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4. Abstract 

To flourish in nature cells must respond to changing environments via execution of different 

genetic programs. This is achieved by expressing genes in a regulated manner to reach the 

needed concentration of each gene. Gene expression affects the cell not only through 

production of needed proteins, but also by the burden it imposes on the cell. 

In my research I aimed to disentangle regulatory elements that affect the regulation or 

economy of gene expression. I did so, using several synthetic oligo libraries. 

In the first part of this work, I used a synthetic library in the bacteria E. coli to study the cost 

of gene expression. I achieved this goal by using a library with thousands of variations in a 

reporter gene and measured the relative fitness of each variant in this library using a 

competition assay. Since this gene is not needed by the cell, any differences in fitness are due 

to the cost of expressing it. By examining library variants that present higher or lower cost at 

a given expression level, I elucidated genetic features that contribute to efficient gene 

expression. 

Next, I studied the regulation of mRNA splicing through variations in intron sequences. 

mRNA splicing is a crucial part of gene expression in eukaryotes, in which an intron is 

spliced out from a pre-mRNA to produce a mature mRNA. In this project I designed a new 

library of synthetic introns that were inserted into the yeast genome. Using this library, I 

revealed how different elements contribute to the efficiency of the splicing process. And I 

revealed how intron architecture have co-evolved with the splicing machinery. 

In studying how sequence variations affect regulation of gene expression and the wellbeing 

of a unicellular organism, I assumed no interaction between strains. Lastly, I set out to 

challenge this assumption by studying the economy of expressing a public-good enzyme. 

Organisms in nature often cooperate within their community. Even the apparently simple 

unicellular organisms cooperate. They do so by secreting public-good compounds that are 

shared between neighboring cells. This relates to a classic question in evolutionary biology, 

which is how a costly cooperative strategy is maintained when a mutant cheater strain can 

take over the population. In the last part of this work, I studied producer-cheater dynamics in 

a complex population of different cooperation strategies in yeast. I used a synthetic library to 

introduce variations to a secreted public-good enzyme in yeast to create strains with varying 

levels of cooperation and measured their frequency dynamics in two growth conditions.  

The three parts of this work combined demonstrate how genetic cis-regulatory elements have 

wide impact on the cell beyond their direct regulation of a specific gene. And how these 

systematic effects are under selection and has shaped the genome throughout evolution.   



5. Introduction 

To flourish in nature cells must respond to changing environments via execution of genetic 

programs that are stored in their genomes. This goal is achieved by expressing different genes 

in a regulated manner to reach the needed concentration of each gene. Gene expression 

affects the cell not only through production of needed proteins, but also by the burden it 

imposes on the cell. This burden is manifested through the usage of raw materials, energy and 

reducing power consumption1–4, and allocation of common resources5 involved in gene 

expression process. Hence during evolution, gene expression regulatory elements in-cis or in-

trans are under selection to optimize the trade-off between the benefit of a gene6 and the cost 

of producing it7.  

The relationship between cost and benefit as described above, generally describes the 

economy of expressing a gene which acts only intracellularly. However, even in unicellular 

organisms some of the proteins produced by the cell are acting extracellularly, either for 

communication8, to process nutrients in the environment9, or for extra-cellular stress 

response10,11. In such case more complex economic dynamics arises, since the cost of 

producing the protein is imposed only on cells producing it, while any cell in the environment 

can benefit from the common good. Such a scenario relates to a deep evolutionary question, 

on how cooperative strategies can arise in evolution12,13, and on the relationship between 

cooperators and cheaters14–16. Moreover, studying the economy of gene expression through 

secreted common goods might provide a simplified model for the economy of gene 

expression in multi-cellular organisms. 

One of the ways eukaryotic cells can regulate gene expression level is through regulation of 

mRNA splicing of constitutively spliced introns. During splicing introns are spliced out of a 

pre-mRNA molecule to produce a mature mRNA. Many of the research works on splicing 

deals with the regulation of alternative splicing. Yet, most introns are constitutively 

spliced17,18, meaning the intron must be spliced out to create a functional mRNA. Therefore, 

efficient execution of this step is necessary for efficient expression of an intron-containing 

gene, and splicing regulation has a major effect on the cell. The principles that regulate the 

efficiency of this process are not yet fully understood. 

 

5.1. Large synthetic libraries to study genetic cis-regulatory elements 

In this research I aimed to disect cis-regulatory elements that affect the regulation or 

economy of gene expression, by utilizing several synthetic oligo libraries19. These libraries 

are a relatively new tool that enables a researcher to design thousands of short DNA oligos, 



which enables a systematic exploration of regulatory sequence elements, and they have been 

used in several works to systematically study gene expression regulation20–24. 

In this work two such existing synthetic libraries that were designed to study gene expression 

regulation in bacteria25 and yeast26, were utilized to measure the cost of gene expression in 

two different systems.  

 

5.2. Cost of gene expression  

In the first part of this thesis I describe four different experiments in which I explored the 

effect of different regulatory elements on the cost of gene expression. While the beneficial 

contribution of a gene is specific to each gene according to its exact function, and changes in 

the gene’s architecture will affect differently each gene6, the rules that govern the cost of 

producing a gene are likely to be similar for all the genes in the same organism, as all genes 

are expressed using the same molecular machineries. Therefore, a study of ways in which the 

cell can minimize the production costs of a certain gene can help us reveal meaningful 

insights on how genes can be optimized for a more efficient expression. 

