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Abstract 

G protein-coupled receptors (GPCRs) are seven transmembrane (TM) proteins that 
represent the largest family of signal-transducing proteins, and are one of the most 
important target classes for drug discovery. Various high throughput assays are 
currently used to screen large compound libraries for agonists and antagonists towards 
GPCRs with particular medicinal significance. Yet, relatively little is known about the 
ligand binding site and ligand specificity of many GPCRs.  

We present here three novel algorithms that combine compound binding data from 
high throughput screens, sequence data, measurements of amino-acid properties and 
optionally also ligand properties for the identification of amino acid positions, amino-
acid properties and ligand properties that determine specificity of GPCRs towards 
ligand targets.  

The current analysis covers 26 GPCRs whose ligand binding activity against more 
than 1000 compounds was measured. We define as ligand specificity determining 
position-property combinations, amino acid positions and properties such that the 
values of a property for the amino-acids in a position are similar among receptors with 
similar ligand binding profiles, and variable among receptors that display different 
activity profiles. We then use homology-based, and ab-initio structure prediction tools 
to select for residues that form a three-dimensional pocket in the receptor interior.  

Among the highest scoring residues are well known GPCR ligand binding sites in 
addition to newly proposed specificity determining residues. Our description of a 
universal ligand specificity-determining pocket in this diverse family should allow 
better understanding of sequence-structure-function relationships in these proteins and 
facilitate assignment of ligands to orphan receptors. 
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Chapter 1  
Introduction 
G protein-coupled receptors (GPCRs) are seven transmembrane (TM) proteins that 
represent the largest family of signal-transducing proteins  [1]. About 5% of the genes 
of the nematode C. elegans and 1% of the mammalian genome encode for GPCRs, 
and over 1000 GPCRs in human direct responses to an enormous diversity of signal 
molecules, including hormones, neurotransmitters, light photons, taste ligands and 
odorants. The ligand molecules have wide variety of structures, including biogenic 
amines, amino acids, peptides, lipids, nucleotides, and large polypeptides.  [2]   

GPCRs transduce information from extracellular stimuli into the cell interior through 
coupling to heterotrimeric G proteins, that consist of α, β and γ subunits. The G 
proteins are attached to the cytoplasmic face of the plasma membrane, where they 
serve as relay molecules, functionally coupling the receptors to either plasma-
membrane-bound enzymes or ion channels. In an inactive state, both α and γ subunits 
have covalently attached lipid molecules that bind them to the plasma membrane, and 
the α subunit has GDP bound. As the agonist binds to the receptor, the α subunit 
exchanges the GDP with GTP. The exchange leads to a release of the βγ subunits 
complex and subsequently to the activation of both components – the α subunit 
adopts a new shape that allows it to interact with its target proteins, and the surface of 
the βγ complex, previously masked by the α subunit, interacts with a second set of 
target proteins. After a G-protein α subunit activates its target protein, it shuts itself 
off by hydrolyzing its bound GTP to GDP. This inactivates the α subunit, which 
dissociates from the target protein and re-associates with the βγ complex to re-form an 
inactive G protein. Since the α subunit is a GTPase, the inactivation process occurs 
automatically after a maximum of several minutes. Practically, the inactivation is 
usually much faster due to enhancement of the GTPase activity by binding of the 
target protein or a specific modulator known as RGS (regulator of G protein 
signaling).  [4]  

GPCRs have been found to be dysfunctional/dysregulated in a growing number of 
human diseases and have been estimated to be the targets of more than 40% of all 
marketed drugs  [2]. Cholera is an example for a disease that relates to G proteins. 
Cholera in caused by a toxin that alters the α subunit of a stimulatory G protein, so 
that it cannot become inactive. The G protein activates adenylyl cyclase and thereby 
increases cyclic AMP concentration. The final result of this process is a severe 
diarrhea that characterizes cholera. Abnormal bone development and mental 
retardation can be caused by a genetic deficiency in a particular stimulatory G protein 
(a G protein that increases cAMP concentration). Examples for drugs that target 
GPCRs include antidepressants such as fluoxetine (Prozac). Orphan GPCRs are 
viewed as potential drug targets for various diseases, including obesity, cardiovascular 
disease, inflammation and cancer  [2]. Thus, understanding how GPCRs function at 
the molecular level is an important goal of biological and applied pharmaceutical 
research.  
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The 3D structure of the first GPCR, rhodopsin, has been resolved  [5]. Yet in the 
absence of experimentally determined 3D structures of other GPCRs, especially those 
with only remote homology to rhodopsin, computational approaches for modeling 
their structure, that potentially incorporate the vast amounts of experimental data 
gathered for these proteins, are needed. In particular, a great challenge is the 
identification of functional sites of GPCRs, and delineation of the residues that 
determine specificity towards agonists. Such knowledge may have profound effect on 
two central pharmaceutical efforts, namely the design of drugs towards particular 
molecular targets, and the identification of potentially deleterious single nucleotide 
polymorphism in human populations that occur in the GPCRs' functional sites. 

In this work we used data on ligand binding preferences of GPCRs in order to identify 
the amino acid positions that determine their specificity towards their ligands, and 
more specifically - the amino-acid properties that, combined with the amino-acid 
positions, affect binding.  

Four data sets were used: measurements of ligand binding activity w.r.t 26 GPCRs 
and 1068 putative ligands; the values of 56 properties of the 20 amino-acids; sequence 
alignment of the 26 GPCRs and the values of 164 properties of each of the 1068 
ligands.  

For each position in the alignment and each amino-acid property, a 'position-property' 
vector was created – a vector of size 26, containing the values of the property w.r.t the 
amino-acids in the position.  

Our first working hypothesis is that a position-property vector, if created by a ligand 
specificity-determining position and amino-acid property, would display similarity 
among receptors with similar ligand binding preferences, and difference among 
receptors with different binding activities.  

Based on this hypothesis the 'Correlated distances' method was developed. The 
'Correlated distances' procedure defines a measure of mutual similarities between 
each position-property combination in a multiple alignment, and a corresponding 
measure of the similarities between the ligand binding preferences of the GPCRs. We 
then seek for amino acid position-property combinations in which the pattern of 
amino acid property similarity across all pairs of proteins correlates with the pattern 
of similarity of the ligand binding preferences. A statistical model was constructed 
that identifies amino acid positions with significantly high correlation with the ligand 
binding data. Such positions can be regarded as candidate ligand specificity-
determining residues.  

Additional hypothesis is that binding specificity has a hierarchical nature. Amino-acid 
position and property combination can induce a basic classification of GPCRs into 
different binding preferences classes (for example the aminergic binding-site 
combined with the amino-acid property 'Charge' induces a classification of GPCRs 
into an aminergic class vs. non-aminergic class), while differences between binding 
preferences within a class can be induced by a different position-property 
combination (for example, serotonin class vs. histamine class). In fact, the 
hierarchical nature can result from Boolean properties with different induction levels. 

Based on the two hypotheses a second method - 'Hierarchical clustering' method - was 
developed. The 'Hierarchical clustering' method assembles the GPCRs into a binary 
tree according to their binding specificities. Every split in the tree divides a subgroup 
of the GPCRs into two groups, such that each group contains GPCRs with similar 



3 

binding specificities. For every split in the tree we seek for amino acid position-
property combinations, such that the property's values (w.r.t the amino-acids in the 
position) are relatively similar for GPCRs included in one group and different for 
GPCRs in different sides of the split. Every such position-property combination is a 
candidate ligand specificity-determining residue for the GPCRs included in the split it 
refers to. 

A third hypothesis our work is based on, is that the effect of a position-property 
combination on binding specificity is mediated by some ligand property. For example, 
if the charge of the amino-acid in the expected position affects ligand binding activity, 
then binding would be affected by the charge of the ligand as well.  

The third method suggested in this work, 'Correlated properties' method, relies on this 
hypothesis and on the fourth set of data, containing 164 ligand properties assigned to 
the same set of ligands used in the binding specificity data set.  

The ligand properties data was analyzed to create a new binding specificity data set, 
containing binding preferences of the GPCRs with respect to the ligand properties, 
and not the ligands themselves as in the original data. The measure of binding 
preference of a GPCR to a ligand property was defined as the correlation between the 
GPCRs' ligand binding activity and ligand property values, both w.r.t the same set of 
ligands. 

The 'Correlated properties' method seeks for triplets of position, amino-acid-property 
and ligand-property, such that amino-acid property values of the amino-acids in the 
position, taken from all GPCRs, are highly correlated with the binding preferences of 
the GPCRs to the ligand property. We thus look for amino acid positions that w.r.t 
particular properties show enhanced similarity in receptors that bind ligands of similar 
chemical nature. 

Another hidden assumption is that ligand-properties matching the found amino-acid-
properties exist in the data set.. 

The last method suggested in this work, 'Two-way clustering', is not a stand-alone 
method, but an improvement that can be used with any of the other methods. It is 
based on an expanded version of the hypothesis that suggests that binding specificity 
has a hierarchical nature. The original hypothesis states that position-property 
combinations can affect binding-specificity of one subgroup of GPCRs while another 
subgroup would not be affected by them. The last method offers an alternative 
procedure that finds such subgroups, and also applies this assumption to ligands as 
well – a position-property combination can affect binding to one subgroup of ligands, 
while another subgroup of ligands would not be affected by it. 

