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Summary 

 

 Gene expression is tightly regulated at multiple stages from transcription to 

mRNA processing, mRNA transport and translation. This regulation is largely 

mediated through DNA and RNA sequence elements which are recognized by 

specific cellular partners, mostly proteins and other RNAs. However, unlike the 

amino acid translation code, much of the ‘regulatory code’ is yet to be revealed. 

 Here, we describe several interrelated projects, all of which integrate genome-

wide sequence data with various types of functional information in order to identify 

regulatory sequence elements and to study the processes they mediate. We focus on 

two specific processes: the regulation of transcription through binding of transcription 

factors (TFs) to their designated sites, and regulation through natural antisense 

transcripts (NATs), which may act at several stages of gene expression. For both 

processes, we define gene sets which share distinct sequence elements and study their 

common characteristics in order to deduce the likely regulatory roles of these shared 

elements.  

 In the case of transcriptional regulation, we define our gene sets by the presence 

of a short DNA sequence motif in their promoters. By examining the expression 

profiles of these gene sets across a range of biological conditions, we identify 

promoter elements which are linked with coherently expressed gene sets. We 

hypothesize that such elements actively induce coherent expression, by serving as TF 

binding sites. We systematically apply this principle to short oligomers residing in the 

genome-wide promoters of yeast and human and construct catalogues of putative TF 

biding sites in these organisms. Each binding site is defined by its nucleotide 

sequence as well as by the expression profiles of the genes it appears to regulate. This 

motif discovery method overcomes the requirement for significant motif over-

representation, posed by common ab initio motif finding algorithms. This is obtained 

by introducing a new statistical model which assesses the probability of obtaining the 

observed expression coherence for a random set of genes. This model enables the 

detection of motifs regulating small transcriptional networks, which may be present in 

the genome in relatively low numbers.  

 We provide several supports for the ability of our approach to identify functional 

TF binding sites, including its success at re-discovery of known yeast binding sites, 
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and the fact that the defined motifs possess many features which are characteristic of 

known binding sites. We additionally demonstrate the use of our motif collections for 

the study of evolutionary conservation of stress response among different yeasts. 

 Our dataset construction method quantifies the effect of a sequence motif on the 

expression profiles of its regulated genes. This allows us to address a central question 

in functional genomics: predicting the functional outcome of binding site variations, 

which exist in the population or between genomes of related species. We 

systematically compare the expression outcomes of motifs within our dataset, which 

differ at a single position, and use these comparisons to predict what would be the 

functional effect of mutating one binding site into another. In cases, in which such 

predictions can be compared to published experimental evidence, we find good 

agreement. We further accumulate statistics from multiple substitutions across 

numerous binding sites in an attempt to deduce general properties that characterize 

nucleotide substitutions which are likely to alter gene expression. Indeed we find that 

not all substitutions were ‘born equal’, and some are more likely to be ‘deleterious’. 

This work serves as a first step towards a larger task - predicting the phenotypic effect 

of variations in regulatory motifs which exist in the human population. 

 For the study of antisense-mediated regulation in human, we group together 

transcripts which contain a sequence match to a complementary transcript, which was 

previously reported to reside in cis to its sense target. We find that many cis-acting 

anti-sense transcripts may have additional targets in trans, thus cis- and trans NAT 

networks are interlaced and are not distinct phenomena as commonly accepted. We 

reveal a putative genome-wide NAT network, which displays many to many relations:  

The same NAT may potentially target multiple targets (both in cis and trans) and a 

given mRNA may serve as a potential target of more than one trans-encoded NAT.  

 We find several particular biological functions to be enriched among the genes 

belonging to our antisense network, suggesting that they may indeed be subject to 

common regulation. Intriguingly, a similar set of functional categories was recently 

reported to be enriched in the trans-antisense network of Arabidopsis thaliana. This is 

a remarkable correspondence that may represent convergence to similar regulatory 

regimes of functionally related genes in organisms as distant as human and plant. 

 We anticipate that similar genome-wide analyses, integrating sequence data with 

functional information, will prove useful for the study of additional cellular regulatory 

processes. 
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1 Introduction 

 

 The current work is composed of several related projects, which while may be 

viewed independently, are also interrelated by their biological motivation as well as 

the computational frameworks used and the types of analyses applied.  

 The two major projects (described in results sections 2.1-2.2 and 2.4) provide a 

global view on the regulation of gene expression in yeast and human, with a focus on 

two specific processes: the regulation of transcription through binding of transcription 

factors (TFs) to their designated sites, and regulation through natural antisense 

transcripts (NATs), which may act at several stages of gene expression (see section 

1.2). At the core of both projects is a genome-wide study of gene sets which are 

defined by a common sequence element; In the case of transcriptional regulation, 

these sets are defined by the presence of a short DNA sequence motif in their 

promoters. In the case of antisense-mediated regulation, the gene sets are defined by a 

sequence match to a complementary transcript, which is transcribed in trans, namely 

from a different genomic location. In both cases, we identify features, common to all 

genes belonging to the same set, which imply that these genes may be subject to 

common regulation. Such features include related biological functions, correlated 

expression profiles or localizations to similar cellular compartments.  

 Two of the projects which deal with the regulation of transcription (described in 

results sections 2.2 and 2.3) share an additional aspect; the attempt to characterize 

promoter sequence variations that affect gene expression and may thus alter gene 

function. The first project, conducted in yeast on a genome wide scale (results section 

2.2), deals with single nucleotide variations within TF binding sites, and introduces 

computational means to assess their effect on gene expression. The second project, 

conducted in a specific gene family in human (results section 2.3), deals with 

variations on a larger scale, i.e. in the composition of binding sites within a promoter. 

Through characterizing changes in the composition of TF binding sites residing 

within the promoters of human interferon-α genes, this project studies how different 

members of the interferon family evolved to respond to different viral stimuli. This 

project combines a computational search for biologically significant regulatory motifs 

with accompanying expression experiments, carried out by our collaborators. 



 4 

1.1 Regulation of gene expression through the control of transcription 

1.1.1 TF binding sites: representation and discovery 

 The regulation of gene expression is mediated mainly through specific interactions 

of TF proteins with short promoter elements. TF binding sites are short (~6-20 bases) 

and imprecise; unlike restriction enzymes which recognize unique nucleotide 

sequences, a single TF protein may interact with a range of related sequences. For 

most TFs, there appears to be no distinct sequence of nucleotide bases that is shared 

by all recognized binding sites. However there are typically clear biases in the 

distribution of bases that occur at each binding site position. These biases are 

commonly represented by position weight matrices (PWMs), whose components give 

the probabilities of finding each nucleotide at each binding site position [1, 2]. 

 Binding sites typically comprise a minority of the nucleotides within a promoter 

region. They are embedded within sequence that is assumed to be non-functional with 

respect to transcription (although surrounding sequences may contribute to protein-

DNA binding through influencing local DNA conformation). Identifying genuine 

binding sites is a challenging task as the physical extent of a promoter is rarely well 

defined, and within this ill-defined region we are seeking sparsely distributed, short 

and degenerate sequence motifs. Several experimental and computational methods 

have been developed to meet this challenge. Experimental methods include: DNAseI 

protection (footprinting), i.e. the identification of DNA segments that are protected 

from nuclease digestion by protein binding [3], electrophoretic mobility shift essays 

(EMSA) [4, 5], in vivo binding assays [6-8] and modification of a putative binding 

site and assaying transcription in vitro or in vivo, by transformation with a reporter  

gene (e.g. luciferase or green fluorescent protein) [9].  

 Such experimental methods are generally technically challenging and time 

consuming and thus may be difficult to apply in large scale screening of potential 

binding sites at a variety of conditions. Advances in genome research, including 

whole genome sequencing and mRNA expression monitoring have allowed the 

development of computational methods for ab initio binding site prediction. A 

popular method searches for shared motifs in the promoters of co-expressed genes 

[10-12]. A complementary approach termed "phylogenetic footprinting" searches for 

conserved motifs in the promoters of orthologous genes [13-18]. The rational being 

that binding sites are more likely to be conserved by natural selection than their 
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putatively non-functional background nucleotides. The choice of species is crucial for 

obtaining reliable results; Comparing species with a short divergence time may result 

in many false positives, as conservation is likely to reflect common ancestry rather 

than purifying selection. Conversely, choosing too distant species, may fail to recover 

species-specific sites [13, 14]. For instance, about 40% of human functional binding 

sites are expected to be non functional in rodents [19], and a similar proportion of 

species specific sites was reported in yeast [20]. Furthermore, the alignment of 

orthologous intergenic sequences is nontrivial since well conserved sequences of 

different lengths are interspersed with sequences that show little conservation. 

 Common to many of the computational methods is the search for “over-

represented motifs” i.e. motifs that are observed in the data at a frequency that is 

significantly higher than that expected by chance given an appropriate background 

statistical model. Although very successful in producing testable predictions, these 

methods are prone to both false-positive and false-negative motif predictions. False-

positive predictions include motifs that are also present in the promoters of many 

other genes outside of the gene set from which they were derived (e.g. ‘TATA’ box). 

These motifs usually do not determine particular expression patterns. The false 

negatives are motifs that occur in sets of genes that are smaller than the size threshold 

required for their detection with sufficient statistical significance. 

1.1.2 An alternative approach for binding site prediction 

1.1.2.1 Rational  

 We have proposed an alternative motif discovery and analysis methodology to 

meet these two opposing challenges [21]. The methodology is based on the previously 

introduced measure of expression coherence (EC), which quantifies the extent to 

which a set of genes display similar expression profiles at a given set of biological 

conditions [22, 23]. While in previous analyses we mainly used a corollary of the EC 

score definition to detect functional interactions between known motifs [22, 23], in 

the present work, we utilized this measure for the discovery of novel motifs, as well 

as for the refinement of previously published ones. These individual motifs are the 

building blocks of subsequent combinatorial motif reconstructions. 

 We applied the EC score to sets of genes that contain a given motif in their 

promoters, and used it to assess the hypothesis that the motif drives the genes’ 

coherent expression at an examined biological condition. This approach ensures that 
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only motifs that occur in tightly co-expressed genes will score highly. Additionally, 

we introduced a statistical model that computes the probabilities of obtaining the 

observed or higher EC score by chance [21]. This model relaxes the requirement that 

motifs will appear at a particularly high number of genes, and enables the detection of 

motifs that regulate small transcriptional networks. 

1.1.2.2 The motif analysis workbench 

 We have made our method accessible to the experimental and computational 

biology communities, through the construction of “The Motif Analysis Workbench”, 

http://longitude.weizmann.ac.il/services.html [21]. This is a WWW interface for the 

automated analyses of promoter regulatory motifs and the effect they exert on mRNA 

expression at different biological conditions. The server provides a wide spectrum of 

analysis tools that allow de novo motif discovery as well as motif refinement and in-

depth investigation of fully or partially characterized motifs. The discovery and 

analysis tools are fundamentally different from existing tools in their basic, rational, 

statistical background and specificity and sensitivity towards true regulatory elements.  

1.1.3 Motif dictionaries and their applications 

1.1.3.1 The challenge 

 An important challenge in the study of gene regulation is to produce reliable 

reference collections ('dictionaries') of TF binding sites in different organisms. Such 

binding sites can be viewed as the atomic units of highly complex multi-component 

transcriptional regulatory networks. Their study may thus reveal properties of 

individual motifs as well as contribute to the understanding of higher levels of 

transcriptional control. For most organisms, the current lack of such reference data, 

not only hinders our understanding of transcription regulation, but also results in an 

over-reliance on the very few experimentally validated binding sites for the evaluation 

of novel motif finding algorithms. Such over reliance maintains a bias towards 

previously discovered motifs. There is a need for the introduction of methods, capable 

of detecting motifs on a genome-wide scale in an unbiased fashion. The most promise 

for this task lies in an interplay between computational and experimental approaches 

[24]. 

 Perhaps the most studied TF repertoire is that of the budding yeast Saccharomyces 

cerevisiae (S. cerevisiae), in which several works have attempted to identify binding 

http://longitude.weizmann.ac.il/services.html
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sites on a genome-wide scale: Phylogenetic footprinting of 7 fully sequenced 

Saccharomyces species was carried out by two separate groups yielding two largely 

non overlapping sets of conserved regulatory elements [13, 14]. A different work 

introduced a model in which upstream motifs contribute additively to the log-

expression level of a gene. The model was applied to publicly available expression 

data for  S. cerevisiae  and successfully identified known motifs as well as new 

putative ones [25]. The most elaborate and extensively cited work is that of Harbison 

et al. [8], which conducted in vivo binding essays for 203 yeast transcriptional 

regulators, under more than one growth condition. The technique they used is ChIP-

chip, chromatin immunoprecipitation followed by hybridization of the precipitated 

DNA fragments to a microarray with known genomic promoter sequences. ChIP-chip 

typically detects DNA fragments of size 100–500 base pairs (bp). To identify the 

considerably shorter TF binding sites, the authors further applied several motif 

discovery methods (including AlignACE [26] and MEME [27]) to DNA fragments 

that were bound by the same regulator. Pulling together significant motifs from all 

programs and filtering them by evolutionary conservation, they were able to define 

binding sites for 102 TFs. Although not accounting for almost 50% of yeast TFs, this 

set was adopted by the community as a reliable reference. 

1.1.3.2 Our motif dictionaries 

 The vast experimental based knowledge available in yeast renders this organism 

ideal for the assessment of new frameworks for de novo motif discovery and 

characterization. We developed a method for the construction of comprehensive motif 

dictionaries, which are unbiased by prior knowledge (results section 2.1), offering a 

solution for the over reliance on few validated motifs, described above. Our method 

forms a quantifiable connection between binding site sequence and the expression 

profiles of the regulated genes and may be applicable to the genomes of any organism 

for which both genome-wide promoter sequences and whole genome mRNA profiles 

are available.  

 Our dictionary construction method is in fact an expansion of our application of 

the EC score for measuring a motif’s regulatory capacity (described above, section 

1.1.2). The method is based on the premise that any nucleotide sequence that resides 

in the promoter of a gene may potentially contribute to the regulation of that gene’s 

expression. We developed two complementary approaches and demonstrated the 
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success of both in producing reliable binding sites in the widely studied S. cerevisiae 

genome; The first approach exhaustively enumerates k-mers residing in genes’ 

promoters and uses the EC score to assess their likely affects on gene expression in 

various biological conditions. The second approach applies the same scoring system 

to pre-selected candidate motifs (as opposed to all k-mers) (section 2.1.1.4). Pre-

selection of motifs may be based on different criteria, we illustrate a well performing 

syntax based selection [28, 29], but other properties such as evolutionary conservation 

within related species may also be considered. Following a thorough method 

validation in budding yeast, we created motif dictionaries for additional organisms 

including Candida albicans, Caenorhabditis elegans (C. elegans) and human.   

1.1.3.3 Applications 

 Our comprehensive binding site collections are an invaluable source for the study 

of different aspects of transcription regulation: We investigated the S. cerevisiae 

dictionary in order to define characteristics that likely contribute to the biological 

function of regulatory motifs (section 2.1.1.3). Such characteristics (e.g. distinct 

nucleotide composition, positional bias, motif multiplicity, evolutionary conservation) 

may subsequently be incorporated into more elaborate motif prediction algorithms. 

Applying comparative genomics to dictionaries of different species may elucidate 

features of transcriptional regulation that are common to different eukaryotes. We 

demonstrate the use of such comparative analyses in the study of stress response in 

evolutionary distinct yeast species (section 2.1.2).  

 An extremely important application of the motif dictionaries is their utilization for 

the study of phenotypic effects of binding site variations. In results section 2.2 we 

describe an elaborate analysis of the S. cerevisiae dictionary, conducted in order to 

characterize and potentially predict the effects of motif variations on gene expression 

and ultimately on the phenotype. Below (section 1.1.4) we discuss the theoretical 

background and motivation for this project.  

 Lastly, the motifs defined in the dictionary project may serve as input for studies 

aimed at revealing higher levels of gene regulation, some of which are currently 

conducted in the lab. Regulation of gene expression, in eukaryotes, often involves the 

coordinated action of multiple TFs [25, 30-32]. It was proposed that the yeast 

regulatory network utilizes a limited number of TFs and creates alternative diverse 

combinations between them in a condition-specific modulated fashion [22]. The 
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regulatory networks of multi-cellular organisms are expected to be significantly more 

complex than those of unicellular organisms, mainly since they govern differentiation 

of multiple tissues and cell types and because they control intricate developmental 

programs. Consequently, these networks are usually subject to the control of 

numerous regulatory factors, acting combinatorially according to complex interaction 

rules (logical gates) [33-35]. 

1.1.4 Functional consequences of changes in transcriptional regulation  

 Changes in transcriptional regulation comprise a significant component of the 

genetic basis for phenotypic evolution. Moreover, these changes were suggested to 

play a key role in speciation [36, 37]. Transcription regulation can be viewed at 

several levels, from single TF binding sites, through entire promoter organizations to 

the architecture of complete gene regulatory networks. According to this hierarchical 

structure, variations ranging from single nucleotide substitutions within individual 

binding sites, through larger variations on the promoter level, involving multiple 

nucleotide bases, to network rewiring, may all affect gene expression and alter 

phenotypes.  

1.1.4.1 Variations within individual TF binding sites 

 A natural consequence of the short and degenerate nature of TF binding sites is 

that highly similar sites within the same genome are in some cases recognized by the 

same TF whereas in others serve as targets for distinct TFs. This is also observed in 

the genomes of related species, where slight changes in binding site sequence, 

occurring throughout evolution, may either maintain the specificity of the site to the 

original TF or alternatively lead to its loss or create a site targeted by a different TF 

[20, 38]. The desire to distinguish between ‘neutral’ binding site variations, which do 

not change the recognition range of the site, and ‘functional’ variations, which may 

affect gene expression by altering protein-DNA interactions, poses a great challenge. 

Such a distinction may have important implications; Firstly it should greatly improve 

the performance of scanning algorithms, which search promoter sequences for 

matches to predefined PWMs. These algorithms typically regard all mismatches 

between a promoter sequence and a given PWM’s preferences as equal (c.f. ScanACE 

[26], MatchTM [39], MAST [40]). More reliable predictions may be obtained if such 

mismatches are differentially weighed based on their expected effects on expression. 
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Identification of genuine sites is also crucial when comparing the promoters of 

orthologous genes - some across-species variations may change the functionality of a 

motif in some of the organisms. Another intriguing application is the detection of 

regulatory site variations, which have the potential to cause phenotypic diversity 

within a population, and ultimately diseases, which may occur through altering gene 

expression. Disease-causing binding site variations are known to be wide-spread [41, 

42], however so far no attempts have been made for their prediction on a genome 

wide scale. Most efforts to distinguish disease-causing variations from neutral ones 

have focused on coding single nucleotide polymorphisms (SNPs) [43-49]. Estimates 

show that the human population contains thousands of cis-regulatory variations [50]. 

Such high numbers justify a dedicated effort for the development of computational 

means for predicting deleterious regulatory variations. The project described in 

section 2.2 of the results lays the foundations for the development of such methods by 

introducing measures for quantifying the effects of binding site variations on gene 

expression, and systematically applying them to variations within motifs belonging to 

the S. cerevisiae dictionary. The measures were initially applied to individual binding 

sites, and subsequently statistics from multiple substitutions across various binding 

sites were accumulated in an attempt to characterize nucleotide substitutions that alter 

gene expression. The developed tools and measures demonstrated in yeast can be 

applied to other organisms and specifically to human.  

1.1.4.2 Variations on the promoter level 

 Variations on the promoter level range from small scale variations such as SNPs, 

short insertions or deletions (indels) and tandem repeats, to complete promoter 

rewiring (involving multiple nucleotides) all of which can alter transcription. 

Variations within promoter sequences surrounding TF binding sites may affect 

expression by altering local DNA conformation or changing the spacing between 

binding sites [23, 51].   

 Promoters are thought to be composed of multiple TF binding sites, arranged in a 

modular fashion, which facilitates the promoter’s rapid evolution towards novel 

regulatory programs. This is apparent following gene duplication, when functional 

divergence is observed not only in the encoded protein but also in its cis-regulatory 

sequences. The duplication-degeneration-complementation (DDC) model of promoter 

evolution [52] proposes that selection can maintain functionally redundant coding 
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sequences after gene duplication if each copy loses a different promoter module due 

to random mutation. The different gene copies thus develop distinct temporal and/or 

spatial expression patterns, which ‘justify’ the retention of several genes, supposedly 

encoding similar proteins, in a single genome [53]. In section 2.3 of the results, we 

describe a study conducted in a human gene family of 13 members, which deals 

precisely with this aspect of promoter evolution. The 13 genes encode extremely 

similar proteins, which are known to perform similar functions. The differences and 

perhaps the key for understanding the need for all 13 genes, lie within their promoters, 

which have undergone considerable evolution. In this project we attempted to link 

changes in promoter binding site composition to distinct regulatory programs of the 

corresponding genes. The hypothesis being that as a result of promoter evolution, 

different family members are induced in response to distinct stimuli.  