Costs of expression originate from spending cellular resources such as building blocks 

(amino acids and nucleotides), from allocation of cellular machineries (RNA polymerase and 

ribosome), and from energy and reducing power consumption1–4. Even after their production, 

proteins might still impose costs, when degraded or by exerting toxicity, e.g. due to 

aggregation27. Understanding what molecular processes determine expression cost, its 

relation to cellular growth and gene regulation, and how costs evolutionarily shape the 

genome - is a key aspect of cell biology that remains largely elusive. While numerous studies 

investigated molecular mechanisms and gene sequence architectures that regulate expression 

level28–32, very little is known about design elements that govern expression costs. 

Different works have studied expression costs in unicellular organisms by imposing the 

expression of an unneeded protein1,7,33–36. The production of such unneeded proteins diverts 

resources from synthesis of the cell’s own proteins thus decreases cellular fitness37–39. Central 

to these studies is the characterization of the correlation between the imposed expression 

level of the unneeded proteins to the cost. Yet, ultimately natural selection dictates the 

expression level of natural genes according to the required concentration of each protein. 

Thus, a fundamental question, which has not been addressed before, is how cells can achieve 

a specific expression level of a gene while minimizing its expression costs. 

Addressing this question is challenging because changes in sequence could affect both 

expression level and expression costs. Large synthetic libraries can be harnessed to 



disentangle expression level and expression costs, and reveal mechanisms that affect cost per 

protein molecule, since they can be used to create many different variants with different 

expression levels and associated costs. Thus, allowing to first characterize a relation between 

expression level and cost, and then study strains that consistently deviate from this predicted 

relationship achieving better or worse fitness than expected. 

 

5.3. Sequence determinants and evolution of splicing in yeast species 

In the second part of this thesis I describe how intron architecture affects the regulation of 

constitutive splicing in yeast, present evidence for co-evolution of intron architecture and the 

splicing machinery across yeast species, and examine the capacity of yeast to alternatively 

splice two-intron genes.  

In human and other organisms, splicing is central to gene expression, as a typical human gene 

contains 8 introns40, and these introns can be alternatively spliced to create different 

alternative splicing isoforms which increases the proteomic diversity of the human 

genome41,42. However, most introns or exons are constitutively spliced17,18 and therefore their 

contribution to gene expression is not through increasing diversity. Nevertheless, when a pre-

mRNA must undergo splicing to produce a functional mRNA, the efficiency of the splicing 

process directly affects the efficiency of the overall gene expression process. Hence, 

regulation of constitutive splicing in eukaryotes have an important role in gene expression 

regulation43,44.  

The budding yeast Saccharomyces cerevisiae, like other hemiascomycetous fungi, has a low 

number of intron-containing genes compared to other eukaryotes45, and most of them have 

single intron which is constitutively spliced. Although they possess a small part of the 

genome, these intron-containing genes are highly expressed and are part of key cellular 

functions, for example, many of the ribosomal proteins in S. cerevisiae contain introns46. 

Hence, splicing regulation plays a major role in gene expression regulation in S. cerevisiae. 

The evolution of introns and the splicing machinery in yeast is specifically interesting 

because of the fact that as opposed to other eukaryotes and even other fungi they have low 

number of introns45. The reason for this low number of introns remains an open question, and 

several works have tried to answer it using comparative genomics analysis45,47,48, and the 

predominant explanation is that the last eukaryotic common ancestor (LECA) already had 

many introns49, and that in the hemiascomycetous yeast there was a massive loss of introns. 

The most plausible mechanism suggested for this loss of introns is homologous 



recombination between reverse-transcribed mature mRNA and the genomic locus50 which 

explains a visible bias of intron positions in yeast towards the 5’ end of genes. 

Alternative splicing is the process in which a single intron-containing gene can produce 

several different isoforms that result in different proteins by inclusion or exclusion of specific 

exons51. It is considered to have major contribution to protein diversity in metazoan 

organisms. In higher eukaryotes this process involves many auxiliary factors52 which were 

shown to be absent in yeast53,54. Yet, it has been shown that in S. cerevisiae there are cases of 

alternative 3’ splice site selection55, and there are rare examples of two-introns genes that are 

alternatively spliced56–60. Hence, this organism is an interesting model to study the minimal 

requirements for alternative splicing. 

 Previous works have studied constitutive introns’ splicing efficiencies in S. cerevisiae by 

looking at existing natural introns. Either by analyzing RNA-seq data of intron containing 

genes61–63, by creating a library of a reporter gene containing natural introns from 

S.cerevisiae genome64 or by studying intron sequence features and looking at introns 

evolution and conservation65,66. 

These works have characterized principles of splicing regulation in budding yeast, but due to 

the low number of intron containing genes in this species there is not enough statistical power 

to study the effect of rare regulatory elements variants. Hence, by taking advantage of the 

power of large synthetic library the effect of different variants of regulatory elements, and 

their combination can be studied systematically. Other works have utilized large synthetic 

libraries to study how sequence features affect alternative splicing decisions in human cells 

67–70. In this work, cis-regulatory features that affect splicing efficiency of an intron, and the 

evolution of intron architecture and the yeast splicing machinery are studied using a designed 

large library of ~20,000 synthetic introns, each of them composed of different sequence 

features.  

 

5.4. The economy of expressing a shared public-good compound 

In the third part of this thesis I describe the design and initial results of a project aimed to 

decipher the complex evolutionary game theory dynamics in a population of yeast cells with 

varying levels of public-good production.  In the parts described above, the economy of gene 

expression was studied by exploring how different architectures of genetic regulatory 

elements affect the cost of gene expression. A different general aspect of gene expression 

economy is the production and secretion of common goods which are consumed by a 

community of cells.  



