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Introduction 

1.1 General 

It was previously shown that ~80% of the genes in the yeast Saccharomyces cerevisiae are not 

essential for the survival of the organism when deleted1, 2. Three different mechanisms were 

suggested to be responsible for this observed resilience to deletion mutations. Namely, genetic 

redundancy, distributed robustness and conditional non-functionality. Where: genetic 

redundancy is a case in which a paralog or an analog of the deleted gene may provide functional 

compensation for the genetic deficiency and restore a viable phenotype3-5, distributed robustness is 

a mode where the compensation for the lost function is carried out through the rearrangement 

of portions of the entire metabolic network4, 6, and conditional non-functionality is a case when 

the deleted gene is essential only in a particular subset of conditions that were not tested in the 

deletion studies; thus, a gene’s dispensability is observed only due to lack of an appropriate 

experiment5-7. 

In general, the complement of the biological molecules inside the cells may be divided to four 

levels. The genome, the transcriptome, the proteome and the metabolome8; the metabolome 

being the set of all the intra-cellular metabolites in a particular condition. The metabolome can 

be seen as the uppermost “omics” level since it is affected by the mRNA and protein 

concentrations, and is the most basic manifestation of the cellular phenotype.  

The intracellular metabolites participate in almost all reactions in the living cell. The level of 

the metabolites is directly affected by deletion of the enzymes that carry out reactions with the 

metabolites as substrates and products. Therefore, one can expect a direct connection between 

the metabolome of the different S. cerevisiae strains and their resistance to deletion mutations. 

 

In addition to being used as a model for genetic perturbations yeast has been employed in 

studies of the effect of various environmental stresses on living cells. Multiple experiments 

have been performed to assess the effect of external stresses on yeast transcriptome and 

proteome (ref…). Understanding the manifestation of the stress-response on a temporal scale 

on the level of metabolites is paramount in the understanding of development of basic cellular 

responses to the environment. 
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1.2 Research main goals and motivation 

In my research I have set out to determine the cellular manifestation on the molecular level of 

yeast function when faced with either genetic stress (gene deletion) or environmental 

perturbation (ethanol stress). 

I have chosen to analyze how genetic redundancy affects the cellular metabolome by analyzing 

yeast gene deletion strains. In addition, I have explored the relationship between duration and 

intensity of ethanol stress in terms of yeast intracellular metabolic response. 

Yeast paralogs tend to be dispensable upon deletion more often than singleton genes (ref.). 

Prior work in our lab has shown that paralogous pairs regulate the expression of each other on 

the transcriptional level, i.e. transcriptional reprogramming occurs (ref.). Further studies (ref. to 

Kafri articles) have outlined the natural selection forces that acted on paralogous genes to 

retain a certain degree of redundant functionality.  

As the metabolome is the most direct measurement of the cellular phenotype we expect that the 

reprogramming phenomenon as well as natural selection towards partial functional redundancy 

to be manifested when measuring the metabolome and allow us to better understand these 

phenomena. 

Ethanol stress response is one of the most prominent cellular reactions to environmental 

perturbations in S. cerevisiae. Yeast cells produce ethanol during fermentation and have 

developed mechanisms to cope with elevated concentrations of ethanol in the surrounding 

environment. One of the major questions in the development of the stress response in yeast is 

the relationship between the duration of the stress and its intensity. The metabolome is both 

affected by the rising ethanol concentrations and is one of the major effectors in the protection 

of cells from stress. Observing metabolic response of cells to ethanol may shed light on the 

time-scale of cellular response and on the modality of stress; i.e. whether the response to stress 

is concentration-dependent or not. 

 

1.3 Metabolomics in Saccharomyces cerevisiae  

It was shown that there are about 550 metabolites in S. cerevisiae9, 10. Any single intracellular 

metabolomics method can identify and quantify 70-80 of these metabolites. 

Most of the research up until now was focused on the development of methods for the 

metabolic profiling of yeast strains. There are several research groups that study the 

metabolomics of S. cerevisiae11-13 both on the level of the intra-cellular metabolome and on the 
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level of the extracellular metabolome. Using metabolomics information it was shown that 

metabolic profiles discriminate among various yeast strains14 and growth conditions11, 13. 

However no study has studied the response of yeast cells to gene deletion in a large scale 

manner specifically focusing on the response to paralogous gene deletions or to ethanol stress 

in an ordered fashion. 
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2 Summary of Results 

2.1 Analytical Method Development 

To analyze the yeast metabolome in a large scale manner we have set-up a method that would 

allow both fast and robust metabolomic analysis of multiple yeast strains. Several methods 

exist that allow the metabolic profiling of S. cerevisiae11, 15-17, however, none of the published 

methods in their original form provided satisfactory results in our experimental settings. 

Existing protocols were either too laborious for carrying out a large scale study, were not 

comprehensive enough, i.e. did not cover enough metabolites, or resulted in high noise levels.  

The main parameters to control for in the experiments included robustness of the analytical 

method and repeatability between biological replicates.  

The whole experimental flow for data acquisition and analysis is shown in Figure 1. The 

numbers 1-6 above the different experimental stages are described respectively in 

subparagraphs 2.1.1 to 2.1.6. 
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2.1.1 Controlled growth of biological samples  

Many of the differences in the intracellular metabolome depend upon growth conditions and 

growth rate18. Therefore, uneven growth of cultures was one of the main caveats when 

analyzing yeast metabolome. To ensure robust results when analyzing multiple samples we 

developed a protocol to ensure controlled cell growth in all cultures.   

5 

6 

1 2 3 

4 

Figure 1 - The workflow for sample preparation, chemical analysis and raw data analysis. Stages marked with 

numbers 1-6 are described in detail in sub-paragraphs 2.1.1 to 2.1.6 respectively.  
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Additionally, there was need to minimize the footprint of the culture medium on the results. 

We used minimal defined mineral medium19 supplemented with necessary amino acids for 

culturing. Ammonium sulfate was used as the nitrogen source and glucose as the carbon 

source.  

To grow the cultures to equal cell density and harvest them in similar growth stage the 

sampling procedure for each experiment was as follows: 

a) 24 hours before sampling a 5 ml starter cultures were inoculated from frozen cultures. 

b) After ~4 hours OD was measured for all starters and starters were diluted such that in 

~18 hours OD = 0.7. Growth rate estimate of 2.35 hours/generation was used (wild type 

(WT) growth rate in mineral medium). 

c) 18 hours later OD was measured and growth rate was calculated for each mutant. 

Samples were diluted such that in ~2 hours OD reached 0.75. This step ensured that all 

strains were harvested the same growth stage. 

d) After 2 hours samples were harvested for metabolite extraction as described in section 

2.1.2. 