 Finally, although generally resulting in altered transcription profiles, loss and gain 

of individual binding sites may also preserve promoter functionality due to 

compensation. Studies in Drosophila have revealed conservation in expression 

program despite fluidity in the exact composition of regulatory regions [54]. This 

level of analysis was not touched upon in the present study, but is important to 

mention as it may account for false predictions; Such compensations when taking 

place, may result in no phenotypic effects in cases where our analysis would predict 

an altered expression profile. 

1.1.4.3 Gene regulatory networks and robustness towards mutations  

 Gene regulatory networks are supposedly organized in such a way that they 

produce consistent transcriptional outputs across a range of TF concentrations and 

TF-binding site interactions. This may be the result of natural selection to stabilize 

transcription against environmental variation and genetic background. 

 It is intriguing to understand how the transcription control network insures its 

stability with respect to mutations along with an ability to adapt and acquire new 

functions. Transcription networks are composed of TFs with different binding 

specificity requirements. Factors with highly sequence-specific binding impose severe 

constraints on binding sites and increase the sensitivity to mutation. Factors with low 

specificity of binding confer robustness towards mutations, yet increase the 

probability of spurious interactions. It was suggested that robustness is maximized by 

the compromise between these two effects [55]. This notion is supported by the 
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observation that individual binding sites exhibit different evolutionary constraints 

[19]. Higher evolutionary rates of some binding sites are expected to be related to a 

higher flexibility in the binding properties of the corresponding TFs. 

 Our analyses of the effects of variations at the single motif level are thus directly 

related to the entire network architecture. By predicting the consequences of 

variations within different binding sites, we can identify sites bound by highly 

specific TFs (these sites are highly sensitive to mutation) versus sites targeted by 

‘promiscuous’ TFs (these sites can tolerate mutations with no apparent effect). Both 

types of sites should be present in an organism’s motif repertoire in order to allow for 

a robust regulatory network. 

 Compensation effects, such as those described on the promoter level, may exist on 

the network level as well. Such compensation, termed ‘genetic buffering’, accounts 

for cases in which the gene’s function is altered or lost, but this loss is not reflected in 

the phenotypic level. The ‘rescue’ can stem from a duplicate gene which is 

‘reprogrammed’ to take over the lost function [53] or from a bypassing network path 

[56]. Network level compensation may be in action when all analyses (both on the 

single binding site and on the promoter levels) predict that a crucial gene is not 

expressed at the correct time and place or in the required level, yet no phenotypic 

effect is apparent. 

 In the current study we deal with genome-wide (large-scale) discovery of TF 

binding sites as well as with deciphering promoter organization, within a multi-gene 

family (mezo-scale). We introduce a de-novo motif finding method, as well as employ 

available scanning algorithms to search promoters for the presence of previously 

characterized binding sites. We attempt to link variations within individual binding 

sites and within entire promoter organizations, to changes in gene expression. The 

higher level of network organization, although complementary to this work, is outside 

of its scope. 

1.2 Natural antisense transcription – a possible mechanism for the 

control of gene expression at different levels 

1.2.1 Definition and extent of the phenomenon 

 Natural antisense transcripts (NATs) are endogenous RNA molecules containing 

sequences that are complementary to other transcripts. In numerous individual cases, 

NATs have been reported to negatively regulate their conjugate sense transcripts at 
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several levels: transcription, messenger RNA processing, splicing, mRNA stability, 

mRNA transport and translation. NATs are also linked to monoallelic gene expression 

through mechanisms that include genomic imprinting, X-inactivation and clonal 

expression. 

 NAT pairs are conventionally divided into cis-NATs, which are transcribed from 

opposing DNA strands at the same genomic locus, and trans-NATs, which are 

transcribed from separate loci. cis-NAT pairs display, by definition, perfect sequence 

complementarity, whereas trans-NAT pairs often display imperfect complementarity. 

In addition it is commonly accepted that trans NATs may target many sense 

transcripts to form complex regulatory networks, whereas cis-NATs have but a single 

sense target [57].  

 cis-NATs can be categorized according to their relative orientation and degree of 

overlap; head-to-head (5′ to 5′), tail-to-tail (3′ to 3′) or fully overlapping (Figure 1). 

All genome-wide studies, except one [58], have reported the tail-to-tail orientation to 

be the most prevalent. Overlapping transcripts might comprise two protein encoding 

genes, one protein-encoding and one non-encoding gene, or two non-encoding 

transcripts.  

 
 

Figure 1: Illustration of cis-natural antisense transcript pairs. Three relative orientations are displayed: 

(A) Head-o-head (5′ to 5′) overlap involving 5′-untranslated regions and coding exons. (B) Tail-to-tail 

(3′ to 3′) overlap. (C) Fully overlapping (one gene entirely included within the region of the other). 

Colored boxes represent exons, grey boxes represent untranslated regions 

 

 cis-NATs were first detected in viruses [59], then in prokaryotes [60, 61] and 

finally in eukaryotes [62-64]. In recent years it has become apparent that NATs are 
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widely prevalent in the genomes of multiple species from viruses to human. Genome-

wide computational studies have estimated that the percentage of transcriptional units 

involved in sense-antisense overlaps, ranges from 5% to 29% in animals [58, 65-70] 

and from 7% to 9% in plants [71, 72]. Most estimates are based on the alignment of 

full-length cDNAs and expressed sequence tags (ESTs) to the genome, and the 

identification of overlapping transcripts on opposite strands. Such a procedure is 

limited to the detection of cis-NATs, implying that the extent of the NAT 

phenomenon might be much broader. Some predictions were further experimentally 

validated using methods such as reverse transcription–PCR (RT-PCR) and 

microarrays containing strand-specific probes [65, 67]. A recent paper suggests that in 

the human and mouse genomes, the percentage of genes involved in sense-antisense 

pairing is in fact much higher and approaches 50% [73]. 

 The conservation of this phenomenon across kingdoms implies that NATs may 

constitute a common mechanism for regulating gene expression, however there 

remains a possibility that genome-wide antisense transcription is a mere outcome of a 

‘leaky’ RNA transcription machinery. Below (section 1.2.2) we review several lines 

of evidence supporting the notion that antisense transcription is tightly regulated and 

moreover that its regulation may be coupled to that of the sense transcript. 

Additionally we list the different modes by which antisense is currently known to 

regulate gene expression (section 1.2.3).  

1.2.2 Evidence for a regulated process 

 Most coding cis-NAT pairs overlap in their untranslated regions (UTRs) due to 

alternative polyadenylation (forming transcript variants that differ in their 3′  

termini), or heterogeneous transcription start sites (creating head-to-head overlaps). A 

key question is whether such alternative (3′  or 5′) end processing is intentional - 

forming regulated transcript overlaps - or does it result from ‘leakage’ of the RNA 

transcription machinery. 

 To address this question, Dahary and colleagues examined the evolution of cis-

NATs [74]. They defined a set of consecutive gene pairs in the human genome and 

identified their orthologous gene pairs in both mouse and Fugu. The human genes 

were divided into sense-antisense pairs and pairs which are transcribed from the same 

strand. The authors assumed that if sense-antisense pairs carried a beneficial function, 

selection would work against their separation in related species. Indeed, 23.3% (55 
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out of 236) of the human sense-antisense pairs remained consecutive in Fugu, 

compared with only 13.5% (170 out of 1,250) of the same-strand pairs. Moreover, 

although the Fugu genome is much more compact than the human genome, the 

average distance between sense-antisense gene pairs was only slightly greater in 

humans than in Fugu, whereas same-strand pairs were significantly further apart (up 

to 11-fold). 

 If antisense transcription is indeed beneficial, how is it regulated? A recent study 

[75] mapped the binding sites of three human TFs - SP1, c-Myc and p53 - to 

chromosomes 21 and 22 using ChIP-chip technology [6]. Surprisingly, 36% of the 

binding sites mapped within or immediately 3′  to well-characterized protein-

encoding genes and were associated with non-encoding RNAs. Moreover, many 

overlapping sense-antisense transcripts showed correlated expression. Some 

overlapping transcripts were flanked by binding sites for the same TF, implying that 

the sense and corresponding antisense transcripts might in fact be co-regulated. 

Similar results were obtained for the human TF CREB [76].  

 Additional evidence for genome-wide regulation of antisense transcription was 

revealed upon the recent completion of the ENCODE (Encyclopedia of DNA 

Elements) pilot project [77]. This project attempted to functionally annotate the 

human genome, by mapping a variety of sequence elements (exons, promoters, 

enhancers, TF binding sites, methylation sites etc.) to 1% ( 30 Mb) of its sequence. A 

computational analyses of "ENCODE-wide" ChIP-chip data (with factors known to 

mark transcription initiation) revealed a surprisingly high proportion (23%) of 

promoters located on the anti-sense strand of previously identified coding transcripts 

[78]. These promoters potentially drive the transcription of anti-sense transcripts. 

 Sense-antisense gene pairs were reported to be co-expressed or inversely 

expressed more frequently than would be expected by chance [79]. Moreover, co-

expressed and inversely expressed sense-antisense pairs display striking conservation 

throughout evolution [74, 79]. Both conservation and coupled sense-antisense 

expression are more prevalent in tail-to-tail NAT pairs, suggesting that such an 

orientation is not only the most abundant, but also more likely to have a regulatory 

function [80]. 

 Lastly antisense genes, especially those which are evolutionary conserved, were 

reported to have particularly short introns in humans, mice and Drosophila [68, 81].  
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It was suggested that, in the case of the antisense genes, the purpose of short introns is 

not to allow a high level of expression or spurious expression, as has been shown for 

other genes [82, 83], but to address the need for a rapid response. This proposition 

should be constrained by the fact that formal math analysis [84] shows that response 

time (defined as the time at which an mRNA reaches half of its steady state level) is 

actually dependent on the rate of degradation and not the rate of production. Naturally 

short introns would affect mRNA production and not degradation. 

 Although the above studies suggest that antisense transcription is tightly regulated 

and evolutionarily conserved, they should be regarded with some caution. The 

observed co-expression of cis-NATs might originate from the known tendency of 

genes in close proximity (even in the same genomic strand) to be co-expressed, e.g. as 

a result of local chromatin structure or shared regulatory elements [85, 86]. It is 

possible that proximal co-expressed genes that were not selected against seem to be 

‘tailored’ by evolution to serve a regulatory purpose. A recent study introduced the 

intriguing concept of “neutral expression” [87]. The authors of this study argue that 

mutations that alter gene expression might not always be sufficiently deleterious to be 

eliminated by purifying selection, and therefore might be fixated in the population by 

random drift. According to this idea, the possibility that some NATs represent cases 

of residual transcription cannot be entirely eliminated.  

1.2.3 Principal mechanisms by which NATs regulate gene expression  

 Well-documented examples point to four major mechanisms by which NATs may 

regulate gene expression [88]: transcriptional interference, RNA masking, double-

stranded RNA (dsRNA)-dependent mechanisms and chromatin remodeling: 

 

(i) Transcriptional interference - The presence of an overlapping transcriptional unit 

might stall sense transcription owing to the collision of two bulky RNA polymerase II 

complexes on opposite strands. This is most apparent in the transcription elongation 

step as has been shown for the yeast gene pair GAL10 and GAL7 [89]. An additional 

support for this collision model is the recent finding that for both human and mouse, 

the expression level of cis-NATs decreases as the length of the overlapping region 

(between sense and antisense transcripts) increases [90]. Furthermore, in Escherichia 

coli , the collision of RNA polymerases was observed by atomic force microscopy 
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[91]. This observation showed that RNA polymerases do not pass each other or 

displace one another, but instead stall against each other. 

 

 (ii) RNA masking - Sense-antisense duplex formation might mask cis elements 

residing in either of the transcripts and hinder processes that require protein-RNA 

interactions such as splicing, mRNA transport, polyadenylation, translation and 

degradation. The best characterized example of this mechanism is the antisense 

transcript for the thyroid hormone receptor gene erbAα, which shifts the balance 

between two splice variants through the masking of a splice site [92]. A more recent 

example is that of the human apoptotic gene FAS and its antisense SAF [93]. Over-

expression of SAF alters the splicing pattern of FAS in a regulated way, suggesting 

that SAF controls the splicing of FAS. On a larger scale, a quantitative analysis of 

genome wide sense-antisense pairs in human and mouse, suggested that the presence 

of an antisense transcript, complementary to an exon-intron border of the sense gene, 

increases the rate of retention of the respective intron [73]. 

 

(iii) dsRNA-dependent mechanisms and RNA interference - There is accumulating 

evidence that antisense transcripts might function through the activation of dsRNA-

dependent mechanisms such as RNA editing and RNA interference (RNAi). Both 

these mechanisms play a role in the nuclear defense strategy against dsRNA. While 

RNA editing, which involves the deamination of  dsRNA adenosines to inosines [94], 

was recently shown to be negligible in sense-antisense duplexes [95],  RNAi is likely 

to be a prominent mechanism. 

 RNAi involves cleavage of dsRNA by the enzyme Dicer into 21-23 nucleotide 

duplexes. These duplexes are further separated into single strands and become part of 

the RNA-induced silencing complex (RISC). RISC mediates their degradation or the 

repression of their translation [96, 97]. Several precedents suggest that sense-antisense 

transcription can induce gene silencing through an RNAi-dependent mechanism; Salt 

tolerance in Arabidopsis is regulated by two small interfering RNAs (siRNAs) 

produced from a pair of overlapping protein-encoding genes [98]; The regulation of 

iron deficiency in cyanobacteria [99] and the maintenance of male fertility in 

Drosophila [100] were both shown to involve dsRNA. The same mechanism could 

apply to other eukaryotic cis-NAT pairs. In fact, 11 Arabidopsis siRNAs have been 

mapped to complementary regions of overlapping transcripts, suggesting that these 
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overlapping transcripts might feed into the RNAi machinery [101]. So far, however, 

there has been no evidence for mammalian antisense transcripts acting through duplex 

formation. 

 

(iv) Antisense involvement in methylation and monoallelic expression -  Non-coding 

antisense transcripts have been reported to induce the methylation and silencing of 

corresponding genes. For example, thalassemia - a form of anemia - is caused 

by antisense-induced DNA methylation (and silencing) of the human hemoglobin 2 

gene [102]. Antisense transcripts are also involved in X-chromosome inactivation 

[103], autosomal imprinting [103] and allelic exclusion in B and T lymphocytes 

[104]. In all these cases, non-coding antisense transcription affects an entire gene 

cluster, rather than merely the overlapping sense transcript [105, 106]. The silencing 

effect is probably exerted through the recruitment of histone-modifying enzymes, 

resulting in chromatin remodeling and transcription silencing.  

 

For additional details and specific examples of each of the described mechanisms, see 

our recently publish ‘Concept Paper’ [107]. 

 

 In section 2.4.2 of the results, we combine the current knowledge regarding the 

different mechanisms of antisense action with the knowledge regarding its own 

transcriptional regulation (regulation of the regulator), and present our hypothesis 

[107],  that the regulation of antisense transcription might be tailored to its mode of 

action. According to this model, an experimentally observed relationship between the 

expression pattern of a NAT and those of its target genes might indicate the regulatory 

mechanism that is in action. 

 

 In section 2.4.1 of the results we challenge the well accepted notion that cis and 

trans encoded NATs represent two separate phenomena; We demonstrate that a single 

antisense transcript may have both cis and trans targets and that the same mRNA may 

potentially be regulated by both cis and trans encoded NATs. This extends the 

definition of NATs, suggesting that they form a putative regulatory network, which 

exhibits many-to-many relations. We further identify properties that are common to 

targets of the same antisense transcript, and hint to the biological processes that may 

be regulated by NATs. 
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2 Results 

2.1 Regulatory motif dictionaries 

 

Aim 

 The aim of the regulatory motif dictionary project was to produce reliable 

reference collections (‘dictionaries’) of transcription factor binding sites (TFBS) 

across a range of eukaryotic species. Such motif collections may serve both for 

studying the properties that distinguish functional binding sites from their surrounding 

DNA sequence, and for conducting higher level analyses of the regulation of gene 

expression. 

 

Major findings and conclusions 

 We developed a methodology that combines genome-wide promoter sequences 

with whole-genome mRNA expression data, in order to create regulatory motif 

datasets that are unbiased by prior knowledge of TFBS. Our method is based on the 

premise that any nucleotide sequence that resides in a promoter of a gene, may 

contribute to the regulation of that gene’s expression. It employs the previously 

described EC score [21, 22] to assess the effect of a promoter sequence motif on the 

expression profile of the corresponding gene. Our dictionary construction method is 

thus unbiased, applicable to different genomes and moreover forms a quantifiable 

connection between binding site sequences and the expression profiles of the genes 

they regulate. Each motif is characterized by its DNA sequence (its ‘syntax’), the set 

of genes that contain it in their promoters, the set of biological conditions in which 

these genes display coherent expression, and their corresponding expression profiles. 

The latter comprise the ‘semantics’ of the motif, namely its likely regulatory function. 

 Applying this methodology (discussed in detail below), we constructed motif 

dictionaries for the yeast S. cerevisiae across 40 different time series expression 

experiments, for the yeast Candida albicans for three experiments of stress response 

and for human across the cell cycle. In a complementary effort carried out by Shai 

Shen-Orr (a former lab member), dictionaries were constructed for the worm  

C. elegans, during embryonic development, using the software package and the 

statistical tools generated here. 

 The human dictionary was constructed mainly to assess the feasibility of our 

method in higher organisms; the C. albicans dictionaries were used to study 
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evolutionary conservation of stress response in yeast, whereas most of the 

comprehensive analyses were carried out in S. cerevisiae; We found that our yeast 

motifs have a extremely good coverage (91%) of a recently published intensive 

experiments-based motif dataset [8] , that they are evolutionary conserved, display a 

high GC content in comparison to their AT rich promoter environment, and tend to 

appear at specific distances from the transcription start site (TSS). Furthermore we 

found that many of these motifs regulate gene sets that share common biological 

functions. These findings both validate the capability of our method to identify true 

motifs and reveal properties that may distinguish binding sites from biologically 

meaningless DNA stretches.   

2.1.1 Yeast (S. cerevisiae) motif dictionaries  

2.1.1.1 Dictionary construction methodology 

 In order to construct the motif dictionaries we integrated whole genome promoter 

sequences of S. cerevisiae with expression patterns of the corresponding genes in 40 

natural and perturbed biological conditions including cell cycle, sporulation, diauxic 

shift and various stress responses. Each biological condition was represented by a 

time series experiment, monitoring yeast whole-genome mRNA levels via Affymetrix 

gene chips or microarrays (see methods 3.1.1.1). All together these experiments 

measure the mRNA levels of over 6,000 S. cerevisiae genes, although an individual 

experiment may contain only a subset of these genes. We assigned promoter 

sequences to 5,642 of the genes for which expression data was available. The 

dictionary methodology attempts to assess the effect of a sequence motif that is 

present in the promoter of a gene on the gene’s expression profile. To quantify this 

effect we used the EC score [21-23]. In short the EC score measures the extent to 

which a set of genes display similar expression profiles at a given set of conditions. 

Formally, the EC score of a set of N genes is defined as the fraction p of gene pairs in 

the set, for which the Euclidean distance between normalized expression profiles falls 

bellow a threshold D, EC=p/[0.5*N(N-1)] [22] (see methods section 3.1.4). The EC 

score can be calculated for any set of genes for which expression data is available. For 

the purpose of motif assessment, we applied it to genes that contain a given motif in 

their promoter, and used the score to test the hypothesis that the motif exerts an effect 

on expression at the examined condition.  
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 We applied two complementary approaches to the task of creating a 

comprehensive motif dictionary; the exhaustive approach and the syntax based 

approach (see section 2.1.1.4). In the exhaustive approach, we systematically scanned 

all k-mers (k ranges from 7-11) that appear in the promoters of S. cerevisiae genes. 

For each such k-mer we hypothesized that the mere existence of this nucleotide 

sequence in the gene’s promoter plays a role in regulating the transcription of the 

gene. We applied the EC score to all sets of genes containing a given k-mer in their 

promoter, and asked whether they are similarly expressed in a variety of experimental 

conditions. We developed a sampling-based approach to assess a p-value to each EC 

score, given the size of the corresponding set of genes. This p-value estimates the 

probability of obtaining the observed or higher EC score by chance [21] (see methods 

section 3.1.4). Further we used false discovery rate (FDR) [108] of 0.1 (allowing 10% 

false positives) to correct for multiple hypotheses. 8,610 sequence motifs appeared 

significant in at least one out of the 40 examined experimental conditions. In the 

syntax based approach, we applied the same procedure (EC score followed by FDR) 

to a set of pre-selected candidate motifs, instead of to all possible k-mers .Motif pre-

selection was based on syntactic rules adapted from the field of linguistics. The 

following sections refer to the exhaustive approach, whereas the syntax based 

approach is described in section 2.1.1.4. 