In unicellular organisms most of the cell’s resources are devoted to intracellular functions 

which benefit only the cell itself. Nevertheless, microorganisms mostly live in colonies, and 

some of the cell’s proteome are proteins which are secreted to the environment and benefit 

other cells in its environment. Those secreted proteins benefit cells in various manners, 

among them, communication through quorum sensing peptides8, extra-cellular metabolism9, 

or extra-cellular stress response10,11. 

Secreted proteins affect the cellular economy in a more complex manner since they break the 

direct relationship between cost and benefit. A cell might invest resources in producing a 

protein which is beneficial to the colony, but a neighboring cell can enjoy this common good, 

without investing resources of its own. In the simpler case of an intra-cellular gene, a cell that 

will optimize its cost-benefit ratio will prevail, but what would be the dynamics in the case of 

a secreted gene? 

This question relates to a well-studied question of evolution of cooperation. Cooperation is a 

natural phenomenon that can be found at all levels of biological organization. However, the 

Darwinian theory of evolution is based on competition and survival of the fittest which 

should, therefore, reward selfish behavior. This raises a puzzling and fundamental question in 

evolutionary biology, how do systems of cooperation arise?  There are various mechanisms 

suggested to enable the preservation of cooperation in nature, such as kin selection71, 

reciprocity72, and group selection73.  

Specifically, in the case of a unicellular organism that secrets a public-good compound, what 

protects the colony from invasion of a cheater strain that does not produce this compound? 

This question was studied either theoretically74–77, or experimentally in microbial 

communities14,16,78–81.  

Secreted and membrane proteins in eukaryotes are translated by ribosomes bound to the 

endoplasmic reticulum (ER), to which they are directed via a hydrophobic ER-targeting 

sequences82,83. The predominant mechanism by which RNAs are transported to the ER is the 

signal recognition particle (SRP)84–87 in which a hydrophobic peptide sequence at the N 

terminal of the gene, called the signal peptide (SP), is first translated in the cytoplasm, and as 

it emerges from exit channel of the ribosome it is recognized by the SRP, which is then 

recruited to its receptor on the ER membrane and translocation of ribosome-mRNA-nascent 

polypeptide chain complex from the cytoplasm to the ER occurs. The signal peptide is 

eventually cleaved from the final protein, but in some membrane protein the SRP interacts 

with instead with a transmembrane domain (TM) at the middle of the gene which is not 

cleaved, as this domain by nature is also composed of a stretch of hydrophobic amino acids. 



While the SRP is the classical pathway for transporting RNA of secreted proteins to the ER 

other alternative mechanisms have been discovered and characterized in recent years88–92. 

Recently a new cis-regulatory RNA motif that enhance ER localization presumably in a 

translation independent manner was characterized. This motif is termed secretion-enhancing 

cis regulatory targeting element (SECReTE)93, and it is composed of long three-way periodic 

repeats of pyrimidines (i.e. a periodic NNY template). It is presumed that this motif is 

recognized by some RNA binding protein (RBP) which participates in localization of the 

RNA to the ER. While this motif is characterized by a periodic repeat of pyrimidine, it was 

suggested that this pattern is a result of coding constraints within the coding region, and an 

optimal motif would be composed of a region with high pyrimidine content, as can be seen in 

SECReTE motifs which are found in the 3’ UTR of secreted genes. This motif was only 

recently described in a single paper, and the strength of its effect is not yet known. Moreover 

it is not known whether the action of this motif is dependent on the SRP or other secretion 

pathways, or can it act independently. 

One of the model systems to study cooperation through public-good secretion, is the SUC2 

gene in the budding yeast S. cerevisiae. This gene codes for invertase which is an enzyme 

that hydrolyses the disaccharide sucrose into its two monosaccharide components of glucose 

and fructose94. S. cerevisiae cannot import sucrose into its cell, hence invertase is being 

secreted to the periplasmic space where it hydrolyses sucrose extracellularly and releases its 

degradation products to the surrounding media9. Hence it serves as public good, and several 

works have used this system to study public-good dynamics14,15,95–97. 

These previous works studied the dynamics of binary populations that included a mix of a 

producer strain that produces and secretes the public-good compound, and a cheater mutant 

that does not have the appropriate gene. This part is aimed to expand our understanding of 

these dynamics, by studying a heterologous population of cells that differentially secrete the 

common good protein SUC2. This continuous range of secretion is achieved using two 

designed synthetic libraries that modulate the secretion level of SUC2 through modifications 

to two regulatory elements that control protein secretion. The first element is the classical 

regulatory element for protein secretion, the signal peptide. The second element is the 

recently characterized SECReTE motif93. Together, these two libraries create a population of 

yeast cell with continuous varying levels of production and secretion of a public-good 

enzyme.  

 

  



6. Results 

6.1. Part I – Cost of gene expression 

6.1.1. Gene Architectures that Minimize Cost of Gene Expression in Bacteria 

5’ gene-architecture affects cost of gene expression 

My question is whether different gene sequence elements can minimize cost of expression 

per protein molecule and hence increase cellular fitness. To focus on sequence features at the 

5' region of a gene we utilized a previously published, synthetic gene library 25 composed 

from ~14,000 different variants expressing a GFP gene. Each variant holds a unique variable 

5’ gene architecture that includes a promoter, a ribosome binding site (RBS) and an 11-amino 

acid long N-terminus fusion (Fig 1A).  

To reveal the expression cost of each variant we measured relative fitness of all variants in 

parallel in a competition assay in six independent repeats. We then deep-sequenced the 

variable region of the pool of variants, and calculated relative fitness of each variant (Fig 1B). 