From Figure 2 we can observe that the final variation in optical density between the cultures 

was small (relative standard deviation of ~11%). 
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Figure 2 - Distribution of the final OD values before harvesting for 442 samples taken for the analysis of 

paralogous backup (described in paragraph Error! Reference source not found.). The final mean optical 

density over 442 cultures was 0.761±0.086 

2.1.2 Extraction of metabolites from the cells 

Cell quenching and extraction protocol was mainly based on the protocol developed by 

Castrillo et al15 with the main modification being the pH buffering agent. The original pH 

buffering agent (tricine) was seen as an overloaded peak in chemical analysis as we carried it 

out. We checked several extraction and quenching conditions differing in pH buffering 

conditions (tricine buffered, ammonium acetate buffered and non-buffered). Conditions that 

had the least variability were those in which the quenching solution was buffered with 100mM 

ammonium acetate. Ammonium acetate buffer is volatile, and evaporates during sample drying 

leaving little impact on the samples. This protocol was recently independently shown20 to be 

very effective for large-scale sampling of S. cerevisiae. The volume of quenching was reduced 

to 18ml of yeast culture to allow for higher throughput in the experiments. The final protocol 

allowed for 12 samples to be harvested at once. This was an improvement over the more 

laborious protocol for 6 samples employed by Castrillo et al15. 
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Briefly, cells were quenched in buffered methanol @ -40ºC, centrifuged and washed with cold 

methanol to remove traces of medium. Subsequently, samples were extracted in boiling 

ethanol, followed by volume reduction in speed-vac dryer (Savant). Finally, samples were 

freeze-dried in lyophilizer over-night and kept @ -80ºC until chemical analysis. 

2.1.3 Chemical analysis of metabolites 

For chemical analysis of metabolites, gas chromatography – mass spectrometry (GC-MS) was 

carried out. This method was chosen due to the wide range of the metabolites it allows to 

detect, high degree of separation between metabolites, the high precision in quantification, the 

availability of the equipment and the relatively low costs per sample. Other methods for 

analysis of primary metabolites were considered (specifically liquid chromatography – mass 

spectrometry), however, the absence of readily-available equipment and protocols has stopped 

us from pursuing this direction further. 

The GC-MS system was composed of a COMBI PAL autosampler (CTC analytics), a Trace 

GC Ultra gas chromatograph equipped with a PTV injector, and a DSQ™ II quadrupole mass 

spectrometer (ThermoElectron).  

The protocol for the analysis followed established techniques in our lab21-23. Samples were 

injected into the GC-MS following methoxymation by Methoxy amine HCl and derivatization 

with N-Methyl trimethyl silyl trifluoro acetamid (MSTFA)24. Methoxymation causes the 

opening of sugar rings, and MSTFA is an effective trimethylsilyl donor which reacts to replace 

labile hydrogens on a wide range of polar compounds with a -Si(CH3)3 group. MSTFA 

produces volatile and thermally stable derivatives.  

2.1.4 Computerized analysis of chromatograms 

After chemical analysis our goal was to automatically analyze the abundance of mass signals in 

the data. The goals of such an analysis are: robust peak detection in chromatograms, alignment 

of peaks in different chromatograms and peak integration. We have experimented with several 

software suits (MZmine25, XCalibur (ThermoFinnigan) and xcms26) that performed the above 

actions.  Xcms produced the best results for automatic analysis among the three, as it allows 

relatively fast processing times, has a very precise quantitation algorithm and highly sensitive 

detection of compounds.  

Pre-processing of multiple chromatograms was performed using xcms package v.1.14 for R 

v.2.8 programming language. Xcms allows multiple chromatogram alignment, signal 

extraction and quantitation of mass signals. Mass quantitation of xcms corresponded to manual 
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quantitation (see Figure 3) very well with a fit of R2=0.99. Manual quantitation for this test was 

performed in XCalibur v. 1.4. 
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Figure 3 - Comparison of manual quantitation and automatic quantitation by xcms based on 30 different 

peaks from a standard mixture 

Although xcms presents good results in peak quantitation, manual adjustments must be carried 

out for proper chromatogram alignment. Chromatograms were re-aligned by time after xcms 

quantitation and the minimal common set of mass signals identified in all chromatograms was 

kept for further analysis. 

2.1.5 Data normalizations 

Following our analysis we have encountered several sources of variability in the samples, due 

to sample loss, growth medium effects, different cell density in the cultures and intrinsic noise 

due to minute differences in growth conditions. We could compensate for sample loss by 

careful normalization of data to internal standards and for enhanced cell amounts by 

normalization to the measurements of cell amounts at sampling time. To cope with other 

effects we performed statistical analysis of replicates. 

2.1.5.1 Normalizing for sample loss during extraction 

To normalize for possible loss of samples in the extractions a defined amount of an internal 

standard24 (ribitol) was added to each sample (30µl of 0.017mg/ml). During the data analysis, 
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for each sample the mass signals were divided by the amounts of ribitol as identified by 

injection of a standard into the GC-MS. 

2.1.5.2 Normalizing the metabolome data for variability in cell density 

Before quenching, optical density (OD) was measured for each sample at λ=600nm. The OD is 

proportional to cell density. To calculate the culture opacity at the moment of quenching, the 

OD for each sample was corrected by the growth rate of the sample and the time that passed 

from measuring the OD until sampling. ODfinal = OD0•2t/gr where gr is the generation time for 

the sample and t is the time that passed from OD0 measurement until quenching. The intensities 

of mass signals were divided by the ODfinal value to account for variability in cell/ml quantities 

in samples. 

2.1.6 Method for mass signals assignment to metabolites 

During quadruple mass spectrometry analysis metabolites are ionized and broken up to 

fragments. The original molecule is screened by the abundance of fragments, however, the 

amounts of each of these fragments is proportional to the original amount of the metabolite. As 

we strove to research the nature of metabolic response to perturbations and deletion we deemed 

important to reassemble the mass signals to metabolites for all the samples. We have devised 

an automatic algorithm that associates mass-signal to metabolites and implemented it in Matlab 

v. 7.7 (MathWorks). Following the automatic assignment of mass signals to metabolites the 

data set was further manually validated. 

The algorithm for mass signal to metabolite assignment utilizes the fact that metabolites vary 

in their levels across multiple experiments of different biological samples. This variability is 

due to slight differences in the extraction procedure of samples, as well as biological variation 

between samples. At the same time, the relative amounts of different mass fragments resulting 

from a single metabolite are stable across all experiments due to the robust hard ionization of 

substances in quadrupole mass spectrometer.  

The method unifies mass signals based on the correlation between their intensities in multiple 

conditions as well as on the closeness of chromatographic retention times. 

Since the ratio between the intensities of two mass fragments that belong to the same 

metabolite is almost constant across different samples, the correlation between them is high 

across multiple experiments. The correlation between a pair of fragments where each one 

belongs to another metabolite, on the other hand, is expected to be lower because of the 

variation in relative levels of the two metabolites in different biological samples. 
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To assign mass signals to metabolites a hierarchical clustering algorithm was used on the 

results of xcms output from multiple samples. 

2.1.6.1 Distance calculation for clustering 

The distance between each two mass signals (Equation 1) is defined as the correlation between 

them, if the retention time difference between the two mass signals is equal or lower than a 

user-defined cutoff. If the retention time difference is larger than the threshold, it means that 

the two mass signals originate from two different compounds, which were separated 

chromatographically. Therefore, the distance between them is set to be very large.  