'Two-way clustering' uses existing gene expression clustering algorithms to find such 
subgroups of GPCRs and ligands. Activation of the two last methods on a cluster, that 
contains only GPCRs and ligands affected by a specific position-property 
combination, increases the probability of finding that combination and also allows 
finding combinations that affect binding of small groups of GPCRs and/or ligands. 

'Two-way clustering' can be combined with the first method, 'Hierarchical clustering', 
as well, replacing the original hierarchical clustering, which induces rigid clustering, 
by a more flexible procedure.  

After a list of candidate positions and properties is created by one or few of the 
suggested methods, further analysis was performed to retrieve various properties for 
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each of the candidate positions. Structural properties were retrieved and are presented 
for the positions found by each method. These properties include: is it included in a 
transmembranal helix; which helix; does it face the membrane or the interior of the 
receptor bundle; is it located closer to the extracellular milieu or the intracellular 
milieu. 
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Chapter 2  
Methods 

2.1 The input data 
The input data includes four sets of data. Except for the general amino-acid properties 
data set (see chapter  2.1.2) all the data sets relate to a set of 26 GPCRs and 1068 
ligands. The GPCRs are varied and include receptors to bio-amines, neuropeptides 
and other substances. 

The ligand binding activity data set (see chapter  2.1.1) and ligand properties data set 
(see chapter  2.1.4) were generated in Pfizer inc. and delivered to our lab through a 
research agreement. The actual molecular formula of the assayed ligands and precise 
mode of binding measurements were not disclosed. 

2.1.1 Ligand binding activity of 26 GPCRs and 1068 ligands 
Measurements of ligand binding activity of 26 G-protein coupled receptors with 1068 
ligands are shown in Figure 1. The values are surrogates to the actual affinities 
between the GPCRs and ligands (details of the 26 GPCRs are available in 
http://longitude.weizmann.ac.il/GPCRs/GPCRs.html). 

 
Figure 1: For each G-coupled protein receptor, each ligand measurement is displayed as a dot. The 
values are measurements of ligand binding activity for 26 GPCRs and 1068 ligands. The original data 
set includes outliers – measurements with higher variance than the majority of the data. The outliers are 
not presented in the figure. 
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The original data set includes outliers (not shown in Figure 1). Outliers can arise from 
errors, such as human errors or errors that originate in the nature of the experiment, or 
can represent the true nature of the data. In the first case, outliers should be discarded, 
though in the second - they should be left untouched. Since the nature of the 
experiment is not known, there is no reason to prefer one approach over the other, and 
therefore both approaches were tried.  

It is a common practice to normalize biological data, since usually measurements are 
acquired at different conditions, and therefore may exhibit different data ranges and 
non-uniform noise. Therefore the data was normalized by first deducting from each 
value the mean (of all ligands w.r.t one GPCR) and then dividing it by the standard 
deviation. 

2.1.2 Amino-acid properties 
Values of 56 amino-acid properties w.r.t the 20 amino-acids (the list of amino-acid 
properties with their values w.r.t the amino-acids can be found in: 
http://us.expasy.org/cgi-bin/protscale.pl?143S_HUMAN). An additional amino-acid 
property, 'charge', was added as the 56th amino-acid property. 'Charge' is equal to 0 for 
all amino-acids except for D and E with a value of -1, R and K with value of 1 and H 
with a value of 0.5). The original set of properties was assumed to include related 
properties, such as polarity and hydrophobicity, which are known to be highly inter-
dependent. Since the various algorithms used throughout the work score each property 
separately by using various statistical methods, and since most statistical methods 
require no dependencies within the data, it is desired to remove or lessen the inter-
dependency as much as possible. This was achieved by clustering the amino-acid 
properties into groups of highly-correlated properties and creating a new set that 
includes only one set of data for each cluster. The new set was created by normalizing 
each amino-acid property's values, and then calculating the mean vector for each 
cluster. The result is a set of 19 amino-acid properties' clusters, shown in Figure 2. 
Both the original set and the new set were used throughout the work.. 



7 

 
 
Figure 2: Clustering of amino-acid properties. To eliminate inter-dependencies between the given 56 
amino-acid properties, they were clustered into 19 clusters. The distances between the amino-acid 
properties used for the creation of the clusters are based on the Pearson correlation coefficients between 
the properties' values w.r.t to the 20 amino-acids. Each plot displays the normalized values of the 
properties in one cluster. The legends display the indices of the amino-acid properties according to the 
following numbering: 1. Molecular weight; 2. Bulkiness; 3. Polarity; 4. Recognition factors; 5. 
Optimized matching hydrophobicity; 6. Hydropathicity; 7. Hydrophobicity (delta G1/2 cal); 8. 
Hydrophobicity (free energy of transfer to surface); 9. Hydrophobicity scale based on free energy of 
transfer (kcal/mole); 10. Hydrophobicity scale (contact energy derived from 3D data; 11. 
Hydrophobicity scale (pi-r); 12. Antigenicity value X 10; 13. Hydrophilicity scale derived from HPLC 
peptide retention times; 14. Hydrophobicity indices at ph 7.5 determined by HPLC; 15. Retention 
coefficient in HFBA; 16. Retention coefficient in HPLC, pH 2.1; 17. Molar fraction (%) of 2001 buried 
residues; 18. Proportion of residues 95 percent buried (in 12 proteins); 19. Atomic weight ratio of 
hetero elements in end group to C in side chain; 20. Average flexibility; 21. Conformational parameter 
for beta-sheet; 22. Conformational parameter for alpha helix; 23. Conformational parameter for beta-
turn; 24. Normalized frequency for alpha helix; 25. Normalized frequency for beta-turn; 26. 
Conformational preference for antiparallel beta strand; 27. Overall amino acid composition; 28. 
Relative mutability of amino acids (Ala=100); 29. Number of codon(s); 30. Polarity; 31. Refractivity; 
32. Normalized consensus hydrophobicity scale; 33. Hydrophilicity; 34. Average surrounding 
hydrophobicity; 35. Hydrophobicity of physiological L-alpha amino acids; 36. Hydrophobicity scale 
(pi-r); 37. Free energy of transfer from inside to outside of a globular protein; 38. Membrane buried 
helix parameter; 39. Hydration potential; 40. Hydrophobic constants derived from HPLC peptide 
retention times; 41. Hydrophobicity indices at ph 3.4 determined by HPLC; 42. Mobilities of amino 
acids on chromatography paper (RF); 43. Retention coefficient in TFA; 44. Retention coefficient in 
HPLC, pH 7.4; 45. Molar fraction (%) of 3220 accessible residues; 46. Mean fractional area loss (f) 
[average area buried/standard state area]; 47. Average area buried on transfer from standard state to 
folded protein; 48. Conformational parameter for alpha helix (computed from 29 proteins); 49. 
Conformational parameter for beta-turn (computed from 29 proteins); 50. Conformational parameter 
for beta-sheet; 51. Conformational parameter for coil; 52. Normalized frequency for beta-sheet; 53. 
Conformational preference for total beta strand (antiparallel+parallel); 54. Conformational preference 
for parallel beta strand; 55. Amino acid composition (%) in the Swiss-Prot Protein Sequence data bank; 
56. Charge. 
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A new matrix that represents the amino-acid properties was created based on this clustering. It includes 
19 elements (instead of 56), where each element is the mean of the normalized values of the amino-
acid properties included in one cluster.  

2.1.3 Sequence alignment of the 26 GPCRs 
Sequence alignment of the 26 GPCRs. Since the purpose of this work is to find 
positions that can explain variability within binding-profiles of the GPCRs, positions 
that are not expected to affect binding were removed. Consequently two sets of 
positions were removed; (a) Positions that include the same amino-acid for all 
GPCRs. (b) Positions that are not part of the seven transmembranal helices. This step 
is not needed for the correctness of the various processes but shortens their running-
time. (available in http://longitude.weizmann.ac.il/GPCRs/alignment.html) 

2.1.4 Ligands properties 
Values of 164 ligands' properties w.r.t the 1068 ligands. This data set allows an 
alternative approach to the definition of 'binding specificity' – instead of analyzing the 
preference of different GPCRs to different ligands, it is possible to analyze the 
preference of different GPCRs to ligands' properties, for example: to what extent does 
the GPCR 'A1(h)' prefer binding to hydrophobic ligands over hydrophilic ones.  

The preference of each GPCR w.r.t each ligand property was defined as the 
correlation coefficient between the GPCR's ligand binding activity values (w.r.t 
binding of 1068 ligands) and the property's values w.r.t the ligands, calculated in the 
following way: 

Denote by A the ligand binding activity matrix (details in chapter  2.1.1). A(x,y) is the 
measured ligand binding activity of GPCR x following the binding of ligand y. 

Denote by L the Ligands' properties matrix. L(y,z) is the measured value of ligand-
property z w.r.t ligand y.  

Denote by C the new correlation coefficients data set. 
)),1068:1(),1068:1,((),( yLxAcorrcoefyxC =  

)var()var(
),cov(),(

uv
uvuvcorrcoef

⋅
=  

 

The new correlation coefficients data set is shown in Figure 3. The p-values for each 
correlation were calculated and analyzed by the False Discovery Rate method  [6] and 
significant correlations were colored red. It can be seen that the number of significant 
results is much higher than expected by random – ~20% of the correlations are 
significant (852 out of 4262). The same analysis, performed after randomly shuffling 
the ligand-property's vectors, yielded only 6 significant results out of 4262. 