2.1.1.2 Validation of the dictionary methodology 

 We employed two different tests to assess the soundness of our scoring 

methodology: 1. Given a set of PWMs from the literature, we asked how well do they 

score using our method (2.1.1.2.1) 2. Running our method without any prior 

knowledge, we asked how well do the high scoring motifs cover known motifs 

(2.1.1.2.2). We further examined whether gene sets, which were signified by our 

method as coherently expressed, also share similar biological functions (2.1.1.2.3). 

This served as an additional assurance of their biological relevance. 

2.1.1.2.1 Assessing published motifs using our scoring method  

In order to test whether previously published regulatory motifs score highly using 

our method, we calculated the EC scores of 102 recently published S. cerevisiae 

binding sites [8] (hereafter referred to as the Harbison set) in the 40 different time 

series experiments (ExpressDB [109]). 89/102 (87%) of the Harbison binding sites 
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passed FDR of 0.1 in at least one experimental condition. The Harbison motif set is 

slightly redundant, because it contains several TF families which recognize highly 

similar binding sites. Therefore, when clustering all of Harbison’s binding sites 

according to the similarities among their PWM representations, the 102 sites fall into 

79 distinct clusters (see methods section 3.1.6). The Harbison motifs that scored 

significantly in at least one of the 40 examined conditions belong to 68/79 (86%) of 

these clusters. By calculating the EC scores we were able to assign at least one 

Harbison binding site to 39 out of the 40 examined conditions, providing a functional 

description for these sites. As a control we created 102 random gene sets in sizes 

corresponding to the sets of genes containing each of Harbison’s motifs. Only 15/102 

(~15%) of these control gene sets appeared significant in at least one condition 

(Figure2). This is only slightly above what would be expected by chance when 

applying a false discovery rate of 10%.  
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Figure 2: Re-discovery of the Harbison motif set. Number of significantly scoring Harbison motifs 

(pink) versus a control of random gene sets (cyan). Significance was tested across 40 experimental 

conditions (x axis). Not all conditions require the same amount of regulators, the largest number of 

Harbison’s TFs appear to regulate (i.e. obtain significant EC scores in the corresponding experiments) 

cell cycle, nitrogen depletion, oxidative stress (in response to menadione, a  superoxide-generating 

drug), and hypo-osmotic shock. 
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2.1.1.2.2 Coverage of known motifs by the dictionary k-mers  

 Applying our method to all k-mers (length 7-11) residing in yeast promoters, with 

no prior knowledge, we obtained 8,610 putative binding sites. We compared these 

putative sites to the PWMs of binding sites published in the literature. We used a 

score between 0-100 that denotes how likely a given string is to be generated from a 

given PWM (see methods section 3.1.5). Requiring a match score of 99 between 

dictionary strings and Harbison PWMs, we obtain a coverage of 89/102 of Harbison’s 

motifs (87%), and of 72/79 (91%) of the non redundant set. If we relax the similarity 

requirement to 95, we obtain a coverage of 99/102 (97%) motifs, falling into 77/79 

(97%) clusters (see Table 1). Our coverage of the Harbison set is significantly higher 

than that of a random motif set of the same size (p-value =10^-5). 

 

Comparison 

score cutoff 

Dictionary coverage Coverage of known Unique known 

clusters 

99 1402/8610=16% 89/102=87% 72/79=91% 

98 1528/8610=18% 93/102=91% 75/79=95% 

97 1719/8610=20% 96/102=94% 75/79=95% 

95 2198/8610=25% 99/102=97% 77/79=97% 

 
Table 1:  Coverage of the Harbison motif set by our dictionary strings. A scoring  method was devised 

to assess how likely a given string is to be generated from a given PWM. The score is on a scale of 0 to 

100 (see methods section 3.1.5). We computed this score for all 8,610 dictionary strings over the 102 

Harbison PWMs. The coverage of Harbison’s motif set was assessed for several different score cutoffs. 

Note that one dictionary string may match more than one Harbison PWM, because of redundancy in 

Harbison’s dataset. There are two very long (17 and 18 positions) gapped motif in Harbison’s set, for 

which we have no match, because the dictionary only covers motifs of length 7-11.  

 

2.1.1.2.3 Functional coherence (FC) analysis  

For further validation of the regulatory potential of our significant motifs, we 

examined whether the sets of genes defined by each of the 8,610 dictionary motifs 

share common biological functions. Such common functionality may indicate a need 

for common regulation. To assess common functionality, we employed the Functional 

Coherence (FC) score [110], which uses similarity in Gene Ontology (GO) 

annotations [111] to quantify the overall functional similarity among a set of genes, in 

a manner similar to the EC score (see methods section 3.1.7). A set of genes is 

functionally coherent if its genes are significantly closer to each other in function than 

expected by chance given the size of the set. 1,440 (17%) out of the 8,610 motifs that 

were selected based on significant EC scores, also scored significantly in the 

functional coherence test, using similarity in GO biological process annotations. For 
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comparison, among 1,000 randomly selected strings from a control set of lowly 

scoring k-mers (see next section for a full description of the control set), only 3 

(0.3%) obtained a significant FC score. This is an additional reassurance that many of 

our discovered motifs are biologically relevant. FC and EC can be seen as two 

complementary approaches. A certain overlap is expected between motifs that score 

highly in EC and those that score highly in FC; Genes that participate in similar 

biological processes (significant FC) are in many cases (although not always) co-

regulated. Genes that are co-regulated (significant EC) are needed in the cell at the 

same time and thus are likely to belong to the same biological process. However co-

expressed genes may also belong to several processes that happen to take place in the 

cell at the same time.  

2.1.1.3 Distinct characteristics of dictionary motifs 

 Following the validations described above, we refer to our significant motifs as 

likely cis-regulatory elements and use them to investigate characteristics that may be 

of relevance to their biological function. For this purpose we compiled a control set of 

190,211 low scoring k-mers, that were insignificant in all 40 examined biological 

conditions, and in addition scored especially low (p-value > 0.8, gene set size>8 ) in 

at least one of these conditions. We considered various features that may be important 

for the function of a regulatory motif and for each such feature, defined a quantitative 

measure, and tested whether it can significantly differentiate between our highly 

scoring motifs (included in the dictionary) and the control set.  

 Compared to the control set our significant motifs were found to have high GC 

content (relative to the yeast AT rich genomic background) (Figure 4), to have high 

information content (Figure 6), to appear in higher copy numbers (Figure 8) and to 

display a preference to distinct positions relative to the TSS in different promoters 

(positional bias) (Figure 7). Additionally our motifs were found to be evolutionary 

conserved in the promoters of four closely related Saccharomyces species (Figure 9). 

Some of these properties are known to characterize functional binding sites 

(positional bias [23, 112], multiplicity of sites [21, 113], evolutionary conservation 

[13, 14]). Below we discuss these analyses in further detail. 
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2.1.1.3.1 Motif length 

 The distribution of string lengths differs significantly (ranksum test: P<10-300) 

between dictionary motifs and low scoring motifs. The dictionary motifs  peak at 

length 8, the low scoring at lengths 9 and 10, whereas the entire set of all k-mers of 

lengths 7-11 peaks at length 11 nucleotides. For comparison we looked at the 

distribution of PWM width (number of columns) in the recently published Harbison 

motif set. The mean PWM width is slightly over 9 positions, but this set includes very 

long PWMs representing gapped motifs which shift the mean. According to the 

ranksum test the length distribution of the Harbison motifs can not be distinguished 

from the length distribution of our highly scoring motifs (P= 0.4976), however it is 

distinguishable from the length distribution of the control motifs ( P=0.0297). 
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Figure 3: A. Length distribution of high scoring k-mers versus low scoring k-mers. B. Length 

distribution of the Harbison motif set. This set includes some PWMs that represent gapped motifs and 

are thus much longer than our un gapped motifs. 

 

2.1.1.3.2 Motif GC content 

 The nucleotide composition of a motif may be crucial for its function, for instance 

by allowing it to be readily distinguished from its surrounding promoter sequence. 

The distribution of normalized GC content (number of GCs/motif length) of the high 

scoring motifs differs significantly (P<10-300) from that of the low scoring motifs, as 

seen in Figure 4A. The distribution of the low scoring k-mers peaks close to the mean 

background promoter GC content (36%), whereas the high scoring motifs have a GC 

content distribution that is comparable to that of the Harbison motif set (ranksum test: 
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P=0.7445) (Figure 4B). This may allow these motifs to be detectable by the TF on the 

background of the AT rich (38% GC, 62%AT) yeast genome. 
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Figure 4: A. Distributions of GC content for high scoring motifs and for 50 random sets of control 

motifs. The distributions differ significantly (P<10-300). The control motifs peak very close to the 

background promoter GC content (0.36), whereas the high scoring motifs are more GC rich  

B. Distribution of GC content for Harbison motifs. The normalized GC content of the high scoring 

motifs is similar to that of Harbison’s set, and significantly higher than that of the control motifs. 

2.1.1.3.3 Motif GC contrast 

 To further assess whether high scoring motifs ‘stand out’ from their surroundings , 

we defined a measure termed GC contrast, which gauges the difference in nucleotide 

composition between the motif and the promoter sequence it is embedded within. We 

defined GC contrast as the absolute difference between the GC content of a motif and 

the GC content of its surrounding promoter, averaged over all promoters in which an 

instance of this motif appears. The absolute value of the difference was used, because 

we were primarily interested in whether or not the motif is distinguishable from its 

background. High scoring motifs have a significantly (ranksum P<10-53 ) higher GC 

contrast than the low scoring motifs as can be seen in Figure 5A (mean-0.166, 

median-0.135 for high scoring, versus mean 0.127 and median 0.103 for the low 

scoring). Yet we suspected that the high GC contrast may be a consequence of the GC 

content signal, since our motifs are GC rich and the promoters are AT rich, the GC 

contrast may reflect just that. To test this, we plotted GC contrast versus GC content 

for the dictionary motifs and for the control-set motifs. It is apparent from these plots 

(Figure 5B) that indeed most of the GC contrast signal stems from the fact that the 

control set has more motifs with a low GC content (below background) . Given a 

similar GC content, dictionary motifs and control motifs will have the same average 

contrast with their surrounding (Figure 4B). 
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Figure 5: A. Distributions of GC contrast for high scoring motifs and for 30 random sets of control 

motifs.  The distributions differ significantly (P<10-53).  B. The relation between GC contrast and GC 

content is  similar for both high scoring motifs and control set motifs. This indicates that the 

differences in the distributions of GC contrast are a consequence of the GC signal. 

 

2.1.1.3.4 Motif Entropy 

 We defined a measure termed motif Entropy to quantify how evenly are the four 

nucleotides distributed within a candidate motif. Namely is a functional motif likely 

to be composed of an equal amount of all 4 nucleotides or mainly of one or two of the 

nucleotides. The motif Entropy is defined as follows: 

 




},,,{
))(2log*(

TGCAi
qiqiEntropy  

 

Where i can be any of the four nucleotides and qi is the frequency of this nucleotide in 

the motif. For instance, the sequence ‘AAAAAAAAAAAA’  will have an entropy of 

0, ‘AAAAAACCCCCC’ an entropy of 1,   ‘AAAACCCCGGG’ an entropy of 1.585 

and ‘AAACCCGGGTTT’ an entropy of 2. High scoring motifs that comprise the EC 

dictionary, have a significantly (P<10-22) higher entropy than low scoring motifs 

(Figure 6A), which is expected because they should have a high information content. 

However the number of nucleotides a motif is composed of is similar for good motifs 

and for lowly scoring ones. (Figure 6B). This means that even if a control motif is 

composed of all 4 nucleotides, the distribution is not even, but instead one or perhaps 

two of the nucleotides is the most prevalent. A simple count of the number of 
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different nucleotides within a motif is thus not enough to differentiate between 

meaningful and nonsense motifs, a more elaborate score such as entropy is needed. 
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Figure 6: A: Distributions of entropy for high scoring motifs and for 50 random sets of control motifs. 

The distributions differ significantly (P<10-22) B: distribution of the number of different nucleotides 

comprising high versus low scoring motifs (same distributions) 

 

2.1.1.3.5 Motif positional bias  

 A majority of the functional motifs are thought to be located at a preferable 

distance window from the TSS. This positional bias is most likely needed for their 

function, and specifically for their cooperation with nearby binding sites. To quantify 

the positional bias of our motifs, we gathered, for each k-mer, the positions (relative 

to the TSS) of all its genome-wide promoter instances. These positions were sorted 

into 40 bp wide bins. A positional bias p-value was calculated using a binomial model 

for the most highly populated interval adapted from Hughes et al. [112] (see methods 

section 3.1.8). The distributions of positional bias p-values differ significantly 

(ranksum test - P<10-300) between the significant motif set and the control set (Figure 

7A). Although there are k-mers from the control set which display a significant 

positional bias, their preferred positions differ from those preferred by the high 

scoring motifs (Figure 7B); The most biased motifs among the high scoring set are 

located mostly at 80-160 nucleotides upstream of the TSS. The first 80 nucleotides are 

almost devoid of high scoring motifs, probably because of constraints of the basal 

transcriptional machinery. This is inline with the findings of Harbison et al. [8], which 

reported very few binding sites in the region 100 bp upstream of the TSS and a sharp 

peak in binding site number between 100-200 bp. The most biased motifs among the 

control set are located anywhere between 0 and 240 nucleotides upstream of the TSS, 

with the majority at a distance of 0-40.  
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Figure 7: Positional bias A. The distributions of positional bias p-values differ significantly between 

high (blue) and low (red) scoring motifs. A greater fraction of the higher scoring motifs, appear to have 

a significant positional bias. The best p-value of the high scoring motifs is 1.08*e-066, while the best 

p-value for the low scoring motifs is 5.97*e-03. B. The preferred positions are also significantly 

different between the two sets of motifs  (ranksum test – P=5.25*10-4). Positionally biased dictionary 

motifs (left) are primarily located within 80-160 nucleotides from the TSS, whereas the low scoring 

motifs (right) can be located throughout the first 240 nucleotides. 

 

2.1.1.3.6 Motif copy number 

 Many functional motifs are present in multiple copy numbers in the promoters of 

the genes they regulate. We thus observed the distributions of motif copy number per 

promoter among high scoring motifs and a control set of low scoring ones. The 

distributions of the maximal number of occurrences of each motif per promoter are 

significantly different (ranksum test - P<10-135). High scoring motifs tend to appear in 

a larger copy number, this is in line with the common belief that in many cases the 

same TF binds to multiple binding sites in the same promoter [21, 114]. 29% 

(2523/8610) of the high scoring motifs appear more than once in a promoter, where 

the maximal number of occurrences is 27. Only 14% (1171/8610) of the control set 

motifs appear more than once in a promoter, where the maximal number of 

occurrences is 11 (see Figure 8). 
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Figure 8: Motif copy number A. The distributions of the mean number of occurrences of each motif per 

promoter are significantly different (ranksum test - P<10-130) for high scoring motifs (blue) versus low 

scoring motifs (red) . B. Distributions of the maximum number of occurrences of each motif  per 

promoter, high scoring (blue) versus low scoring (red) motifs (ranksum test - P<10-135). High scoring 

motifs tend to appear in a larger copy number.  

 

2.1.1.3.7 Motif evolutionary conservation 

 Many functional motifs are conserved throughout evolution, thus the evolutionary 

conservation is another criterion that may differentiate high scoring motifs from 

biologically meaningless oligomers. Evolutionary conservation across four close 

Saccharomyces species: S. cerevisiae, S. mikate, S. kudriazevii and S. bayanus [13].  

was assessed as follows: For each motif, we counted  the percentage of fully 

conserved (in all aligned species) positions in each of its instances, and averaged over 

all motif instances. Our dictionary motifs showed high evolutionary conservation 

when compared to a control set of randomized k-mers (randomization was used in 

order to preserve the same GC content). In fact the motifs in our set, which scored 

significantly in the control of progression through cell cycle, were as evolutionary 

conserved as a set of motifs that were defined solely based on phylogenetic 

footprinting [14] (Figure 9). This is striking as conservation was not taken into 

account in our motif scoring methodology. Moreover it turned out that there is a 

positive correlation between the normalized EC score (EC score*gene set size) of a 

motif and its degree of conservation (Figure 10).  

 When expanding the conservation analysis to the complete set of high scoring 

motifs, and not only to those regulating cell cycle (see methods section 3.1.9), only 

17.6% of our dictionary motifs had a conservation rate higher than the 95th percentile 

of the control set distribution. This may be partly explained by species specific motifs 



 31 

that are likely to be present in every genome; About 40% of human functional binding 

sites are estimated to be non functional in rodents [19]. A similar proportion of 

species specific sites has been observed in yeast [20]. Furthermore we used quite a 

strict conservation criteria, requiring a position to be maintained in all 4 species in 

order to be regarded as conserved. The fact that evolutionary conservation appears to 

be significant in cell cycle motifs, but not in all high scoring motifs, may suggest 

especially higher conservation across these species in the context of cell cycle 

regulation. 
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Figure 9: Evolutionary conservation of highly scoring k-mers. Evolutionary conservation in four 

Saccharomyces species [13] was calculated for the highly scoring S. cerevisiae cell cycle k-mers 

(lengths 7-11) and compared with the conservation of two sets of motifs defined by yeast phylogenetic 

footprinting [13, 14]. A set of the randomized k-mers was used as a control (to preserve the same GC 

content). The highly scoring k-mers are conserved comparably to one set of published motifs [14] and 

appear to be more conserved than the second set [13]. The randomized k-mers show an evolutionary 

conservation that is similar to that of the background promoters (~36%). For each putative motif, 

evolutionary conservation was calculated by finding the percentage of fully conserved (in all aligned 

species) positions in each motif instance, and averaging over all motif instances. The background 

promoter conservation was calculated in a similar manner by counting the number of fully conserved 

positions in each promoter and averaging over all promoters. 
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Figure 10: High EC score implies motif evolutionary conservation. Evolutionary conservation in four 

Saccharomyces species [13] was calculated for the highly scoring S. cerevisiae cell cycle k-mers 

(lengths 7-11) and plotted against their normalized EC scores (EC score*gene set size). It is clear from 

the plot that putative motifs with a higher EC score tend to be more evolutionary conserved. Putative 

motifs that are similar in sequence to known motifs (CompareAce score>0.8) are marked in red, 

putative motifs for which there is a known motif with a lower sequence similarity (CompareAce score 

>0.7) are marked in green. For these motifs our scoring methodology suggests a refined sequence. 

Potentially novel motifs are marked in blue 

2.1.1.4 Motif Extraction Algorithm (MEX) - a syntax based approach  

 The exhaustive k-mer enumeration has some major limitations: First it is 

extremely expensive computationally and thus not readily scalable to larger genomes. 

Second - the binding sites discovered are limited in length, the number of possible k-

mers increases exponentially with k, so that scanning sequences longer than 11 

nucleotides (4^11 possibilities) is not practical. Thirdly – because no additional 

information is integrated to limit the search space, multiple false hypotheses are 

generated and in order to correct for this, a stringent p-value threshold is set by the 

FDR procedure. 

 To compensate for these limitations, a complementary approach was applied in 

collaboration with the research groups of Prof. David Horn and Prof. Eytan Ruppin 

from Tel Aviv university [29]. They applied a modification of their unsupervised 

pattern recognition algorithm [28] to the promoter sequences of S. cerevisiae. This 

algorithm was originally designed to extract significant patterns from natural-

language corpora, and was adapted to fit the biological task of sequence motif 

extraction (hence the name Motif Extraction Algorithm – MEX). MEX is based on a 

statistical model that identifies consecutive chains of interdependencies between 
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adjacent nucleotide positions. It can thus successfully identify motifs as statistically 

significant on a genome-wide scale, even without significant over-representation [29] 

(see methods section 3.1.3). The algorithm readily detects the motif boundaries, as the 

positions where the series of highly probable transitions begins and terminates. For 

instance in the English language many words end with ‘ing’, thus observing an ‘in’ at 

the end of the word, suggests a ‘g’ will follow. After an ‘ing’, any letter of the 

alphabet can occur (marking the beginning of the next word), and thus the series of 

high probability transitions is truncated. 

 Applying MEX to the S. cerevisiae promoters produced a set of 8,498 sequence 

hypotheses. This set despite not being exhaustive has the advantages of (i) no 

sequence length limitation and (ii) an internal dependency between motif positions 

that may prove to be biologically significant. Dependencies between regulatory motif 

positions are known to occur [115, 116], and are not accounted for by the commonly 

used PWM representation. MEX has the advantage of capturing such inherent 

dependencies. 

2.1.1.4.1 Evaluating the success of MEX in extracting biological significant motifs 

 To assess the biological functionality of the motifs extracted by MEX, we 

computed the EC scores of the gene sets containing each motif in the same 40 

experimental conditions. 1,873/8,498 (22 %) of MEX’s predictions appeared 

significant in at least one condition (FDR of 0.1). For comparison – when applying 

the exhaustive approach – we scanned 1,510,057 hypotheses, 8,610 of which scored 

significantly (0.6%). In other words we see a striking enhancement in the probability 

of a k-mer to pass an EC test if it was pre-selected by MEX as a motif that obeys 

some grammar. 