 

We determined the clustering parameters and method by benchmarking clustering results vs. a 

test set of mass signals assigned to metabolites.  

The benchmark set included 51 mass signals in 8 groups with overlapping retention times 

assigned to 17 metabolites. Different clustering methods and cutoff parameters were tested for 

the automatic assignment of these mass signals to metabolites (Figure 4). 

Equation 1 - Calculation of the distance for the clustering algorithm which unifies mass signals based on 

Spearman’s correlation coefficient and distance in the retention time. If the retention time difference 

between two mass signals is larger than a user defined threshold, the distance between them is much bigger 

then between two peaks that are near each other in retention time. 

        If     ThresholdUserD
ijRT _ ,           ijijD 1  

 

        Otherwise:                                      ijRTij DD 100  

 
where: 

ijRTD  is the retention time difference between two mass signals i and j 

User_Threshold is the threshold defined by user of the maximal retention time difference between two mass 

peaks that can belong to the same compounds. This distance is usually defined based on a set of compounds 

from a standard sample. In the test data set the retention time distance was set to be 1.5 seconds. 

ij is the Spearman’s rank correlation coefficient between the intensities of the mass signals across multiple 

conditions. 

ijD  is the final distance between the two mass signals that will be used as the distance measure for the 

clustering procedure. 
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The similarity of automatic clustering results to the manual assignment of mass signals to 

metabolites was assessed each time by the Jaccard similarity coefficient (Equation 2). 
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Figure 4 –Jaccard score for the fit of automatic assignment of metabolites to clusters based on a test set for 

three different clustering methods and different cutoffs for clustering. 

Average linkage was the most robust method with respect to the range of parameters. A cutoff 

of 0.6 gave the highest assignment score for the average linkage method. 

Equation 2 - Calculation of the Jaccard similarity coefficient. The Jaccard coefficient penalizes both for 

splitting the same manually identified cluster to smaller clusters, and for combining too many mass signals 

into one metabolite. 

011011

11

nnn

n
Jaccard


   

where for each pair of mass signals  

n11 is the amount of pairs that were assigned to the same metabolite both automatically and manually 

n10 is the amount of pairs that were assigned to the same metabolite manually, but not automatically 

n01 is the amount of pair that were assigned to the same metabolite automatically, but do not belong to the 

same metabolite in the manual assignment.  
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2.1.6.2 Manual curation of automatic mass-signal to metabolite assignment 

and data quality assessment 

After clustering of data we have manually curated all resulting clusters by observing in the 

original chromatograms the masses that clustered together. If the masses did not overlap 

exactly in time in one or more of the chromatograms the masses were separated to different 

metabolites. Mass signals that appeared in two metabolites with somewhat overlapping 

retention times were removed from further analysis due to possible mistakes in quantitation by 

xcms (see example in Figure 5). 

 

Figure 5 – an example of manual post-processing of chromatograms. A screenshot from a sample 

chromatogram in XCalibur with single ions 73, 245 and 263 (A, B and C respectively). The mass in section 

A. (mz=73), exists both at retention time 10.86 min. and at 10.89 min. xcms is prone to error in quantitation 

of such masses, therefore this mass signal and similar instances within other samples were removed from 

further analysis. The two compounds were quantified by their unique respective masses at mz=245 (B) and 

mz=263 (C). 

The above pre-processing steps resulted in a list of masses, their quantities in each sample 

(peak areas) and their assignment to metabolites. 

A 

B 

C 
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2.1.6.3 Identification of metabolites (mass-signal clusters) 

All previous analysis allowed us to assign peaks to metabolites. Some insights can be derived 

from this non-targeted detection of metabolites. However, to get more biological understanding 

from metabolomics results we needed to identify as many metabolites as possible in the 

samples.  

Compounds were putatively identified by comparison of their retention index and mass 

spectrum with those generated for authentic standards analyzed on our instrument23. When the 

corresponding standards were not available, compounds were putatively identified by 

comparison of their retention index and mass spectrum with those present in the mass spectra 

library of the Max-Planck-Institute for Plant Physiology (Q_MSRI_ID; http://csbdb.mpimp-

golm.mpg.de/csbdb/gmd/msri/gmd_msri.html) and the commercial mass spectra library NIST 

(www.nist.gov). MS-Search v.2.0d software (NIST) was used for matching spectra of 

metabolites to standards. Manual comparison of retention indices of standards to the detected 

metabolites was used to filter the hits from MS-Search software. Retention time indices 

calculations were based on a mix of alkane chains injected into GC-MS. 

Our method allowed detection of 136 compounds. Forty three (43) out of them could be 

putatively identified. The list of identified compounds can be found in Supplementary 1. 

2.1.6.3.1 Metabolic network coverage by identified metabolites. 

In the next step we wanted to observe how well the metabolic network of S. cerevisiae was 

covered by the experimental data. Major classes of the identified metabolites included organic 

acids, amino acids, sugar-phosphates, sugar-alcohols and others. 

We plot the metabolites that we could identify on the metabolic network representation of 

yeast (Figure 6– in red). Overall, we see that the coverage of the metabolic network is quite 

uniform apart from the ergosterol/lipid biosynthesis pathways and vitamins/co-factors 

pathways. This is mainly due to detection limits of the GC-MS apparatus we used. 

http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/gmd_msri.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/gmd_msri.html
http://www.nist.gov/
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Figure 6 - Representation on the metabolic network of S. cerevisiae of reactions that were perturbed (by 

deletion mutations – see paragraph Error! Reference source not found.) in cyan and metabolites that could be 

identified in red. The names near each section represent a cluster of similar pathways. 

2.1.7 Statistical analysis of metabolome measurements of different 

strains and treatments vs. control 

2.1.7.1 Experimental design for sampling and subsequent replicates analysis 

To allow for multiple replicates we analyzed 12 samples in every day of experiments. As a 

general rule, different strains or treatments were analyzed in four replicates along with four 

controls (wild type (WT) or untreated quadruplicate) within each day. A major goal was to 

reduce variation in sampling conditions between the replicates. 

The standard daily setup included 3 experiment sets of 4 samples each containing: 

a) 4 wild type/untreated replicates 

b) 4 replicates of mutant_1 or treatment_1 

c) 4 replicates of mutant_2 or treatment_2. 

Time between quenching of first and last samples in every experiment day was 15 minutes at 

most. After extraction and drying, samples were kept up to one month at -80ºC. Minimal 

period of freezing was two weeks to ensure minimal variability between the samples. 
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The order of the injections into GC-MS was randomized within every day of chemical analysis. 

Samples were prepared every day, such that the time between injection into GC-MS of the first 

and last sample was not more than 24 hours. 

2.1.7.2 Relative quantitation and analysis of significance of replicate 

measurements via randomization 

The first stage in analysis of a large set of samples consisted of removal from further analysis 

of outlier samples detected by manual inspection of the data.  