For example, the dot marked by an arrow is the correlation coefficient between the 
measured activity of GPCR 17 (M4(h)) following the binding of 1068 different 
ligands and the values of ligand-property 5 (pka(MB)) w.r.t the same set of ligands. 
The high correlation - 0.2340 – suggests that the binding of ligands to GPCR 17 is 
affected by the ligands' PKA.  
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Figure 3 : For each G-coupled protein receptor and for each ligand property, the Pearson correlation 
coefficient between the GPCR's activity following the binding of 1068 different ligands and the 
property's values for the 1068 ligands was calculated. Each correlation coefficient is displayed as a dot. 
The p-values related to the correlation coefficients were calculated and False Discovery Rate 
adjustment with significance threshold of 0.05 was applied, yielding an adjusted significance threshold 
of 0.01 and 852 significant results (out of 4264), marked by a red color. A similar analysis on the date 
after a random shuffle yielded only 6 significant results. Hence, on average, the strength of the 
response of a GPCR to the binding of a ligand is affected by the ligand's nature as measured by ~20% 
of the given ligands' properties.  

 

In addition, it was found that different GPCRs show different preferences to different 
ligands' properties, both referring to the identity of the properties and the number of 
significant properties found. For example, GPCRs A1(h)[1], A2a(h)[2], D2(h)[12], 
CCKB[18], Y1(h)[19], delta(h)[22], AT2(h)[23] and P2X[26] have an average of 4.4 
significant ligands' properties while the other GPCRs – an average of 45.4. This result 
indicates that GPCRs show clear and varied preference towards specific ligands' 
properties.  

This new data set will be used as an alternative to the original ligand binding activity 
matrix when referring to GPCRs' binding profiles.  

2.1.5 Treatment of gaps 
The sequence alignment includes numerous gaps, all located in positions which are 
not part of the transmembranal helices. All the methods below retrieve the amino-
acids of the GPCRs in specific positions, and their values w.r.t amino-acid properties. 
When some of the GPCRs have gaps, they are ignored and are not used for the 
specific related calculations.  
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Nevertheless, in order to relate to the existence of gaps and to the hypothesis that it 
might affect binding as well, an additional property named 'Is gap' was added. The 
value of this property is 0 for all amino-acid and 1 for gaps.  

The analysis for each position includes analysis for all original amino-acid properties, 
relating only to GPCRs that do not have a gap in the position, and an additional 
analysis for the 'Is gap' property that relates to all GPCRs. 

In 'Correlated properties' method, cases may occur where for a specific position and 
amino-acid property a value must be set for all GPCRs including GPCRs that have a 
gap in the specific position. These cases have a special treatment, details in the 
chapter that describes the method (chapter  2.4.2). 

2.2 Method 1 - Hierarchical clustering 

2.2.1 Introduction 
The 'Hierarchical clustering' method is based on the hierarchical nature of binding 
specificity. For example, mutagenesis and other experiments revealed that binding of 
aminergic GPCRs with all aminergic ligands involves a direct contact between the 
highly conserved Asp residue in the third transmembranal helix and the protonated 
amine of the ligand  [12]. In addition, it was found that binding of β-adrenergic 
receptor with the antagonist iodocyanopindolol doesn't occur if the negatively charged 
aspartate residue at the 3rd transmembranal helix is replaced with an uncharged 
asparagines residue  [12] . Therefore, division of a group of GPCRs into sub-groups 
according to whether the amino-acid in the above position is charged or not is 
expected to yield groups with different binding profiles. Furthermore, if we divide 
only the GPCRs included in one of the groups into sub-sub-groups, we might find a 
different position and amino-acid property that affects binding profiles within the 
group.  

2.2.2 The method 
The hierarchical clustering was created by the 'linkage' function of Matlab. The 
function takes as an input a list of pairwise distances and creates the hierarchy in an 
iterative process, where at each step the two closest objects are combined, and the 
pairwise distances vector is updated to include distances to the newly joined cluster 
instead of to the original elements. In this analysis the 'ward' option was used - the 
distances to the new cluster are calculated as the mean of distances to the two 
elements before the join minus the distance between the two joined elements, 
weighted by the number of elements in each cluster. 

The calculation of the distance of an element (or cluster of elements) to the newly 
joined cluster is as follows: 

Denote the number of elements in a cluster a by na and the distance between clusters a 
and b by R(a,b). If cluster x and cluster y are joined, the distance between an 
element/cluster z to the newly joined x-y cluster, is: 

zyx

zzyzx

nnn
yxRnzyRnnzxRnn

++

−+++ ),(),()(),()(
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The pairwise distances are Euclidean distances between the binding profiles of pairs 
of GPCRs. Two hierarchical clustering trees were created: (1) The binding profile of a 
GPCR is its normalized ligand binding activity vector. (2) The binding profile is a 
vector of correlation coefficients between the GPCRs' ligand binding activity and the 
values of 164 ligand properties (details in chapter  2.1.4). Shown in Figure 4. 

A 

 

B 

 

Figure 4: Hierarchical clustering of the 26 GPCRs. The distances between the GPCRs used for the 
creation of the dendrograms are Euclidean distances. (A) Each GPCR is represented by its normalized 
measured activity values following binding of 1068 ligands. (B) Each GPCR is represented by a vector 
of size 164, where the i'th element is the Peasron correlation between the measured activity of the 
GPCR following binding of 1068 ligands and the values of the i'th ligand property w.r.t to the 1068 
ligands.  

 

The objective of the algorithm is to identify, for each split in the dendrogram, a 
position in the alignment of the GPCRs and an amino-acid property that might be the 
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reason for the difference between binding profiles of GPCRs in the different sides of 
the split. In other words – to find a position and amino-acid property, such that the 
value of the property w.r.t the amino-acid in the position affects the binding profile, 
and causes the GPCRs in one side of the split to have different binding profiles from 
the ones in the other side.  

For every split in the dendrogram, two groups of GPCRs are created – GPCRs that are 
descendants of the right side of the split, and GPCRs that are descendants of the left 
side of the split. For every split, the algorithm iterates through all positions and 
retrieves for each position the amino-acids of the GPCRs in the two groups. For each 
position, the algorithm iterates through all amino-acid properties and retrieves each 
amino-acid property's values w.r.t to the amino-acids found.  

Hence, for every combination of position and amino-acid property a pair of vectors is 
created, holding the values of the property for the amino-acids in the position for the 
GPCRs in the two groups.  

For every position-property combination, the two-sample Kolmogorov-Smirnov test 
is applied to the two vectors to determine the p-value related to the null hypothesis 
that the two vectors have the same continuous distribution. 

After iterating over all positions and over all amino-acid properties for one split, FDR 
is applied to the resulting p-values with significance threshold 0.05, to adjust the 
threshold to the number of position-property combinations.  

The results of this algorithm are lists of position-property pairs, such that each list 
'explains' one split in the dendrogram and sets a condition for classifying GPCRs into 
one of the two groups induces by the split. 

2.2.3 Discussion 

Hierarchical clustering 

The use of dendrograms fits the nature of the data and of the requested results, by 
allowing the discovery of position-property combinations that affect only partial 
groups of GPCRs. Nevertheless, the results are highly sensitive to the initial 
hierarchical clustering; different classification of numerous GPCRs can cause an 
extreme change in the final results. There are numerous ways of creating such 
dendrograms, each yielding different results.  

Therefore, a bootstrap method  [7] was used to measure the stability of the different 
splits. The calculation is done as follows: 

1. Denote the original data set used for the hierarchical clustering – data set. Data 
set is a matrix that holds a vector of size n for each GPCR.  

2. Alter the original data-set by sampling (with repetitions) n values from the 
original set, and using the sampled elements instead of the original ones. Re-
create the dendrogram with the altered data set.  

3. For each split in the original dendrogram, check whether it is present in the 
new dendrogram (contains the same list of GPCRs in the right and left sides).  

4. Repeat steps 2-3 1000 times.  
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The stability of a split is estimated by the percentage of altered dendrograms that 
include it.  

The bootstrap analysis was performed on the dendrograms, and only stable splits were 
analyzed by the algorithm. 

Scoring the position-property combinations 

The scores for the significance of each position-property combination are the p-values 
associated with the two-sample Kolmogorov-Smirnov test. The main reason for 
choosing this test over Ttest or Anova is that it is not dependent on the data set to be 
normally distributed, and most of the amino-acid properties are indeed not normally 
distributed.  

The Kolmogorov-Smirnov test tests differences between two distributions by 
calculating the unsigned differences between the relative cumulative frequency 
distributions of the two samples.  

Denote one distribution by X1, and a second distribution by X2.  

For each potential value x, the Kolmogorov-Smirnov test compares the proportion of 
X1 values less than x with proportion of X2 values less than x. The test-statistic is 
equal to the maximum difference over all x values. Mathematically, this can be 
written as: 

))(2)(1max( xFxFstatistictest −=−  

where F1(x) is the proportion of X1 values less than or equal to x and F2(x) is the 
proportion of X2 values less than or equal to x. The p-value is calculated according to 
the test-statistic and the sizes of the two distributions. 

Expected critical values can be looked up in a table or approximated. Comparison 
between observed and expected values leads to decisions about whether the maximum 
difference between the two cumulative frequency distributions is significant. 

2.3 Method 2 - Correlated distances 

2.3.1 Introduction 
The 'Correlated distances' method is based on the assumption that if binding 
specificity is determined by the charge property of the amino-acid in position x, then 
GPCRs with similarly charged amino-acid in position x have similar binding profiles, 
while GPCRs with differently charged amino-acid in the same position have different 
binding profiles.  

