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Abstract 

A growing body of evidence supports associations between the human gut microbiome and the health of its 

host, yet the mechanisms underlying this interaction are still not fully understood. Typical microbiome studies 

focus on species composition, however modern technology allows analyses at the sub-species level. Recent 

studies demonstrated that genetic diversity at the sub-species level of the microbiome expresses selective forces 

acting upon bacterial genomes in the gut, and may promote our understanding of mechanisms underlying host-

microbiome interaction and bacterial adaptation. In this project, we devised a computational framework to 

analyze intra-species genomic variability in the human gut microbiome. We have applied this framework to 

dozens of bacterial species across a cohort of 1003 human participants. We compared the genetic variability 

along the genome of Akkermansia muciniphila and found a difference in variability patterns between genes of 

different functions, such as different variability of protein coding genes and non-protein coding genes. We 

further compared the genomic variability of different symbiont species and different hosts and integrated 

extensive information about the host into the analysis. To our knowledge, this is the first analysis of single-

nucleotide-resolution genomic variability landscape of the human gut microbiome in association to host 

phenotypes. This revealed associations between genomic variability in the microbiome and host health and 

lifestyle factors. We found, for example, that the microbiome of smoking hosts, and the microbiome of hosts 

with high white blood cells counts, display higher intra-species genomic variability. These results demonstrate 

how analyzing intra-species variability in the gut microbiome of different individuals may shed light on host-

microbiome interaction and on bacterial genetics. 
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Introduction 

While every species has a typical genomic sequence, individuals in the population will not have entirely 

identical genomes. Genetic variation exists in every biological unit: between species, within populations of 

same species (Altshuler et al., 2010), and even among cells of a multicellular organism (Martincorena et al., 

2015). The source of the variation is mutation, a random error in the genome replication, which given typical 

error rates of DNA replication enzymes and genome lengths of bacteria, for example, is likely to occur once in 

hundreds of cell divisions thus always maintaining some amount of genetic variation (Zhao et al., 2017). When 

a mutation occurs, it may have a deleterious influence on the individual’s fitness, it can be beneficial, or, it will 

be a neutral mutation, which has no influence on the individual’s fitness. In a genetically diverse population, 

some individuals will have a genetic variation which gives them a fitness advantage in their environment. 

Under some selective pressure they are more likely to survive, making their genetic variants more abundant in 

the next generation and the population better adapted to its environment. Genetic variability is the basis for 

evolution (García-Arenal, Fraile, & Malpica, 1999) and was essential for the emergence of every species that 

has ever existed.  

The human gut is populated by many microorganisms, most of which are bacteria, often referred to as 

the ‘microbiome’ or ‘microbiota’. Recent quantification estimates the number of bacterial cells in our gut to 

be as high as 1013  (Sender, Fuchs, & Milo, 2016), as many cells as there are in the human body. This bacterial 

population closely interacts with its human host, providing important functions while relying on it for their 

survival. These bacteria have been shown to have great influence on the host health, associated with various 

health conditions such as obesity (Turnbaugh et al., 2009), diabetes (Larsen et al., 2010), inflammatory bowel 

disease (Frank et al., 2007), drug metabolism (Clayton, Baker, Lindon, Everett, & Nicholson, 2009) and even 

with neurodevelopmental disorders (Hsiao et al., 2013). The mechanisms of interaction between the symbiont 

bacteria and the health of their human host are far from being fully understood, however their importance is 

demonstrated over and over in the published scientific literature.  

Not only does the bacterial population in our gut influences our health, our health and lifestyle are 

affecting the gut niche and thus shape the population of gut microbiota. The influence of host lifestyle on the 

gut residing bacteria population was observed in multiple levels of variation, including species composition 

(David et al., 2015) and mobile genes distribution (Brito et al., 2017). In their study, Brito et al. have described 

the acquisition of different mobile genes by the microbiome bacteria, in association with the host diet and 

antibiotics consumption. Studying the mechanisms through which bacteria adapt to its host’s gut is key to our 

understanding of host-microbiota interactions as well as of microbiome stability, which may be essential for 

designing effective microbiome-based therapies.  
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 As the human host’s physiology and habits change the conditions in the gut environment, the genetic 

variability of the residing bacteria allows its adaptation. Another important level of genetic variability in the 

gut is the sequence diversity of different nucleotides in the genome. As more than a billion point mutations are 

expected to occur in our gut microbiome every day (Lieberman, 2018), the potential of the microbial population 

to evolve and adapt to its host is great. Zhao et al. have recently described the evolution of a single bacterial 

species in the human gut and revealed within-host evolution, expressed by its diversity of mobile genes and 

single nucleotide polymorphisms (SNPs) (Zhao et al., 2017). In their analysis, the authors have found that 

certain genes contain significantly more SNPs, implying on their relevance for niche adaptation. Comparing 

the genetic variability of different genes may imply on the function and essentiality of the gene: a gene that 

may be important for bacterial survival in a given niche may be significantly conserved, while a gene which is 

under strong positive selection to adapt to the environment may shed light on the environment sensed by the 

bacteria and on host-bacteria interactions.  Schloissnig et at. have analyzed SNPs in a variety of gut microbiota 

species and in multiple hosts, and by comparing selection marks on genes of two commensal species, have 

showed how stronger purifying selection on a metabolic gene in one of the species correlates with previous 

knowledge of the differences between the metabolism of these two species (Schloissnig et al., 2013). These 

studies imply that sub species-level genetic diversity in the microbiome expresses the selective forces acting 

upon bacterial genomes in the gut and demonstrate its potential to highlight specific genes and mechanisms 

through which bacteria adapt.  

