaborate network of regulation as found in 

the maltose regulon, such mechanism could be found.  

Towards this end I have re-analyzed the whole genome sequencing results of the 

extinction strain.  One of the mutations I found in this strain is in the ptsG gene, 

which encodes the glucose transporter to which Mlc, a MalT repressor, binds. This 

mutation could have an influence on the maltose regulon, and may be the basis for the 

extinction phenotype. This hypothesis could be examined, for instance, by introducing 

the same mutation into a wild-type strain, where it would be expected to induce 

extinction of the maltose response to lactose.  

Metabolism-dependent activation might not be the only possibility of maltose regulon 

activation by lactose, as MalT might be activated in a different fashion, or a different, 

yet undiscovered layer of regulation might exists in the maltose regulon. 

Until now only a possible mechanism for the regulon activation by lactose was 

discussed. However, the question of how the different activation distributions are 

achieved remained.  

In the lactose operon, as was mentioned before, induction by intermediate 

concentration of IPTG or TMG, another synthetic inducer, causes bimodal 

distribution of the lactose operon activation distribution. It is tempting to postulate the 

involvement of bistability in lactose induction in the noisy induction of maltose 

regulon in response to lactose. For instance, taking the lactose metabolism-dependent 

activation into account, bistability in the maltose regulon can be obtained if cells that 

induce the lactose operon will have more of the lactose metabolism products and will 

activate the maltose regulon to a higher level than cells that do not induce the lactose 

operon. However, so far the lactose operon showed bistability only to the synthetic 
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inducers and it is under debate whether lactose itself could induce bistability in the 

system at all [34]. In the current study, the fluorescence distribution of the lacZ 

promoter showed no bistability in response to lactose, thus the involvement of the 

lactose operon activation in the noisy maltose regulon activation might not be very 

plausible. 

However even without the direct involvement of the bistable lactose operon 

activation, a noisy maltose regulon activation by lactose might be achieved. Using the 

bistable lactose operon as an example: bistability in the lactose operon was obtained 

by synthetic inducer exposures only in a limited range of intermediate concentrations. 

The bistability in the arabinose operon of E. coli [23], and the galactose signaling 

network of S. cerevisiae [24], appears only in intermediate levels of inducer as well. If 

lactose metabolism leads to intermediate levels of maltotriose, or, alternatively, 

maltotriose is produced to the same level as in maltose, but other regulations of MalT 

are not relieved by lactose (such as the transport dependent MalK de-inhibition), this 

will lead to intermediate levels of active MalT. Those intermediate levels of active 

malT, which might be achieved in other ways of regulation as well, might in turn 

result in higher noise in the maltose regulon activation by lactose than in maltose. An 

interesting experiment will be to use lower concentrations of maltose than the 

concentrations used in this study, and compare the activation distribution to the 

lactose treated samples in order to see whether such a noisy activation could be 

achieved. 

All these possibilities are rather speculative, and their plausibility needs to be 

examined experimentally, possibly by using mutants of the regulatory network 

components, such as MalT, PtsG and Mlc; closer examination of the mutation that the 

extinction experiment revealed in PtsG; and using the three color plasmid in order to 

simultaneously measure different promoters of the regulon and the regulators in the 

same cell, and elucidate various connections in the regulatory network.  

   

5.4 Future directions 

A prerequisite for a bet hedging strategy is the link between the noise in gene 

expression, or the cellular response, and fitness. In this system, it is necessary to show 

that cells that activate the maltose regulon to a higher level during lactose exposure 

have: (1) lower fitness in the lactose environment as they are expressing unnecessary 
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genes; and (2) higher fitness in the maltose environment as they were prepared in 

advance for maltose arrival. For this purpose, the sorting experiment was preformed.   

One not trivial assumption of using the fluorescent protein reporters for promoter 

activity is that they correlate with the concentrations of the original proteins that those 

promoters regulate, the maltose regulon proteins that are supposed to affect the 

fitness. This assumption might be valid, as effect of regulation by the same 

transcription factor, might be stronger than other extrinsic influences. Indeed in their 

study, Cox et al., who developed the three color plasmid, demonstrated a high 

correlation between RFP and YFP expressed from different promoters on the plasmid, 

both regulated by LacI [27]. However, if the correlation between the original maltose 

operon and YFP is not that high, for instance, in case that there is an influence of the 

genomic versus plasmidic location of the promoter and the gene, or due to potential 

high intrinsic noise, this might be yet another explanation for the negative results.  

Ideally, in order to measure the original protein level, one could use a fusion protein 

of the original protein with a fluorescent protein. I tried to use strains of the recently 

constructed YFP genomic fusion library [32] for this purpose, but using flow 

cytometry I could not detect any fluorescence above auto-fluorescence in the maltose 

exposed cells. An alternative approach will be to use a plasmid construct containing 

the fusion protein, or even a transcriptional fusion, having the fluorescence protein on 

the same operon, as operons were shown to buffer noise [34].  

An alternative to the sorting experiment is the more sensitive time-lapse microscopy, 

in which single cells can be tracked and measured for fluorescence intensity and 

growth rate. This experiment could give even more information regarding lineages, 

and switching rates. We recently started collaboration with Prof. Naama Barkai's lab 

(Dr. Nurit Avraham Tayar) to perform this experiment, using a live imaging system 

they developed.  

To conclude, in my study I showed evidence for bet-hedging in the E. coli 

evolutionarily conditioned response towards sugars. Showing the connection between 

expression levels in lactose to fitness in maltose will be necessary in order to establish 

this as a bet-hedging strategy. The results of the different activation distributions in 

response to each of the stimuli raised again the question regarding the mechanism 

behind the evolutionary conditioning and the extinction phenotype. Elucidating this 

question is essential in order to understand how the two distinct distributions are 

achieved.   
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