Due to the high variability in instrument sensitivity across days it was not possible to directly 

compare the signal intensity between different strains or treatments. Therefore, for each 

metabolite within each of the samples we needed to normalize the signal to the WT/untreated 

samples. The mean of ratios of experiments (rh in Equation 3) to control samples within the 

same day were treated as the metric for a change.  
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Equation 3 – For every metabolite, for every day of experiments for each experiment set h within that day, 

the ratio between the mean of the values of experiments was divided by the mean of the WT values within 

that day. nh is the amount of replicates in an experimental set. nw is the amount of wild type/untreated 

control samples within a day. 
j

ha to 
hn

ha are the measured metabolite values of each experimental set 

within a day. Wi to W
w

n are the measured metabolite values of wild type/untreated samples within a day. 

To determine the significance of the ratio score we constructed a null distribution for each 

metabolite in the following manner: 

For every set of replicates h out of a total of m sets of experiments (including WTs/non-treated 

sets), and every replicate hi out of total nh replicates within a set having metabolite levels 
iha to 

hnha  corresponding values 
ih to 

hnh were calculated for the null model according to Equation 

4: 
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Equation 4 – Formula for calculation of metabolite-specific null values for significance analysis of sample 

ratios to control. h is a particular set of replicates, nh is the amount of replicates for set h. 
iha is the 

intensity of metabolite in an instance i of set h.  

This means that every value was normalized by the mean of the other replicates, thus 

representing the variability within each sample group and creating a null distribution which is 

has the same variance or higher than variance in the original samples. We calculated the p-

value for each mean of ratios of set h normalized to the mean of WT (rh in Equation 3) by 

randomization of the null model set. To mimic the fact that we have averaged ratios across nh 

replicates we have drawn at random and averaged sets of the same size from the null set. This 

procedure was carried out 1,000,000 times for each metabolite and for each ratio rh.  

We defined the p-value of a given ratio score as the fraction of random sets that had a similar 

or higher average than the ratio score rh. 

We corrected for multiple testing using the FDR method27 with an FDR of 5%. All ratios of 

metabolites in all the mutant strains/treatments that did not pass the resulting cutoff of 5% were 

set to 1 to abstain from further analysis of non-significant results. 

2.1.8 Reproducibility of data for deletion mutants  

Metabolomics results are highly unstable and may vary greatly even between replicate samples 

within the same day28. To assess long-term reproducibility of our method we have carried out 

independent profiling of 8 deletion mutants with a difference of 10 months between samplings. 

First we analyzed changes that were labeled significant in both studies. The correlation 

coefficient between metabolites was 0.82 (p < 10-8). Looking at the dot plot (Figure 7), we can 

observe that only three metabolites out of 33 change in opposite directions, while all the other 

metabolites change in the same direction both in the new study and in the old study (same-

direction changes are 90% of all significant changes). 
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Figure 7 – Dot plot of (mutants/WT) on log2 scale for metabolites significantly changing in two replicate 

studies of 8 deletion mutants with 10 months difference between sampling dates. Each label designates the 

metabolite that significantly changed, and the mutant in which this change occurred. 

However, when we performing such a comparison on the union of significant changes in the 

two studies the correlation dropped markedly to r=0.23 (p<10-4). Nevertheless, the proportion 

of same-direction calls (i.e. instances in which a metabolite’s concentration changed in the 

same direction in both studies) was higher than 63.8% that are expected by random chance 

(expectation is higher than 50% due to abundance of metabolites with increased levels in all 

mutants). Same-direction changes represented 73% (213/290) of overall significant changes in 

at least one of the experimental sets. To assess the significance of this non-randomness we 

have performed a shuffling permutation analysis and derived the null distribution of expected 

same-direction changes. With 100,000 permutations we have not even once reached 213 same-

direction calls in shuffled data (Figure 8) (p-val<10-5).  
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                  old data 

new data 

↑ 

(significant) 

↑ (non-

significant) 

↓ (non – 

significant) 

↓ 

(significant) 

↑ (sig) 20 75 35 2 

↑(non-significant) 91 359 153 11 

↓(non-significant) 15 198 70 8 

↓(significant) 1 14 11 10 

Table 1 – Distribution of amounts of metabolites increase/decrease in two independent experiment sets 

(sampled 10 months apart) of 8 single gene deletion mutants. For each category of metabolites (significantly 

or non-significantly changing upwards/downwards as signified by arrows) in the old set the table contains 

distribution between the categories for the new set of experiments. 

 

Figure 8 – Distribution of randomly shuffled same-direction changes for old and new extraction 

experiments of deletion mutants. At random ~185 same-direction hits are expected in the data, this is much 

less than the observed 213 in true data (marked with a red dot). 

Therefore we can deduce that the direction of change is very significantly repeatable overall, 

but caution must be employed when observing changes that are significant in only one study. 
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2.2 Metabolic profiling of S. cerevisiae paralogous deletion mutants 

After the development of the analytical method we have set out to explore the phenomenon of 

backup through genetic redundancy that is carried out by paralogs in the S. cerevisiae genome. 

By analyzing deletion mutants that have a paralog elsewhere in the genome we expected to 

uncover the metabolic component underlying genetic redundancy and transcriptional 

reprogramming.  

2.2.1 Hypotheses 

Several potential metabolic responses can be predicted in paralogous deletion mutants.  

For mutants that provide perfect backup for each other (e.g. paralogs that diverged only 

recently in evolution) we would expect no or little difference in the metabolome compared to 

WT. The same lack of phenotype would be expected with respect to deletion of genes which 

are not active in tested conditions e.g. glucose-repressed genes29, 30. Deletion of such genes is 

not expected to have an effect on the metabolic composition of yeast cells. 

There are two other interesting scenarios for paralogous deletion. One in case of backup with 

transcriptional reprogramming of the remaining paralog31-33 and the other in case there is 

continued persistence of both paralogs to augment gene expression and flux through specific 

pathways6, 34.  

In the case of backup with transcriptional reprogramming, upon deletion of one paralog the 

mRNA levels of the other paralog might need to be elevated33. This effect might lead to only 

partial complementation and might have an effect on the metabolome. On the other hand, it 

was also shown that many genes have more than just one function35. In duplicate genes this 

multi-functionality of the common ancestral gene may be responsible for the process leading to 

specialization and functional divergence of paralogs36, 37. Therefore, in the case of deletion 

with reprogramming, cellular effects beyond those resulting from incomplete backup by the 

upregulated paralog may arise. The so-called “moonlighting” or minor function unique to the 

remaining paralog with elevated levels would tend to affect the metabolome. Therefore, this is 

another reason we would expect different metabolic profiles of the two deletion mutants. 

In some instances, however, transcriptional reprogramming occurs only upon deletion of one 

of the paralogs, but not upon the deletion of the other32. In special cases of good backup 

between paralogs a one-sided metabolic response would occur upon the deletion of one paralog 

but not the other. 
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In the second case, paralogs which perform similar functions may complement each other to 

increase the metabolic flux through a reaction. One such example are genes duplicated during 

the whole genome duplication event in yeasts that increased the overall glycolytic flux within 

cells38. 