While both studies describe variation between hosts in the amount and distribution of microbial genetic 

variability in the microbiome, neither have compared these differences with different phenotypes or habits of 

the host. Zhao et al. found several genes to be under subject-specific selective forces, and several others to be 

under selective pressures common to all hosts in the cohort. Integrating this sort of observations with 

information about the human host may shed light on human lifestyle habits and medical conditions which 

challenge the commensal bacteria, and the mechanisms through which the latter adapt. Analyzing the genomic 

variability in the context of the human host, may promote our understanding of how the variability is induced 

by environmental features, as well as of how it affects the host health. 

 In this study, we have devised a computational framework to analyze intra-species genomic variability 

on a single nucleotide resolution, and used it to analyze the genomic variability of dozens of bacterial species 

in the microbiome of hundreds of human hosts. We have described the genetic variability landscape in the 

genome of one bacterial species across the entire cohort, comparing different regions and genes in the genome. 

Using an ample dataset of microbiome samples and extensive host medical and lifestyle information, we have 

compared the genomic variability of many species, in many hosts, and tested its association with host health 

and lifestyle. 
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Goals 

We have set the following goals for this project: 

 Create a computational framework to analyze intra-species genomic variability in bacterial populations, on 

a single nucleotide resolution, based on sequenced metagenomic samples.  

 Use this framework to map the in-vivo genomic variability landscape of many bacterial species from 

divergent gut microbiome populations in a systematic manner.  

 Learn about bacterial genetics by quantifying the intra-species genetic diversity along bacterial genomes 

and searching for regions with extreme variability or conservation. 

 Combine the genomic variability landscape of the microbiome with detailed data regarding its human hosts 

to shed light on genetic and environmental factors associated with variability. Analyze the evolutionary 

forces acting upon bacterial genomes to learn about mechanisms of bacterial adaptation to the host gut 

environment. 

We expected these goals to promote our understanding of bacterial evolution and host-microbiome interactions. 
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Methods 

Gut microbiome samples and human hosts data 

Data for this project were taken from multiple cohort studies published by the Prof. Eran Segal and Prof. Eran 

Elinav groups (Korem et al., 2017; Zeevi et al., 2015) including gut microbiome samples and human host data 

from 1003 healthy participants aged 18-70 years. Participant data includes medical and lifestyle information 

collected by blood tests, anthropometric measures, heart rate and blood pressure measurements, medical 

history, lifestyle and food frequency questionnaires.  

Microbiome data are in the form of metagenomic reads collected from stool samples and sequenced as 

detailed in the published papers (Korem et al., 2017; Zeevi et al., 2015). For some hosts, multiple metagenomic 

samples were included, either sampled from the same stool (using two different collection kits) or at different 

time points (which can be days to years apart).  

Mapping metagenomic samples to bacterial genomes 

Single end reads were mapped to bacterial reference genomes to search for the genome and the position in the 

genome from which this sequence originated. Mapping was done using GEM (Marco-Sola, Sammeth, Guigó, 

& Ribeca, 2012), based on sequence similarity. Reads which were assigned to the human genome were 

excluded. Mapping parameters used are same as in Zeevi et al.,2015.  

In the first part of the project, we measured the genetic variability along the genome of Akkermansia 

muciniphila over the entire cohort by mapping all metagenomic samples to NCBI genome of A. muciniphila, 

ATCC BAA-835 (Agarwala et al., 2017). Only reads mapped uniquely to this species were kept.  

In the second part of the project, we analyzed all the bacterial species present in the cohort in a more 

systematic manner. We mapped the reads from the metagenomic samples to proGenomes dataset (Mende et 

al., 2017) of bacterial genomes. The results of the mapping algorithm were further analyzed by an iterative 

algorithm for mapping corrections based on PathoScope (Hong et al., 2014) which assigns probabilities to 

different mapping destinations based on species abundance. For downstream analyses, we only used reads with 

a genome assignment with probability equal to or greater than 0.99 (Results). 

Creating nucleotide occurrences array for each genome 

We used the assignment of reads from the metagenomic samples, indicating from which position in which 

genome it originated, to create a matrix summing the number of observations of each nucleotide (‘A’, ‘T’, ‘C’, 

‘G’, or ‘-’ - representing a short deletion in comparison to the reference genome) in each genome position. We 

represented each species’ genome in each sample by a matrix of size [genome-length x 5] (5 – for the 4 

nucleotide types, plus a indel). We later removed the indel column for separate analyses. This resulted in a 
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nucleotide occurrences array with 4 columns and N rows, with N being the length of the bacterial genome for 

each species in each sample. 

Creating nucleotide frequency array 

We normalized each row (representing a position in the genome) in the nucleotide occurrences array by 

dividing each value in the row (representing the number of occurrences one of the nucleotides) by the sum of 

the row (representing the total number of reads which were mapped to this position).   

Creating A. muciniphila nucleotide frequency array 

For the analysis of A. muciniphila genome, we were interested in quantifying genetic variability in different 

genomic regions across the entire cohort. To get as much information as possible, we selected all metagenomic 

samples with an average genomic coverage of 0.5X or more for A. muciniphila and created the nucleotide-

frequency array described above for each sample. Two analyses, the CRISPR array detection (Results) and the 

comparison of genes’ variability distribution within individual samples, were done only with the 0.5X coverage 

threshold. For the rest of the analyses of the A. muciniphila genomic variability we have added a threshold and 

for a coverage by 6 or more reads for a genomic position to be included in the analyses. 

After creating a nucleotide frequency array for each sample that compiled with these thresholds, we 

summed all sample-arrays to create one merged A. muciniphila array.  