2.3.2 The method 
The algorithm iterates until no significant results are found. Each iteration is as 
follows: 

1. For each group of GPCRs found by the previous iteration (for the first iteration 
use the group of all GPCRs in the data set): 
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1.1.Calculate pairwise Euclidean distances between the binding profiles of every 
pair of GPCRs. The binding profile can be defined in one of two ways: either 
the normalized ligand binding activity values, or the correlation between each 
GPCR's ligand binding activity values and the given 164 ligand properties 
(see chapter  2.1.4) which represents the extent to which its binding is affected 
by 164 ligand properties.  

1.2. For each position: 

1.2.1. Retrieve the amino-acids of the GPCRs in the current position. 

1.2.2. For each amino-acid property: 

1.2.2.1. Create a vector of the amino-acid property's values w.r.t the 
amino-acids vector created in step 1.2.1. 

1.2.2.2. Calculate pairwise differences between the elements of the 
vector.  

1.2.2.3. Calculate the correlation coefficient between the binding 
distances and the property's distances.  

1.2.2.4. Calculate the p-value associated with the correlation by 
repeatedly shuffling the property's values vector, creating a new 
random differences vector and correlating it with the binding 
distances. The p-value is estimated as the percentage of shuffles that 
yielded a correlation coefficient larger or equal to the original one. 

1.3. Step 1.2 creates a matrix of p-values, where each p-value is associated to 
one position and one amino-acid property. Apply FDR to the p-values with 
significance threshold 0.05.  

1.4. If the position-property combination with the lowest p-value is significant 
(according to FDR), divide the GPCRs into two groups according to whether 
their values w.r.t that combination are higher or lower than the average value.  

1.5. Add the two GPCRs subgroups created in step 1.4 to the list of subgroups 
to be analyzed by the next iteration. 

2.3.3 Discussion 

General 

The main advantage of the 'Correlated distances' method is its robustness, which is 
achieved because it does not use the hierarchical clustering (or any other clustering 
mechanism), and thus it is insensitive to its results.  

Calculation of the p-values 

Scoring the position-property pairs is done by calculating the p-values of the 
correlation between pairwise distances of binding profiles and pairwise distances of 
the properties' values .The common method for calculating the p-value associated 
with a correlation coefficient transforms the correlation coefficient to create a t-   
statistic having N-2 degrees of freedom, where N is the number of elements in each 
correlated element.   
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This method, however, was not used due to the fact that the correlated data contains 
pairwise distances, and therefore incorporates inter-dependencies. Instead, a 
straightforward sampling of randomly shuffled data was used.  

2.4 Method 3 - Correlated properties 

2.4.1 Introduction 
The 'Correlated properties' method searches for triplets of position, amino-acid 
property and ligand property that affect binding. It is based on the assumption that the 
position-property combination that affects binding is highly correlated with some 
ligand property. For example, if binding is dependent on the charge of the amino-acid 
in position x, it is reasonable to assume that it is also dependent on the charge of the 
ligand – positively charged amino-acid would bind strongly negatively charged 
ligands but would not bind at all positively charged ligands, and vice versa. In such a 
case, there should be a high (negative) correlation between the charge value of the 
amino-acids in position x of the GPCRs and the correlation coefficients between the 
ligand binding activity values of the GPCRs and the values of the ligand property 
'Charge' (see chapter 3.1.4).  

 
Therefore, the algorithm looks for position – amino-acid-property – ligand-property 
triplets that show high correlation.  

In addition, 'Correlated properties' method tries to find secondary triplets – triplets 
that affect binding, but to a lesser extent than the major triplets. Such triplets would 
not yield high scores when calculated with the original data sets, since the major 
triplets mask their effect, but can yield high scores from data sets, for which the effect 
of the major triplets is 'cancelled'.  

'Correlated properties method is an iterative procedure; in each iteration the 
procedure: 

 Positively charged amino-acid Strong negative correlation 
with ligand property 'charge' 

Negatively charged amino-acid Strong positive correlation 
with ligand property 'charge' 

Non-charged amino-acid No correlation with  
ligand property 'charge' 

Strong negative correlation between 'charge' amino-acid property w.r.t 
position x and affinities-ligand-Correlated properties coefficients. 
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1. Finds triplets of position, amino-acid property and ligand-property that show 
significant correlation between the values of the amino-acid property w.r.t the 
amino-acids in the position, and the set of correlation coefficients between the 
measured activity of the GPCRs following binding of the different ligands and 
the values of the ligand-property w.r.t the ligands. 

2. 'Cancels' the effect of the triplets found in step 1 by changing the original 
ligand binding activity data set.  

2.4.2 The method 
The algorithm iterates until no significant triplets are found. In each iteration, the 
procedure: 

1. Creates a matrix of size equal to [no. of GPCRs]×[no. of ligand-properties] 
(26×164). Each value in the matrix is equal to the Pearson correlation 
coefficient between the measured activity of a GPCR following binding of 
1068 ligands and the values of a ligand-property w.r.t the same 1068 ligands. 
Every value represents the extent to which the ligand binding activity of a 
GPCR is affected by a ligand property.  

2. Each position, amino-acid property and ligand property triplet is scored. The 
score is equal to the p-value associated with the Pearson correlation between 
the values of the amino-acid property w.r.t the position, and the vector of 
correlation coefficients related to the ligand property that was created in step 
1. 

3. Only triples with p-value <= 0.05 FDR corrected are considered significant. 

4. The list of significant triplets is analyzed to cancel interdependencies between 
the different amino-acid properties and between the ligand-properties.  

For every position that was found significant (included in at least one of the 
triplets), a list of all amino-acid properties attached to it (included in a triplet 
with it) is created. The pairwise correlation coefficients between the amino-
acid properties (calculated upon the vectors of their values w.r.t the 20 amino-
acids) are calculated, as well as the p-values associated to them. The list is 
clustered using the Matlab function 'cluster'. The clusters are created such that 
two amino-acid properties are included in the same cluster only if the p-value 
associated with their correlation coefficient is smaller than 0.1. 

Each amino-acid property in the cluster is scored by the mean of the p-values 
attached to the correlation between it and the other amino-acid properties in 
the cluster. This score is an estimate to how close the amino-acid property is to 
the center of the cluster, and therefore to how well it 'represents' it. 

For every amino-acid properties cluster found, a similar procedure is used to 
cluster the ligand properties attached to it. 

For every triplets cluster (for which all positions are equal, all amino-acid 
properties belong to the same cluster as well as the ligand properties), only one 
triplet is selected. The selected triplet includes the amino-acid property and 
ligand property that the multiplication of their scores is minimal. 

5. The effect of each of the remaining triplets is canceled by the following 
procedure: 
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a. For every GPCR, the linear polynomial regression line of the curve, 
created by the ligand-property values (w.r.t 1068 ligands) in the x-axis 
and the ligand binding activity of the GPCR (to 1068 ligands) in the y-
axis, is calculated.  

Denote by (pos, aaProp, ligProp) the triplet found by the procedure. 

Denote by )(Ga  the ligand binding activity values of GPCR 'G' w.r.t 
1068 ligands. 

Denote by l  the values of ligProp w.r.t the same 1068 ligands. 

Denote by 'regression line 1' the linear polynomial regression line that 
fits, for each GPCR 'G', )(Ga  to l : 

01)( plpGa +×=  

b. The linear polynomial regression line of the curve, created by the 
amino-acid property (w.r.t the amino-acid in the position for all 
GPCRs) in the x-axis and the slopes of the regression lines created in 
step 5.a. in the y-axis, is calculated. 

Denote by )(1 Gp  the slope of regression line 1 calculated for GPCR 
'G', and by 1p  the vector of slopes of the regression lines calculated for 
all GPCRs. 

Denote by c(G) the value of aaProp w.r.t the amino-acid in pos of 
GPCR 'G', and by c  – the vector of values of aaProp w.r.t the amino-
acids in pos of all GPCRs.  

Denote by 'regression line 2' the linear polynomial regression line that 
fits 1p  (in y-axis) to c  (in x-axis): 

011 )()( qGcqGp +×=  

If some of the GPCRs have gaps in the selected position, they are 
ignored for the creation of regression line. Once the regression line is 
set, their amino-acid property values are estimated according to their 
slope ( )(1 Gp  - calculated in step a) and the regression line. 

The procedure adjusts 1p  and creates a new set of adjusted slopes, 
such that the effect of c  will not be reflected. Denote the vector of 
adjusted slopes as 2p . 2p  is equal to the residuals of regression line 2: 

))(()()( 0112 qGcqGpGp +×−=  

c. The original ligand binding activity values are adjusted such that the 
effect of the triplet (pos, aaProp, ligProp) is neutralized. 

Denote by )(ˆ Ga  the adjusted ligand binding activity values of GPCR 
'G' w.r.t ~1000.  

))()(()()(ˆ 12 GpGplGaGa −+=  
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2.4.3 Discussion 
Like 'Correlated distances' method, 'Correlation properties' doesn't use any clustering 
and therefore it is more robust than the 'Hierarchical clustering' method.  

In addition, the results of 'Correlated properties' method are more detailed. They 
include ligand property specification in addition to the position and amino-acid 
property. This addition can be very helpful, especially for the main industrial 
consumer of this data – drug companies. Drug companies search for drugs that bind 
strongly (have high affinity) with specific GPCRs. Given a list of triplets (output of 
the algorithm) and a GPCR of interest, it is possible to retrieve the amino-acid in the 
position specified by the triplet and it's amino-acid property value. If the value 
predicts a strong correlation with the ligand property specified by the triplet, the 
search for drugs can be narrowed to ligands with specific values w.r.t the ligand 
property. If not, results from the next iteration should be used.  