Upon deletion of each one of the paralogs in such case, the concentration of the precursor of 

the reaction would increase, and may further drive downstream effects. These downstream 

effects may be similar for both paralogs. Therefore, the metabolic profiles of the deletion 

mutants relative to WT samples would tend to be similar for both of the paralogs.  

The summary of predicted relative metabolic profiles can be found in Table 2. 

Hypotheses summary for paralogous backup 

redundancy scheme employed by paralogs predicted response to deletion 

full complementation little effect on metabolic profile 

backup with transcriptional response one-sided or two-sided effect on metabolome  

retention of paralogs for flux increase similar effects for both paralogs 

Table 2 – Hypotheses summary regarding behavior of mutant strains with deletions of paralogous genes.  

To check the above hypotheses we have carried out metabolic profiling of 39 pairs of 

paralogous deletion mutants (mutant list can be found in Supplementary 2a) from diverse gene 

families in the metabolic network of S. cerevisiae (a total of 78  mutants). Results are found in 

section 2.2.2. Looking at these profiles we will gain additional understanding of the deletion 

phenotype of genes in S. cerevisiae.  

Additionally, we wished to further validate the results and to gain additional insight into the 

mechanisms of backup and co-function of paralogous genes. For this we have repeated our 

experiments and acquired again metabolic profiles of four pairs of the deletion mutants along 

with their double mutants, in which both paralogs were deleted (section 2.2.3). The double 

mutants were chosen such that the resulting strain was viable. Mutant list can be found in 

Supplementary 2b. 

 

2.2.2 Analysis of paralogous single mutants 

The dataset constructed for the single mutants represented deletion mutants in 78 different 

paralogous enzymes related to the metabolic network of S. cerevisiae.  

The procedures carried out for the acquisition of the data are described in section 2.1.  
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2.2.2.1 Observing metabolic response in the Δaco1 and Δaco2 mutants 

As a primary check for our results we wanted to focus on the behavior of one specific pair of 

paralogous genes with well studied function. For this we chose ACO1 and ACO2 and analyzed 

the metabolic profile obtained for their deletion mutants. ACO1 encodes the enzyme aconitase 

which is part of the tri-carboxylic acid cycle (TCA cycle - Figure 9) and converts citrate to iso-

citrate via the intermediate aconitate. ACO2 has a sequence similarity of ~55% to ACO1 and 

has putative aconitase activity39. 

  

 

In Figure 10 we plot the changes in both mutants relative to the WT. We can see that Δaco1 

mutant has more metabolites significantly changing in response to the deletion than Δaco2 (27 

in Δaco1 and 19 in Δaco2, with mean fold change of 1.98). The ACO1 gene is known to be the 

major isoenzyme that is responsible for the aconitase activity40, it was also shown to be one of 

the factors for mitochondrial genome maintenance41. As could be expected, metabolites from 

the TCA cycle (marked with red color in Figure 9 and in Figure 10A) are up-regulated in 

Δaco1, but less so in Δaco2 possibly due to lower flux through the cycle. Thirteen (13) 

metabolites exhibited significant changes in both mutants with similar directionality of the 

change.  Interestingly, two of the identified common metabolites are sterols of unidentified 

structure. Sterols composition of yeast cells is known to be regulated by functioning 

mitochondria. Deficiency in mitochondrial function by deletion of aconitase may have lead to 

Aco1p 

Aco2p? 

2-oxoglutarate 

Figure 9 – TCA cycle, Aco1p and Aco2p enzymes are noted on the plot. Metabolites which changed 

significantly upon deletion of either ACO1 or ACO2 are marked in red. 
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accumulation of some sterols in the cells. 

 

Figure 10 - A. Dot plot on a log2 scale describing the ratios of metabolites in Δaco1 and Δaco2 mutants to 

WT. Metabolites changing significantly in one of the mutants are marked in green, metabolites from the 

TCA cycle are labeled marked in red.  B. Relative metabolite changes in the two mutants on log2 scale. 

Colorbar on the right presents colors associated with two-fold change steps. All metabolites not changing 

significantly or having less than two-fold change are grey. 

2.2.2.2 Reciprocal metabolic response of paralogous gene deletion mutants 

After the analysis of a particular pair of paralogs we have set out to get a large-scale view of 

paralogous backup. To notice to the most prominent effects we have limited our view at the 

first stage to changes higher than 2-fold in the mutants relative to the WT controls (Figure 11). 
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Figure 11 – Metabolite changes in paralogs relative to WT. Rows represent metabolites’ relative intensity. 

columns mark different mutants . Both members of each paralogous pair are found near each other and the 

different pairs are separated by vertical red lines. The data is on a log2 scale with the color bar representing 

the fold change on the right. Grey metabolites are such that have either response of less than 2-fold, or that 

are not significantly changing. In the upper part of the figure appear metabolites that could be identified, 

different groups of metabolites are separated by black horizontal lines. The groups are according to the list 

found in Supplementary 1. 

Three different types of responses could be identified when comparing reciprocal metabolic 

response within deletions of pairs of paralogs.  

1) Little or no metabolic response upon the deletion of each of the paralogs.  

2) Concerted changes in metabolites upon the deletions of the paralogs, i.e. the deletion 

mutants shared significantly up- or down-regulated metabolites. 

3) One-sided response. We observe pairs, in which only of one of the deletants responds 

strongly to the deletion, while the metabolic response to the deletion of the paralogous 

counterpart is very mild. 
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Examples of the three types of reciprocal relationships can be found in Figure 12. 

 

 

Figure 12 - Nine examples of different types of metabolic responses (from left to right – little metabolic 

effect, multiple concerted changes and one-sided response to deletion). The data is on a log2 scale with the 

color bar representing the fold change on the right. Grey metabolites either have a response to deletion of 

less than 2-fold, or are not significantly changing. 

Several explanations may be offered for the observed phenomena. We will go over the 

different types one by one. 

2.2.2.2.1 Pairs exhibiting little or no metabolic response 

There are two possible explanations for pairs that exhibited little or no metabolic changes in 

response to the deletion of both paralogs. One is that the genes that were deleted have no 

important function in the checked experimental conditions. They can either be repressed, or 

even if transcribed their function might be of little importance in the checked conditions (e.g. 

DLD1 and DLD3 which both play a function in lactate metabolism, but are repressed upon 

growth on glucose). The second explanation for no apparent effect can be the fact that paralogs 

provide good backup to each other, i.e. that the genes function in a similar manner. 

A possible key for choosing between the two hypotheses may be found in the rate of 

evolutionary divergence of paralogous gene pairs. Selective pressure toward similar 
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functionality of genes (purifying selection) that exhibit little metabolic change would favor the 

second hypothesis, as non-functional genes are expected to be evolving independently of the 

amount of metabolic changes.  

To assess the rate of purifying selection on paralogs in question we have employed Ka/Ks 

analysis42, 43. The rate of mutation of sequences is not similar for all positions in genes. 