Finally, we renormalized each position of the merged array, resulting in an array of nucleotide 

frequencies for each position of A. muciniphila genome, over the entire sampled cohort. The reason for 

normalizing the array twice (once for each sample separately, and once again after summing all sample arrays), 

rather than just summing all sample arrays and only then normalizing the array, was to conform equal weights 

in the analysis for high-coverage and low-coverage samples alike. 

Creating nucleotide frequency array for all species in all samples 

In the second part of the project, we analyzed the genomic variability of each species within each sample 

separately. For several analyses (Results), to increase coverage, we merged all reads from all samples of the 

same host into one unified sample to increase coverage (prior to any frequency calculation or normalization 

step). However, to prevent intra-host bias resulting from sampling across multiple time points, we selected one 

sample from each participant when comparing variability across different hosts. In these analyses, we tried to 

eliminate as many of the technical differences between samples as possible. Therefore, we chose the samples 

which were all collected using the same stool collection kit and sequenced on the same sequencing platform. 

Since all samples were down-sampled to contain no more than 107 reads, post human-DNA-filtering, we also 

excluded all samples with less than 107 reads, to have an equal number of reads in all samples. 
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Quantifying genetic variability 

To quantify the variability in each position, based on the nucleotide distribution, we calculated its entropy 

(Shannon, 1948): 

 

There are many different measures commonly used to quantify sequence variability, such as ‘major allele 

frequency’, or the relative abundance of the most abundant allele for each position, and ‘minor allele 

frequency’, or is the relative abundance of the second most abundant allele in the position. We chose to use 

entropy, since it contains information both on the number of different nucleotides observed in the position, and 

on the distribution of reads across different possible nucleotides. Theoretically, for DNA sequences entropy 

values can range from 0, for a position where the entire sampled population has the same nucleotide, to 2 for 

a position where all four possible nucleotides are equally abundant.  

We calculated the entropy of each position of a genome-array separately, creating an entropy vector 

(with the length of the genome) for each species’ genome in each host/sample. This enabled us to compare the 

variability of different genomic regions within a sample, as well as the variability of a certain genetic unit in 

one sample in comparison to the equivalent genetic unit in another sample. 

Calculating average genomic entropy 

Taking the nucleotide-frequency array of a genome, we calculated the entropy of each position covered by five 

reads or more. Next, we discarded genomes that had fewer than 10,000 such positions. In each of the arrays 

which passed this filtering, we calculated its average entropy over all covered positions.  

Samples and species selection 

After mapping all samples, we examined the list of reference genomes which had reads assigned to, to search 

for multiple strains of the same species having reads mapped to them, and excluded these species entirely from 

further analysis. This was done since we only wanted to analyze the intra-species variability, and because we 

did not know how well the sequencing pipeline distinguishes between different strains of the same species.  

Calculating sample entropy score 

To score the overall intra-species variability of all species in a sample, we gave it an entropy score. For each 

species in the sample, we calculated a Z-score quantifying how much its average-genomic-entropy in this 
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sample deviates from the average value for this species. Next, we calculated the average of the Z-scores of all 

the species in the sample, which we describe as the sample entropy score. 

Calculating species entropy score 

To score the overall variability of a species, calculated over all its sampled populations, we gave it an entropy 

score as well (similarly to the mentioned above ‘sample entropy score’). This time, for each sample which 

included this species, we calculated a Z-score for the sample, quantifying how much the average-genomic-

entropy of this species deviates from the average value for this sample. Then, we calculated the species entropy 

score as the average of all Z-scores of samples which contained this species. 

A. muciniphila total coverage analyses 

After we created the nucleotide occurrences array (counts the different nucleotides for each position) for A. 

muciniphila in each of the samples and filtered out low coverage samples (same filters as in ‘Creating A. 

muciniphila nucleotide frequency array’), we summed all occurrences arrays together, resulting in one array 

summarizing the number of reads containing each of the 4 nucleotides, for each genomic position, in all of the 

samples together. Next, we summed all the nucleotides’ occurrences in each position- summing each row, 

which created a vector with the length of A. muciniphila genome, counting the total number of reads (from all 

samples together) that mapped to each genomic position, i.e. the total coverage of each position. 

Calculation of average entropy per codon position 

For every protein-coding gene in each genome (each bacterial species in each sample), we calculated separately 

the entropy of the first, second and third codon positions, using the genome-wise entropy vector. Next, for each 

such genome, we calculated the average entropy of the first, second and third codon positions.   

 In each genome we only calculated the entropy in positions covered by 4 reads or more, and only genes 

which at least one third of their positions were covered. Since some genomes had sufficient coverage for only 

a gene or two, for each species we kept only samples in which the number of covered genes was not lower than 

the median number for this species, and not smaller than 15 genes. 

Calculation of the ratio between the first two codon positions and the third 

After calculating the average entropy of each codon position of a genome as described above, we calculated 

the ratio between the positions, using this formula: 

𝑟𝑎𝑡𝑖𝑜 =  

1
2

× (1௦௧𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑚𝑒𝑎𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 +  2ௗ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑚𝑒𝑎𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)

3ௗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑚𝑒𝑎𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
 

Where either the numerator or the denominator were zero, we replaced them with the lowest non-zero value 

(lowest numerator or denominator, accordingly) calculated in all species and samples. 
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Alpha diversity calculation 

We calculated the alpha-diversity of a sample by calculating the average genomic coverage of each bacterial 

species in the sample, then using them to calculate the diversity index based on Shannon entropy (Shannon, 

1948): 
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Results 

Genomic entropy landscape of Akkermansia muciniphila 

As a proof of concept for the importance of genomic variability in the human microbiome, we first explored 

the prevalence and scale of it in the human symbiont A. muciniphila. As a first step, we calculated the 

nucleotide distribution in each position of the A. muciniphila genome in each human microbiome sample. We 

next calculated the per-position entropy over the entire cohort, as a proxy for the overall variability in each 

genomic position (Methods).  