The main weakness of this method is related to the neutralization procedure. The 
procedure fits the data to two regression lines, calculated one upon the other (the y-
values fitted by the second regression line are the slopes found for the set of the first 
regression lines). Every such fit incorporates within it error and noise, and therefore 
the adjustment of the ligand binding activity data-set is expected to decrease the 
accuracy of the data. From one iteration to the next, the amount of decrease in 
accuracy is increased.   

2.5 Incorporation of Two-way clustering 

2.5.1 Introduction 
'Two-way clustering' uses Gene expression clustering algorithms to find triplets of 
position, amino-acid property and ligand property that affect binding.  

Any clustering algorithm that finds sub-groups of both genes and conditions can be 
used. In this work we used 'Iterative signature algorithm'  [10] .  

Applied upon the ligand binding activity data set, a cluster would include a subgroup 
of GPCRs that show similar ligand binding activity values w.r.t a subgroup of ligands. 
Returning to the aminergic GPCRs'  binding-site example – we would expect to find a 
cluster of all GPCRs that have Aspartic acid (D) in position 689 and all charged 
ligands. Once such a cluster is found, identifying position 689 and amino-acid 
property 'Charge' can be done by any of the 3 methods above;  

'Hierarchical clustering' method would find position and amino-acid property 
combinations such that the null hypothesis, that the distributions of the values for 
GPCRs within the cluster vs. GPCRs outside the cluster are equal, would yield the 
smallest p-value. A similar method can be applied to find ligands' properties, such that 
the ligand property values w.r.t ligands within the cluster vs. ligands outside the 
cluster are the most distant.  

'Correlated distances' method would be applied to each cluster separately instead of 
the entire set. The probability of finding the correct position and property is expected 
to improve due to the disposal of GPCRs and ligands that add noise to the data. In 
addition, combining 'Correlated distances' with 'Two-way clustering' enables finding 
'second order' results (position-property combinations that affect only a small group of 
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the GPCRs, such as GPCRs with uncharged amino-acid in position 689) without 
relying on the initial results of ligand specificity-determining positions and amino-
acid properties as mediators . 

Similarly, 'Correlated properties' would be applied to each cluster separately. 

2.5.2 The method 
Activate 'Iterative signature algorithm'  [10] on the ligand binding activity data set (or 
ligand-properties correlations data set). The algorithm’s output includes 'modules', 
containing subgroups of GPCRs and ligands (or ligand properties).  

These modules can be incorporated into the three methods in different ways to 
improve their expected results, as explained below. 

'Hierarchical clustering' method 

1. Activate a modified version of 'Hierarchical clustering' method. Instead of 
splits in a dendrogram, the clusters of GPCRs created by 'Iterative signature 
algorithm' will be analyzed vs. their complementary subgroups. 

2. It is possible to activate a second modified version of "hierarchical clustering', 
to find ligand properties that affect binding. Instead of splits in the 
dendrogram, the clusters of ligands will be analyzed vs. their complementary 
subgroups. Instead of amino-acid properties retrieved for each position 
separately, ligand properties would be used. 

'Correlated distances' method 

1. Activate 'Correlated distances' method once for each module, using only the 
GPCRs and ligands included in the module, to find combinations of position 
and amino-acid property that affect binding specificity in each module. 

In order to identify positions and properties that differentiate between the 
modules, the original ligand binding activity data set should be defined as a 
module as well. 

2. It is possible to modify 'Correlated distances' method to find ligand properties 
that affect binding in each module. Again, the procedure will be applied once 
to each module using only the GPCRs and ligands included in the module. The 
distances between ligand binding activity values would be calculated between 
the columns of the ligand binding activity matrix (each column represents 
ligand binding activity values of all GPCRs and one ligand) and not rows as in 
the original procedure. The properties distances would be calculated upon the 
ligands' properties dataset (instead of amino-acid properties, specific to each 
position, as in the original procedure).  

'Correlated properties' method 

Activate the original 'Correlated properties' method once for each module, using only 
the GPCRs and ligands included in the module. 

Like in 'Correlated distances' method, in order to identify positions and properties that 
differentiate between the modules, the original ligand binding activity data set should 
be defined as a module as well. 
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2.5.3 Discussion 
Combining Two-way clustering with the various methods brings significant 
improvements to each one of them; 

The 'Hierarchical clustering' method's main disadvantage, its sensitivity to the 
hierarchical clustering structure, is solved due to the flexible structure of the 
clustering algorithm. The rigidity of the hierarchical clustering is due to the forced 
tree structure - wrong classification in a split results in wrong clustering of the entire 
sub-tree, while clustering algorithms find various clusters, possibly overlapping. 

'Correlated distances' method lacks the ability to find position-property combinations 
affecting only sub-group of the GPCRs (unless it is induces by the best scoring 
position-property combination found in previous iteration). It is clear that a descent in 
the percentage of GPCRs affected by the position-property combination would yield a 
descent in the score associated with it.  

Combining 'Two-way clustering' cancels this disadvantage by allowing the activation 
of 'Correlated distances' method on each GPCRs group separately. This improvement 
allows finding of additional 'second order' combinations that take affect when the 
major combination is not active (for example if the specified property is 'Charge' and 
the ligand is not charged).  

Similar improvements apply to combining 'Two-way clustering' with 'Correlated 
properties' method. The 'Correlated properties' method solves the inability of finding 
second order results by repetition of the analysis after neutralizing the affect of the 
found major results. Nevertheless, as discussed in chapter  2.4.3, the neutralization 
procedure is highly exposed to error and noise. In fact, Two-way clustering offers 
highly-effective improved alternative to the neutralization procedure used in 
'Correlated properties' method.    

2.6 Results analysis 
After a list of candidate positions and properties is created by one or few of the 
suggested methods, two analyses were performed: the significant transmembranal 
positions were superimposed on the resolved 3D structure of rhodopsin and analyzed 
by kPROT  [11]. kPROT (Knowledge-based Scale for the Propensity of Residue 
Orientation in Transmembrane Segments) predicts the angular orientation of the 
Transmembrane helices by calculating for each residue the ratio of its proportions in 
single and multiple TM spans among a set of 5000 non-redundant protein sequences. 
It is based on the assumption that residues that tend to be exposed to the membrane 
are more frequent in TM segments of single-span proteins, while residues that prefer 
to be buried in the transmembrane bundle interior are present mainly in multi-span 
TMs.  

Superimposing the significant positions on the 3D structure of rhodopsin allows 
estimating the proximity of the positions to the extracellular side of the receptors, the 
proximity between the positions and their general positioning. The alignment of the 
transmembranal regions of the GPCRs to rhodopsin expected to be highly accurate 
due to the high conservation of the transmembranal segments.  
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Chapter 3  
Results 

3.1 Introduction 
Each of the methods detailed above yields a slightly different form of results ,but they 
all specify pairs of position in the alignment and amino-acid property that are 
predicted to affect binding.  

One indication for the correctness of the results is the finding of the highly conserved 
Asp position in the third transmembranal region, which is known to be the binding 
site of aminergic GPCRs, coupled to the amino-acid property 'Charge'. Additional 
indications are the angular orientation of the found binding site, as predicted by 
kPROT  [11], and the 3D position of the found residues as superimposed on the 
resolved 3D structure of rhodopsin. We assume that binding residues are localized in 
the plane that faces the interior of the protein (as opposed to the membrane) and 
closer to the extracellular end of the GPCR than to the intracellular end. 

Due to the similar structure of all GPCRs and to the high conservation of the 
transmembranal regions in GPCRs, it is possible to identify the matching position in 
the GPCRs included in the input data sets with relatively high accuracy. This position 
is numbered 689. 

All the following results were retrieved by applying the methods only to the 
transmembranal regions of the GPCRs. 

3.2 Method 1 – Hierarchical clustering 
The output of method 1 includes lists of position and amino-acid property 
combinations. A separate list is created for each split in the dendrogram (that was 
determined to be stable by the bootstrap analysis).  

Figure 4 presents the results of applying 'Hierarchical clustering method' to the ligand 
properties binding profiles (details in chapter  2.1.4- Ligands properties) and the 
clusters of amino-acid properties (details in chapter  2.1.2 - Amino-acid properties).  

For all splits, the FDR-adjusted significance threshold is 0, and no significant results 
were found. Nevertheless, the position-property combinations that got the highest 
scores were examined. Figure 5 presents the best-scoring combination for split 1 – the 
root of the dendrogram (the score is equal to the p-value calculated by the two-sample 
Kolmogorov-Smirnov test). It matches exactly the known aminergic binding site and 
amino-acid property 'charge' (one of the two amino-acid properties included in amino-
acid properties cluster 17, which was selected by the procedure). 