We regressed fitness values against GFP expression levels and observed a negative, linear 

correlation (Fig 1C, Pearson correlation r=-0.79, p-Value<10-200). The linear decline in 

fitness with expression is in agreement with previous studies 34,36. The regression line, which 

outlines the relations between fitness and expression, allowed us to estimate the expected 

fitness for each library variant according to its GFP expression level. Variants whose fitness 

does not deviate consistently across repeats from this regression line are deduced not to 

utilize mechanisms that enhance or reduce the production cost per protein molecule. 

Yet, many variants did deviate from the linear-regression line, demonstrating fitness that is 

higher or lower than expected given their GFP expression levels. We hypothesized that 

variants that repeatedly deviated from the expected fitness might utilize gene architectures 

that either reduce or increase the cost of GFP production per protein molecule. Hence, we 

calculated for each variant its “fitness residual”, which we defined as the difference between 

the actual fitness we measured for the variant and the fitness expected for it according to its 

GFP expression level and the linear regression (Fig 1C). A positive fitness residual means 

that a given variant showed higher fitness than expected given its GFP expression level, 

suggesting that it can produce this GFP level with lower costs. A negative fitness residual 

means that the variant showed lower fitness than expected given its GFP expression level. 

We then classified each variant as either positive or negative according to its fitness residual 

sign (Fig 1C, blue and red dots). Since the observed fitness residual is sensitive to biological 

noise (i.e. drift during competition) and experimental errors (i.e. sampling errors), we only 



classified variants as positive or negative if their fitness residual sign was identical in at least 

five out of the six repeats of the experiments in each of the two final sampling points of the 

competition. This approach resulted in 975 positive and 815 negative variants. Classification 

into either positive or negative fitness-residual groups allowed us to eliminate the effect of 

GFP expression level on fitness as these two groups demonstrate the same expression 

distribution (Fig 1C, inset). 

We also noticed a set of 80 library variants, which we termed ‘underachievers’, whose fitness 

residual scores were repeatedly at the bottom 5% of the entire library (Fig 1C, purple dots). 

We hypothesized that these underachiever variants show extremely low fitness residuals 

because they produce GFP even more wastefully, and we expected them to show stronger 

usage of low-efficiency gene architectures compared to the negative fitness residual group. 

There appeared to be no ‘overachievers’ in these data. 

 

Figure 1 – 5’ gene architectures affect cost of gene expression at a given expression level 

A. We utilized a synthetic library of ~14K E.coli strains, each expressing a GFP construct with a 

unique 5’ architecture that includes a promoter, ribosome binding site (RBS) and an 11-amino acid 

fused peptide. There were two different promoter types, four RBS and 137 amino acid fusions that 

were each synonymously re-coded to 13 different versions (see Goodman et al. for full details). B. 

FitSeq methodology to measure relative fitness of strains in a pooled synthetic library: First, the library 

was grown six independent times for ~84 generations and samples were taken at generations 0, ~28, 

~56 and ~84. Then, unique 5’ gene architectures were simultaneously amplified and sent for deep-

sequencing, which allowed following the frequency of each variant in the population over the course 

of the experiment. Finally, a relative fitness score was assigned for each variant based on its 

frequency dynamics. C. GFP expression level (as measured by Goodman et al., x-axis) vs. fitness 



effect (based on results of repetition C, y-axis) of each variant in the library (Pearson correlation r=-

0.79, p-Value<10-200). Fitness effect comes from the burden of expressing unneeded proteins on 

cellular growth and is calculated by analyzing the frequency dynamics of each variant. We defined 

fitness residual as the difference between a variant’s observed and expected fitness. The expected 

fitness is calculated from the regression line between GFP expression and fitness (black line). Some 

variants consistently demonstrated positive (blue dots, n=975) or negative (red dots, n=815) fitness 

residual sign. Other variants showed extremely low fitness residual, and we termed those variants as 

“underachievers” (purple dots, n=80). The group size of positive, negative and underachiever variants 

are significantly much higher than expected by chance. These results suggest that certain 5’ gene 

architectures can increase or reduce the cost of gene expression. Inset: positive (blue violin-plot) and 

negative (red violin-plot) fitness residual variants come from the same distribution of GFP expression 

level (Wilcoxon rank-sum p-Value=0.46). Black line represents the median value. Thus, the effect of 

GFP levels on fitness was successfully factored out, thus allowing us to elucidate other molecular 

mechanisms that tune expression cost at given expression levels. D. Fitness and fitness residuals 

demonstrate different distributions. While most variants showed negative fitness values, fitness 

residual is more similar to a normal distribution, though with a negative tail. 

 

Production of more proteins per mRNA molecule is an economic means to minimize 

expression costs 

We first hypothesized that reaching same GFP level with lower levels of mRNA of the GFP 

gene could be beneficial. While positive and negative fitness residual variants come from the 

same distribution of GFP expression levels (Fig 1C, inset), we compared their GFP mRNA 

levels and found positive variants to have lower levels compared to negative variants (Fig 

2A, Wilcoxon rank-sum p-Value=1.6 ∙ 10−9, Effect size=58.26%). This difference was 

independent of GFP level: binning the data according to GFP levels we observed the reduced 

levels of mRNA for positive variants in all expression bins. 