 

Comparing the variability of different positions along the genome (Fig. 1) we show that although positions 

which are identical across all sampled genomes are not highly abundant – we observed zero entropy in only 

3.38% of the positions, 95.49% of the positions had entropy values between 0 and 0.5, which is the lower 

quarter of the possible values range, signifying considerable conservation in most genomic positions. 

To increase the accuracy of our method, we filtered regions of aberrant coverage from our calculations. 

To this end, we used metagenomics data to calculate read coverage in different regions of the genome and 

across different samples. Briefly, we summed the number of reads mapped to each genomic position in each 

sample (Methods). Our examination of read coverage of the A. muciniphila genome across the entire cohort, 

revealed highly variable coverage (Fig. 2), whereby several regions of the genome are covered up to 4.5-fold 

more than the average coverage, and other regions have zero coverage in all samples. Such differences in 

coverage may result from differences in gene copy number between the reference genome and the genomes of 

bacteria present in samples. Another possible cause for variability in coverage is sequence homology of a 

Figure 1 – per-nucleotide entropy distribution in the A. muciniphila genome is non-uniform.  
Theoretical entropy range is 0, for no variability, to 2, for the highest variability. If all reads mapped to a position agree 
on the same nucleotide, the entropy is zero. In a genomic position where two nucleotides are equally abundant, the entropy 
is 1. In a position where all four nucleotides are equally abundant the entropy is 2. 
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region with other species. Genomic regions presenting significantly higher-than-average coverage may be 

result from the presence of a different, highly abundant species in the microbiome harboring a homologous 

sequence in its genome which is not represented in the reference database and is therefore associated with A. 

muciniphila. Similarly, regions with significantly low coverage may result from the ‘sharing’ of metagenomics 

reads between two or more species. This demonstrates the importance of correct mapping to separate intra-

species variability from inter-species variability. Thus, to improve our ability to separate the former from the 

latter, we have excluded reads with ambiguous mapping, and for some of the downstream analyses we have 

also set a threshold of minimal genomic coverage for inclusion of genomes (Methods).  

 

Genetic variability of different A. muciniphila genes 

Genes are the basic unit of function in all life kingdoms and are key to our understanding of bacterial function 

and adaptation. To advance our understanding of the relation between genomic variability and function, we 

compared the variability across different A. muciniphila genes.   

Figure 2 – High variability in the coverage of different regions of A. muciniphila genome. 
Number of reads mapped to each position of A. muciniphila genome. a. all positions of A. muciniphila genome. b. an 
example for a region with zero coverage. c. an example for a region with highly variable coverage  
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Calculating the per-position entropy distribution in all gene positions, we observed that while most of 

the positions in a gene have almost no variability (represented by the narrow distribution of gene’s median 

entropy around zero)- the mean entropy in genes have a wider range of values (Fig. 3).  

 

Figure 3- Variability of different genes in A. muciniphila genome is different a. distribution of mean gene entropy. 
Mean gene entropy is calculated as the average of entropy values in all gene positions. b. distribution of median gene 
entropy and maximal gene entropy.  
 

We found the 16 least variable genes, and 33 out of the 50 least variable genes, to be transfer-RNA genes. This 

further supports the link between reduced variability, or reduced entropy and the importance of function, as 

these genes which code for instrumental translation machinery are highly essential for cellular function. As 

these genes are not translated to proteins, they do not have the sequence flexibility that the genetic code 

normally allows protein-coding genes to have, and thus mutations in these genes are expected to have a greater 

fitness impact on the individual, making them less likely to spread in the population. Three additional RNA 

genes were found among the 50 least variable genes, all expressing 5S ribosomal RNAs. Seven of the 50 least 

variable genes are labeled as ‘hypothetical proteins’, which were not yet annotated. More than a third (900 of 

2374) of A. muciniphila genes are labeled as ‘hypothetical proteins’, and the relative stability of these seven 
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genes can imply on their significance and highlight them for further analysis. Their position on the variability 

spectrum, which is similar to that of the non-coding RNA genes mentioned above, suggests that these 

unannotated genes may also express functional RNA. When we compared the entropy distribution in protein 

coding genes, excluding those which are labeled as ‘hypothetical proteins’, with the entropy distribution in 

RNA genes, we found the entropy to be significantly lower for genes which are known to code for functional 

RNAs (Mann-Whitney p < 10-29).  

Most of the genes harboring the highest variability are annotated as coding for hypothetical proteins. 

Other sequences within the top 50 most variable genes are of unknown functions, however they contain 

domains which are known to be associated with membrane proteins and transporters. In the process of genome 

evolution, inessential genes often accumulate mutations due to the relaxation of selective pressures, and 

duplicated genes often speciate to obtain new functions. Such highly variable genes may belong to either of 

these categories, with membrane and transporter genes possibly evolving as sensing and response mechanisms 

for environmental, immune or other cues. As in this analysis we have measured the total genetic diversity of 

these genes in the cohort, the source of this diversity can be intra-populations (i.e. intra-sample) variability, 

inter-populations variability, or a combination of both. We suggest future studies to examine whether these 

genes have a small intra-populations variability and high inter-populations variability, suggesting an adaptation 

mechanism to specific hosts through these genes. 