 There was an overlap of 849 motifs between the motif sets obtained by the two 

approaches. 1024 (55%) of MEX’s motifs were not discovered by the exhaustive 

approach (Figure 11A). These are mostly weaker motifs, that could not be identified 

within a very noisy background. MEX provides an enrichment in signal which relaxes 

the p-value thresholds set by FDR, allowing for weaker motifs to be detected as 

significant. In addition, MEX extracted sequence motifs of length up to 19 

nucleotides. 57 of the unique MEX motifs were longer than 11 bases, and thus were 

not examined by the exhaustive approach (limited to lengths 7-11) (Figure 11B). 

 Motifs that were detected by the exhaustive approach, but not by MEX most likely 



 34 

do not obey the inherent position dependencies, selected for by MEX (Figure 11C). It 

has been reported that some, but not all functional TFBS display such position 

dependencies [117]. The relative success of MEX in identifying high scoring motifs 

suggests however that there are some syntactic rules that characterize functional 

binding sites. This thought is intriguing because it implies that we may be able to 

identify at least some of the TF binding sites based on their sequence context alone. 
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Figure 11: Comparison between motif sets obtained by the exhaustive approach versus the syntax 

based approach (MEX). A. Overlap between motif sets obtained by the exhaustive dictionary method 

and by MEX. B. Length distribution of MEX motifs that are covered by the exhaustive search versus 

novel MEX motifs. MEX has a clear advantage in identifying longer motifs, for which the exhaustive 

search is computationally too demanding. There are also motifs in the length range of 7-11 which 

scored significantly in the MEX based dictionary, and not in the exhaustive dictionary. These motifs 

are weaker and when embedded in a very noisy background (of all possible k-mers), their score is not 

high enough to pass the threshold set by FDR.C. Motifs in which there is no clear dependency between 

positions will be missed by MEX. MEX learns simple syntax rules from the promoter sequences and 

searches for motifs that obey these rules. 

 

2.1.1.4.2 Analysis of biologically significant motifs extracted by MEX  

 The most significant set of motifs extracted by MEX was further divided into 

subsets, based on two criteria – the motif’s DNA sequence and the biological 

conditions in which each motif appears to operate (as determined by significant 

coherence of its target genes in these conditions). This was done by Liat Segal, a joint 

student of Prof. David Horn and Prof. Eytan Ruppin, our collaborators in Tel Aviv 

University [29]. Clustering a selected set of 694 motifs (which have both passed FDR 

of 0.1 and were assigned an EC score with a p-value of 0.001 or lower in at least one 
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of the examined biological conditions) yielded 20 motif clusters, 14 of which 

correspond to known PWMs. Interestingly some of these clusters are very similar in 

sequence (correspond to the same known PWM), yet appear to govern a different set 

of biological conditions. These motif clusters may represent cases in which two TFs 

serving distinct biological functions, recognize seemingly identical consensus motifs 

[118]. Alternatively, such clusters may represent binding sites of the same TF, which 

yield different regulatory outputs due to slight variations in binding site sequence. 

This may be a result of different affinities of the TF to the different sites. There are 

also reported cases in which binding site sequence variations cause the bound TF to 

adopt different conformations, directing interactions with specific cofactors and 

resulting in different expression responses. Such TFs have been termed alosteric 

regulators [119]. 

 One example of such a case is given in four motif clusters that correspond to the 

recognition sites of two related yeast TF complexes. Both complexes are known to 

regulate the G1/S transition during cell cycle; The first complex MBF (MCB-binding 

factor) consists of two protein components Mbp1 and Swi6 and recognizes a site 

called MCB (‘ACGCGT’). The second complex SBF consists of Swi4 and swi6 and 

binds to a site called SCB (‘C(A/G)CGAAA‘). The four motif clusters which 

correspond to MCB and SCB are shown in Figure 12. This figure displays both the 

motif sequences contained within each cluster, and the biological conditions in which 

these motifs govern coherent expression; Cluster M1 contains sequence motifs whose 

common core ‘ACGCGA’ corresponds to the known SCB consensus site. Cluster M2 

contains motifs whose core sequence ‘ACGCGT’ is the known MCB consensus. Both 

motif clusters appear to govern coherent expression through cell cycle and in response 

to various environmental stresses The M1 and M2 clusters provide support for a 

known difference in binding preferences between MBF and SBF, and proof of 

concept for our ability to distinguish between two highly similar motifs. The motifs 

belonging to clusters M3 and M4 contain core sequences, which are slight variations 

on these known sites. Interestingly these two motif clusters govern a distinct set of 

biological conditions: M3 governs primarily stress responses and M4 – cell cycle. For 

these two motif clusters, the change in biological function may be attributed to 

specific nucleotide changes in the motif core.  

 Because both MCB and SCB are bound by protein complexes, one may 

hypothesize that the differences in the biological conditions regulated by the different 
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clusters may result from different co-factors interacting with the DNA-binding protein 

in each case. Additional motif clusters are described in our recent paper presented in 

ISMB 2007 [29].  

 

Figure 12: Four clusters of MEX extracted sequence motifs correspond to known MCB and SCB 

binding sites. For each motif cluster, a matrix of motif by condition, displays the significance (in terms 

of p-value) of the EC score of each sequence motif at each biological condition. Significant p-values 

are represented by dark colors, with a grayscale proportional to -log(p) (white implies p>0.001). The 

bars indicate the percentage of sequence motifs that had a significant EC score in each condition. M1- 

corresponds to SCB, M2 to MCB, M3 and M4 – related sequences that govern distinct biological 

conditions. 
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2.1.2 Candida albicans stress response dictionaries 

 In order to conduct comparative genomics of binding sites in a related species, we 

chose to construct motif dictionaries for the yeast Candida albicans. The estimated 

evolutionary distance between S. cerevisiae and C. albicans  is between 140-800 

million years (MY). C. albicans  is a human pathogen, it has the ability to switch 

between three morphologies; yeast, pseudo-hyphae and true hyphae, which probably 

contributes to its virulence. C. albicans  has a diploid genome consisting of ~6,358 

short open reading frames (ORFs), the average ORF is of 1,439 bp, and only 217 

(3.4%) ORFs contain introns [120].  

 We constructed exhaustive motif dictionaries (k=7-11) for C. albicans  in three 

stress response experiments  Heat Shock, Osmotic Shock and Oxidative stress [121] 

(see methods section 3.1.1.3). The availability of the same stress conditions in both C. 

albicans and S. cerevisiae allowed us to gain insight into the common features of 

regulation in both organisms. Our exhaustive scoring of all possible k-mers revealed 

the following picture: The majority of k-mers appear non-functional in both species, 

some k-mers score significantly in S. cerevisiae, yet seem to be non-functional in C. 

albicans – these represent S. cerevisiae specific motifs, others score highly in C. 

albicans  yet seem to be non functional in S. cerevisiae – representing C. albicans 

specific motifs. There is also a group of k-mers that score significantly in both 

species, and thus compose the core of the evolutionary conserved regulation. Figure 

13 illustrates this division for all 8-mers in heat shock.  

 We chose to focus on the motifs that score highly in both organisms. We adapted 

the common notion of orthology, so that it will cover three levels:  (i) Orthology on 

the motif level – namely the existence of the same motif in the sets of significantly 

high scoring motifs of both organisms. (ii) Orthology on the expression level, namely 

cases in which the shared regulatory motif brings about the same expression behavior 

in the same condition in the two species. (iii) Orthology on the gene set level, namely 

cases in which the sets of genes regulated by the shared motif in the two species are 

enriched with orthologous gene pairs. 

 On the first level, of the motif itself: The C. albicans osmotic shock dictionary 

contains 27 single strings that are roughly clustered into three major motifs (Figure 

14). The clustering is based both on the motif sequence and on the expression profiles 

of the downstream genes. Only two of these motif clusters have a counterpart in S. 
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cerevisiae (PAC and RRPE). The same picture is true for the heat shock (85 motifs) 

and oxidative stress (13 motifs) dictionaries. In each of these experiments the motifs 

are clustered into three major regulators, two of which have a corresponding cluster in 

S. cerevisiae. We thus estimate that about 33% of C. albicans heat shock regulators 

are species specific, while the rest are common to different yeast species. PAC and 

RRPE – two well known regulators of ribosomal RNA (rRNA) processing [23], 

appear significant in stress response in both C. albicans and S. cerevisiae. We 

conducted a detailed study of the three levels of orthology for the PAC motif. The 

consensus sequence of PAC is: (A/T/C)(G/T/C)CTCATC(G/T/A)(C/A/T). Sequences 

corresponding to this consensus score highly in both organisms. PAC is known to 

regulate mostly the transcription of rRNA and of rRNA processing proteins. In 

response to stress it shuts down the expression of its targets causing a general halt in 

protein synthesis. As can be seen in Figure 15, both S. cerevisiae  genes that contain a 

PAC binding site in their promoters and C. albicans genes that contain a PAC site in 

their promoter are down regulated as an initial response to stress. Down regulation 

occurs within the first 10 minutes following heat shock. We took all the C. albicans 

genes in the main PAC responding cluster (Figure 15) and compared them to the 

genes in the corresponding S. cerevisiae cluster. 70% of the Candida PAC regulated 

genes have a reciprocal-best-blast S. cerevisiae ortholog, that is also regulated by (the 

S. cerevisiae) PAC, Namely orthology is observed here on all three levels: The same 

motif governs the same response in the same set of genes. 
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Figure 13: A. Comparison of the contribution of the same 8-mer to the control of expression in 

response to heat shock in two diverged yeast species. All 8-mers were scored in both S. cerevisiae and 

C. albicans. The score of each 8-mer (-log p-value) in C. albicans was plotted against its score in S. 

cerevisiae. Three types of 8-mers are marked in red circles: Candida specific, S. cerevisiae specific and 

evolutionary conserved. B. Zooming in on the evolutionary conserved motifs: PAC and RRPE – two 
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well known regulators of rRNA processing, appear significant in stress  response in both yeast species 

[23]. 
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Figure 14: Semantic description of the C. albicans osmotic stress dictionary. Each line represents the 

mean expression profiles of all the genes regulated by one motif. Three main expression profiles are 

dictated by the motifs – two have a corresponding regulator in S. cerevisiae, and one appears to be C. 

albicans specific. 
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Figure 15: Expression of PAC regulated genes following heat shock. Most genes (main cluster) 

containing PAC in their promoters are down regulated as an initial response to stress. Down regulation 

occurs within the first 10 minutes following heat shock in both organisms. Among the genes in the 

principal response cluster, 70% of the Candida PAC regulated genes have a reciprocal-best-blast S. 

cerevisiae ortholog. 
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2.1.3 Human cell cycle dictionary 

 To assess feasibility of our method in higher organisms, we constructed 

dictionaries for three cell cycle experiments in human HeLa cells (differing in the cell 

cycle synchronizations strategy) [122]. Although none of the motifs passed our FDR 

requirement, a set of 90 motifs scored highly (p-value < 0.05) in all three experiments. 

Therefore we regarded this set as the human cell cycle dictionary. This set 

corresponds to 46 known TRANSFAC [123] motifs, some of which are known as cell 

cycle regulators (for instance E2F,EGR, NFY). The majority of the motifs in this set 

govern a very tight regulation of the G2->M checkpoint, as illustrated in Figure 16. 
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Figure 16: Each line represents the mean expression profiles of all the genes regulated by one motif. A 

very tight regulation of the G2->M transition is observed. A complete human cell-cycle is 14-16 hours. 
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2.2 Functional Characterization of Binding Site Variations 

Aim 

 Because TFs typically bind to short degenerate sequences, highly similar sites 

within the same genome are in some cases recognized by the same TF, whereas in 

others serve as targets for distinct TFs. This is also observed in the genomes of related 

species, where slight changes in binding site sequence, occurring throughout 

evolution, may either maintain the specificity of the site to the original TF or 

alternatively lead to its loss or create a site targeted by a different TF [20, 38]. The 

desire to distinguish between ‘neutral’ binding site variations, which do not change 

the recognition range of the site, and ‘functional’ variations, which may affect gene 

expression by altering protein-DNA interactions, lays at the heart of this work. Such a 

distinction may allow the prediction of regulatory site variations, which have the 

potential to cause diseases through altering gene expression. 

 

Major findings and conclusions 

 An analysis of the yeast binding site dictionaries (described in section 2.1.1) 

revealed that binding sites with similar syntax may yield different expression patterns 

of the regulated genes, while binding sites with different syntax may dictate similar 

expression patterns.  

 We have developed computational measures to estimate the functional 

consequence of substituting a single position within a binding site. Applying these 

measures to binding sites of known TFs we were able to make predictions that were in 

line with published experimental evidence and with structural data on DNA-protein 

interactions. This suggests that our methods could complement and in some cases 

replace time consuming mutation experiments. We further accumulated statistics from 

multiple substitutions across various binding sites in an attempt to deduce general 

properties that characterize nucleotide substitutions that are more likely to alter 

expression. We found that in the yeast genome substitutions that abolish a G or a C 

tend to have a more severe outcome than substitutions that abolish an A or a T. This 

may be specific to the yeast genome which has a low GC content, and thus G and C 

may be important for specificity. We found additional factors that are correlated with 

the severity of a substitution, such as the Information Content (IC) of the substituted 

position. These factors can be further integrated to make trustful predictions. 
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 The present work sets the foundations for obtaining a larger goal: predicting the 

phenotypic effects of regulatory motif variations within human promoters. Such 

predictions will facilitate the prioritization of human SNPs residing within TFBS, 

according to their disease-causing potential.  

2.2.1 Exploiting the yeast motif dictionaries  to predict the outcome of a 

binding site substitution  

2.2.1.1 Quantitative measures for the severity of a substitution 

 In the process of producing the motif dictionaries, we assigned EC scores, 

corresponding p-values and likely expression effects to all k-mers residing in yeast 

promoters, regardless of whether they were ultimately included in the dictionary. This 

provided a unique source of information for addressing our research question; By 

comparing the EC scores and the induced expression profiles of k-mers differing in a 

single position we could predict the outcome of a substitution that transforms one k-

mer into the other. Three main scenarios were observed (i) Two k-mers differing at a 

single position both belong to the dictionary (passed FDR) and regulate genes with a 

similar expression profile. This implies that the k-mers are recognized by the same 

TF, and a substitution from one to the other is thus expected to have a very mild effect 

(Figure 18, green arrows). (ii) The two k-mers belong to the dictionary but regulate 

genes with a different expression profile. This may imply that they are recognized by 

different TFs, thus a substitution from one k-mer to the other is predicted to cause 

binding site switching (Figure 18, blue arrows). (iii) One k-mer belongs to the 

dictionary whereas the other did not pass the FDR constraint. This implies that 

substituting the former to the latter may result in binding site loss without acquisition 

of a new site (Figure 18 red arrows).   

 We devised three quantitative measures in order to compare the regulatory 

functions of two k-mers: (1) ΔEC – the difference in EC scores between the set of 

genes containing k-mer a in their promoters and the set of genes containing k-mer b in 

their promoters. (2) ΔPV – the difference in the logarithm of p-values assigned to the 

EC scores of the two gene sets (3) Distance in the mean expression profiles of the two 

gene sets across a given time series experiment. Each k-mer is represented by the 

mean expression profile of all genes containing it in their promoters (methods section 

3.1.2.2). We measure the distance between the vectors representing the mean 
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expression profiles of the two gene sets (calculated as 1-corelation coefficient of the 

two vectors). 

2.2.1.2 The ‘motif landscape analysis’ tool 

We have developed a computational tool termed ‘motif landscape analysis’ [21] 

that employs our comprehensive motif dataset in order to systematically predict the 

outcome of all possible single nucleotide substitutions within a given motif. For a 

motif of length L this tool examines all 3*L k-mers that are obtained by substituting 

the motif at each single position. For each such k-mer it computes the three described 

measures ΔEC, ΔPV and distance in expression profiles between genes containing it 

in their promoters and genes containing the consensus motif. The results are 

graphically displayed (Figure 18 right panel). 

Applying this tool to the consensus of the yeast sporulation factor Ndt80 (Figure 

18 right panel) using the S. cerevisiae sporulation expression data, predicted that two 

out of the three possible substitutions in the second position will not affect expression 

whereas an A->G substitution at the same position will result in an effect that is not 

severe (see Figure 18 legend for details). When averaging over all possible single 

nucleotide substitutions, the second position appears to be the most tolerant towards 

substitutions (mean ΔEC 0.089, mean ΔPV 0.9677, mean expression distance 0.0358) 

and the seventh position - the most sensitive (mean ΔEC 0.3381, mean ΔPV 4.1784 , 

mean expression distance 0.7715) (Figure 19). One possible reason for such a marked 

difference between the tolerance of different positions within the same motif to 

substitutions may be that the binding transcription factor forms different contacts with 

the DNA at each of the positions. Particularly, we may expect the positions that form 

tight contact to be less permissive to substitutions. Indeed, our results are in good 

agreement with the structural data of Ndt80 bound to its DNA target [124]; the second 

‘permissive’ motif position is the only position which does not form a direct contact 

with the protein (Figure 17). But do these differences affect TF function? 

Reassuringly, these results are also supported by recently published in vivo reporter 

expression experiments and in vitro binding essays of Ndt80 mutants [125]. This 

experiment represent the 'wet' analog to our computational experiment – each of the 

nucleotide positions in Ndt80 was replaced with all possible 3 alternatives. These 

results too showed that the second position is the most permissive to substitutions, 

and that, as predicted by us, G is the only nucleotide that when placed at this position 
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weakens binding affinity and reduces expression level of the reporter gene [125]. This 

implies that our method can complement and predict the outcome of time consuming 

mutation experiments.   

 

 

 

Figure 17: Schematic representation of Ndt80 bound to DNA [124].  The consensus binding site 

positions are highlighted in light blue. Protein residues appear as colored ellipses. The second position, 

which was predicted by our method to be the most permissive, does not form a direct contact with the 

protein. 
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1-CC -EC score1-CC -EC score1-CC -EC score
 

 

Figure 18: Possible outcomes of binding site substitutions: Left panel a cartoon depicting possible 

effects of mutations in regulatory motifs. Points represent promoter elements and discs represent 

transcription factor recognition ranges. Points that are included within the disc of a given TF represent 

promoter elements that are bound by the TF. Arrows illustrate the result of single nucleotide 

substitutions within a promoter element. Such a substitution, can cause binding site loss (red arrows), a 

change in affinity to the same TF (green arrows), or binding site switching - creation of a binding site 

with higher affinity to a different TF (blue arrows). The right panel illustrates the detection of the same 

outcomes using our motif landscape analysis tool (as described in detail in [21]). This display captures 

the effects of single nucleotide substitutions of a given motif on the expression profiles of the 

downstream genes. The analyzed motif is the yeast Ndt80 sporulation factor (wild type motif marked in 

red). The dendrogram on the left part of the display shows the similarity in mean expression profiles 

between gene sets baring variations of the motif in their promoters. The right side of the display shows 

the similarity within sets of genes that contain the same motif variation in their promoters, as measured 

by the EC score. The numbers in parentheses correspond to the gene set sizes and the numbers next to 

them to p-values on the EC scores. The middle section displays the sequence of the motif variation 

studied in the corresponding row (with a ‘-‘ indicating same nucleotide as the wild type motif). A 

substitution, that is in the recognition range of the same TF, is expected to maintain a high EC score 

and a similar expression profile (green arrow), A substitution that causes binding site loss, is expected 

to be recognized by both loss of coherence and a change in the mean expression profile (red arrow). A 

substitution that creates a new motif, that is in the recognition range of a different TF, is expected to 

maintain high expression coherence, while altering the mean expression profile (blue arrow).  The 

second motif position appears relatively tolerant to substitutions, 2 out of the 3 possible single 

nucleotide substitutions of this position do not alter TF recognition  (green substitutions). This 

observation is supported by the recently published structural data of Ndt80 bound to DNA [124]. The 

second motif position does not form a contact with the protein. 
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Figure 19: The averaged tolerance to substitution for each nucleotide position within the Ndt80 motif 

was defined as the averaged correlation coefficient between the averaged expression profiles of the 

genes that have a perfect match to the consensus motif and the averaged expression profiles of the 

genes that have each of the three possible substitutions relative to the consensus in that position  

 

2.2.1.3 Differentiating between binding site switching and binding site loss 

 As described above, our measures can differentiate between cases in which a 

binding site is lost (observed as loss of expression coherence) and cases in which a 

site with higher affinity to a different TF is created (observed as preservation of 

significant expression coherence, along with a change in expression pattern). We 

illustrate this using the pair of TFs Ndt80 and Sum1, which are known to recognize 

overlapping binding sites, yet display distinct sequence preferences [125]. Ndt80 is 

the primary transcriptional activator of  middle sporulation genes, whereas Sum1 is a 

transcriptional repressor of the same genes during mitosis and early sporulation. Both 

TFs recognize variations of a site termed middle sporulation element (MSE), whose 

consensus sequence is GNCRCAAAW. Through a combination of in vivo reporter 

expression essays and in vitro binding essays of Ndt80 and Sum1 mutants, Pierce et 

al. defined the specific binding preferences of these two TFs [125]. They found that 

while positions 3-5 of the MSE are important for binding of both Ndt80 and Sum1, 

there is a difference in binding preferences at positions 6-7. For these positions, Ndt80 

requires strictly an A, whereas Sum1 binds equally to an A and to a T. Indeed our 

landscape analysis (Figure 18, right panel) shows that mutating position 6 from A to T 
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results in a change in expression profile, yet coherence remains high, p-value 0.0083. 