Mutations which do not change amino acid composition of a gene (synonymous mutations) are 

by large evolutionary neutral, while mutations which do result in amino acid substitution are 

usually much slower to get fixated. It is possible to assess the rate of synonymous (Ks) and 

non-synonimous (Ka) substitutions in a pairs of genes31, 44. Gene pairs with a lower Ka/Ks ratio 

are usually thought to be under purifying selection42, 43, i.e. these genes are under selective 

pressure to weed out non-synonymous mutations which disrupt gene function. 

We analyzed the Ka/Ks ratios in our gene sequences31, 44 and compared it with the mean 

amount of changed metabolites in each pair (Figure 13). 

 

  

 

Figure 13 – Ka/Ks ratio vs. the mean amount of significantly changed metabolites in each paralogous 

deletion pair. Red ellipse marks gene pairs which are outliers to the main correlation trend. 

We observed a significant positive correlation between the mean amount of changed 

metabolites in a pair and its Ka/Ks (r=0.43, p=0.017). However, we have additionally found 
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that there is a negative correlation between Ks and the mean amount of changes in metabolites 

(r=-0.45). To verify that the positive correlation with Ka/Ks is not solely due to the Ks values, 

but also due to the Ka, we perfomed a partial correlation analysis of Ka/Ks vs. the mean 

amount of metabolic changes controlling for Ks values. The resulting partial correlation was 

still significantly positive (r=0.34, p=0.03). 

This positive correlation implies that the amount of changed metabolites is associated with 

purifying selection towards keeping paralogous pairs similar. Upon deletion of genes that are 

slower to diverge there are less metabolites changing. Therefore, we propose that the effect of 

little or no metabolic change is usually due to well carried out backup between paralogs, which 

were selected to similar functionality, rather than due to the occurrence of non-functional 

genes. The above analyses settle well with the suggestion by Kafri and colleagues32, 33, 45 that 

paralogous gene pairs are selected to retain some degree of similarity in their activity to allow 

for better functioning of the cells e.g. with respect to molecular noise. 

Looking beyond the correlations we can discern two groups on in Figure 13. We can identify 

specific groups of paralogous pairs which exhibit a deviation from the overall pattern (see red 

circled gene pairs in Figure 13). These pairs exhibit a relatively lower purifying selection, 

while having relatively low amounts of metabolic changes upon deletion. We can hypothesize, 

that genes in this part of plot are not strongly functional in the conditions we checked (high 

glucose). Indeed, when looking at their identity we notice that the DLD1 and DLD3 gene pair 

(which is repressed by glucose) is in that group. 

2.2.2.2.2 Pairs exhibiting “concerted” changes 

Another phenotype is the one of “concertedness”, as exemplified by the pairs of paralogs 

appearing in Figure 14. 
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Figure 14 – Five mutant pairs with high concertedness scores as calculated by random permutation 

analysis. The data is on a log2 scale with the color bar representing the fold change on the right. Grey 

metabolites are not significantly changing. 

Pairs with concerted changes are these in which common metabolic changes relative to the WT 

strain occur upon deletion of any of the two paralogs. Two possible reasons may contribute to 

such phenotypes. 

One is the dosage effect that two paralogs; i.e. situation in which both paralogs perform a 

common reaction and both are required to provide the full flux through the reaction and 

synthesize the full amount of the downstream product. In case of deletion of any of these 

paralogs the flux through the reaction will be diminished and the downstream effects will be 

similar for both of the paralogs (mainly increase in upstream metabolites). Another possible 

explanation is that the two paralogous genes belong to the same protein complex. Without 

either of them the complex is destabilized or its formation happens with lower probability. 

Therefore the flux through the reaction is diminished and the downstream effects are similar.  

2.2.2.2.2.1 Scoring “concerted” response 

In order to have a better look at paralogous pairs with concerted response we first needed to 

devise a score for the “concertedness”. We have counted for each pair of deletion mutants the 
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amount of same-direction changes in significantly fluctuating metabolites in both mutants and 

subtracted it by the amount of opposite direction changes in significantly fluctuating 

metabolites. To assess the significance of this overlap we have performed 2·107 shuffles for 

each pair of paralogous deletants such that the labels of significantly changing metabolites 

were distributed between all measured metabolites for each of the deletion mutants then we 

calculated the overlap score for each of the shuffles. For the significance of metabolic response 

“concertedness” for each of the pairs we calculated the proportion of times shuffled data had 

overlap score ≥ true overlap score. The final “concertedness” measure was derived by taking –

log10 of the p-value of overlap (Figure 15). 

 

Figure 15 – “concertedness” levels of different paralogous gene deletion pairs. The score was constructed as 

noted above, y-axis is –log10(p-value of concertedness measure for each pair). Values above the red line (p-

value≤0.02) have passed significance testing controlling for multiple hypotheses with FDR q-value of 0.05. 

2.2.2.2.3 Pairs exhibiting one-sided response to gene deletion 

Third phenotype that could be discerned in the relative metabolic profiles of paralogous 

deletion pairs was the phenotype of one-sided response; a situation in which deletion of one of 

the paralogs evokes a strong metabolic response, while the deletion of the second paralog 

causes little or no metabolic phenotype. Several examples of such a behavior can be found in  
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Figure 16 - Five mutant pairs with high one-sidedness scores as calculated by random permutation analysis. 

The data is on a log2 scale with the color bar representing the fold change on the right. Grey metabolites 

are not either not significantly changing or are have less than 2-fold change. 

We have quantified the basic measure for one-sidedness of response of paralogous pairs to 

deletion by calculating the value given in Equation 5. We have measured the difference 

between the amounts of significantly changing metabolites in each of the samples, subtracted 

the overlap in changed metabolites and normalized by the total amount of changing 

metabolites. 

 

 

To assess the significance of one-sidedness we have performed 10,000 shuffles for each pair of 

paralogous deletants such that the labels of significantly changing metabolites were randomly 
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Where Ok is the one-sidedness measure for each pair of single gene deletion mutants. Ni and 

Nj are the amount of significant changes in each of the deletion mutants’ metabolic profiles. 

ijcommonN is the amount of metabolites changed to the same direction in both mutants. 

Equation 5 – Concertedness measure calculation for each pair of gene deletion mutants. 
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distributed between all measured metabolites in both deletion mutants. For the p-value of “one-

sidedness” of response for each of the pairs we calculated the proportion of times shuffled data 

had one-sidedness score ≥ true one-sidedness score. The final “concertedness” score was 

derived by taking -log10 of the p-value of one-sidedness measure. 

We can see that only 8 pairs of mutants had a significant one-sided response to deletion 

mutation. 

 

Figure 17 – “one-sidedness” levels of different paralogous gene deletion pairs. The score was constructed as 

noted above. Values above the red line (p-value≤0.0057) have passed significance testing control for 

multiple hypotheses with FDR q-value of 0.05. 

We can offer two plausible hypotheses explaining the observed one-sided response of paralogs. 

One is existence of good backup by transcriptional reprogramming of one paralog, but not the 

another32. Another explanation may lie once again in non-functionality of one of the checked 

genes in our experimental conditions. For example, the glutamate dehydrogenase gene GDH3 

is known to be repressed by glucose rich conditions, while its paralog (GDH1) is active in 

glucose rich conditions46. This is in good correspondence with the absence of metabolic 

response we observed in the Δgdh3 mutant, and a strong response upon deletion of Δgdh1. 