The observation that positive variants have equal GFP protein levels but lower GFP mRNA 

levels indicates that they are able to produce more GFP proteins per mRNA molecule. We 

postulated that high translation initiation rate could be a mechanism for maintaining same 

GFP levels despite low mRNA levels in positive variants. We calculated initiation rates for 

all library variants using the “Ribosome Binding Site Calculator” 98, and observed that indeed 

positive variants had higher initiation rates (Fig 2B, Effect size=61.9%, Wilcoxon rank-sum 

p-Value=3.7 ∙ 10−18). This observation holds true when examining mRNA level versus 

translation initiation rate at the individual variant level. Indeed, when examining translation 

efficiency per variant (using measured protein levels divided by mRNA levels), positive 

variants demonstrated higher translation efficiencies than negative fitness ones (Fig 2C, 



Effect size=55.67%, Wilcoxon rank-sum p-Value=3.4 ∙ 10−5). Moreover, we found that 

underachiever variants demonstrated even higher mRNA levels and lower translation 

efficiencies compared to the negative variants (Figures 2A and 2C, Effect size=68.04% and 

63.06%, Wilcoxon rank-sum p-Values=9.6 ∙ 10−8 and 1.1 ∙ 10−4, respectively). Thus, by 

increasing translation efficiency, cells reduce transcription costs and hence also reduce the 

cost per protein. 

 

Figure 2 – Higher ratio of GFP protein/mRNA minimizes cost of gene expression 

A. Although coming from the same distribution of GFP levels, positive variants (blue violin-plot) 

demonstrate lower mRNA levels of the GFP gene compared to negative variants (red violin-plot) 

(Effect size=58.26%, Wilcoxon rank-sum p-Value=1.6 ∙ 10−9). Consistently, underachiever variants 

(purple violin-plot) show higher mRNA levels compared to negative variants (Effect size=68.04%, 

Wilcoxon rank-sum p-Value=9.6 ∙ 10−8). Black line represents the median value. B. Positive variants 

show higher translation initiation rates compared to negative variants (Effect size=61.9%, 

Wilcoxon rank-sum p-Value=3.7 ∙ 10−18). C. Positive variants demonstrate higher translation 

efficiencies (protein/mRNA) compared to negative variants (Effect size=55.67%, Wilcoxon rank-sum 

p-Value=3.4 ∙ 10−5). Consistently, underachiever variants (purple violin-plot) further show lower 

translation efficiencies compared to negative variants (Effect size=63.06%, Wilcoxon rank-sum p-

Value=1.1 ∙ 10−4). Statistically significant differences (p-Value<0.05) are marked with an asterisk. 

 

Translation speed at early elongation of coding region, achieved by diverse means, affects 

translation cost in opposing directions 

We next aimed to elucidate other cellular mechanisms that directly regulate the translation 

machinery and that might reduce expression costs. We first examined codon decoding speeds 

by the ribosome. Codon adaptation of transcripts to the cellular tRNA pool has been shown to 

be a regulatory mechanism for translation elongation 31,99–104. Specifically, the prevalence of 

slowly translated codons at the 5’ of ORFs has been suggested to support the efficiency of 



gene translation 105. This “ramp model” proposes that delaying ribosomes at the beginning of 

the elongation phase decreases downstream ribosomal pauses and collisions, which can 

therefore reduce ribosome jamming, and perhaps also ribosomal abortion events. 

Although contradicting evidence were reported for the existence and relevance of this 

mechanism to expression level 106–111, the main prediction of the model – that 5’ ramping 

reduces cost of expression at a given expression level – has not been tested so-far. Here, we 

had the first opportunity to test this hypothesis as only the 5’ variable region of the GFP 

varied in the library, while all other parameters remained constant. Thus, we asked whether 

slow 5’ translation speed is associated with positive fitness residual. We used a measurement 

of ribosome elongation time per codon 111, as derived empirically from ribosome profiling 

data in E. coli (see Methods), to calculate translation elongation time for each library variant. 

We reasoned that if translational ramp is beneficial, then high elongation times, i.e. low 

ribosome speeds, should be more prevalent among the positive fitness residual variants. 

However, our results showed that positive variants demonstrate significantly longer 

elongation times at the N terminal fusion (Figure 3A, Effect size=59.55%, Wilcoxon rank-

sum p-Value=3 ∙ 10−12), and further for the underachievers (Effect size=64.79%, 

Wilcoxon rank-sum p-Value=1.2 ∙ 10−5). Meaning that in terms of codon usage our 

experimental results contradict the theoretical predictions of the ramp model. 

Though in the original ramp model ribosome attenuation was proposed to be obtained by 

codons that correspond to rare tRNAs, additional mechanisms that can slow down the 

ribosome at early elongation regions could serve in ramping. These mechanisms include in 

particular tight mRNA secondary structure 25,112–114 and high affinity to the anti-Shine 

Dalgarno (aSD) motif of the ribosome115. We thus examined each of these factors separately 

and asked if they are associated with positive or negative fitness residual. 

When we computed folding energies for segments of mRNA nucleotides on a sliding window 

along the variable region of each variant, we found that positive fitness residual variants 

demonstrated tighter secondary structures compared to negative variants along many 

different window positions (Fig 3B). Strikingly, the maximum difference in folding energy is 

observed when the window’s start position is at the beginning of the translated region of the 

ORF, excluding the up-stream 5’ UTR (Fig 3C, Effect size=65.03%, Wilcoxon rank-sum p-

Value=5.4 ∙ 10−28). Hence, these results, together with previous ones, reveal the dual role of 

mRNA folding: on one hand loose mRNA structure at the RBS is associated with high 



expression level25 and on the other hand, utilization of a strong secondary structure at the 5’ 

end of the ORF can reduce per-protein costs. 