This may be explained by binding site switching from Ndt80 to Sum1. Transitions of 

the same position into C or G result in binding site loss (p-values 0.4 and 0.3 

respectfully). The same applies for position 7, in which transition from A to T 

maintains a relatively significant EC score (p-value 0.019), whereas substitutions to 

both C and G lead to complete loss of coherence (p-values 0.4 for both). This position 

also scored as the most sensitive to mutations – any change will abolish the Ndt80 

site, either by switching or complete loss.  

2.2.2 Deducing general properties of expression-altering substitutions 

 Encouraged by our ability to predict the effects of binding site substitutions within 

a single motif, we attempted to generalize these predictions in order to define 

universal properties of substitutions that alter gene expression. We used the three 

measures described above to assess the severity of a substitution from base i to base j 

in a regulatory motif. Namely: change in EC score, change in the EC p-value and 

change in mean expression profiles of genes assigned to a motif with nucleotide i 

versus genes assigned to a variation on the same motif with nucleotide j at the 

substituted position. This time, instead of analyzing a single motif we accumulated 

statistics from substitutions of different positions across multiple binding sites. The 

premise to be tested here is that some universal preferences for particular substitutions 

exist and that accumulation of statistics from all motifs should reveal them. The 

alternative to this possibility is that in every motif different nucleotide substitutions 

are tolerated, and accumulated statistics on all motifs should not reveal a signal. There 

are twelve possible single nucleotide substitutions from base i to base j (when i can be 

A,C,G or T, and j ≠ i). Each severity measure was averaged over all substitutions of 

the type ni-> nj in any possible motif. The motifs used for this analysis were 339 

dictionary motifs that correspond to known TFBS from Harbison’s set [8] (see 

methods 3.2.1). Selecting motifs that match a published set increases the likelihood 

that the ‘wild type’ motif is indeed biologically functional. All together we analyzed 

2,881 motif positions; typically ~600 (462-745 depending on the identity of i and j in 

the substitution ni-> nj ) data points were used to generate each of the twelve 

substitution type ‘penalties’. This elaborate statistics constitute the strength of the 

method. 
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 Our first question was whether there were substitution types that are more radical 

than others (in analogy to amino acid substitutions where there are conservative 

changes that maintain the chemical properties of the residue versus radical changes 

that form a residue with different characteristics). Interestingly, although there was no 

single substitution type that appeared more radical than others, there were 

systematically higher penalties for substitutions that abolished a C or a G in the 

consensus versus substitutions that abolished an A or a T (Figure 20). Because the 

yeast promoters are AT rich (64%), this result may suggest that C and G are the 

nucleotides that confer most of the specificity of a motif to its target, and thus their 

substitution bears a greater effect on the motif’s function, compared to mutations in 

As and Ts. Indeed we have shown (Figure 4), that our core dataset motifs have a GC 

content that is significantly higher than that of the background promoter, and is 

comparable to the GC content of known motifs such as the Harbison set.  

 This raises a prediction that in other genomes with different promoter GC 

contents, the penalties might be different, reflecting loss of information content with 

the elimination of different nucleotides.  
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Figure 20: Effects of each of the twelve possible single nucleotide substitutions on expression. The 

data was accumulated from all (2,881) possible substitutions of each type in a dataset of 339 highly 

scoring k-mers that correspond to known Harbison PWMs. The ‘severity measure’ applied is mean 

delta EC, thus high values correspond to severe substitutions. A clear trend is seen whereby 

substitutions that abolish an A or a T are less severe than substitutions that abolish a C or a G 
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2.2.3 The information content of the substituted position  

 The degree of conservation of the substituted position in the PWM may also affect 

the severity of the phenotype. This may be analogous to the situation that was shown 

in protein coding SNPs – substitutions within conserved amino acid positions are 

more likely to be detrimental [43, 44]. A binding site position is said to be 

‘conserved’ if different instances of this site, which are present in the same genome, 

tend to have the same nucleotide at the given position. Substitutions of highly 

conserved positions are expected to have a more dramatic effect on expression 

compared to substitutions of positions with low conservation. To test this hypothesis 

we analyzed high scoring k-mers from our dataset which correspond to known 

Harbison PWMs. For these motifs both the expression measures obtained in the 

process of creating our dataset (EC, p-value, expression profiles) and the 

conservation, captured as information content (IC) (methods section 3.2.2) of all 

PWM positions are available. We could thus assess the correlation between the IC of 

a position and its sensitivity to substitution based on the previously described severity 

measures. Indeed a significant correlation exists between the mean expression 

distance and the IC of a position (table 2). The mean expression distance is also 

highly correlated to our other two expression based measures mean ∆EC and mean 

∆PV. Thus two measures, the identity of the substituted nucleotides, and the 

conservation of the substituted position serve as good predictors to the effect of the 

substitution on the expression of the regulated gene. 

 

 

 Mean ∆EC Mean ∆PV Mean Exp Dist Position 

IC 

Mean ∆EC 1    

Mean ∆PV 0.5402 

6.12e-142 

1   

Mean Exp Dist 0.3505 

4.34e-055 

0.3053 

1.41e-041 

1  

Position IC 0.0827 

3.47e-004 

0.0531 

0.0217 

0.1252 

5.7785e-008 

1 

 
Table 2: Correlations between the three expression measures mean ΔEC, mean ΔPV, mean expression 

distance and the IC of a PWM position. Data was accumulated for 1,867 positions. In each table cell, 

the first number is the correlation and the second number is the p-value on this correlation. The 

different expression measures are highly correlated. There is a correlation between the measure Mean 

Expression distance and the information content of a position.  
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 It is interesting to point out that the correlation between the two measures mean 

∆EC and mean expression distance is significant yet low. The dot plot of mean ∆EC 

versus mean expression distance (Figure 21A) can be roughly divided into the three 

cases illustrated in Figure 18: (i) Low ∆EC and low expression distance – these are 

substitutions that leave the motif in the domain of the same TF (green arrow in Figure 

18) (ii) Low ∆EC and high expression distance – these are substitutions resulting in 

binding site switching (the creation of a site with higher affinity to a different TF, blue 

arrow). (iii) High ∆EC and high expression distance – these are substitutions that 

cause binding site loss (red arrow) 
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Figure 21: The measure mean expression distance is correlated both to the mean delta EC (left) and to 

the IC of the position in the motif PSSM (right). The correlations and p-values are listed in table 3.  

 

 Additional features including the evolutionary conservation of the substituted 

position and its vicinity to the protein in the DNA-protein co-crystal structure may 

also predict the outcome of the substitution. These features can be integrated to form a 

prioritization scheme that would allow the ranking of existing genome variations by 

their disease-causing potential. An additional application of the present approach may 

be in algorithms that assign PWMs to promoters (e.g. PRIMA [126]) as it should 

provide means to differently weigh mismatches between the PWM preferences and 

the promoter sequence based on expected effect on expression. 
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2.3 The Evolution of Interferon-α Promoters – an Adaptation to Varying 

Viral Threats? 

 

Aim 

 Like the previously described project, the current project aims at characterizing 

promoter sequence variations that affect gene expression and gene function. While the 

previous project dealt with variations on the single nucleotide level, and introduced 

computational means to assess their effect on gene expression, this project deals with 

variations on a larger scale, namely changes in the composition of transcription factor 

binding sites residing within a promoter. Through characterizing the regulatory motif 

composition of human interferon-α promoters, we wished to study how this gene 

family evolved to respond to different viral stimuli. For this purpose, we combined a 

computational search for biologically significant regulatory motifs with 

accompanying expression experiments, carried out by our collaborators. 

 Interferons (IFNs) are generally-acting antiviral cytokines, induced at the level of 

transcription upon viral infection (their basal level is essentially zero). IFNs are 

divided into three types I, II and III. In human, type I IFNs include 13 members of the 

IFN-α family and three distant relatives (β, τ, ε). 

 The 13 human IFN-α genes share very similar coding regions and structures, 

operate through a common signaling pathway and induce the same set of genes. The 

coding regions alone can not explain the advantage of maintaining 13 supposedly 

equivalent genes in the genome. However, the IFN-α promoters are not as similar and 

may hold the key to the differential roles played by different member of the family. 

Diverse promoters may have evolved to allow for differential expression in different 

cell types or to adapt to different viral threats.  

 Certain viruses are known to prevent IFN induction by coding for proteins which 

bind IFN activators and prevent them from binding to the IFN promoter. It is thus 

possible that gene regulatory regions rapidly evolved to circumvent these viral 

attempts enabling the induction of some IFN-α species while others are neutralized. 

This theory may be tested through better understanding of the regulation of IFN gene 

transcription. Previous studies of IFN- promoters characterized only motifs at the 

VRE (virus response element -176 to –131 relative to ATG) of each gene, except for 

IFN-1 whose promoter was further characterized [127]. 
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 The aims of this study were (i) To characterize the promoter motif content of the 

13 IFN-α promoter (ii) To study the expression pattern of IFN-α genes in response to 

different viral infections (iii) To link the two in order to elucidate the mechanisms 

regulating the differential expression of IFN-α genes upon viral infection. This 

includes identifying key promoter elements and their corresponding transcription 

factors (TFs). The promoter analysis was carried out by myself and the experimental 

procedures by my collaborator Roni Golan (laboratory of Prof. Menachem 

Rubinstein). 

 

Major findings and conclusions 

 
 To characterize IFN- promoters, we scanned them with a database of known TF 

binding sites and compared the regulatory motif content of all 78 (13*12/2) promoter 

pairs. In order to focus on regulatory motifs that are likely to be functional in the IFN-

 promoters, we compiled a set of selected motifs which fulfill the following criteria: 

appear at a preferred location in the promoters of  IFN- genes (positionally biased), 

enriched in these promoters compared to the entire genome, and annotated as related 

to the control of immune related genes. We found that some of the IFN- promoter 

pairs are highly similar in the content of these selected motifs despite overall 

sequence divergence. We hypothesized that these promoters respond similarly to viral 

stimulus, and may thus be used to study the promoter elements that mediate this 

response. We experimentally tested the response of four IFN- promoters to 

induction with Newcastle disease virus (NDV), using a luciferase reporter system. 

Indeed we identified a pair of promoters 13 and 2 that were predicted by the 

computational analysis to share significant motifs, despite overall diverged promoter 

sequences, and are both highly induced by NDV infection. This promoter pair is 

currently under further investigation to elucidate the specific motifs that participate in 

its induction. In addition, we found promoter pairs that are completely diverged, with 

very low similarity in motif content. We predict that these promoters have evolved to 

respond to different viral stimuli. To test this we intend to experimentally test the 

expression of IFN- genes upon exposure to a number of different viruses. 
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2.3.1 IFN- promoter scan using a selected set of motifs  

 The 13 IFN- promoters (of average length  1,065 bp) were scanned with the 

TRANSFAC database [123] that consists of 344 human TF binding sites represented 

by positional weight matrices (PWMs) (see methods section 3.3.1). Many of the 

PWMs in this dataset are rather degenerate and thus appear spuriously in multiple 

promoters, introducing false-positive hits. In order to reduce this noise, we used a 

combination of three different criteria that intend to select motifs that are likely to 

mediate the regulation of IFN- genes : (i) Motifs bound by immune-related TFs. TFs 

were annotated as immune- related both automatically using functional enrichment of 

GO biological function terms, and manually based on a literature search (see methods 

section 3.3.2) . 146 binding sites passed this criterion.  

(ii) Binding sites located at a preferred position relative to the TSS in the IFN-α 

promoters (see methods section 3.1.8). Such preference, known as positional bias, is 

often a hallmark of functional binding sites, because the function of many (though not 

all) sites depends on their location and on the distance between them and other 

cooperatively operating sites. 127 motifs appeared to be positionally biased in the 

promoters of IFN-α genes. (iii) Binding sites enriched in IFN-α promoters relative to 

all other human promoters (see methods section 3.3.3). 123 motifs passed this criteria. 

 Applying all three criteria resulted in a set of 45 PWMs corresponding to 35 

unique TFs (the TRANSFAC database is redundant and some TFs are represented by 

more than one PWM). All binding sites known to reside in IFN-α promoters (e.g. 

IRFs, ISRE ) were included in this set supporting the choice of criteria. We focused 

on this selected motif set in our analysis of IFN- promoter content. 

2.3.2 Comparisons of IFNA- promoter motif content 

 To evaluate the similarity between different IFN- promoters, we compared the 

motif content of all 78 IFN- promoter pairs using the following score: 

#common motifs/ min(#motifs in promoter1, #motifs in promoter2).  

For example if the first promoter had 10 motifs, the second 8 motifs, and 4 motifs 

were common to both, the score of the pair was 4/8=0.5. We computed all pair-wise 

promoter similarities using the entire motif dataset (344 motifs) and once again using 

only the selected set of 45 motifs. The results are displayed as a scatter plot (Figure 

22A.); Each pair of IFN-  promoters is represented by a dot whose location indicates 
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the similarity in selected motif content versus the similarity in all motif content. Three 

types of promoter pairs are observed (1) Highly similar promoter pairs (marked in 

red). These promoters share most of their overall sequence and thus also share many 

motifs. They score highly regardless of the choice of motif set. They are probably 

induced by the same stimuli (2) Diverged promoter pairs (marked in blue), these pairs 

have very few motifs in common regardless of the motif set examined. They probably 

respond to different stimuli. (3) Promoter pairs which are diverged in their overall 

sequence, but appear closer once focusing on the selected motifs (marked in green). 

These promoters have a small overlap in overall motif content, but when clearing the 

‘noise’ by using only biologically informative motifs, their overlap increases 

significantly. We hypothesize that these promoters respond to similar stimuli via the 

conserved binding sites. Such promoters are thus excellent candidates for 

experimentally studying the mechanism of induction and the promoter elements 

necessary for it.  

 

 

Figure 22: Pair-wise similarities of IFNA-- promoter motif content. Each x represents a pair of 

IFNA-  promoters. The location within the dot-plot indicates the degree of similarity between the two 

promoters when comparing their overall motif content versus content of selected motifs. In both cases 

the similarity measure used was:  #common motifs/min(#motifs in promoter1,#motifs in promoter2).  

(A) Three types of promoter pairs are observed: Highly similar promoter pairs (red), Promoter pairs 

which are diverged in their overall sequence, but similar in their selected motifs (green), and Diverged 

promoter pairs (blue). (B) The promoter pairs formed by the four experimentally essayed IFN- 

promoters: A2, A8, A13 and A17 (shown in red). The promoters activity of these genes in response to 

Newcastle disease virus NDV was tested by a reporter gene assay. 
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2.3.3 Measurement of IFN- promoter activity in response to viral 

stimulus 

 Our elaborate promoter analysis guided the selection of optimal genes for the 

subsequent experimental expression essays; Four genes were selected, such that all 

their corresponding promoter pairs form two types of relations: either diverged 

promoters, possibly indicating that the genes evolved to respond to distinct stimuli 

(these promoter pairs are within the blue circle in Figure 22A), or promoters, which 

maintained common binding sites despite overall divergence (within the green circle, 

Figure 22A). The latter may indicate a common regulation of gene induction and help 

in elucidating its components. The selected genes were 2, 8, 13 and 17. The 

relations (in sense of motif content) between their corresponding promoters are 

displayed in Figure 22B. The activity of these selected promoters in response to viral 

stimulus, was tested experimentally using a luciferase reporter system. All four IFN- 

promoters were induced by Newcastle disease virus (NDV), but to a different extent 

(Figure 23). The strongest induction by NDV was achieved for the 13 promoter (9.3 

fold relative to a non induced promoter). Second is the promoter of 2 with a 3.2 fold 

increase and third 17 induced by 2.8 fold. The 8 promoter was induced to the 

lowest extent 1.5 fold. When looking at the final absolute level of expression, 2 

greatly exceeds all the rest. The promoters of 13 and 2 were predicted by the 

computational analysis to share significant motifs, despite overall diverged promoter 

sequences (appear in the green circle in Figure 22A). Their high induction levels in 

response to viral stimulus support this prediction. This pair of promoters is currently 

under further investigation to elucidate the motifs participating in their induction. This 

is done by mutating common promoter elements, based on the computational analysis, 

and repeating the luciferase viral induction essay with the altered promoters. We 

search for promoter elements which are essential for viral induction, such that their 

deletion drastically reduces gene expression in response to the virus. In addition, in 

order to identify IFN- promoters that evolved to respond to different viral threats, 

we intend to examine promoter activity in response to a different stimulus such as 

Sendai virus (SV). 
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Figure 23 : Induction of human IFN- 

promoters by NDV. KG-1 cells were 

transfected with luciferase vector, pGL3-

basic containing promoter (-1 to -1065 bp 

relative to ATG) of either IFN-2, IFN-

8, IFN-13 or IFN-17 . All 

transfections were done in the presence of 

renilla expressing vector (pRL-TK), used 

as a standard for trnsfection efficiency. 

Transfected cells were infected with NDV 

24 hours post-transfection, and the levels 

of luciferase activity were determined 19 

hours later, and normalized to the levels of 

Renilla activity (three repeats for each 

treatment). 
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2.4 Antisense Transcription – a Regulated Mechanism for the Control of 

Gene Expression 

 

 In this section we cover two subjects, both related to genome-wide antisense 

transcription (i) A computational work in which we detected and studied genome-

wide trans targets of human NATs (section 2.4.1). (ii) A summary of the concept 

presented in our recently published paper [107] (section 2.4.2 ). 

2.4.1 In search for human trans encoded antisense 

 

Aim 

 NATs are conventionally divided into cis-NATs (transcribed from the same 

genomic locus) and trans-NATs (transcribed from separate loci). Most genome-wide 

attempts to estimate the extent of the NAT phenomenon, were limited to cis-NATs, 

implying that the prevalence of NATs may in fact be broader. These studies aligned 

full-length cDNAs and ESTs to the corresponding genome and identified overlapping 

transcripts on opposite strands as cis-NAT pairs. 

 But are cis and trans-NATs in essence two separate phenomena? The aim of the 

current research was to assess whether cis-encoded antisense, can also target 

transcripts in trans. To test this we used a previously published set of human cis-NAT 

pairs [67] and conducted a BLAST [128] search (confining our search to the opposite 

strand) against all human mRNAs. Our goal was not only to find potential trans-

encoded targets, but also to study the common properties of all targets of a single 

antisense transcript, in order to learn about the biological processes that may be 

regulated by NATs.  

 

Major findings and conclusions 

 
 We have performed a genome-wide search for putative trans encoded targets of 

human NATs, which have been previously reported to act in cis. For 39% of our NAT 

queries, we found at least one trans encoded target, in addition to the known cis-

target. This finding expands the common definition of antisense function, by 

demonstrating that the same antisense transcript may have both cis and trans targets. 

Consequently it appreciably expands the set of human genes which may be regulated 
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by NATs. We additionally show that the same mRNA may potentially be regulated by 

both cis and trans encoded NATs.  

 Our search revealed a putative regulatory network, which exhibits many-to-many 

relations: A given NAT may have multiple mRNA targets and a given mRNA may 

serve as a potential target of more than one trans-encoded NAT.  

 To assess the regulatory potential of this antisense network, we tested whether 

transcripts participating in sense-antisense pairing have common biological functions 

or reside in specific cellular compartments. We found particular functions to be 

enriched among the genes that belong to this network. These functions include GO 

categories related to: transporter activity, vesicular transport, enzymatic activity, and 

response to external stimulus through signal transduction. The enriched locations 

were accordingly mostly membrane fractions, cytoplasm and vesicles. Strikingly, a 

recent report of a related analysis carried out in the plant Arabidopsis thaliana [129] 

revealed a similar set of functional categories to be enriched in the plant’s trans-

antisense network. This is a remarkable correspondence that may represent 

convergence to similar regulatory regimes of functionally related genes in extremely 

remote organisms (see discussion section 4.3.2).  