Moreover, it was experimentally shown that deletion of GDH3 does not cause any change in 

the levels of GDH1 (Michael Springer personal communication). Such a change could have 
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caused an increased flux through the reaction and might have resulted in some change in the 

metabolic phenotype. 

  

2.2.2.3 Analysis of metabolites responsive to cell growth rate 

Among the mutants we have profiled, some differed in their growth rate on minimal medium 

relative to the wild type strain. Metabolites both regulate the growth rate of yeast cells and are 

affected by it. Therefore, we have set out to check which metabolites are either positively or 

negatively correlated with the growth rate or fitness of cells. For each mutant we have 

measured the growth rate relative to the WT grown in the same day. As a proxy to fitness we 

used the inverse of the relative growth rate (1/relative growth rate).  

First of all we wanted to examine whether the sheer amount of changed metabolites in mutants 

was indicative of deviation from the wild type fitness levels.  

We can observe that there is no direct correlation between the count of changed metabolites 

and the fitness of mutants (Figure 18). However, when looking only at mutants with relative 

fitness lower than wild type we see a significant, albeit somewhat low negative correlation (r=-

0.43, p-value = 0.02) between relative fitness and the amount of changed metabolites. 
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Figure 18 – Relative fitness of paralogous single mutants as a function of amount of significantly changed 

metabolites in a mutant. Labels of select mutants are given on the plot. 

We further performed a similar analysis splitting between metabolites whose concentrations 

increased in mutants and those whose concentrations decreased (Figure 19). 

 

Figure 19 - A. Amount of metabolites increased after deletion of each mutant vs. relative fitness of the 

mutant (mutant growth rate/wt growth rate). B. Amount of metabolites decreased after deletion of each 

mutant vs. relative fitness of the mutant. Labels of select mutants are given on the plots. 

The correlation between the amount of changes to each of the sides and the relative fitness of 

mutants different than WT is still negative (-0.1 and -0.3 for amounts of increased and 

decreased metabolites respectively) but not significant given the sample size. This suggests, 

then, that the association of fitness is with the overall metabolic change, rather than the 

directionality of the change. 

To check which specific metabolite’s levels are associated with fitness of mutant strains we 

have performed a correlation analysis between the two variables. Yet, no individual metabolite 

showed significant correlation with the mutant fitness. Perhaps, however, due to some higher 

level interaction between metabolites the combined information from metabolic profiles of 

mutants can be used to predict fitness defects? 

To tackle this question we have used a simple artificial neural network which learned to predict 

the fitness of all mutants from metabolic profiles. The predictor network was constructed with 

just one perceptron neuron. The perceptron was trained on a randomly chosen set of metabolic 

profiles of mutants containing 70% of the data and each time validated on the remaining 30%. 

The proportion of training and the validation set contained the same amounts of data with 

growth defects. The target was a vector with designation whether a mutant had or did not have 
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a growth defect. As a control we trained a similar perceptron on the same data with a shuffled 

target vector. The process was repeated 500 times. Figure 20 depicts the distributions of the 

amount of correctly classified mutants in the validation set of shuffled and true data. 

 

Figure 20 – Distribution of amount of correctly predicted growth defect phenotypes for mutants based on 

the metabolic profiles of deletants – 500 randomizations. In blue appears the distribution of correct 

predictions based on true designations of growth defects to mutants, in red appears the distribution of 

correct predictions based on shuffled designations of growth phenotype. 

We can see a difference in the two distributions. The mean and the median proportion of 

correct predictions using the shuffled labels is as expected 50%. Based on the true data, 

however, correct predictions exist in 60% of the cases on average. This difference is highly 

significant (Wilcoxon rank sum test p-value<10-32). From this result we can infer that 

metabolic profiles of deletion mutants can to some degree increase the chances to predict 

growth rate defects in different strains. 

2.2.2.4 Prediction of subcellular localization of proteins based on the metabolic 

profile of deletion mutants 

Deletion mutants that we analyzed differed in their subcellular localization. It is plausible to 

assume that deletion of a gene in a particular subcellular location e.g. mitochondria will cause 

accumulation or decrease in metabolite levels belonging to that specific location. We have 

anecdotally observed this behavior upon deletion of ACO1 and ACO2 genes (which are part of 

the TCA cycle genes localizing to the mitochondria). Metabolites that participate in 

mitochondrial respiration exhibited significant changes upon deletion of the genes (Figure 10, 

section 2.2.2.1). 



 38 

We wanted to check further whether this behavior is a general property of deletion mutants. If 

so, then metabolomics data from deletion mutants should predict significantly better than 

random the subcellular localization of genes. 

We have employed a strategy similar to that described in section 2.2.2.3. We constructed a 

dataset with the annotation of subcellular localization of genes that we profiled according to 

GO 47 (Saccharomyces Genome Database accessed June, 2009). Subsequently, we divided the 

genes into 4 groups; mitochondrial only, cytoplasmic and mitochondrial, cytoplasmic only and 

belonging to other subcellular localizations (peroxisome, endopasmic reticulum etc.). A simple 

two-layer probabilistic neural network was constructed using a built in Matlab program to 

predict subcellular localization of a mutant by its metabolic profile. The data was divided once 

again to 70% training set mutants and 30% validation set. The proportion of genes belonging to 

each of the 4 subcellular localization groups was kept constant in the training and the 

validation sets. As a control we have trained a similar neural network using shuffled labels of 

subcellular localization of the mutants. The process was repeated 5000 times. Figure 21 depicts 

the distributions of the amount of correctly classified mutants in the validation sets of shuffled 

and true data. 

 

Figure 21 - Distribution of amount of correctly predicted cellular localizations of mutants based on the 

metabolic profiles of deletants – 5000 randomizations. In blue appears the distribution of correct 

predictions based on true designations of growth defects to mutants, in red appears the distribution of 

correct predictions based on shuffled designations of growth phenotype. 
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We can see a difference in the two distributions. The mean and the median proportion of 

correct predictions in the control is 43%. Whereas correct predictions ratio based on the true 

data rises to 53% of the cases on average. This difference is highly significant (Wilcoxon rank 

sum test p-value<10-200). 

While the increase in the quality of prediction is not very high, it nevertheless allows us to 

conclude that on a global scale metabolic profiles of deletion mutants contain information 

regarding the cellular localization of the deleted gene. 

2.2.3 Metabolic profiling of S. cerevisiae double mutants in paralogous 

genes 

 

In order to further elucidate the behavior of paralogous gene pairs in S. cerevisiae we have 

carried out metabolic profiling on selected double mutants in paralogous genes. We chose four 

different mutants whose double mutant was viable in the minimal medium used in the study.  