Figure 5(A) shows the amino-acids found in the position selected by the procedure, 
divided according to the classification of GPCRs by the dendrogram. It can be seen 
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that the classification of GPCRs by the first split in the hierarchical clustering is not 
optimal – D is the only negatively charged amino-acid, and therefore we would expect 
to see GPCRs with D separated from all other GPCRs. Figure 5(B) shows the values 
of the two amino-acid properties included in the selected cluster – 'Recognition 
Factors' and 'Charge', w.r.t the amino-acids. GPCRs in different sides of the split are 
colored with different colors. It can be seen that for the GPCRs in the top split (most 
of which have amino-acid 'D' in the selected position), the values of 'Recognition 
factors' are equal to ~81 while for the GPCRs in the bottom split the values vary from 
81 to 95. The 'Charge' property is also generally lower for GPCRs in the top split than 
ones in the bottom split. Figure 5(C) presents KPROT analysis for the selected 
position. It is reasonable to assume that binding-sites face the gorge – the interior hole 
in the GPCR to which the ligand enters, and not the membrane. kPROT analysis 
predicts the angular orientation of the helix, and therefore, according to the location of 
the position within the helix, predicts whether it faces the membrane or the gorge. The 
red thick line is directed to the predicted direction of the membrane, and therefore 
binding sites are supposed to appear in the opposite direction. It can be seen that the 
selected position, marked by a red 'D', is indeed facing the opposite direction. Figure 
5(D) shows the position in rhodopsin that matches the best-scoring position (by 
alignment of the transmembrane region) - colored in magenta. The top of the image is 
the extracellular milieu, and the bottom – the intracellular. Binding sites are predicted 
to be located closer to the extracellular side. It can be seen that the best-scoring 
position applies to this condition as well. 

A 

 

B 
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Figure 5: Best scoring position and amino-acid-properties-cluster for the main split in the hierarchical 
clustering tree. This result (both the position and the amino-acid property 'Charge') coincide exactly 
with the aminergic binding site. (A) The alignment of the best-scoring position. The two groups of 
GPCRs defined by the main split in the Hierarchical clustering (shown in figure 4.C) are surrounded by 
red rectangles. (B) The values of the amino-acid properties included in the best-scoring amino-acid-
properties-cluster: Recognition factors and Charge. GPCRs in different sides of the split are colored 
with different colors. (C) kPROT analysis for transmembrane region #3. The best-scoring position is 
shown as a red 'D'. The red thick line is the direction predicted to face the membrane. It is equal to the 
mean of the directions predicted to face the membrane calculated for each GPCR in the alignment 
separately (plotted as green lines). The blue line directs to the position, in which the amino-acids show 
the highest variability. The wide angle (~120°) between the red line and the selected position indicates 
that it faces the interior of the protein, which is the area predicted to bind ligands. (D) Structure of 
bovine rhodopsin. The position in rhodopsin that matches to the best-scoring position (by alignment of 
the transmembrane region) is colored in magenta.  

 

The location of the 4 best scoring positions for split 1 is presented in Figure 6. The 
figure shows that all positions cluster around the aminergic binding site. Two of the 
four positions face the interior of the protein (including the best scoring position, 
presented in figure 5), and the other two face ~90° and ~30° from the membrane, and 
connect between helices 5 and 7. 

  

A 

 

B 
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Figure 6: Four best-scoring positions for the main split in the hierarchical clustering tree, marked on 
the structure of bovine Rhodopsin (A, B) and their kPROT analysis (C,D,E) (not including the best 
scoring position, shown in Figure 5(C)). (A) A side view as seen from within the membrane. (B) A 
view from the extracellular milieu. (C) kPROT analysis for the 5th transmembrane helix. The 3rd 
position is marked as a red 'F', and predicted to face the 90° from the membrane. (D) kPROT analysis 
for the 7th transmembrane helix. The 7th position is marked as a red 'W' and predicted to face 30° from 
the membrane. (E) kPROT analysis for the 1st transmembrane helix. The 8th position is marked as a red 
'T' and predicted to face the gorge. 

 

The best scoring results for the first 3 splits and their scores are detailed in Table 1. 
The dendrogram that yielded the results is shown in Figure 7. The first three splits, for 
which results are shown in the table below, are colored red.  

 
Figure 7: Hierarchical clustering of the 26 GPCRs. The distances between the GPCRs used for the 
creation of the dendrogram are Euclidean distances. Each GPCR is represented by a vector of size 164, 
where the i'th elements is the Peasron correlation between the ligand binding activity values of the 
GPCR and the values of the i'th ligand property w.r.t to the 1068 ligands. The dendrogram is shown 
also in Figure 4(B). The first three splits, for which results are shown in the table below, are colored 
red and the splits' numbers are presented.  

 



25 

Split Position  Amino-acid properties P-value 

1 689 (3,7) Cluster 17 (Recognition factors; Charge) 0.0051 

2 1255 (6,10) Clusters 1 11 14 16 (18 amino-acid properties) 0.0048 

 650(2,15) Clusters 2 3 5 6 9 12 (21 amino-acid properties) 0.0048 

 683(3,1) Cluster 18 (Overall amino acid composition; Number of 
codon(s); Amino acid composition (%) in the Swiss-Prot 
Protein Sequence data bank) 

0.0048 

3 605 (1,24) Clusters 2 15 (Retention coefficient in HFBA; Retention 
coefficient in TFA; Antigenicity value X 10; polarity) 

0.0069 

 583 (1,3) Cluster 3 (Optimized matching hydrophobicity; 
Mobilities of amino acids on chromatography paper (RF)) 

0.0069 

 1304 (7,6) Clusters 6 15 (Molecular weight; Refractivity; Average 
area buried on transfer from standard state to folded 
protein; Antigenicity value X 10; polarity) 

0.0069 

 1266 (6,20) Clusters 11 15 16 18 0.0069 

 655 (2,20) Cluster 14 0.0069 

 1004 (5,19) Cluster 14 0.0069 

 747 (4,7) Cluster 15 (Antigenicity value X 10; polarity) 0.0069 

 683 (3,1) Cluster 18 (Overall amino acid composition; Number of 
codon(s); Amino acid composition (%) in the Swiss-Prot 
Protein Sequence data bank) 

0.0069 

Table 1: Best scoring position & amino-acid properties combinations. The position indices represent 
the location of the position in the original input sequence alignment. The first number in the 
parentheses is the index of the transmembranal region, to which the position belongs. The second 
number is the index of the position within the transmembranal region.  The second column specifies the 
indices of the amino-acid property clusters that were found along with the positions. For most of the 
clusters the amino-acid properties' names are specified as well. The third column is the p-value 
associated with two-sample Kolmogorov-Smirnov test, applied on the values of the specified amino-
acid properties cluster and position, where the first distribution relates to GPCRs in the left side of the 
root split in the dendrograms and the second – to the right side.  

3.3 Method 2 – Correlated distances 
The output of 'Correlated distances' method includes pairs of position and amino-acid 
property, such that the pairwise distances between the GPCRs, calculated upon the 
value of the amino-acid property w.r.t the amino-acids in the position, are highly 
correlated with the pairwise distances between the GPCRs, calculated upon their 
ligand binding activity values. The scores associated to the pairs are p-values, 
calculated by 10,000 random shuffles of the data.  

'Correlated distances' was applied to the normalized ligand binding activity values and 
amino-acid properties clusters. The first iteration – created by the original group of 26 
GPCRs, yielded only one significant result (p-value <= 0.05 FDR corrected), that 
matches exactly the binding site of aminergic GPCRs and the known amino-acid 
property – 'Charge' (clustered with an additional amino-acid property – 'Recognition 
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factors'). The correlation coefficient for that position and amino-acid property is 
0.4231 (vectors of size 325) and the p-value is 0, meaning that 10,000 shuffles of the 
data didn't yield an equal or better result.  

Figure 8 plots the two correlated vectors that yielded the best score. The x-axis is 
pairwise distances between the values of amino-acid properties cluster 17 w.r.t the 
amino-acids of the 26 GPCRs in position 689. The y-axis is pairwise Euclidean 
distances between the normalized ligand binding activity values of the 26 GPCRs. It 
can be seen there is a strong positive correlation between them. 

kPROT analysis and the location of the selected position superimposed on bovine-
rhodopsin are shown in Figure 5(A-B). 

  
Figure 8: The best-scoring, significant result of the activation of 'Correlated distances' method upon 
the GPCRs' normalized ligand binding activity data set and the amino-acid properties clusters data set. 
Only one pair was found significant – position 689 (in transmembranal helix 3) and amino-acid 
properties cluster-17, which groups two amino-acid properties – 'Charge' and 'Recognition factors'. The 
values of cluster-17 are equal to the mean of the normalized values of 'Charge' and 'Recognition 
factors' w.r.t the 20 amino-acids. Position 689 is known to be the aminergic binding site, and amino-
acid property 'Charge' is known to affect amine binding. The X-axis of the plot is pairwise distances 
between the values of cluster-17 w.r.t the amino-acid of the 26 GPCRs in position 689. The y-axis is 
pairwise Euclidean distances between the normalized ligand binding activities of the 26 GPCRs. The 
Pearson correlation coefficient between these two vectors is 0.4231, and the associated p-value, 
measured by 10,000 random-shuffles of the data, is 0. 

 

The first iteration produced a division of the 26 GPCRs into two groups such that bio-
amine receptors were perfectly separated from non bio-amine. The two groups were 
the inputs for the second iteration.  
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In the second iteration eight significant results (that include four different residues) 
were found for the non bio-amine group and none for the bio-amine group. The 
results for the non bio-amine receptors are shown in Table 2. 

kPROT analysis for the four positions and their location superimposed on bovine-
rhodopsin are shown in Figure 9. 