2.4.1.1 Human cis-encoded NAT pairs can target transcripts in trans  

 To find out whether cis-encoded antisense can target transcripts in trans, we used 

a previously published dataset of 2,667 human cis-NAT pairs [67]. Each NAT pair 

was separated into its sense and antisense components, and each transcript was 

individually compared to all human RefSeq mRNAs [130], using a BLAST search 

[128] (see methods section 3.4.1). We searched only for hits on the opposite strand, so 

that all matches were in fact complementary to the query sequence. All together we 

searched for putative targets of 2,826 antisense queries (Note that this is much less 

than 2,667*2; A detailed description of the transcript set that served as query is 

provided in methods sections 3.4.1.2  and 3.4.1.3). To define a hit, we required a 

minimal sequence identity of 98%, over at least 30 nucleotides, and a BLAST e-value 

of 1e-9 or lower. Furthermore, we removed hits resulting from an alignment within 

low complexity sequence regions (see methods section 3.4.1.3). In order to separate 

cis-hits from trans-hits and to obtain a non-redundant set of targets, we mapped all 

target sequences onto the genome and merged all targets residing in the same genomic 

locus into one sequence (methods section 3.4.1.4). Applying this pipe-line, we found 
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at least one putative trans target (in addition to the known cis target) for 1107 (39%) 

of the queries. The number of putative trans targets ranged from one (for 300/1107 

queries) to 55 (in one case).  Figure 24 displays the distribution of the number of 

putative trans hits, for all queries that had such a hit.  
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Figure 24: Distribution of the number of trans hits per query for the 1,107 antisense queries that had 

such a hit. The requirement for a hit was a minimal sequence identity of 98%, over at least 30 

nucleotides, and a BLAST e-value of 1e-9 or lower 

 

 The 2,826 antisense queries along with their cis and trans hits, form a putative 

regulatory network that comprises of 5,252 transcripts. This network exhibits many –

to-many relations, whereby a given query may have multiple targets and a given trans 

hit may be the target of more than one query. Analysis of this network revealed that 

1,007 of the human RefSeq mRNAs serve as putative targets of at least one non-

coding antisense. The number of antisense transcripts that potentially regulate a given 

trans target, ranges from 1 (for 400/1,007 mRNAs) to 119 (in one case). The 

distribution of the number of putative antisense regulators per trans target is displayed 

in Figure 25. 67 RefSeq mRNAs have the potential to be regulated by both a cis-

encoded NAT and trans encoded NAT(s). 
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Figure 25: Distribution of number of NATs that have the potential to regulate each RefSeq mRNA. 

The distribution only covers the 1,007 RefSeq mRNAs that have a complementary trans encoded 

antisense. There are two mRNAs with over 100 potential regulators, which do not appear in the 

distribution. 

 

 

 We compared the alignment length distribution and the typical percent identity of 

all trans hits to those of all cis hits (Figure 26). While cis hits were typically longer 

(minimal alignment length 32 bases, maximum-4,807, median-156), there were also 

trans alignments as long as 2,499 bases (minimum-32, maximum-2,499, median-41). 

Regarding percent identity, trans hits displayed a range of 98% (the minimal search 

cutoff) to 100%, when 100% identity was only observed for the shorter alignments; 

95% of the trans hits displaying perfect complementarity were of length 48 bases or 

shorter, and the longest alignment with 100% identity was of 672 bases (Figure 26, 

right panel). The cis hits should have by definition displayed 100% sequence identity. 

Surprisingly, 15% of the cis targets display a lower identity (Figure 26, left panel). 

We suspect that this imperfect complementarity between the NAT query sequences 

and their mRNA targets is a result of sequencing errors in the NAT sequences, which 

were mostly derived from single pass ESTs. 
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Figure 26: Alignment length versus percent identity for all cis hits (blue) and all trans hits (red). While 

cis hits display 100% identity across all alignment lengths, trans hits display perfect complementarity 

only for the shorter alignments (up to 672 bases with a median alignment length of 39 bases) 

 

 

2.4.1.2 Functional categorization of transcripts involved in sense-antisense 

pairing 

 In order to examine the regulatory potential of our putative antisense network, we 

tested whether the set of putative targets of a given antisense, share common 

molecular functions, are involved in common biological processes or are located at 

specific sub-cellular locations. For each of the 1,107 NATs, which had at least two 

putative targets (one in cis and at least one in trans), we tested whether the set of 

targets is functionally enriched in any of the GO terms. We used terms in all three 

categories:  molecular function, biological process and cellular localization. 

Functional enrichment was assessed using the hypergeometric distribution, as 

described in section 3.3.2. We could only assess functional enrichment for target sets 

which contained at least two transcripts with an assigned GO term. This further 

limited our search. Given this limitation, 137 sets appeared enriched with at least one 

GO term (most sets were enriched with multiple terms). Interestingly, different target 

sets were enriched with similar or related terms, implying that the entire network may 

play regulatory functions in a particular set of biological conditions (Table 3). 
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 The enriched molecular function terms were: Transferase activity, channel and 

pore transporter activity and intracellular transport; Binding of different cations 

including calcium ion, iron, zinc, magnesium and transition metal ion; Activities 

related to signal transduction, including: G-protein coupled receptor activity, GTP 

binding and transcription factor activity;  Enzymatic activity including ligase, 

hydrolase, kinase and oxidoreductase, and motor related activity, including 

microfilament motor activity, cytoskeletal protein binding, and actin binding.  

 The enriched cellular compartments were mostly membranes of different 

organelles including Golgi apparatus, endoplasmic reticulum and plasma membrane, 

as well as several types of vesicles, which all relate to the vesicular transport system. 

There were also different filaments that may mediate transport such as actin 

cytoskeleton, intermediate filament and contractile fiber.  

 The enriched biological processes were accordingly: actin filament-based 

processes, cell surface-receptor linked signal transduction, response to biotic stimulus, 

transcriptional regulation, intracellular signaling, intracellular transport, protein 

import, secretory pathway, vesicle mediated transport. Biosynthesis, metabolism and 

apoptosis were also enriched. 

 Interestingly a recent paper which studied genome-wide trans-encoded antisense 

in Arabidopsis thaliana [129], reported similar enriched GO categories including: 

various transporter activities, transferase activity, catalytic activity, and signal 

transduction. Furthermore a specific transferase gene family, UDP-glycosyl 

transferase, was enriched both in the Arabidopsis antisense network and in our 

network. Some functions, unique to plants, were also reported in Arabidopsis, such as 

cell wall biosynthesis, response to auxin stimulus and chlorophyll binding. 

Intriguingly all categories enriched in plant, which are not plant specific, were also 

enriched in human (with the exception of one category ubiquitin-dependent 

proteolysis, enriched in plants but not in human). In human we observed some 

additional enriched functions. These findings suggest that the same control 

mechanism may have developed in both human and plant, but has been optimized to 

serve slightly different functions in each organism. 

 

 We next intend to test whether sense-antisense transcript pairs have a tendency to 

be co-expressed in the same set of tissues, by examining the expression patterns of 

transcripts belonging to our antisense network in 22 whole human tissues [131]. In 
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addition we have mapped known TF binding sites onto the putative promoters of all 

transcripts participating in our network, in order to see if sense transcripts tend to be 

regulated by the same TFs as their antisense targets. 

2.4.2 Coupling NATs mechanisms of action to their regulation  

 The fact that the level of some antisense transcripts is correlated with that of the 

corresponding sense transcript, while in other cases an inverse relation is observed 

[79], suggests that the mechanisms of NAT action may be diverse. Indeed, as 

discussed in the introduction section 1.2.3, well-documented NAT examples point to 

four major mechanisms [88]: transcriptional interference, RNA masking, double-

stranded RNA (dsRNA)-dependent mechanisms and chromatin remodeling.  

 Each mechanism requires different associations between sense and antisense 

expression patterns; some mechanisms require the concomitant presence of sense and 

antisense transcripts, whereas others impose their mutual exclusion (Figure 27). We 

propose that the regulation of sense and antisense transcription is coupled to serve the 

different regulatory mechanisms employed by the antisense. Below we accompany 

each of the proposed mechanisms of NAT action, with the resulting relationship 

between sense and antisense transcript levels:  

 

(i) Transcriptional interference - The presence of an overlapping transcriptional 

unit might stall sense transcription owing to the collision of two bulky RNA 

polymerase II complexes on opposite strands (see introduction section 1.2.3). 

Competitive transcriptional interference could be the underlying mechanism when 

anti-correlated expression levels of sense and antisense are observed. Such 

interference might alternatively result in the shutdown of both transcripts (Figure 

27A). 

 

(ii) RNA masking - Sense-antisense duplex formation might mask cis elements 

residing in either of the transcripts and hinder processes that require protein–RNA 

interactions such as splicing, mRNA transport, polyadenylation, translation and 

degradation. The best characterized examples of this mechanism are of antisense 

transcripts which mask splice sites and cause the retention of the corresponding intron 

[92, 93]). Such a mechanism would result in a correlated expression level of the 

antisense and the preferred splice variant (Figure 27B). 
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(iii) dsRNA-dependent mechanisms and RNA interference - There is accumulating 

evidence that antisense transcripts might function through the activation of dsRNA-

dependent mechanisms such as RNA editing and RNAi. Such mechanisms require the 

simultaneous existence of sense and antisense transcripts for duplex formation, and 

might therefore account for the observed co-expression of numerous sense–antisense 

pairs (Figure 27C; [79]). 

 

(iv) Antisense involvement in methylation and monoallelic expression -  non-coding 

antisense transcripts have been reported to induce the methylation and silencing of 

corresponding genes [102] and to be involved in X-chromosome inactivation, 

genomic imprinting [103] and allelic exclusion [104]. Common to all these processes 

is that antisense transcription affects an entire gene cluster, rather than merely the 

overlapping sense transcript. The silencing effect is probably exerted through the 

recruitment of histone-modifying enzymes, resulting in chromatin remodeling and 

transcription silencing. We therefore predict an inverse expression profile for the 

antisense and all the genes in the silenced cluster (Figure 27D). 

 

 The descriptions above illustrate that the coupling between the transcriptional 

regulation of the sense and antisense transcripts is characteristic of the regulatory 

mechanism at hand. We therefore suggest that the relationship between the expression 

profiles of sense and antisense transcripts can hint at the mechanism at work, as well 

as at the ultimate biological outcome 

 To illustrate this point, we predict two biological outcomes that might result from 

a delay between the initiation of transcription of the sense and antisense transcripts. In 

the first scenario, the sense transcript is initially transcribed up to a certain level, then 

antisense transcription begins which subsequently promotes sense degradation. In this 

case the anticipated outcome of the antisense activation is a delayed shutdown of the 

sense gene (Figure 28A). In a second scenario antisense transcription precedes sense 

transcription. This regime is somewhat less intuitive. We speculate that its biological 

outcome might be the dampening of stochastic fluctuations (noise) in the level of the 

sense transcripts; the antisense level sets a threshold and only sense transcripts that 

exceed it are effectively expressed (Figure 28B). Noise dampening was hypothesized 
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to be obtained by another type of regulatory RNA, microRNAs [132], and we 

hypothesize that antisense transcripts might fulfill the same function.  

 Differences in transcription activation times might be encoded by differential 

affinities of the sense and antisense promoters to a shared transcription factor, 

assuming that such a regulator is an activator and that it accumulates with time 

(Figure 28). Indeed a bioinformatics effort conducted in the lab, identified multiple 

cis-NAT pairs, which are flanked by binding sites for a common TF. In many of these 

cases, either the sense or antisense transcripts had a stronger site for the TF in their 

promoters. This finding suggests that both scenarios described above (delayed 

shutdown of the sense transcript and noise dampening) may take place in different 

circuits. For one such NAT pair, the MDM2 gene and its corresponding antisense, it 

was experimentally shown that transcription activation of the antisense transcript 

precedes that of the sense transcript. This NAT pair is regulated by a common TF 

p53, which may have a stronger site within the promoter of the antisense gene. These 

computational predictions along with the experimentally validated example support 

our hypothesis that co-regulation of sense and antisense transcripts via a common TF, 

may comprise a general mechanism. 

 In addition, our prediction regarding the capacity of early transcribed antisense to 

provide ‘noise dampening’ of the conjugated sense transcript is currently tested by 

mathematical simulations, through a collaboration with the lab of Tsvi Tlusty 

(Department of physics of complex systems). 

 

 Sense and antisense transcripts might be regulated not only at the transcriptional 

level, but also at the level of mRNA stability. Therefore, differences in mRNA half-

lives of the two transcripts might also be predictive of antisense function. A well-

characterized example is the hok–sok system of the R1 plasmid [133] in which 

differences in mRNA stability result in delayed activation of the sense-encoded 

protein (the hok-sok system is discussed in further detail in our concept paper [107]).  
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Figure 27: The main mechanisms by which NATs regulate gene expression. Each mechanism is 

accompanied by what it requires from, or imposes on, the relationship between the levels of sense and 

antisense transcripts. (A) Transcriptional interference. Two bulky RNA polymerase II complexes on 

opposite DNA strands might collide with and stall one another. The interference occurs mostly in the 

elongation step, resulting in either transcription arrest or transcription in one direction (sense or 

antisense) only. Such a mechanism might occur in cases in which inverse expression is observed.  

(B) RNA masking. A specific case is shown in which the antisense masks a splice site on the sense pre-

mRNA sequence. This prevents a given splice variant from being formed and shifts the balance 

towards splice variants that do not require splicing of the masked region. Such a mechanism could be 

observed by correlated expression of the antisense and favored splice variant and an inverse 

relationship with the repressed variant. (C) Double-stranded RNA-dependent mechanisms such as RNA 

editing and RNA interference require the simultaneous presence of sense and antisense transcripts for 

duplex formation, and might therefore account for the observed co-expression of numerous sense–

antisense pairs. A delay in expression of sense compared with antisense (or vice versa) is also possible 

as long as there is a period in which both transcripts are present (see Figure 28). (D) Chromatin 

remodeling. Transcription of non-coding antisense transcripts is involved in monoallelic gene 

expression, including genomic imprinting, X-inactivation and clonal expression of lymphocyte genes. 

In these processes, antisense transcripts have been suggested to silence the expression of nearby gene 

clusters by chromatin remodeling, most likely through the recruitment of histone-modifying enzymes. 

If such mechanisms are in action, an inverse expression profile of the antisense compared with all 

genes in the silenced cluster would be expected. 
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Figure 28: Differences in activation times of the sense compared with the antisense transcript. Such 

differences might be easily encoded in differential affinities to a shared transcription factor, assuming 

that this transcription factor is an activator and that it accumulates with time. (A) A higher affinity of 

the transcription factor to the sense transcript might result in a delayed shutdown, whereby the 

transcription factor initially activates transcription of the sense messenger RNA up to a certain level 

and only then is triggered by antisense transcription. The delayed antisense transcription prevents the 

sense transcript from exceeding the level it has reached when antisense transcription is switched 

on. (B) A higher affinity of the transcription factor to the antisense transcript. In this case, antisense 

transcription precedes sense transcription and acts as a buffer for the sense transcript. When the 

transcription factor accumulates, transcription of sense mRNA begins, but only sense transcripts 

exceeding the threshold set by the antisense level can be effectively translated. This generates a 

step-like function in the concentration of the sense transcript. Fluctuations in the amount of sense 

transcript below the threshold are dampened. 
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3 Methods 

3.1 Regulatory motif dictionaries 

3.1.1 Sequence and expression data 

3.1.1.1 Yeast (S. cerevisiae) 

 Promoter sequences for 5,651 Saccharomyces cerevisiae genes were taken from 

SGD [134]. Whole-genome mRNA expression data of 40 time series in 

yeast were obtained from ExpressDB [109]. These time series represent a wide range 

of natural (e.g. cell cycle) [135-137] and perturbed [138-141] conditions. A detailed 

description of all analyzed conditions is available in appendix II. 

3.1.1.2 Human  

 Human promoter sequences were downloaded from the UCSC database, UCSC 

human genome assembly Jul. 2003 [142], and saved locally in a mySQL database. We 

used a set of 14,252 human promoters, each of 1,200 bp; 1,000 bp from upstream of 

the transcription start site (TSS), and 200 bp downstream of the TSS. Genes with 

alternative promoters or with promoters that overlap a genomic region of another gene 

were not included in this set. The reason is that in most cases we had no knowledge of 

the alternatively transcribed transcript printed on the DNA chip (the transcript for 

which we have expression data), and thus preferred to confine to non-ambivalent 

cases. Expression data for human cell cycle experiments was downloaded from  the 

supplementary web site of Whitfield et al [122]  

(http://genomewww.stanford.edu/Human-CellCycle/Hela/index.shtml) 

3.1.1.3 Candida Albicans 

 Promoter sequences for 6,282 C. albicans genes were downloaded from the 

Candida Genome Database (CGD [143]), assembly 19. In most cases the promoters 

were of length 1,000 bp upstream of the TSS. Promoters were shorter for 203 genes, 

located in genomic areas for which the sequence is not yet complete (the C. albicans 

sequencing project is not yet at its final stage). Incomplete promoter sequence was 

most pronounced for genes located at chromosome ends. Expression data for three 

stress responses: heat shock (23°C to 37°C), osmotic shock (0.3M NaCl) and 

oxidative stress (0.4 mM H2O2) was taken from [121]. For 4,635 out of the 6,282 C. 

http://genomewww.stanford.edu/Human-CellCycle/Hela/index.shtml
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albicans genes, we were able to identify a mutual S. cerevisiae ortholog, defined by 

reciprocal best Blast hit. 

3.1.2 Dictionary Construction 

 The dictionary construction procedure consisted of four major steps, described 

schematically in Figure 29 and detailed below.  

3.1.2.1  Exhaustive genome scan  

 Promoter sequences were systematically scanned for all occurrences of every 

possible k-mer (k varies from 7-11), resulting in an index file listing for each k-mer 

the set of genes that contain it in their promoters, along with the positions and 

orientations (strand). Bidirectional promoters (in yeast) were taken twice in different 

orientations and associated with the corresponding genes. For the purpose of 

indexing, each k-mer was combined with its reverse complement because TFs are 

thought to recognize and bind double stranded DNA. 

3.1.2.2 k-mer scoring  

 Following the k-mer indexing step, EC scores in various experimental conditions 

were calculated for the sets of genes containing each of the k-mers in their promoters. 

A p-value was assigned to each EC score and false discovery rate (FDR) of 0.1 

(allowing 10% false positives) was used to correct for multiple hypotheses [108]. This 

rate was chosen after trying various ratios ranging from 0.01 to 0.3, and attempting to 

maximize the number of true positives. In addition to the EC scores and 

corresponding p-values, each k-mer was characterized by the expression profile it 

dictates; this was defined, at each time point as the average expression level of all 

genes assigned to the k-mer. Such averaged profiles were defined for each k-mer 

across the 40 time series experiments, resulting in 40 vectors per motif. These ‘mean 

expression vectors’ were subsequently used to cluster k-mers into groups that share 

sequence as well as functional similarities (see below). 
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Figure 29: Schematic description of the dictionary construction process: 

A. For all possible k-mers (k=7-11), index all genes that contain the k-mer in their promoters.  

B. Expression coherence score – calculate EC score and assign a p-value to all genes containing a 

given k-mer in their promoter, over all expression conditions. 

C. FDR – select only k-mers with significant EC scores. 

D. Motif Clustering - group together k-mers that are similar in sequence and exert a similar effect on 

expression. 

3.1.2.3 Clustering of dictionary motifs  

 We employed a two step clustering procedure in order to group together 

dictionary motifs that share a close sequence and exert a similar effect on expression. 

In the first step we clustered the motifs according to the mean expression profiles of 

the genes that contain them in their promoters. We used hierarchical clustering and 

determined the number of clusters by eye. On average every biological condition 

displayed 2-4 distinct expression behaviors. An example is seen in Figure 14 of the 

results, which displays three main expression profiles dictated by the motifs of the C. 

albicans osmotic stress dictionary. Next we clustered motif sequences that govern a 

similar expression behavior, based on their sequence similarity, using the QT_clust 

clustering algorithm [144]. Unlike many clustering algorithms, such as k-means, that 

require the a-priori determination of number of clusters and that give rise to clusters 

of various extents of tightness, in this algorithm the only input is the minimal 

cluster tightness, and the output is the number of clusters along with the motif-cluster 

assignments. The distance between each two motifs was determined by first obtaining 



 73 

their optimal un-gapped alignment (examining both the motif and its reverse 

complement), and then counting the number of mismatches within the alignment. We 

required that the number of mismatches between two sequences within a cluster be 

lower than 30% of the shorter sequence.  

3.1.3 MEX algorithm   

 MEX is an unsupervised motif extraction algorithm, developed in the framework 

of a broader algorithm, ADIOS (automatic distillation of structure), which deduces 

grammar from texts [28]. MEX was designed originally in order to extract patterns 

from natural-language corpora, and was adapted here to the problem of regulatory 

motif extraction. MEX is data driven; it identifies motifs that are strings of adjacent 

nucleotides on promoters within a genome-wide analysis. MEX does not depend on 

over representation of the motifs in the genome. Instead it uncovers motifs that are 

significant within the relatively local context of the promoter on which they occur. 