It was previously suggested that elongating ribosomes in E.coli dwell longer on sequences 

that have high affinity to the aSD motif in the ribosome 115. However, this observation has 

been recently questioned116. We next examined the effects of Shine Dalgarno (SD) mediated 

ribosomal pauses on fitness residuals. We calculated affinities to the aSD along the sequence 

of each variant, derived a ribosome speed estimation based on these affinities and found that 

positive fitness residual variants are characterized by low ribosome speed early in the ORF 

(Fig 3D, Effect size=63.82%, Wilcoxon rank-sum p-Value=6.3 ∙ 10−24).  

We thus notice three independent mechanisms that can affect the translation speed of the 

ribosome, and these mechanisms have opposing effects on fitness residual. According to the 

first mechanism which is translation elongation time as derived from codon usage, positive 

fitness residual variants are translated faster at their 5’ end. However, according to mRNA 

structure and affinity to the anti-Shine Dalgarno motif positive fitness residual variants 

demonstrate slower translation at their 5’ end. Thus, providing conflicting evidence regarding 

the theoretical predictions of the ramp model. We notice that effect size of the last two 

features (65.03% and 63.82% respectively) is stronger than the effect size of the first feature 

(59.55%). In addition, previous works have indicated that mRNA secondary structure has a 

stronger effect on ribosome elongation speed compared to codon usage25,117. 

Another means of reducing translation speed that was recently demonstrated (so far in yeast) 

is the incorporation of positively charged amino acids118 or proline residues 119 in newly 

synthesized peptides. Yet, we did not detect any difference in frequency of such amino acids 

between the positive and negative fitness residual groups. In summary, although the codon 

usage based means to ramp ribosome did not result in the expected effect on cost, two other 

measures, based on RNA energetics, propose two alternative ramp modes that do yield 

reduction in costs as a result of early ribosomal attenuation. 

  



 

Figure 3 – Slow translation speed at early elongation, achieved by diverse molecular means, 

reduces expression cost 

A+C+D. Positive variants show lower values of codon elongation time, stronger mRNA structures and 

lower speeds due to higher anti- Shine Dalgarno affinities compared to negative variants (Effect 

size=59.55%, 65.03% and 63.82%, Wilcoxon rank-sum p-Value=3 ∙ 10−12, 5.4 ∙ 10−28 and 6.3 ∙ 10−24, 

respectively). Statistically significant differences (p-Value<0.05) are marked with an asterisk. B. Mean 

folding energy of mRNA secondary structure according to window’s start position for positive (blue 

curve) and negative (red curve) variants, error bars represent standard error of mean. Dashed lines 

mark different positions along the variable region up-stream to the GFP. Black vertical line marks the 

beginning of window with the largest observed difference, which is found at nucleotide positions +4 of 

the ORF, just after the first AUG codon. The distributions at this window position are seen in C. 

 

Amino acid synthesis cost affects cost of gene expression  

So far, we examined features that are based on the nucleotide sequence and how it associates 

with fitness residual. Next, we aimed at exploring the possibility that the amino acid 

composition of the N-terminus fusion to the GFP associates with cellular fitness. 

Amino acids differ by the metabolic costs associated with their biosynthesis - predominantly 

energy and reducing power determinants invested in their metabolic production120. We thus 

hypothesized that usage of energetically-expensive amino acids may cause a heavier burden 

at a given expression level. Indeed, lower-cost of the N-terminus fusions were found to 

associate with positive fitness residual variants (Fig 4A, Effect size=72.74%, Wilcoxon rank-

sum p-Value=7.4 ∙ 10−62). Here, as well, underachiever variants show more expensive amino 



acid usage compared to the negative group (Fig 4A, Effect size=72.75%, Wilcoxon rank-sum 

p-Value=1.7 ∙ 10−11). 

We further examined the relation between fitness residual and amino acid energetic cost by 

calculating the frequency ratio of each individual amino acid between the positive and 

negative fitness residual groups. Remarkably, this frequency ratio was found to negatively 

correlate with the metabolic cost of each amino acid (Fig 4B, Pearson correlation r=-0.54, p-

Value=0.01). These observations suggest that expensive-to-synthesize amino acids burden 

cells during their costly production due to a potential feedback that increases their synthesis 

in response to consumption. 

In addition to direct metabolic cost, the incorporation of amino acids that appear in low 

cellular concentrations could reduce fitness indirectly as it might disturb the synthesis of 

other, native proteins. We used ribosome profiling data 115 to calculate amino acid demands 

and utilized previously measured cellular concentrations as amino acid supplies121. Indeed, 

we found that amino acids with low demand-to-supply ratios are more prevalent in positive 

variants (Fig 4C, Pearson correlation r=0.82, p-Value=10-4). This observation implies that 

utilization of amino acids that are less available to the cell (either due to high demand or low 

supply) increase expression cost and are associated with negative fitness residual variants. 

Since metabolic cost of amino acids and their cellular supplies are correlated (Fig 4D, 

Pearson correlation r=-0.72, p-Value=1.8 ∙ 10−3), we could not evaluate which mechanism – 

cost or availability - contributes more to fitness residual. 