We have also calculated the intra-sample variability of different genes for the five samples with highest 

coverage of A. muciniphila. We found that the intra-sample, or intra-population, variability is also different for 

different genes (Fig. 4), fortifying our motivation to compare the variability of genomes in different samples 

in future analyses.  

 

We further explored genomic regions with extremely high variability, and observed a pattern resembling the 

spacers within a CRISPR array (Fig. 5). Using existing gene annotations for this genome (Agarwala et al., 

Figure 4 – Gene entropy distribution varies between different samples 



18 
2017), we found that a known repeat region is located in this region, and that the two neighboring genes are 

known CAS genes. Thus, we analyzed the consensus sequence of this region (choosing for each position the 

most abundant nucleotide in the population) using a CRISPR finding tool (Grissa, Vergnaud, & Pourcel, 2007) 

and confirmed that this region is indeed a CRISPR array, with the low entropy regions being the repeat 

sequences and the high entropy regions being the spacers. This is with agreement with previous studies of 

CRISPR arrays (Sorek, Kunin, & Hugenholtz, 2008; Tyson & Banfield, 2008), which reported high variability 

in the spacer sequences. This suggests that looking for specific variation patterns with this data might reveal 

new CRISPR arrays in unannotated bacterial genomes, as well as additional unknown variability structures 

pertaining to novel regulatory and functional regions.  

 

 

Figure 5- Per-position entropy along a CRISPR array reveals a unique pattern peaks and valleys of entropy mark 
the positions of spacers and repeat sequences, accordingly. Two neighboring genes (right side of the figure) are coding 
for CAS proteins.  
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Genetic variability of different positions within a gene 

We next compared the entropy of different positions along each gene and revealed a three-nucleotide 

periodicity in protein coding genes, reflecting the degeneracy and degrees of freedom in the genetic code (Fig. 

6, top). In each codon, the third nucleotide is more variable on average than the previous two, as explained by 

the wobble effect of the third codon position (Crick, 1966). 

 

More surprisingly, we found that the second codon position is more conserved on average than the first one. A 

possible reason for this difference is that while three amino acids (Leucine, Serine and Arginine) are encoded 

by codons which differ on the first codon position, only one amino acid (Serine) is encoded by codons which 

differ on the second position. This can allow greater average flexibility in the first codon position, reflected in 

greater entropy.  

Additionally, the amplitude of the periodicity seems to grow along the gene, as the third codon position 

has smaller variability in the first codons than further down the gene. Previous studies have suggested that 

Figure 6 – Variability of protein coding genes reveals a periodic pattern per-position entropy, averaged across all 
genes in A. muciniphila genome. X axis zero marks the position of the first nucleotide of the gene. The area colored in 
grey marks the 50 nucleotides upstream to gene start position. Every three nucleotides are colored in yellow and white, 
alternately. In protein coding genes, the first 150 first positions of the gene were analyzed, while in non-protein coding 
genes only the first 74 positions of the gene were analyzed, in order to be able to include short genes such as tRNAs. 
(top) average entropy in each position of protein-coding genes, averaged over 2254 genes. Grey part is the 5’-UTR, and 
the start codon region is marked in red. (bottom) non-protein coding genes, averaged over 60 genes.  
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codon usage bias at the beginning of the gene can have an important influence on gene expression level and 

energetic cost of production (Frumkin et al., 2017) and that codon preferences are the strongest at the beginning 

of the gene (Kelsic et al., 2016), thereby resulting in lower entropy in this region.  

As expected, in non-coding genes this periodicity pattern does not exist (Fig. 6, bottom). This 

observation can be used in future analyses of the genes which we described above to have very low variability, 

while their function is not yet known, and may suggest whether they are RNA genes or harbor the entropy 

patterns of protein coding genes. 

Genomic entropy landscape across the human gut microbiome 

Out next goal was to explore the genomic entropy landscape of different bacterial species in different 

populations of human gut microbiome to learn about different factors associated with bacterial genomic 

variability. For this, we have applied the framework we created on all microbiome samples in our cohort and 

on all bacterial species we were able to detect. 

Since different bacteria share genomic regions, GEM assigned more than one mapping destinations for 

some reads. Correct read assignment is critical for analyzing intra-species variability, without introducing inter-

species variability caused by incorrect mapping. To address this issue, we have further analyzed the output 

from GEM with another algorithm which assigns probabilities to each mapping destination (Methods) and 

included only reads with high probability for correct mapping. There is a trade-off between setting the 

probability threshold too low, which increases the inter-species ‘noise’ caused by mis-mapping, to setting the 

threshold too high which will result in often ignoring regions which are similar between two species and thus 

missing relevant information. 

To choose a threshold for mapping destination probability, we examined the distribution of the most 

probable mapping destination reads from 10 of the samples. As an intermediate, we chose a probability 

threshold of 0.99 for inclusion of reads, which allowed us to include most reads (89.54% of 3.04 × 107 sampled 

reads) while still having confidence in their genome assignments. 

 We have mapped all samples’ sequenced reads to known bacterial genomes and generated a nucleotide 

frequency array for each genome in each sample (Methods), creating a total of 237,025 arrays, one for each 

existing combination of microbiome sample × bacterial species. To accurately sample the entropy of each 

position, in each sample we only included positions which were covered by 5 reads or more. For initial 

analyses, in order increase the coverage of each genome (and thus increase the information of each position) 

and the number of samples covering each species, we merged all samples of each participant together. To be 

able to calculate the average entropy of a genome and compare different genomes with some confidence, we 

needed to choose a threshold for the minimal number of covered positions in a genome in order to deduce its 

average entropy. We then examined the distribution of the number of positions that meet the 5 reads per 
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position demand in each genome, and chose to include only genomes with at least 10,000 positions that meet 

this demand, as a balance between including only high-covered genomes to increase the accuracy of calculating 

the mean entropy, and including less-covered genomes to increase our power to observe general phenomena 

over a larger number of genomes (Fig. 7a).  