 Consider a data-set of many sequences of variable length, each such sequence is 

expressed in terms of an alphabet of finite size N (e.g. N=20 for amino-acids or N=4 

for DNA, with each promoter region defining a sequence). The N letters form nodes 

of a graph on which the sequences in the data will be placed as ordered paths. Each 

such sequence defines a data-path over the graph. All N letters have an equal number 

of incoming and outgoing strings, or data-paths. Once all the data-paths (all promoter 

sequences) are loaded onto the graph, we explore the graph for patterns. An example 

is demonstrated in Figure 30 where the search path consists of the set of nodes A->B-

>C->D->E. Other paths may join and leave the search path at various vertices. In this 

example, the bundle of path sections between B and D display a certain coherence, 

possibly indicating the presence of a significant pattern.  

 Two probability functions are defined over the graph for any given search path:  

The first one, PR is the right-moving ratio of fan-through (through going flux of 

strings) to fan-in (incoming flux of strings), which varies along the trial-path. Starting 

at A we define: 

 

A leaving datapaths ofnumber  total

B A to from leading datapaths ofnumber 
);Pr( BA  
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 B toA  from leading datapaths ofnumber 

C  toBA through  from leading datapaths ofnumber 
);Pr( CA  

 

and so on. 

 

 This function increases along the search path, because other paths join to form a 

coherent bundle, but shows a decrease at E, because many paths leave the search path 

at D. To quantify this decline of PR, which is interpreted as an indication of the end of 

the candidate pattern, we define a ‘decrease ratio’ DR, whose value at D is: 

DR(D) = PR(A;E)/PR(A;D). We require it to be smaller than a cutoff parameter η < 1.  

Similarly, we proceed from the right end of the trial-path starting with D and study a 

left- going ratio of fan-through over fan-in PL. Thus: 

 

D entering datapaths ofnumber  total

D  toC from leading datapaths ofnumber 
);( CDPl  

 

 This function will increase, going to the left, and the point (B) at which it shows a 

considerable decrease, DL(D;B) = PL(D;A)/PL(D;B) < η, is declared to be the starting 

point of the putative motif. Finally because the data consists of a finite number of 

strings that may be quite small, we need to assess whether the decrease in PR or PL is 

statistically significant. PR and PL may be regarded as variable order Markov 

probability functions, as indicated on Fig. 25. We define a threshold α and require the 

significance p-values of both DR(D)< η and DL(B)<η to be, on the average, smaller 

than α < 1. Significance is defined here in terms of a null-hypothesis stating that  

PR(E) ≥ η PR(D) and PL(A) ≥ η PL(B) for the right and left-paths respectively. In other 

words we wish to reject the possibility that, given the existing number of strings, the 

probability continues to remain high. 
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Figure 30: The definition of a motif within the MEX algorithm. Note that the maxima of PL and PR 

define the beginning and the end of the motif. Drops following the maxima signify divergence of paths 

at these points. The nodes in this figure are labeled by different letters. Note, however, that different 

letters may also label the same node appearing at different locations on the trial-path. In this example, 

E and A may represent the same node. 

 

 We define sequence motifs as overlapping regions of PL and PR whose end-points 

obey the thresholds conditions. All data-paths (promoter sequences) were used as 

trial-paths, and both PL and PR were calculated from all possible beginning points 

along the path from right and from left correspondingly. We set η to 1 and α to 0.1 

(after testing various values). These two parameters should be chosen so as to best 

suit the problem at hand. 

3.1.4 Expression coherence (EC) score  

 The EC score is a measure of the extent to which a set of genes is clustered into 

one or more clusters in expression space. The formal definition of the EC score is the 

fraction of gene pairs in a given set S, for which the normalized Euclidean distance 

between expression profiles falls bellow a threshold D.  
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The threshold D is determined based on the distribution of pair-wise distances 

between expression profiles of all genes in the genome (or more precisely of all genes 

for which expression level was measured). The original definition of the EC score 

[22] used the 5th percentile as the cutoff for defining “close” expression profiles (D). 

This definition may create a bias towards TFs that exert a very tight regulation and 

miss regulatory motifs that correspond to factors exerting a more lose regulation. We 

therefore tested a range of EC definitions, with cutoffs corresponding to the 5th, 10th, 

20th, 30th, 40th and 50th percentile of the pair-wise distance distribution. For each 

definition of EC cutoff we assigned a significance p-value separately. P-values were 

calculated by random sampling. For each of the 40 expression time series and for each 

gene set sizes (varying from 3-100 genes), we selected 100,000 random gene sets and 

computed an EC score for each such set at each cutoff definition. We define the p-

value of a given EC score as the fraction of random sets (of the same size and in the 

same condition) that scored similarly or higher (Note that this sets a lower bound of  

10-5 on the significance that can be assigned to a given EC score). Since we assume 

that for a given EC score, the probability to get the same score for random sets of 

genes drops with the set size, gene sets larger than 100 are assigned an upper bound 

approximated p-value, using the randomly sampled sets of size 100. 

3.1.5 Matching dictionary strings to PWMs.  

 A scoring method was devised to assess how likely a given string is to be 

generated from a given PWM. The score is on a scale of 0 to 100. It is computed by 

summing up the frequencies corresponding to the observed nucleotides over all motif 

positions, and normalizing this score to a scale of 0-100. The scaling is done by 

subtracting the minimal possible score and dividing by the range of possible scores. 

For example for the PWM [A: 0.0191    0.0191    0.9733    0.9733    0.0120, C:0.9500    

0.9500    0.0074    0.0074    0.0074, G: 0.0117    0.0117    0.0074    0.0074    0.0074 

T:0.0191    0.0191    0.0120    0.0120    0.9733] the lowest possible score 0.0455 is 

obtained for the string  GG(C/G)(C/G)(C/G), the highest possible score 4.8198 is 

obtained for the string CCAAT. After scaling GGCCC will score 0, CCAAT will 

score 100 and  CCATT will score 79.9 ( (3.8585-0.0455)/( 4.8198-0.0455) ).  
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T   A  G    T    A    A    G   CT   A  G    T    A    A    G   C

 

Figure 31: An example for a match between a high scoring k-mer and a known PSSM. In this 

example, the k-mer TAGTAAGC has a perfect match to the PSSM of the known motif CAD1. The first 

position of the k-mer corresponds to the third position in the PSSM.   

 

3.1.6 Grouping Harbison’s PWM set into distinct clusters 

 Highly similar PWMs belonging to the Harbison set were grouped together using 

hierarchical clustering. The similarity measure used for clustering was the 

compareACE score [112]; this method compares two PWMs by aligning them and 

calculating the Pearson correlation coefficient between the base frequencies of the 

aligned matrix portions. To prevent spurious matches, compareACE requires that the 

aligned portion include at least the six most informative positions in each motif. Using 

a similarity cutoff of  compareACE score> 0.9, the 102 Harbison PWMs were 

grouped into 77 distinct clusters. 

3.1.7 Functional Coherence (FC) score  

 Functional Coherence (FC) is a term used to describe the extent to which a set of 

genes is similar in function. Data on biological processes were derived from the GO 

database [111], which defines a hierarchy of functional annotations. The gene 

annotations themselves were taken from SGD [134]. The similarity measure between 

GO functional annotation terms was taken to be the 'semantic similarity', defined by 

Lord et al. [145]. Given the semantic similarity scores between each pair of GO 

annotation terms, the similarity score between a pair of genes is defined as follows: 
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Namely if each gene is annotated by several GO terms, the pair of terms with the 

maximal similarity is used. The rational is that for our purposes, if two genes 

participate in several biological processes, we view them as similar even if they have 

only one process in common. We do not require all their processes to be similar.  

 The FC score of a set of genes is defined as the fraction of all 'significantly 

similar' gene pairs out of all pairs of annotated genes in the set, where significantly 

similar is determined by a threshold θ:  
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The threshold θ was set to be the 95th or 90th percentile scores of the distribution of 

all pairwise similarity scores of the yeast genome. Genes without annotations, or 

annotated as ‘biological process unknown' were excluded from the analysis. The FC 

p-value was calculated using random sampling in a similar manner to the EC p-value 

described above. 

3.1.8 Positional Bias p-value 

 For each k-mer, we gathered the positions (relative to the TSS) of all its genome-

wide promoter instances. These positions were sorted into 40 bp wide bins. Positional 

bias was assessed using a statistic measure introduced by Hughes et al. [112]. This 

measure assesses whether the most populated bin (with m motif instances) contains 

more motif instances than expected by chance given the overall number of motif 

instances (t), the promoter length (s ~ 600 bp) and the bin width (w).  
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3.1.9 Evolutionary conservation  

3.1.9.1 Data 

 Promoter data for four closely related Saccharomyces species S. cerevisiae, S. 

mikate, S. kudriazevii and S. bayanus were taken from Cliften et al. Science 2003 [13] 

The reference lists of motifs that were defined strictly based on phylogenetic 

footprinting were taken from both Cliften et al. Science 2003 [13] and Kellis et al. 

Nature 2003 [14] . 

3.1.9.2 Motif conservation calculation 

  The motif conservation calculation was adapted from Xie et al. Nature 2005 [146]. 

We defined the motif conservation rate separately for each motif as the ratio of 

conserved motif instances to total occurrences of the motif in the genome. We 

regarded a motif instance as conserved if at least 90% of the motif positions were 

identical across all 4 species. For each motif length (from 7-11), we obtained the 

distribution of expected conservation rates using a control set of 1,000 random motifs 

of that length. We took the 95th percentile of the control set distribution as the cutoff 

defining high conservation and counted the number of motifs with a conservation rate 

above this cutoff. 

3.2 Functional characterization of binding site variations 

3.2.1 Motif positions used to gather statistics on substitution severity    

 To define properties of binding site substitutions which alter gene expression, we 

accumulated statistics from substitutions of different positions across multiple binding 

sites. The binding sites used for this analysis were core set motifs that correspond to 

known TFBS from Harbison’s set. As described in the results 1,402 of our core set 

motifs had at least one corresponding Harbison PWM, with a match score of 99 or 

above (Table 1). Some of these motifs were similar to more than one Harbison PWM, 

because some Harbison PWMs belong to the same TF family and are thus very 

similar to one another (for instance MET31and MET32, HAP2, HAP3 and HAP5, 

INO2 and INO4,  FKH1and FKH2). In such cases we selected the Harbison PWM 

with the best match score to a given k-mer, as its annotation. Taking only the best 

match for each k-mer, our data set covers 74 of Harbison motifs. For each of these 74 
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Harbison motifs, we selected a unique set of representative k-mers according to the 

following criteria: (i) Biological condition – if there were multiple k-mers that match 

this TF, but they govern different biological conditions (as determined by the 

significance of their EC scores in the different conditions), we selected a 

representative k-mer for each condition. (ii) For k-mers that correspond to the same 

TF and appear to govern the same biological condition, we performed clustering 

based on both k-mer sequence similarity and the expression profiles of the genes each 

k-mer regulates. We then selected a representative k-mer for each such cluster. 

Applying these criteria, we selected 339 unique k-mers that match 74 of Harbison’s 

TFs. This means that on average a single Harbison TF has about 4 k-mers 

representing it. Statistics were accumulated for all 2,881 positions within these 339 

motifs. For each motif the effect on expression was measured in the condition in 

which the motif had a significant EC score. If there were several such conditions, the 

condition with the most significant EC score was chosen. 

3.2.2 The information content of a motif position 

The information content (IC) of a binding site position is a measure of its 

conservation among multiple binding site instances. The more conserved the position, 

the highest its information content. The information content of a position at which the 

nucleotides A,C,G, and T occur with probabilities pA, pC, pG, and pT, respectively, is 

defined as:  
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when qA, qC, qG, and qT are the corresponding background promoter nucleotide 

frequencies. In the specific case of equal nucleotide background distribution this 

formula is reduced to: 
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and the IC is thus bound from 0 to 2 
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3.3 The Evolution of Interferon-α Promoters 

3.3.1 Promoter Scan 

 IFN- promoters were taken to be 1,000 bp upstream and 200 bp downstream of 

the predicted TSS, but not further than the first ATG. IFN-α genes have short 5’ 

UTRs, hence average promoter length was 1,065 bp. The promoter sequences were 

downloaded from the UCSC human genome browser (http://genome.ucsc.edu/). The 

promoters were scanned with a database of 344 human TF binding sites represented 

by positional weight matrixes (PWMs).  The majority of PWMs (337) were 

downloaded from TRANSFAC [123], while seven PWMs, representing interferon 

regulatory factor (IRF) elements, were manually added from the MatInspector library 

[147] and from the literature [148, 149]. The 13 promoters were scanned for the 

presence of these 344 PWMs via a Perl script utilizing the TFBS module 

http://forkhead.cgb.ki.se/TFBS/ [150]. This module implements the PWM search 

algorithm described in [151]. The search cutoff used was 92%. This was the strictest 

cutoff that still detected all binding sites that are known to reside in IFN-α promoters. 

3.3.2 Functional enrichment of GO terms  

 The GO consortium [111] defines hierarchies of gene annotation terms in 

three major categories: biological process, molecular function and cellular 

component. To assess whether a set of genes is functionally enriched with a given GO 

term, a series of individual tests is conducted. For each GO term we test whether the 

set of genes annotated by this term (or all terms beneath it in the hierarchy of the GO 

graph) has a significant overlap with our gene set of interest. The significance of the 

overlap is evaluated using the hypergeometric p-value. For each group of genes and 

each GO term, all p-values of overlaps are calculated, and FDR is performed to 

control for multiple hypotheses. A gene set is said to be functionally enriched with 

any term with which it had a statistically significant overlap. To automatically 

annotate TFs as immune related, we conducted functional enrichment tests using 

molecular function terms, for sets of genes containing each motif in their promoters. 

We searched for motifs that regulate genes enriched in immune related functions, 

such as defense response, immune response, response to external stimulus, response 

to biotic stimulus etc. In addition we searched the literature for indications of the 

relevance of all TFs to immune response,  obtaining a set of 146 immune related TFs.  

http://genome.ucsc.edu/
http://forkhead.cgb.ki.se/TFBS/
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3.3.3 Binding site enrichment in IFN-α promoters. 

 To select motifs that are enriched in the promoters of IFN-α genes, relative to all 

other human genes, we searched for the 344 PWMs in a set of 14,252 promoters from 

the entire human genome. For each PWM, we compared the fraction of IFN-α 

promoters in which it appeared to the fraction of non-IFN promoters in which it  

appeared. We asked that the ratio between these two fractions be greater than 1. 123 

motifs passed this criteria.  

3.4 Antisense Transcription  

3.4.1 Pipeline for whole-genome search of trans antisense hits 

3.4.1.1 cis-NAT dataset and RefSeq mRNA sequences. 

 GenBank accession IDs for 2,667 previously published human cis-NAT pairs, 

were downloaded from the supplementary website of Yelin et al.  [67]. This data 

comprised of 744 pairs of protein-coding transcripts, 1,546 pairs in which one 

transcript is protein-coding and the other non-coding and 377 pairs in which both 

transcripts are protein-coding. All human RefSeq mRNA sequences were downloaded 

from NCBI on May 2006. (ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/). 

3.4.1.2 Data validation  

 The published cis-NAT pairs were based on old assemblies of the human genome. 

To validate their location and directionality, we positioned all the downloaded 

accession IDs on the current human genome release, hg18. We used annotation tables 

downloaded from the UCSC Genome Browser (http://genome.ucsc.edu/).  

 The non-coding transcripts were mostly ESTs, which are often miss-annotated. 

Indeed 50% of the ESTs were annotated as having the wrong orientation; Namely 

both transcripts belonging to a given NAT pair were annotated as residing on the 

same strand. We corrected the orientation of each transcript using further information 

such as the orientation of the splice sites within it. Following genome-mapping and 

validation of correct orientation, we removed cis-NAT pairs from the data-set in each 

of the following cases: (1) There was no genomic location data for at least one 

member of the pair (2) There were multiple genomic locations for at least one of the 

transcripts. (3) Both transcripts resided on the same strand, after validation of correct 

ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/
http://genome.ucsc.edu/
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orientation. (4) Transcripts mapped to different chromosomes, or to different locations 

within the same chromosome. 

 This filtering step resulted in a dataset of 2,025 NAT pairs (out of the original 

2,667 IDs). Of these, 493 NAT pairs (out of the original 744) were both protein-

coding, 1,224 pairs (out of the original 1,546) were composed of one protein-coding 

transcript and one non-coding transcript, and 308 NAT pairs (out of 377) consisted of 

two non-coding transcripts. 

3.4.1.3 Blast search 

 Each NAT pair was separated into its sense and antisense components, and each 

component was individually compared to all human RefSeq mRNAs [130] using 

nucleotide BLAST (BLASTn) [128]. In the case of the ‘mixed’ NAT pairs, containing 

one protein-coding and one non-coding transcripts, we used only the non-coding 

transcript as search queries. The rational which guided this decision was to use only 

the potential regulators as queries. For a mixed coding and non-coding NAT pair, a 

reasonable scenario is that the non-coding transcript regulates the coding transcript, 

whereas in a pair of all-coding or all-non-coding NATs, it is harder to anticipate, 

which will be the regulator. There are known examples of two coding antisense 

transcripts, which regulate each other [98]. 

 All together we obtained 2,826 antisense queries (2*493 + 1,224 + 2* 308). We 

searched for genome-wide targets for these queries using BLASTn [128] with the 

following cutoffs: e-value ≤ 1e-9 , percent identity ≥ 98%, and alignment length ≥ 30 

[57]. The strand flag (S) of the BLASTn algorithm was set to 2, indicating a search 

only against the complementary strand. We further removed BLAST hits that were 

within low-complexity sequence regions, using two programs – RepeatMasker 

(http://www.repeatmasker.org) and Tandem Repeat Finder 

(http://tandem.bu.edu/trf/trf.intermediate.submit.html ). RepeatMaker was run with 

the flag -noint for masking only low complex/simple repeats. 

3.4.1.4 Separation of cis hits from trans hits  

 To separate cis hits from trans hits, we located all hits on the human genome 

assembly hg18. If there were several cis hits, we took the longest. We further merged 

all trans hits that mapped to the same location into one hit. We created a contig of all 

overlapping trans hits and took the sequence that displayed the longest alignment with 

http://www.repeatmasker.org/
http://tandem.bu.edu/trf/trf.intermediate.submit.html
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the query as the contig representative. After merging hits residing in the same 

genomic locus, we obtained at least one trans hit for 1,107 (39%) of our queries. 

Altogether 5,252 transcripts appear to participate in sense-antisense pairing. 

 

3.4.1.5 Annotations of transcripts participating in sense-antisense pairing 

 To study the characteristics of transcripts that participate in sense-antisense 

pairing, we obtained their annotations in various categories. We used GeneALaCarte 

(http://www.genecards.org/cgi-bin//BatchQueries/Batch.pl), a batch search utility that 

automatically extracts annotations for our 5,252 transcripts. GeneALaCarte provides 

annotations only for transcripts that correspond to an approved HUGO symbol [152]. 

2,282/5,252 transcripts had HUGO symbols and hence annotations. For these 

transcripts we downloaded Gene Ontology (GO) annotations, and expression patterns 

in 12 normal human tissues [153]. 

 

 

 

http://www.genecards.org/cgi-bin/BatchQueries/Batch.pl
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4 Discussion 

 The integration of genomic sequence data with various types of functional 

information such as gene expression profiles, Gene Ontology annotations (of 

biological processes, molecular functions or cellular components), mRNA decay 

profiles etc. allows us to investigate various regulatory mechanisms which operate in 

the cell. The same methods may be applied to the study of different mechanisms. For 

instance, we applied the dictionary construction methodology, introduced here, to 

promoter sequences in combination with mRNA expression data, and produced 

comprehensive collections of TF binding sites. The same method applied to 3’ UTR 

sequences in combination with measures of mRNA half lives (indicating transcript 

stability), was used to construct a catalogue of stabilizing and de-stabilizing sequence 

motifs [110]. Such motifs are likely bound by proteins which act in mRNA 

stabilization (or destabilization). Similarly, integration of 3’UTR sequences with GO 

cellular component annotations, yielded a catalogue of motifs associated with sub-

cellular localization [110].  

 This demonstrates the strength of our method and its wide applicability to a range 

of cellular processes. Transcriptional regulation (studied here) together with the 

regulation of mRNA degradation and sub-cellular localization (studied in [110] 

employing the methodology developed here) are the components which determine the 

cell’s transcriptome. 

 In the antisense project we applied a slightly different approach in which we 

initially used sequence information alone in order to group together genes potentially 

targeted by the same antisense transcript. We then searched for functional annotations 

enriched within these gene sets. Functional annotations were thus used here for 

validation purposes as well as for characterizing the regulatory process at hand, and 

not for dataset construction. 