 

Amino acid hydrophobicity is associated with low fitness – a potential protein toxicity effect 

We next reasoned that an additional factor by which a protein could affect fitness is its 

toxicity, e.g. due to aggregation. As aggregation is driven by hydrophobic interactions, we 

turned to a conventional measure of amino acid hydrophobicity 122 to examine whether it is 

predictive of fitness residuals. We found that positive fitness residual variants tended to have 

significantly less hydrophobic amino acids fused to the GFP (Fig 4E, Effect size=69.11%, 

Wilcoxon rank-sum p-Value=3.2 ∙ 10−44). Underachievers showed an even more pronounced 

effect (Fig 4E, Effect size=81.67%, Wilcoxon rank-sum p-Value=7.7 ∙ 10−21). This negative 

effect of hydrophobic residues in cytosolic proteins could indeed be derived from post-

synthesis costs, but it could also reflect an equally interesting possibility: that aggregation 

prone peptides reduce the functional level of the GFP (and similarly the fraction of the active 

form of native proteins). According to this possibility, aggregation is wasteful and must be 



compensated by further costly production to reach the required expression level of the 

protein. 

 

Figure 4 – Usage of expensive-to-synthetize, lowly available and hydrophobic amino acids 

decreases fitness residual 

A. N-terminus amino acid fusions of negative variants are more expensive to synthesize compared to 

positive variants (Effect size=72.74%, Wilcoxon rank-sum p-Value=7.4 ∙ 10−62). Underachievers utilize 

even more expensive amino acids (Effect size=72.75%, Wilcoxon rank-sum p-Value=1.7 ∙ 10−11). B. 

The frequency ratio of amino acids between positive and negative variants is negatively correlated 

with the energetic cost of amino acids (Pearson correlation r=-0.54, p-Value=0.01). Each amino acid 

is marked according to its one-letter code. C. The frequency ratio of amino acids between positive 

and negative variants is negatively correlated with the demand/supply ratio of amino acids (Pearson 

correlation r=0.82, p-Value=10-4). Demand comes from occupancy of ribosomes on each transcript, 

and supply is the cellular concentration of each amino acid121. D. Amino acid availability and energetic 

cost are correlated (Pearson correlation r=-0.72, p-Value=1.8 ∙ 10−3). 

E. N-terminus amino acid fusions of negative variants are more hydrophobic than positive variants 

(Effect size=69.11%, Wilcoxon rank-sum p-Value=3.2 ∙ 10−44). N-terminus fusion of underachievers 

are even more hydrophobic (Effect size=81.67%, Wilcoxon rank-sum p-Value=7.7 ∙ 10−21). 

 

  



All sequence parameters contribute independently to fitness 

We revealed so far a set of mechanisms that affect expression costs and therefore cellular 

fitness. Although these mechanisms are different in their nature it is possible that variants that 

score highly on one of these parameters may tend to score highly on others. For example, 

anti-Shine Dalgarno affinity could correlate with the energy of the secondary structure of the 

mRNA, as both parameters are influenced by Guanine content. To check this possibility, we 

computed the correlation among the variants in the library between each pair of sequence 

parameters: codon decoding speed, mRNA secondary structure, anti-Shine Dalgarno affinity, 

hydrophobicity and amino acid energy cost. Reassuringly, no strong correlation was found 

between any two parameters (Fig 5). Nonetheless, for feature pairs that did demonstrate non-

negligible correlations (Pearson correlation r>0.1) we asked whether the signal of one feature 

is still observed while controlling for variation in the other. We found that each factor 

contributed independently to the signal, even upon controlling for other factors as potential 

confounders. 

Figure 5 – Each feature affects fitness residual independently 

Correlation plots of each feature pairs show lack of correlation is most cases, and only weak 

correlations in other cases. For feature pairs with Pearson correlation of r>0.1 I compared the 

difference in one feature while controlling for the second, and vice versa. Black lines are the 

regression curves between each feature pair. Number at upper-left corner is the Pearson correlation. 

 

  



Expression costs can be minimized even at specified amino acid sequences 

Since maintaining a protein’s function usually requires keeping its specific amino acid 

sequence, I next asked if the mechanisms I found here can reduce expression costs for a 

specified peptide sequence, by using alternative nucleotide sequences. We defined “fitness-

residual” as the difference between a variant’s fitness residual and the average fitness residual 

of all library variants who share with that variant the same amino acid sequence. Then, I 

compared the various architectural features between variants with above-average fitness-

residual to variants with below-average fitness-residual. 

Figure 6A-E depicts for each of the analyzed features the difference in fitness residual 

between variants with above or below-average fitness-residual. Interestingly, for each 

feature the above and below average sub-groups had significantly different feature scores, 

reflecting same trends as observed in all earlier analyses. For example, mRNA levels tend to 

be higher in the below average sub-group in most of the 137 N-terminus fusions (t-test, p-

Values for GFP mRNA levels=6.2 ∙ 10−3, initiation rates=7 ∙ 10−9, codon decoding 

speeds=4.3 ∙ 10−2, mRNA folding=3.5 ∙ 10−16 and aSD velocity =7.6 ∙ 10−7). The 

conclusion from this analysis is that although amino acid features affect fitness residuals, the 

other features provide sufficient degrees of freedom to minimize costs even at a specified 

amino acid sequence. 

  



Figure 6 – Variant with same N-terminus amino acid fusion demonstrate a range of fitness 

residuals 

A-E. Each dot represents one of the 137 N-terminus fusions in the library. The x-axis and the y-axis 

represent the mean value of a feature for the variants with either below-average or above-average 

Δfitness-residual, respectively. The vertical and horizontal error bars represent standard errors for 

each of the axes. A statistical difference for deviance from the X=Y line was observed for all features, 

suggesting that even at a given amino acid sequence these mechanisms affect fitness residual and 

can minimize expression costs (t-test, p-Values: mRNA levels 6.2 ∙ 10−3, initiation rates 7 ∙ 10−9, 

codon elongation time 4.3 ∙ 10−2, mRNA folding 3.5 ∙ 10−16 and aSD velocity 7.6 ∙ 10−7). d is Cohen’s d 

that calculates the effect size. 