 After this filtering step, we were left with 44,574 genomes from 1003 human hosts and 686 bacteria 

species, with the number of different species in a sample ranging from 1 to 110, and the number of different 

samples per species ranging from 1 to 979 (Fig. 7b,c). In all following analyses, we have only included samples 

with 15 bacterial species or more, and species which are sampled 40 times or more, leaving us with 43,253 

genomes to analyze.   

 

As first step, we examined whether the observed genomic variability is associated with the bacteria itself, with 

some characteristics of the human host, or with both. Visualizing the average entropy in each genome (Fig. 8), 

it appeared that neither the species nor the host solely determine the genomic variability of the bacteria.  
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Figure 7 – a. number of positions which are covered by 5 reads or more, in all genomes. We chose a threshold of 10,000 covered 
positions or more. b. number of species detected in each sample. c. number of different samples in which each species was 
found. 

Figure 8 – Mean genomic entropy varies between hosts and bacterial species heatmap showing the mean entropy of 
each genome, which represents one bacterial species in one sample. The matrix is redundant (white) since not all species 
were present in each sample. To reduce the redundancy of the visualization, only species which exists in 60 samples or 
more, and only samples which cover 30 bacterial species or more, are included. 
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Plotting the mean entropy of each host and the mean entropy of each species, show a wide range in both 

distributions (Fig. 9). 

 

 

Figure 9- Mean genomic entropy varies between hosts and bacterial species 
 

Bacterial factors associated with genomic variability 

To isolate species factors associated with the genomic variability from factors of the sample or the host, after 

calculating the average entropy for each genome, we calculated each species’ entropy score (Methods).  

We next sought to examine the association of genomic variability and species phylogeny.     

 

Figure 10 – Genomic variability is taxa-dependent entropy score of all species (left) Entropy scores distribution is 
different for different superkingdoms, Mann-Whitney-U test p = 0.044. (right) Entropy scores distribution is different 
for different phylum. Mann-Whitney-U test p for the separation between Firmicutes and Bacteroidetes < 10-6 
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We found that the overall genomic entropy score is highly taxa-dependent (Fig. 10). We hypothesized that the 

such difference may result from different mutation rates, evolvement of different repair mechanisms or 

different selective pressures on different taxa groups. Future studies may call for the comparison of DNA 

polymerases and other components of DNA replication/repair processes, to see whether these can predict 

species-wise genomic variability. A possible artifact that may affect this result, is the quality of the reference 

genomes. If the precision in genome sequences is highly different for different taxa, there may be difference 

in the accuracy of read assignment, resulting in perceived genomic variability. To test that, a thorough 

examination of the reference dataset is needed, to see whether the number of sequenced genomes of each 

species in a taxon inversely correlates with the observed genomic variability. 

As another bacterial factor, we tested whether the amount of variability in a bacterium’s genome is 

correlated with its length, which might have suggested that larger genomes are more redundant and thus may 

be more robust to some mutations. However, we did not observe a significant correlation between genome size 

and variability score (Spearman’s P = 0.26).  

Host factors associated with genomic variability in the microbiome 

We were very curious to understand what distinguishes people with high entropy score of their gut microbiome 

from people with low microbiome entropy scores, as these association might improve our understanding of 

host-microbiome interaction. We hypothesized that certain medical phenotypes and habits will be associated 

with increased or decreased genomic variability in the residing bacteria.  

Similarly to what we did in the analysis of the species factors, we started by calculating the entropy 

score for each sample (Methods), to eliminate the effect of entropy differences between species. To minimize 

the likelihood of technical artifacts, we included a single sample per participant in this and in all following 

analyses (Methods) resulting in a total of 656 samples for the analysis, representing 656 cohort participants. 

Next, we compared the hosts’ entropy scores with about 30 host phenotypes and lifestyle habits, hoping to 

obtain a correlation between host characteristics and overall microbiome entropy (Fig.11, 12). 

We found several phenotypes to be correlated with the entropy score, and these were only marginally 

significant upon multiple hypotheses correction. Interestingly, we found no statistically significant correlation 

between the entropy score of a sample and its alpha diversity. The former measures the intra-species genomic 

diversity in a sample, while the latter measures the species composition diversity in a sample. This result 

implies that these two levels of variability are independent.  
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Figure 11 - Several host phenotypes correlate with entropy score in the squares: number of samples included in each analysis, 
Spearman’s rank correlation coefficient and p-value. a. host creatinine levels vs. its entropy score b. host systolic blood pressure 
vs. its entropy score c. host HDL cholesterol vs. its entropy score d. host microbiome alpha diversity vs. its entropy score 

Figure 12 – Smoking habit is associated with higher entropy score comparison between entropy 
scores of people who never smoked, people who used to smoke and people who currently smoke. P-
value for the null hypothesis that distributions are the same was calculated with Mann-Whitney-U-rank 
test. Boxplot notches mark the 95% confidence interval for the median, based on bootstrapping of 1000 
repetitions 
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Next, we sought to examine the association of the genomic variability of different species and host 

features. We were highly curious to examine the association with smoking, therefore for each of the 93 bacterial 

species considered, we compared the average genomic entropy distribution in smokers’ with the entropy 

distribution in samples of hosts who have never smoked, and tested whether these distributions vary (Fig. 13). 