  

Position  Amino-acid properties P-value 

695 (3,13) Cluster 17 (recognition factors; charge) 0.0001 

1248 (6,3) Cluster 3 (Optimized matching hydrophobicity; Mobilities of amino 
acids on chromatography paper (RF)) 

0 

 Cluster 5 (polarity and four hydrophobicity  scales) 0.0001 

 Cluster 8 (Retention coefficient in HPLC, pH 2.1/pH 7.4) 0.0001 

 Cluster 9 (seven hydrophobicity related properties) 0.0001 

1252(6,7) Cluster 8 (Retention coefficient in HPLC, pH 2.1/pH 7.4)  0.0001 

 Cluster 15 (Antigenicity value X 10; polarity) 0.0001 

1304(7,6) Cluster 16 (Atomic weight ratio of hetero elements in end group to C 
in side chain; Conformational parameter for beta-turn; Normalized 
frequency for beta-turn; Conformational parameter for beta-turn 
(computed from 29 proteins); Conformational parameter for coil) 

0 

Table 2: Significant position & amino-acid properties cluster combinations found by the second 
iteration of 'Correlated distances' method, applied to the non bio-amine receptors group. The position 
indices represent the location of the position in the original input sequence alignment. The first number 
in the parentheses is the index of the transmembranal region, to which the position belongs. The second 
number is the index of the position within the transmembranal region. The second column specifies the 
indices of the amino-acid properties clusters that were found along with the positions, followed by the 
amino-acid properties included in them). The third column is the p-value, estimated as the percent of 
10,000 random shuffles that yield a higher or equal correlation.  

 

A 
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Figure 9: Structural analysis of the four significant residues found by the second iteration of 
'Correlated distances' method – relate only to the nine non-bio-amine receptors. (A, B) show the 
location of the residues on the structure of bovine Rhodopsin. (C-F) is the residues' kPROT analysis. 
(A) A side view as seen from within the membrane. (B) A view from the extracellular milieu. (C) 
kPROT analysis for position 695 from the 3rd transmembrane helix. The position is marked as a red 'A', 
and predicted to face the membrane. (D) kPROT analysis for position 1304 from the 7th transmembrane 
helix. The position is marked as a red 'Y' and predicted to face the gorge. (E) kPROT analysis for 
position 1248 from the 6th transmembrane helix. The position is marked as a red 'S' and predicted to 
face 60° from the membrane. (F) kPROT analysis for position 1252 from the 6th transmembranal helix. 
The position is marked as a red 'L' and predicted to face the membrane. 

3.4 Method 3 – Correlated properties 
The output of 'Correlation properties' method includes triplets of position, amino-acid 
property and ligand property that show high correlation. The triplets presented below 
are the results of applying the method upon the original amino-acid properties (not the 
clustered properties). 'Correlated properties' method, like 'Hierarchical clustering' 
method, assigned the best score to the position that matches the aminergic binding 
site, but with the amino-acid property 'Recognition factors' and not the property 
known to affect binding – 'Charge'. It is not known whether the found ligand-property, 
Isis_127, is related to charge. A total of five positions (in 12 triplets) were found 
significant, with p-values <= 0.05 FDR corrected. Two of these positions match the 
best scoring position found by the 'Hierarchical clustering' method for the root split. 
The second iteration (applied to adjusted ligand binding activity values, after the 
effect of the triplets found in the first iteration were neutralized), no significant results 
were found. 
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Figure 10: Results of the 'Correlated properties' method. The algorithm found 12 combinations of 
position, amino-acid-property and ligand-property with significant p-values. The combinations include 
5 different positions. The best scoring position coincides exactly with the aminergic binding site, but 
not with the known amino-acid property. (A) For each of the 5 selected positions, two figures are 
shown: (A.Left) The KPROT analysis for the selected position. The position is colored in red. The red 
thick line is the direction predicted to face the membrane. (A.Right) A plot of the correlation between 
the GPCRs' ligand binding activity and the values of the selected ligand-property w.r.t 1068 ligands 
(Y-axis) against the values of the selected amino-acid property in the selected position (X-axis). For 
example, the top plot presents the combination: position 689 (7th in transmembrane region 3), amino-
acid property 'Recognition factors' and ligand-property 'isis_125'. It shows that a low value for the 
amino-acid property 'Recognition Factors' leads to a strong dependency between the measured activity 
of a GPCRs following the binding of a ligand and the value of the ligand's property 'isis_125'. 
Although position 1310 (presented in the second plot) was found to be significant with 8 different 
amino-acid properties, only one property is plotted. The full list of results is shown in table 2. (B) The 
5 selected positions marked on the structure of bovine rhodopsin, as seen from within the membrane. 
(C) The 5 selected positions as seen from the extracellular milieu.  

 

Position  Amino-acid property Ligand 
Property 

P-value 

689 (3,7) Recognition factors Isis_125 2.05e-008 

1310 (7,12) Bulkiness Isis_163 2.14e-008 

 Normalized frequency for beta-sheet  2.16e-008 

 Mobilities of AAas on chromatography paper (RF)  2.29e-008 

 Number of codon(s)  2.34e-008 

 Recognition factors.  3.75e-008 

 Molar fraction (%) of 2001 buried residues  1.13e-007 

 Retention coefficient in HPLC, pH 2.1  1.72e-007 

 Conformational parameter for alpha helix 
(computed from 29 proteins) 

 1.95e-007 

1305 (7,7) Relative mutability of amino acids (Ala=100) Isis_125 2.36e-007 
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Position  Amino-acid property Ligand 
Property 

P-value 

1316 (7,18) Hydrophobicity (free energy of transfer to surface) Isis_93 3.81e-007 

751 (4,11) Bulkiness Isis_60/73 4.13e-007 

Table 3: Results of the 'Correlated properties' method (first iteration) – triplets of position, amino-acid 
property and ligand property that were found significant (p-value <= 0.05 FDR corrected).  

3.5 Method 4 - Incorporation of Two-way clustering 
Iterative signature algorithm was applied to the ligand binding activity data set, after 
normalization and outliers elimination. Iterative signature algorithm was designed to 
cluster gene chips data, and therefore the input ligand binding activity data set was 
formatted such that GPCRs will be treated as genes and ligands - as conditions. 

The algorithm yielded two results. With threshold=0.1 one module was identified, 
that includes 14 GPCRs and 687 ligands. The module's GPCRs include 13 bio-amine 
binding GPCRs (out of 17 in the original set) and one ATP/ADP binding GPCR (out 
of one in the original data set). None of the neuropeptide binding GPCRs were 
included in the cluster (6 in the original data set).  

With threshold=0.3 three modules were identified. The first contains 9 bio-amine 
binding GPCRs and 617 ligands; the second contains 6 GPCRs and 694 ligands. Five 
of the GPCRs are bio-amine (including one that was selected in the first module as 
well) and the 6th is the ATP/ADP binding GPCR. The third contains 3 GPCRs and 
664 ligands. All three selected GPCRs bind neuropeptides (gastrin and 
cholecystokinin / galanin / neuropeptide Y).   

Neither 'Correlated distances' method nor 'Correlated properties' method, applied to 
these modules, found any significant results (defined as results with p-values lower or 
equal to the significance threshold calculated by FDR with 0.05). However, some of 
the methods, when applied to the module of 14 GPCRs and 689 ligands (threshold 
0.1), found significant results according to differently calculated significance 
thresholds.  

'Correlated distances' method, applied to this module, identified two specificity-
determining residues and four amino-acid properties clusters with p-values < 0.1 
(Bonferroni corrected), detailed in Table 4. 

The residues are not predicted to face the interior of the protein by kPROT.  

  

Position  Amino-acid properties P-value 

683 (3,1) Cluster 3 (Optimized matching hydrophobicity; Mobilities of 
amino acids on chromatography paper (RF)) 

2.0e-4 

 Cluster 7 (Normalized consensus hydrophobicity scale; Hydration 
potential) 

5.0e-4 

 Cluster 18 (Overall amino acid composition; Number of codon(s); 
Amino acid composition (%) in the Swiss-Prot Protein Sequence 
data bank) 

4.0e-4 
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Position  Amino-acid properties P-value 

988 (5,4) Cluster 19 (Conformational parameter for alpha helix; Normalized 
frequency for alpha helix; Conformational parameter for alpha 
helix computed from 29 proteins). 

5.0e-4 

Table 4: Results of the 'Correlated distances' method applied to a module found by 'Iterative signature 
algorithm'. The module consists of 13 bio-amine GPCRs and one ATP/ADP GPCR. 

 

The 'Correlated properties' method found four results with p-values < 1 (Bonferroni 
corrected), detailed in Table 5. Three of the four are predicted by kPROT to face the 
interior of the protein. 
 

Position  Amino-acid properties cluster Ligand 
Property 

P-value 

761 (4,21) Cluster 19 (Conformational parameter for alpha helix; 
Normalized frequency for alpha helix; Conformational 
parameter for alpha helix computed from 29 proteins). 

Isis_3 3.2844e-7 

745 (4,5) Cluster 19 (See previous row) Isis_68 1.6761e-6 

1247 (6,2) Cluster 7 (Normalized consensus hydrophobicity 
scale; Hydration potential). 

Isis_130 9.5227e-7 

603 (1,23) Cluster 17 (Recognition factors; Charge). Isis_130 6.0524e-7 

Table 5: Results of the 'Correlated properties' method applied to a module found by 'Iterative signature 
algorithm'. The module consists of 13 bio-amine GPCRs and one ATP/ADP GPCR. 

3.6 The results – Discussion 
All the methods discussed above were expected to identify combinations of residues 
and amino-acid properties that affect binding (in 'Correlated properties' method – 
combinations of residues, amino-acid properties and ligand properties).  