Since we mainly attempted to understand the relationship between single gene deletions and 

double deletions, we were especially interested in the metabolic manifestation of negative 

epistasis in yeast. Epistasis is a phenomenon in which a gene either masks or augments the 

phenotype of another gene. In the case of gene deletions and their effect on fitness one can 

define epistasis in cases when the fitness of a double mutant is lower than the randomly 

expected product of the fitnessess of the single mutants (ε = Wx’x’’ – Wx’Wx’’). We have 

obtained epistasis measurements from the study of DeLuna et al.48. In this study epistasis was 

experimentally determined for each pair in a set of multiple pairs of paralogous genes 

including the four genes used in our study. 

The setup of the experiments in the current study slightly differed from that of the single gene 

deletion experiments. Each day of experiments contained triplicates of WT, mutant 1, mutant 2 

and double mutant 1/2. Comparison of results for single mutants from this study with those 

obtained for the same strain in the earlier study of single gene deletions is presented in section 

2.1.8. 

Figure 22 depicts the metabolite changes in the single and double mutants following the 

standard normalization procedures. 
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Figure 22 – Metabolite changes in single and double mutants in paralogs relative to WT. Rows represent 

metabolites’ relative intensity. Columns mark different mutants. Metbolomics data for each single mutant 

and the double mutant from each paralogous pair are found near each other. Diifferent pairs are separated 

by vertical red lines. The data is on a log2 scale with the color bar representing the fold change on the right. 

To facilitate visual analysis metabolites that have either response of less than 3-fold, or that are not 

significantly changing were greyed out. 

One can see that there are marked differences between the response of each pair of genes to 

deletion and their double mutant. Both double mutants Δapa1Δapa2 and Δfrds1Δfrds2 are 

quite similar to each of their single mutants in the magnitude of their metabolic response to 

deletion; in contrast, Δhxk1Δhxk2 and Δitr1Δitr2 are exhibiting very strong metabolic changes 

relative to their single mutants.  

In the next step of analysis we looked at the relationship between each of the mutants in the 

mutant set and the double mutant with regard to the amounts and identity of all significantly 

changed metabolites (Figure 23).  
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If there were no epistasis, the basic expectation for double mutants would be to have a response 

to the mutation contained only to the union of metabolic response of the mutants. We, 

however, observed an interesting phenomenon. The double mutants in all cases contained most 

of the union of the two single mutants and additionally had a relatively very large set of 

metabolites changing uniquely in these strains. The Δhxk1, Δhxk2 and Δhxk1Δhxk2 strains 

present a special case. In these mutants the overlap between the three mutants is very large. 

This can be explained by the fact that each of the single mutants by itself exhibits significantly 

slow growth, and the double mutant adds upon that phenotype a synergistic effect resulting in a 

markedly pronounced growth defect. We noticed a somewhat similar effect in the Δapa1Δapa2 

23.0

02.0 11.0

14.0

Figure 23 – A Venn diagram describing the amounts of significantly changed metabolites in each of the 

mutant sets. The labels of the mutants are adjacent to the circles. Circle size and intersections are 

approximately proportional to the amount of metabolites changed in each group – total amount of 

significantly varying metabolites in each mutant is given in parentheses. Epistasis (ε) from the DeLuna 

study for each gene pair is given in the upper left part of each subplot. 
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mutant. The growth defect existed in only one of the single mutants, and was not very 

pronounced. However, the growth of the double mutant was still much lower than in the single 

mutants, hence the large amount of changed metabolies. Δfrds1 and Δfrds2 on the contrary, did 

not exhibit any growth defect in our medium, and that could be the reason for the absence of a 

strong metabolic response or a very marked prevalation of the double mutant phenotype. 

Overall we can see that metabolomic analysis of double mutants carries good potential for 

understanding the mechanisms underlying the epistasis of genes, although the full 

understanding and decryption of metabolic profiles requires more accurate results and large 

data sets. 

 

2.3 Metabolic profiling of S. cerevisiae response to varying 

intensities and periods of ethanol stress 

 

Another experiment set that we have carried out considered the metabolic response of 

Saccharomyces cerevisiae cells to ethanol stress.  

During yeast fermentation ethanol is a major by-product of energy metabolism. Ethanol is 

toxic for most organisms, as it disrupts cellular membranes, exerts osmotic stress on cells and 

may inhibit enzyme function within cells. While, yeasts can better cope with ethanol stress, 

they too suffer from its adverse effects49-51. Yeast response to ethanol was investigated on the 

level of the transcriptome52. Several works were presented on the level of the metabolome53, 54 

in which the authors mainly investigated processes associated with ethanol fermentation in S. 

cerevisiae. The metabolomics studies investigated the multitude of effects arising from ethanol 

fermentation, rather than isolating only the component of stress imposed by ethanol on the 

cells. We were particularly interested in the specific metabolic effects of ethanol as a model for 

general stress in yeast. We wanted to address both the question of dosage and duration of 

ethanol response. The interplay between the two factors is not well studied or understood. 

Response to ethanol exposure develops over time but it is not known at what is the rate at 

which the metabolome responds.  The response to ethanol may depend on the concentration. It 

can either be stepwise (absence or presence of ethanol) or depend on the severity of stress. 

To get a glimpse at the answers to these questions we have performed a set of experiments 

involving different times of exposure to different concentrations of ethanol (Table 3). 

                       Ethanol 5% 9% 13% 
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Duration          concentration 

of stress 

10 minutes Sample 1 Sample 2 Sample 3 

30 minutes Sample 4 Sample 5 Sample 6 

60 minutes Sample 7 Sample 8 Sample 9 

Table 3 – Durations and intensities of ethanol stress in metabolic profiling experiments 

In Figure 24 we can see the distribution of metabolic responses in our experiments with 

varying stress duration and intensity.  

 

Figure 24 - Distribution of changed metabolites upon exposure to different durations and concentrations of 

ethanol (labels on x axis hold the different experiments). Grey metabolites exhibited less than 3-fold change. 

2.3.1 Analysis of stress duration vs. stress intensity effect on cells 

From the first glance we can see marked changes in many metabolites after 60 minutes of 

ethanol exposure to stress. This result is not dependent upon the intensity of stress. It has been 

shown that the transcriptional response to ethanol52 and for other stresses55, 56 is at its peak after 

~30 minutes of exposure to stress. We observe that a metabolic response exists in all time 

points, but gets extremely high only after the transcriptional reprogramming occurs. Although 

cells have some capacity for metabolome remodeling even without any new protein synthesis, 

major changes require enzymes’ production. Additionally, it was shown that ~7% of the yeast 
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genome is rearranged upon ethanol exposure, while the metabolome exhibits a much stronger 

effect. 

Contrary to our expectations severe ethanol stress resulted in a decrease in the amounts of 

metabolites changed after 60 min. We can accredit this to massive cellular death as was 

measured by plating and counting colonies. 

Specific metabolites that are changed in response to stress include …….. 

To be continued…
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3 Summary and discussion 
We have carried out analysis of paralogous backup on the level of metabolites in S. cerevisiae. 

Several different types of metabolic response could be discerned when looking at the 

paralogous pairs. Some paralogs did not exhibit any metabolic phenotype, others exhibited 

one-sided metabolic response, while the third group exhibited a large amount of shared 

metabolic changes in both paralogs. The mode of metabolic backup might be linked to  
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