4.1 Regulatory motif dictionaries 

4.1.1 Method strengths  

 We introduced a computational approach, which quantifies the effect of promoter 

sequence elements on the expression profiles of the corresponding genes, in order to 

produce unbiased reference collections of eukaryotic TFBS. Applying this method to 
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the S. cerevisiae genome across various natural and perturbed biological conditions, 

we obtained a dataset of putative regulatory motifs, with a good coverage of known 

binding sites, as well as novel and refined sites. Although we relied on genomic 

sequence and gene expression data alone in the derivation of our motif dictionaries, 

many of the defined motifs exhibit properties known to characterize functional 

binding sites. These include high evolutionary conservation, high positional bias, 

distinct nucleotide composition, all of which serve as validations for the biological 

relevance of our motifs. In addition, we found that sets of genes defined by each of 

our dictionary motifs are likely to share common biological functions, as might be 

expected from their common regulation. These findings not only validate our ability 

to identify functional motifs, but also prove our dataset as useful for the systematic 

search of additional binding site characteristics.  

 Our method overcomes the requirement for significant motif over-representation, 

posed by common ab initio motif finding algorithms. This is done here by introducing 

a new statistical model. This model enables the detection of motifs that may regulate 

even small transcriptional networks and that may be present in the genome in 

relatively low numbers. The method is in principle applicable to any organism for 

which both genome-wide promoter sequences and mRNA monitoring data are 

available. Indeed we constructed motif dictionaries for Candida albicans in response 

to different stresses, for C.elegans during embryonic development (carried out by a 

lab colleague, Shai Shen-Orr, using the same methods) and for human through the 

progression of the cell cycle.  

4.1.2 The complementary sequence-based approach 

 Despite this proof of concept, some limitations of the method must be pointed out: 

(i) The exhaustive k-mer enumeration employed is computationally demanding, as the 

number of possible sequences increases exponentially with k. This makes it difficult 

to systematically scan sequences of increasing lengths (ii) Larger genomes likely 

encompass more elaborate regulatory regions, which would require scanning longer 

sequences for the presence of each k-mer (iii)  The fact that we do not integrate any 

additional information available to us when defining the motifs has both an advantage 

and a drawback. The advantage is that we remain unbiased by known binding sites 

and thus do not limit ourselves to sites which obey conventional criteria, such as 

evolutionary conservation. The drawback is that we do not restrict our search space to 
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include only likely hypotheses. Our systematic k-mer scan generates multiple 

hypotheses, the majority of which are likely false. Such low signal to noise ratio 

imposes strict statistical criteria on a k-mer in order for it to score significantly. The 

result is many false negatives, namely weak motifs fail to be recovered. 

 To overcome these limitations, we demonstrate the performance of a 

complementary syntax-based approach [29]. In this approach we first generated likely 

hypotheses, based on syntactic assumptions, and then applied our EC-based functional 

assessment to these hypotheses alone. We assumed that functional motifs posses 

inherent position dependencies which may be captured by high-order hidden Markov 

models [154]. One algorithm which employs such a model is MEX (Motif Extraction 

algorithm) [28] developed originally for the extraction of patterns from written 

language corpora. The applicability of a linguistic algorithm to the biological task at 

hand is intriguing as it implies that rules which govern natural languages may also 

define ‘meaningful’ biological sequence. If this holds, such principles may in future 

allow the inference of function from raw sequence data, much like what is common 

practice for protein-encoding sequences since the breaking of the genetic code. 

 Pre-selection of candidate motifs by MEX provided an enormous enrichment in 

signal; 22% of the motifs extracted by MEX appeared to govern coherent expression 

as compared to 0.6% of the k-mers scanned via the exhaustive approach. This implies 

that pre-selection based on inter-position dependencies indeed increases the chance of 

a k-mer to score significantly. In addition MEX may extract k-mers of increasing 

lengths without increasing its computational complexity; it readily extracted motifs of 

length up to 19 nucleotides. Even within the length limitation employed by the 

exhaustive scan (7-11 bases), some relatively weak motifs passed the imposed 

statistical criteria only within the signal-enriched background provided by MEX. 

MEX is expected to fail in cases in which a functional motif does not obey the 

inherent position dependencies it selects for. It has been reported that while some 

functional TFBS display such position dependencies, others do not [117]. 

 While we chose to pre-select likely regulatory motifs based on their internal 

sequence structure, other criteria may also be considered. For instance the k-mer 

search may be confined to promoter regions which are evolutionary conserved or to 

small sequence windows which coincide with the boundaries of distinct genomic 

annotations (e.g. first intron, first exon etc.). An exhaustive k-mer search within 

restricted sequence windows was employed in the lab for C. elegans. This search 
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detected regulatory motifs in locations other than the traditional upstream region, for 

instance a gene’s first intron or the region immediately downstream to the translation 

stop site. Moreover it revealed that different motifs tend to appear at different 

locations and there is a correlation between the location of the motif and the effect it 

exerts on expression; For example motifs appearing immediately downstream of the 

gene typically have a down-regulating effect. This illustrates the use of our method 

for the construction of context dependent motif dictionaries. Such dictionaries may 

reveal new regulatory schemes. 

4.1.3  Method limitations 

 Despite the proven advantages of our method, one inherent limitation is that we do 

not take into account the promoter backgrounds in which each motif is embedded. We 

currently refer to all motif instances as equal, whereas it is well accepted that many 

aspects, such as a motif’s location relative to the TSS and to other binding sites and its 

surrounding promoter sequence, affect the accessibility of the motif to its binding 

protein. A recent publication [155] revealed that the locations of nucleosomes are 

encoded in the genome and may therefore be predicted from DNA sequence. This is a 

major step towards our ability to incorporate chromatin structure in our model. Other 

factors which may be readily incorporated include TF locations and multiplicity: 

These can be accounted for by calculating EC scores only for promoters in which the 

motif resides at a certain distance from the TSS, or only for promoters which contain 

multiple motif instances. The latter was successfully implemented by us, and is 

available on the web through our ‘Motif Analysis Workbench’ [21] at 

http://longitude.weizmann.ac.il/services.html . The described refinements may filter 

non functional motif instances and improve our method’s sensitivity.  

 Another limitation is that we currently assess individual motifs only. Some TFs 

exert a measurable effect on gene expression only when operating in combinations 

with additional TFs. For the detection of motifs recognized by such TFs, pairs and 

triplets of co-occurring motifs should be evaluated. A systematic scan of all k-mer 

combinations is not practical, however motif combinations of particular interest may 

be readily assessed. Our ability to re-discover most of the known yeast regulatory 

motif repertoire confirms that, at least for this simple organism, most motifs give a 

strong enough signal when operating alone. It is possible that for higher organisms 

http://longitude.weizmann.ac.il/services.html
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which likely employ more sophisticated TF combinatorics, a higher proportion of 

motifs would be missed when searching solely on the individual motif level.   

4.1.4 Further applications 

 The regulatory motif dictionaries have many possible applications, some of which 

are demonstrated here. By comparing stress response in distant yeast species, we 

showed that a major component of this regulatory program is evolutionary conserved; 

In both S. cerevisiae and Candida albicans similar sequence motifs regulate sets of 

orthologous genes in a similar manner following stress. In both organisms there are 

also species specific motifs. The same analysis can be expanded to other biological 

conditions and to additional organisms in order to reveal the degree of conservation of 

different eukaryotic regulatory programs. 

 The individual motifs in our collections comprise the ‘building blocks’ of 

sophisticated regulatory networks. They can thus be used for the study of logical gates 

operating between TFs, and for elucidating higher levels of expression regulation. 

 An extremely important application illustrated in this work, is the use of the motif 

dictionaries for studying the phenotypic effects of binding site variations, as discussed 

bellow.  

4.2 Functional characterization of binding site variations 

 Two important properties of the defined dictionary motifs make them particularly 

suitable for the study of binding site variations (i) A quantitative link is formed 

between a motif’s nucleotide sequence and the effect it exerts on expression (ii) The 

motifs are defined as single k-mers, which can subsequently be compared to one 

another or grouped together according to both sequence and function. Such grouping 

may reveal new biological insight, which is lost when the starting point of the motif 

search is a pre-determined PWM.   

 These advantages were utilized by us in two complimentary projects within this 

work: Firstly we clustered motifs that are similar both in their nucleotide sequence 

and in the set of biological conditions they appear to regulate (as judged by coherent 

expression of their target genes at these conditions). This revealed that motifs with 

highly similar sequences may operate at distinct sets of biological conditions [29]. 

Secondly within a given biological condition, we compared the regulatory effects of 

highly similar sequence motifs, and noticed that they may differ considerably.  
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 These observations may be reasoned if the related sites are bound by different 

TFs. Alternatively similar sites may be bound by the same TF, yet yield different 

regulatory outputs, due to different affinities of the TF to the different sites, or to 

different co-factors interacting with the TF in each case. Whichever is the case, it is 

clear that sequence considerations alone are not sufficient for predicting a motif’s 

regulatory outcome, as motifs differing at a single position may exert different 

regulatory affects.  

 This recognition is highly relevant to an important task; It is often desirable to 

asses the effects on gene expression of motif variations which are present in the 

population, or in the genomes of related species. Such assessment would distinguish 

‘neutral’ binding site variations (which do not alter expression) from ‘deleterious’ 

ones (which alter expression and may ultimately cause disease). We established a 

systematic method to predict the phenotypic effects of binding site variations. The 

idea is simple and appealing: Such effects can be inferred from comparing the 

regulatory output of related motifs that are present in the same genome. The motif 

dictionaries are an invaluable source for such comparisons; The regulatory effect of 

every dictionary motif was compared to that of all k-mers that differ from it by a 

single nucleotide.  

 Applying such comparisons to dictionary motifs which correspond to the 

consensus sequence of known yeast binding sites, we were able to produce reliable 

predictions. Particularly for Ndt80, a pivotal yeast sporulation factor, our predictions 

were in good agreement with experimental results in which the site was systematically 

mutated at each position and the effect on protein binding and expression was 

monitored. By accumulating statistics for many substitutions across multiple binding 

sites we observed that not all nucleotide substitutions are similar in severity: In the S. 

cerevisiae genome abolishing a C or a G has a harsher effect on average than 

abolishing an A or a T. Although this result may be specific to the AT rich S. 

cerevisiae genome, the same method can be easily applied to other genomes, and 

specifically to human. 

 The power of our approach stems from its huge statistics – thousands of genes in 

hundreds of expression time points are utilized, with hundreds of motifs and an even 

higher number of variations on them. To our disadvantage is the fact that we cannot 

control for differences in the promoter backgrounds in which our motif variants are 

embedded (i.e. differences that are outside of the substituted position). The fact that 
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we obtain statistically significant differences between the effects of different types of 

substitutions on expression likely indicates that despite uncontrolled sources of 

variation we extracted genuine signals. 

 We show that other characteristics, in addition to nucleotide identity, such as the 

information content of a binding site position are predictive of its sensitivity towards 

substitution. An intriguing follow-up on this study would be to test the predictive 

ability of additional features such as the evolutionary conservation of a position 

within a binding motif and its proximity to the protein in the DNA-protein complex. It 

is anticipated that high conservation and greater proximity to the binding proteins, 

two factors which themselves are likely correlated, will be also correlated with the 

severity of the substitutions [43, 46, 48]. Many such features may be ultimately 

integrated in order to form a prioritization scheme that would allow the ranking of 

existing genome variations by their disease-causing potential. 

 An additional application may be in algorithms that assign PWMs to promoters 

(c.f. PRIMA [126]) as it should provide means to differentially weigh mismatches 

between the PWM preferences and the promoter sequence, based on the expected 

effect on expression. Particularly, at least in the S. cerevisiae genome if a PWM 

contains a C or a G in a given position, and an A or a T in another, potential targets 

that deviate from the consensus in the first of the two position types are less likely to 

be assigned to the motif compared to targets that deviate from it in the second of these 

types. 

4.3 Regulation through antisense transcripts 

4.3.1 Regulation of the regulator 

 In recent years, there has been a revolution in our understanding of the regulatory 

role of non-encoding RNAs. Genome-wide technologies reveal that a significant 

proportion of all genomes is transcribed, and might thus fulfill regulatory functions 

[156]. The possibility that transcribed RNAs represent leakage of the transcription 

machinery exists, but evidence for a selected process is convincing. In our recently 

published ‘Concept Paper’, we have discussed one type of non-encoding RNA, 

natural antisense transcripts, and suggested that its transcriptional, and post-

transcriptional, regulation is tailored to its various regulatory roles [107]. 
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4.3.2 A human trans-encoded NAT network 

 Genome-wide computational efforts have shown that NATs are widely 

prevalent in the genomes of many species. In parallel, evidence accumulated from 

multiple studies of individual genes, suggests that NATs play an important role in the 

regulation of gene expression. It is commonly accepted to distinguish between cis and 

trans encoded NATS, based on both the genomic locations from which they are 

encoded and the types of regulatory networks they form. Here we challenge this 

common distinction by demonstrating that the same NAT may potentially target 

transcripts in both cis and trans. We have discovered a putative genome-wide 

regulatory network, in human, which exhibits many-to-many relations: A given NAT 

may have multiple mRNA targets and a given mRNA may serve as a potential target 

of more than one trans-encoded NAT.  

  We found several particular biological functions to be enriched among the 

genes belonging to this network, suggesting that they may indeed be subject to 

common regulation. These functions include GO categories related to: transporter 

activity, vesicular transport, enzymatic activity, and response to external stimulus 

through signal transduction. Intriguingly, a similar set of functional categories was 

recently reported to be enriched in the trans-antisense network of Arabidopsis 

thaliana [129]. This is a remarkable correspondence that may represent convergence 

to similar regulatory regimes of functionally related genes in extremely remote 

organisms. Alternatively, such regimes may have diverged from a common ancestral 

regulatory mechanism. This scenario is less likely to be the case, as regulatory 

mechanisms are rarely conserved through such long evolutionary distances. In fact the 

Arabidopsis trans-antisense network was compared to the corresponding networks of 

two related plants poplar and rice [129]; About half of the transcripts involved in the 

Arabidopsis network, had an ortholog involved in the networks of poplar or rice. 

However only one Arabidopsis trans-NAT pair maintained both transcripts and 

pairing relationships in the other two plants. For all other NAT pairs even if both 

transcripts had corresponding orthologs in the related species, the pairing was 

different. This finding supports the convergence model. It suggests that antisense 

regulation may be important for only one transcript of a trans-NAT pair and that 

different regulators may have been recruited in different species.  
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 NATs are known to regulate their conjugate sense transcripts at several levels 

including transcription, mRNA processing, splicing, mRNA stability, mRNA 

transport and translation (as summarized in our recent paper [107] ). In Arabidopsis 

the potential roles of trans-NATs in regulating alternative splicing and inducing gene 

silencing were explored. Here we report an additional observation (which was not 

tested in plant) that transcripts involved in sense-antisense pairing are predominantly 

localized to membrane fractions, cytoplasm, cytoskeleton filaments and various 

vesicles. This finding leads us to hypothesize a potential role of human trans-

antisense in the control of mRNA intercellular localization.  

 While in the past mRNAs were thought to be translated exclusively in the 

cytoplasm, there is today accumulating evidence that mRNAs may be transported to 

specific cellular locations and translated there upon demand [157, 158]. mRNA 

localization should be more cost-efficient than protein transport as one mRNA 

molecule can give rise to several protein molecules. In addition localization of the 

mRNA limits the presence of the protein at any location other than the target site. It is 

thus expected that mRNA localization should be tightly regulated. 

 Localization likely occurs by active transport along the cytoskeleton and is 

mediated by RNA-binding proteins which couple the mRNA to the localization 

machinery. These proteins recognize cis regulatory elements primarily located at the 

3’UTR. Because we observe localization of our transcripts both to cytoskeleton 

filaments and to distinct membranal organelles, we hypothesize that trans-NATs may 

regulate mRNA localization, for instance by masking the corresponding cis elements. 

 

 In summary: the interlaced relationships observed between cis- and trans-NAT 

pairs suggest that antisense transcripts may form complex regulatory networks, 

governing distinct cellular processes in organisms as distant as plant and human. 

There remains a possibility that, notwithstanding the sequence complementarity, the 

two transcripts of a putative trans-NAT pair are not related and rarely form RNA-

RNA duplexes within the cell. However the vast potential of trans-NAT pairs to form 

duplexes was recently demonstrated experimentally for RNA extracted from human 

cells [159]. It thus seems likely that at least some of our putative NAT pairs should 

form duplexes in vivo.
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Appendix I – Abbreviations 

 

BLAST - basic local alignment search tool 

bp - base pair 

ChIP - chromatin immunoprecipitation 

ChIP-chip - ChIP followed by DNA sequence identification using DNA microarrays  

dsRNA – double stranded RNA 

EC - expression coherence 

EMSA- electrophoretic mobility shift essays 

ENCODE - encyclopedia of DNA elements 

EST - expressed sequence tag 

FDR - false discovery rate 

GO - gene ontology 

IC - information content 

IFNs - interferons 

IRF - interferon regulatory factor 

MEX - motif extraction algorithme 

mRNA - messenger RNA 

MY - million years 

NAT - Natural antisense transcript 

ORF - open reading frame 

PWM - positional weight matrix 

RNAi – RNA interference 

rRNA - ribosomal RNA 

SNP - sequence nucleotide polymorphism 

rSNP - regulatory sequence nucleotide polymorphism 

TF - transcription factor 

TFBS - transcription factor binding site 

TSS - transcriptional start site 

UTR – untranslated region 
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Appendix II – 40 biological conditions  

 

Below are short descriptions of the 40 conditions from which expression data was 

gathered. These datasets were downloaded from ExpressDB [109].   

 

1. Cho – Mitotic cell cycle [135] 

2. Chu – Sporulation [139] 

3. Environmental response – Acid [141] (same reference for condition 3-8) 

4. Environmental response – Alkali  

5. Environmental response –Heat  

6. Environmental response -NaCl 

7. Environmental response - Peroxide 

8. Environmental response - Sorbitol 

9. Eisen – Cold shock [160] (same reference for conditions 11-12) 

10. Gasch environmental response- Diauxic shift [140] (same for conditions 14-35) 

11. Eisen - Dtt 

12. Eisen - Heat 

13. Jelinsky - DNA Damage [138] 

14. Gasch environmental response - 37oC -25 oC shock  

15. Gasch environmental response - Amino acid starvation 

16. Gasch environmental response – Diamide (sulfhydryl-oxidizing agent) 

17. Gasch environmental response - Dtt1 

18. Gasch environmental response - Dtt2 

19. Gasch environmental response - Heat shock 1, 25 oC-37oC 

20. Gasch environmental response- Heat shock 29 oC -33 oC  YPD +1M sorbitol 

21. Gasch environmental response- Heat shock 29 oC -33 oC  YPD  

22. Gasch environmental response- Heat shock 29 oC -33 oC  YPD +1M sobitol to 

YPD 

23. Gasch environmental response- Heat shock 2 25 oC-37oC 

24. Gasch environmental response- constant H2O2 (hydrogen peroxide) 

25. Gasch environmental response- Menadione (superoxide-generating drug) 

26. Gasch environmental response- Hypo-osmotic 

27. Gasch environmental response- Nitrogen Depletion 

28. Gasch environmental response- Sorbitol (Hyper-Osmotic) 

29. Gasch environmental response- Heat shock, from various temperatures (17o, 21 o, 

25 o, 29 o, 33 o) to 37oC. 

30. Gasch environmental response- Growth at various temperatures (17o, 21 o, 25 o, 29 

o, 33 o, 37 o) 

31. Gasch environmental response- Growth at various temperatures 

32. Gasch environmental response- X media versus carbon source 1 

33. Gasch environmental response- YPD1 25 o C  

34. Gasch environmental response- YPD2 30 o C 

35. Gasch environmental response- YPx media versus carbon source 2 

36. MapK - monitor signal transduction during yeast pheromone response [136] 

37. Spellman cell-cycle alpha factor arrest [137] (same for conditions 38-40) 

38. Spellman cell-cycle cdc15 

39. Spellman cell-cycle cdc28 (reanalysis of Cho’s experiment, condition 1) 

40. Spellman cell-cycle eluteration 
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Appendix III – Supplementary web files 

 
The following supplementary files can be found at: 

http://longitude.weizmann.ac.il/~lapidotm/PhDThesis 

 

1. Table S1: Significantly scoring S. cerevisiae k-mers (our yeast motif dictionary). 

Lists our 8,610 dictionary motifs, along with their EC scores and p-values in the 

biological condition in which each motif obtained the most significant score. For 

motifs that matched at least one of Harbison’s PWMs with a match score higher than 

99, the highest scoring match is also listed. 

 

2. Table S2: Regulatory motif content of IFN-α promoters. 

(i) Lists for each one of the 13 IFN-α promoters, the locations of each of the 45 

selected binding sites we searched for (ii) Lists all promoter pairwise similarities. 

 

3. Interface to MySql database containing all sense-antisense pairs forming the human 

trans-antisense network.  

 

4. Links to all published work along with supporting websites (when available). 

 

 

 

 

 

http://longitude.weizmann.ac.il/~lapidotm/PhDThesis