The success of all the methods depends on a basic assumption, that GPCRs of the 
same type (where the type can be general, as aminergic receptors, or specific as 
dopamine receptors) have similar ligand binding activity. 

This assumption is only partially realized in the data-set, as demonstrated by Figure 
11 and Figure 12 (generated by CTWC  [13]). Figure 11 shows the normalized ligand 
binding activity values of the 26 GPCRs, reordered by similarity (both GPCRs and 
ligands). Figure 12 shows the GPCRs' distances matrix.  
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Figure 11: The normalized ligand binding activity of the 26 GPCRs, reordered (both GPCRs and 
ligands) by their similarities. The reordering and creation of the image were done by CTWC. 

  
Figure 12: Pairwise distances between the normalized ligand binding activity of the 26 GPCRs, 
reordered  by their similarities. The reordering and creation of the image were done by the CTWC. 
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For example, GPCRs 1-5 are Muscarinic acetylcholine receptors. GPCRs 9 and 15 are 
both histamine receptors. Nevertheless, both groups do not have similar binding 
profiles. On the other hand, GPCRs 19, 23 and 26, that show similarity, bind different 
ligands (19 – adenosine, 23 – angiotensin and 26 – neurotensin) two of which are 
peptides and one ribonucleotide (adenosine). 

These deviations from the basic assumption can happen due to various reasons. 
However, it is likely that the identity of ligands in the data-set has great influence. For 
example, if histamine is not one of the ligands, then it is probable that histamine 
receptors do not show exceptional binding similarity.  

The only result that was expected in advance is position 689 – experiments confirm 
that bio-amine ligands are attached to the GPCR by a charged residue in this position. 
Despite the deviation from the first assumption, as mentioned above, residue 689 was 
identified by all methods. 'Correlated distances' identified it perfectly as the only 
significant result, 'Correlated properties' identified it along with four other residues 
and 'Hierarchical clustering' did not mark it as significant but assigned it the lowest p-
value (out of more than 3000 options). While 'Correlated distances' method identified 
the aminergic binding site directly from the ligand binding activity data set, the other 
two methods rely on an additional data set of 164 ligand properties. The alternative 
binding data set includes correlations between the ligand binding activity of each 
GPCR and the values of each ligand property, as shown in Figure 13 and Figure 14. 
Figure 13 presents the correlations of the 26 GPCRs, reordered by similarity (both 
GPCRs and ligand properties). Figure 14 shows the GPCRs' distances matrix. 

 
Figure 13: Correlation coefficients of the 26 GPCRs w.r.t 164 ligand properties, reordered (both 
GPCRs and ligand properties) by their similarities.  
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Figure 14: The pairwise distances between the correlations of the 26 GPCRs, reordered  by their 
similarities. The reordering and creation of the image were done by the CTWC algorithm. 

 

Coupled Two-Way Clustering, when applied to the ligand-properties correlation 
coefficients data-set, was more successful in discriminating between bio-amine 
receptors and the rest. GPCRs 1-17 are aminergic receptors, GPCRs 18-19 bind 
adenosine (ribonucleotide), GPCR 25 binds ATP/ADP and the rest (GPCRs 20-24 and 
GPCR 26) bind various peptides. It can be seen that all non-aminergic receptors 
(GPCRs 18-26) except for GPCR 24 are adjacent to each other (in the bottom of 
Figure 13 and Figure 14) along with three aminergic receptors – GPCR 12, GPCR 10 
and GPCR 4.  

The hierarchical clustering method applied to the ligand-properties-correlations data 
set also divided the GPCRs into two groups such that aminergic receptors were 
separated from the rest of the GPCRs with slight deviations, as shown in Figure 7. 
The deviations include three aminergic receptors (out of 17) classified into the non-
aminergic group (GPCRs 1, 2 and 12) and three non-aminergic receptors (out of 9) 
classified into the aminergic group (GPCRs 20, 21 and 25). As mentioned above, 
despite the deviations the algorithm assigned the aminergic binding site the lowest p-
value. 

All three methods, independently and in combination with 'Iterative signature 
algorithm', seek also for 'second order' results – results that explain different binding 
profiles within sub-groups of the GPCRs (and optionally – ligands). The second 
iteration of 'Correlated distances' method (the only method that succeeded in 
separating perfectly between aminergic and non-aminergic receptors) predicts that 
binding-specificity within non-aminergic receptors depends on four different residues, 
combined with eight amino-acid property clusters. Only one of the four (position 

GPCRs
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1304) is predicted by kPROT to face the interior of the protein. Position 1304 also has 
the lowest mean p-value (of the four results) and it is located in the part of the GPCR 
closer to the extracellular side, near the aminergic binding site. Therefore it can be 
treated as a strong candidate binding-site for non-aminergic GPCRs. No significant 
results were found for the aminergic group by any of the methods. 

The lack of significant results may be taken to indicate that there are no specific 
position/s and amino-acid property/ies highly correlated with the binding profiles 
within any subgroup (either directly, as calculated by 'Correlated distances' method or 
mediated by ligand properties, as calculated by 'Hierarchical clustering' method and 
'Correlated properties' method).  

GPCR sequence similarity analysis  [14] reveals a possible division of the aminergic 
GPCRs into five subgroups according to their natural ligand - muscarinic 
acetylcholine (GPCRs 1-5); dopamine (GPCRs 6 and 11); serotonin (GPCRs 7, 8, 10, 
13, 16 and 17); histamine (GPCRs 9 and 15) and adrenergic receptors (GPCRs 12 and 
14).  Nevertheless, none of the clustering methods used (three clustering methods 
applied to two optional binding data sets) yielded a similar clustering.  

'Correlated distances' method was applied to the subgroup of 17 aminergic receptors 
and an artificially created distances matrix, where the distance between GPCRs with 
the same natural ligand is defined as 0 and with different natural ligand – as 1. Unlike 
the results with the real distances matrix (that didn't include any significant position-
property combinations), 24 different binding sites were identified using Bonferroni 
correction with p-value 0.05 (71 with FDR correction). Out of the 24 predicted 
binding-sites, 10 are predicted by kPROT to face the interior of the protein and the 
majority is located closer to the extracellular side. 

These results indicate that the methods are able to identify binding sites, but are 
highly dependent on the input ligand binding activity data set. In the case of a general 
binding site such as the aminergic binding site, the data set must include both bio-
amine ligands and non bio-anime ligands, as well as animergic GPCRs and non 
aminergic GPCRs. Since this requirement was fulfilled, the aminergic binding site 
was identified. However, the same condition applies for more specific binding sites, 
and apparently this requirement was not fulfilled in the used data set. The data set 
included at least two GPCRs of each kind, but probably doesn't include enough 
ligands of each kind to yield significant results. 
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Chapter 4  
Summary and future work 
This work suggests three optional methods for identifying binding-specificity 
determining residues, amino-acid properties and optionally ligand-properties (in 
'Correlated properties' method only). In addition, we suggest an enhanced version of 
the methods using availabe clustering algorithms designed for expression data. 

All methods are based on the assumption that if binding specificity is determined by 
an amino-acid property and a position, then the values of that property w.r.t the 
amino-acids in the position would be correlated with the ligand binding activity of the 
receptors. 

The methods were applied to a varied dataset of 26 GPCRs, out of which 17 are bio-
amines receptors. All methods were successful in identifying the known binding site 
of aminergic receptors, and some of them were also successful in identifying the 
amino-acid property related to the site - charge. Additional unknown binding sites and 
amino-acid properties were identified, both for the entire data set and for subgroups. 

All the methods are general and can be used for any family of proteins, provided that 
they share a similar structure and sufficient data is available about them: namely 
measurements of their activity following the binding of a common set of ligands; their 
sequences and sequence alignment, and for some of the methods – a set of properties' 
values w.r.t the ligands.  

Like most statistics-based procedures, the success of the suggested methods depends 
on the size of the data, and also on its diversity. Although the procedures succeeded in 
identifying the aminergic binding site with a small set of only 26 receptors, we expect 
to receive more results with higher accuracy given a larger data set. 

Additional existing tools that predict binding sites or other related properties can be 
incorporated into the methods to increase their power. Structural properties such as 
the angular orientation of the selected position (as predicted by kPROT) and 
proximity to the extracellular side of the protein (as predicted by superimposing the 
positions upon the 3D structure of rhodopsin) can be taken into account in the 
positions' scoring (these properties were presented in this work for some of the 
resulting positions but not incorporated into the algorithms). Evolutionary properties 
can also aid in identifying binding sites. For example, ligand specificity-determining 
positions are expected to be conserved among orthologous receptors but not among 
paralogs (although this hypothesis is more strongly related to olfactory receptors, due 
to evolutionary pressure towards variedness, it is valid for other families of GPCRs as 
well to a lesser extent)  [9]. A score positively correlated to the conservation among 
orthologous receptors and negatively correlated to conservation among paralogous 
receptors can be taken into account in the position scoring.  

Finally, additional information regarding the original data can be used to "guide" the 
algorithm to the right results. For example, the 'Correlated properties' method matches 
amino-acid properties to ligand properties. Knowing the chemical meaning of the 
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given properties, we can eliminate pairs that are not expected to yield any correlation 
(such as amino-acid's charge and ligand's weight) and assign a higher weight to 
'promising' pairs (such as amino-acid's charge and ligand's charge). Another example 
is using a pre-known classification of the receptors by enforcing it on the hierarchical 
clustering (either the clustering used by the 'Hierarchical clustering' method or the 
clustering induced by expression data clustering algorithms combined with any of the 
methods).  
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