After adjusting false discovery rate at 0.05, four species exhibited a significant association with smoking. 

Interestingly, we observe that almost all species had consistently higher entropy values in smokers as 

compared to samples from individuals who never smoked. However, having a small effect in each species 

separately, and relatively smaller number of smokers in the cohort (one bacterial species was only observed in 

one smoker sample) made it difficult to observe a statistically significant difference within a species.   

 

 

Figure 12 - species-wise average entropy in smokers vs. its entropy in never-smokers size of 
the bubble corresponds to the number of smokers-samples containing this species. Species with
FDR-adjusted Mann Whitney p < 0.05 in pink. 
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We next wanted to test whether the overall correlation of genomic variability and smoking, when 

summed in each of the species, is bigger than what can be expected by chance. To test that, we used Wilcoxon 

signed-rank test over all species (each is a pair of smokers’ average and non-smokers’ average). We repeated 

this with additional binary phenotypes. To test the association of numeric host phenotypes and species entropy, 

we calculated for each species separately the correlation (Spearman) between its entropy in different hosts and 

the value of the phenotype in these hosts. Then, we counted how many species had a positive correlation (not 

necessarily statistically significant) with the phenotype, and compared this number with its probability in a 

binomial distribution (thinking of each species as a coin flip, with an equal probability of its correlation to be 

positive or negative, and counting how many of the ‘coin flips’ turned positive) to estimate whether the 

direction of the association is consistent across all species. For each binary phenotype we analyzed only species 

with at least 20 samples in each phenotype group (‘yes’ and ‘no’ groups) and for each numeric phenotype we 

analyzed species with at least 20 different hosts which had a valid value for this phenotype (Table 1).  

 

Phenotype Number of 
species with 
positive 
correlation 

Total number 
of species 
considered 

FDR adjusted p of the 
correlation between 
entropy and phenotype 

Correlation 
sign 

WBC 90 93 5.4E-22 + 
Eosinophils % 8 93 2.3E-16 - 
Tel-Aviv? (location) 91 91 7.9E-16 + 
HDL Cholesterol 11 93 5.7E-14 - 
Sodium 82 93 5.7E-14 + 
Blood pressure, systolic 81 93 3.3E-13 + 
Heart rate 80 93 1.8E-12 + 
Ever smoked? 68 83 1.4E-11 + 
Basophils % 76 93 9.9E-10 + 
Calcium 18 93 3.8E-09 - 
Currently smokes? 46 48 6.3E-09 + 
Age 25 93 1.4E-05 - 
Blood pressure, diastolic 68 93 1.4E-05 + 
Hemoglobin 66 93 9.2E-05 + 
ALT (Alanine aminotransferase) 31 93 2.3E-03 - 
Neutrophils % 56 93 7.7E-02 + 
Body weight 40 93 2.4E-01 - 
HbA1C% 40 93 2.4E-01 - 
Lymphocytes % 51 93 4.3E-01 + 
Monocytes % 45 93 8.4E-01 - 

Table 1 – Correlation between genomic variability of the microbiome species and host phenotype positive 
correlation sign for binary phenotypes means that the entropy of these species in the microbiome of hosts who ‘have’ 
this phenotype (tested in Tel-Aviv/ ever smoked/ currently smoke) is higher than in the microbiome of hosts who ‘don’t 
have’ this phenotype. 
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Many of the host phenotypes have a statistically significant correlation with per-species entropy. White Blood 

Cells count (WBC) is one statistically significant example: in 90 out of 93 species we found some positive 

correlation between the species entropy and WBC. WBC is a marker for immune activity, was established as 

a risk factor for coronary heart disease and type 2 diabetes and is associated with smoking and obesity 

(Friedman, Siegelaub, Seltzer, Feldman, & Collen, 1973; Hoffman, Blum, Baruch, Kaplan, & Benjamin, 2004; 

Nieman et al., 1999; Vozarova et al., 2002). An association between high immune activity and higher bacterial 

genomic variability, can suggest interaction between the host immune system and the bacterial genome.  

A surprising result is the correlation between bacterial entropy and the meeting location of the 

participants in the cohort. Data collection for the original study (Zeevi et al., 2015) was done in two different 

locations, Tel-Aviv or Rehovot, and each participant was assigned to one of the locations. A possible biological 

cause for this observation is different meeting hours in the two locations, which might correlate with different 

stool collection hours. Thaiss et al. (Thaiss et al., 2014) previously described diurnal oscillations in the 

composition and function of the gut microbiome, implying that different amount of genetic variability may be 

observed in different parts of the day. To test this hypothesis, it would be interesting to calculate the correlation 

between the time of day of stool collection and the measured genetic variability of bacteria. A more technical 

possible cause for this result can be a difference in sequencing error rate between different sequencing batches, 

which together with a non-uniform assignment of samples of both centers to sequencing batches might result 

in an apparent association between calculated entropy and meeting location. These two examinations are 

needed to reassure that no hidden confounders are affecting our results.  

As we observed a correlation between smoking and bacterial entropy, we wanted to shed light on the 

source of this correlation. We present two competing hypotheses for higher entropy in smokers’ microbiome 

species: (1) smoking introduces new selective pressure in the gut, which encourages positive selection; or (2) 

smoking induces random mutagenesis, similar to that observed in the effect of smoking on the host (Pleasance 

et al., 2010). These hypotheses suggest that smoking affects the genomic variability, and not vice versa, 

although this effect cannot be rolled-out based on existing data, as well. To test the two hypotheses, we 

quantified the genetic variability of these species in each codon position separately.  

Due to the nature of the genetic code, the first two positions of the codon are expected to be less variable 

than the third, as substitutions in these positions are more likely to be nonsynonymous than a substitution in 

the third position. We have seen evidence for that in the periodicity pattern of entropy in A. muciniphila protein 

coding genes. Thus, we used the ratio between the entropy of the first two codon positions and the entropy of 

the third codon position, as an approximation for the established pN/pS ratio (McDonald & Kreitman, 1991; 

Schloissnig et al., 2013; Simmons et al., 2008) for nonsynonymous to synonymous mutations. The ratio was 

calculated for each genome (each species and each sample) separately (Methods).  
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We observed that the ratio between the entropy of the first two codon positions and the third is greater 

on average in smokers than in people who never smoked (Wilcoxon signed-rank test p-value = 0.0013, Fig. 

14). When comparing the ratio between smokers mean entropy and never-smokers mean entropy in each of the 

codon positions separately, it shows that while all positions have higher average entropy in smokers’ 

microbiome, the difference between groups is biggest in the second position, and significantly smaller in the 

third codon position (Fig. 15). So not only do all codon positions have higher entropy in smokers’ microbiome, 

the ratio between the first two and the third codon positions is bigger in smokers as well. The combination of 

both results suggests positive selection, as more variation is likely nonsynonymous and might have adaptive 

value to an environmental challenge.  

 

 

 

 

 

 

Figure 13 – The ratio between the first two codon positions and the third is bigger in smokers microbiome Y-axis 
is log2(ratio). Each line corresponds to one species, connecting its average ratio for participants who have never smoked 
with its average ratio in smokers. Blue species are those who have higher average ratio for never-smokers. Boxplot 
notches mark the 95% confidence interval for the median, based on bootstrapping of 1000 repetitions. 
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Figure 14 – The observed association of smoking and genomic variability is largest in the second codon position
Y-axis is the log2 of the ratio between the species’ mean entropy in smokers and its mean entropy in never-smokers, for 
each codon position separately. Each line corresponds to one species, connecting its average entropy for different hosts 
groups. Blue species are those with the biggest ratio at the third codon position. * Wilcoxon signed rank test p < 0.00005, 
** Wilcoxon signed rank test p < 0.000005. Boxplot notches mark the 95% confidence interval for the median, based on 
bootstrapping of 1000 repetitions. 
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Discussion 

In this project, we have devised a computational framework to analyze genomic variability in the human gut 

microbiome based on metagenomic samples, on a single nucleotide resolution. We described the genomic 

variability landscape of the gut bacterium A. muciniphila across a cohort of 1003 participants and compared 

the genetic diversity of different regions within its genome. We next analyzed the overall variability in the 

genomes of 93 bacterial species in microbiome samples of 656 hosts, observing a range of variability values 

which changes between hosts and species, often in association with host and bacterial features. 

We have compared the entropy of different regions in the genome of A. muciniphila, and found that 

genes with different functions have different variability patterns. We observed a significantly lower entropy in 

RNA genes, a periodicity pattern in the entropy along protein coding genes, and a distinguished pattern of a 

CRISPR array. As many of the bacterial genes are still labeled as ‘hypothetical proteins’, in the future, the 

intra-species variability patterns may be used to predict the function of genomic regions and discover open 

reading frames in unannotated genomes.  

We found that some of the most variable genes in the genome of A. muciniphila have domains of 

membrane and transporter proteins. This corresponds with a study of intra-host evolution of the commensal 

gut species Bacteroides fragilis, which revealed that most of its genes under positive selective pressure in the 

human gut are either outer membrane importers, or proteins involved in cell envelope synthesis (Zhao et al., 

2017). These genes can potentially be key in adaptation to host immune system, phage diversity and nutrients 

availability, highlighting them for future analysis of bacterial adaptation to the host gut. We have also found 

that high genomic variability in the gut microbiome is positively associated with host white blood cells counts, 

a marker for the activity of the immune system. These two observations suggest that host immune activity may 

create a challenge to the symbiont bacteria which promotes variability toward adaptation. Further analyzing 

whether the association between bacterial variability and host immune activity results from high variability of 

specific genomic regions may reveal bacterial genes which directly or indirectly interact with the immune 

system. Furthermore, while in this project we have demonstrated extreme variability in these genes across the 

entire cohort, it would be interesting to test whether the source to this overall variability is between-host 

variance, while the within-host variability of these genes remains small. This may imply that different variants 

of these genes fit bacteria in different hosts’ guts, and examination of these variants may promote our 

understanding of the interaction between the microbiota and the human immune system.  

Integrating both parts of the project: comparing the variability in different parts of the genome and 

analyzing the bacterial variability in the context of host phenotypes and lifestyle habits, may highlight genomic 

regions which are important for bacterial survival and adaptation in specific conditions, and promote our 

understanding of bacterial adaptation mechanisms and the interaction between the host and the microbiome.  
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The diversity of species in the microbiome has been found as beneficial to the host (Turnbaugh et al., 

2009), however, genetic diversity of the microbiome exists in additional resolutions. Genetic diversity can be 

achieved by variability of species abundance, as well as by intra-species variation of gene copy numbers, 

mobile genes composition and single nucleotide polymorphisms- all have been previously demonstrated to 

exist in the gut microbiome (Brito et al., 2017; Greenblum, Carr, & Borenstein, 2015; Schloissnig et al., 2013; 

Turnbaugh et al., 2009). We found that the diversity of species and the amount of intra-species variability in 

the microbiome do not correlate, while observing correlation between the latter and a few host phenotypes. We 

therefore suggest using the overall amount of intra-species variability as another feature that characterizes 

one’s microbiome and call for future examination of its association with host health.  
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