 

A regression model provides the relative contribution of each feature and predicts fitness 

residual scores 

So far, I examined fitness residual as a binary classification, namely categorizing variants 

with either positive or negative fitness residual. We next aimed to predict actual fitness 

residual values of the library variants from their gene architecture features, using a multiple 

linear regression model. We trained the model on a randomly chosen subset of 70% of the 

library variants, cross validated it on all other variants by comparing their predicted and 

observed fitness residual and found a good correlation (Fig 7A, r=0.53, p-Value<10-200).  

When the regression was performed on a scrambled library, which randomly links feature 

values and variants, the correlation between observed and predicted fitness residual was 

practically eliminated. We performed 105 such randomizations and all of them demonstrated 

such extremely weak correlations. This negative control demonstrates that we obtained a 

genuine means to predict fitness residual values based on computable gene architecture 

parameters. We concluded that a gene architecture that utilizes more of the features we 

discovered and to a greater extent typically gives rise to higher fitness residuals as expression 

costs are further minimized.  

Additionally, this regression model allowed us to calculate the relative contribution of each 

feature by comparing the coefficients assigned by the regression model (Fig 7B). This 

analysis revealed that the features contributing to fitness residual the most are hydrophobicity 

and metabolic cost of the N-terminus fusion, while ribosome elongation time contributing the 

least. To avoid over-fitting of our model on the library data, we performed feature selection 

using the Lasso algorithm. This validation resulted in the exclusion of only codon decoding 

speed from the model, suggesting that its contribution to fitness residual is indeed lower 

compared to other features. 



 

Figure 7 – A model that predicts fitness residual accurately reveals that fitness residual of 

natural E.coli genes is correlated with their expression level 

A. A linear regression model based on all eight features predicts fitness residual accurately in a cross-

validation test (Pearson correlation r=0.53, p-Value<10-200). B. The weighted coefficients of each 

feature in the regression model, demonstrating the relative contribution of each feature to fitness 

residual (p-Value for regression coefficient of mRNA level=3.5 ∙ 10−11, initiation rate=2.5 ∙ 10−12, 

TEGFP protein/mRNA=2.7 ∙ 10−9, codon decoding speed=8.7 ∙ 10−3, mRNA folding energy=1.5 ∙

10−50, aSD velocity=8.7 ∙ 10−3, hydrophobicity<10−200, amino acid synthesis cost=5.4 ∙ 10−80).  The 

sign of the contribution of each coefficient shows whether a feature is associated positively or 

negatively with fitness residuals. Error bars represent standard error of the coefficient estimation. C. 

Predicted fitness residuals of E.coli genes according to the regression model are correlated with their 

expression levels (Pearson correlation r=0.25, p-Value=2 ∙ 10−53), suggesting that natural selection 

shapes 5’ gene architectures in order to minimize costs of gene expression. D. Distribution of fitness 

residual scores for E. coli genes, as predicted by regression model that was trained on either 

experimental or mock data. The experimentally based model predicts a significant, higher range of 

fitness residuals (p-Value<10-5), suggesting that the mechanisms we elucidate with the synthetic 

library also apply on natural genes. E. Predicted fitness residuals of B. subtilis genes according to the 

regression model are correlated with their expression levels (Pearson correlation r=0.33, p-Value=10-

93), suggesting that our model also applies for other bacteria species. F. Same as D, only for B. 

subtilis genes. 

 

  



Highly expressed natural E. coli genes have evolved gene architectures that minimize their 

predicted production costs  

With these findings from the synthetic library, we next asked whether the mechanisms we 

revealed as cost-reducing were also utilized by natural selection to optimize E. coli’s native 

genes. We thus calculated for each E. coli gene its scores with respect to the relevant features 

and used the regression model to predict its fitness residual score. Since higher expression 

level results in higher expression cost, we next hypothesized that E. coli genes with higher 

expression levels are more likely to be endowed with cost reducing architectures. Indeed, I 

found a significant correlation between predicted fitness residual of E.coli genes and their 

protein expression levels (Fig 7C, r=0.25, p-Value=2 ∙ 10−53), demonstrating a stronger 

selection for optimizing the 5’ gene architecture for highly expressed genes. We obtained 

similar results when predicting fitness residuals for all genes in the Gram positive B. subtilis, 

pointing to the generality of the model (Figure 7E, r=0.33, p-Value=10-93). 

Interestingly, the range of fitness residuals predicted by our model for the E.coli and 

B.subtilis genes was significantly larger than the range predicted by a mock regression model 

that was trained on randomly scrambled data of the synthetic library (Fig 7D+F, p-Value<10-

5). This observation suggests that the model we trained on the library data is able to expose 

the expression cost of natural 5’ gene architectures. 

 

6.1.2. Optimization of gene expression through promoter architecture 

A synthetic promoter library is used to test how promoter architecture affects the cost of 

transcription 

A key mechanism for regulating gene expression is through promoter architecture. Several 

studies have explored the effect of different promoter architectures on the expression level of 

a reporter gene20,123,124. In this project, I aim to elucidate how different promoter architectures 

impose different burdens on the cell. Specifically, I study how combination of different 

transcription factor binding sites (TFBS) contributes to the cost of gene expression 

independently of the cost of protein production. 

I do so by utilizing a previously published synthetic promoter library expressed in S. 

cerevisiae123. This library includes ~2000 different synthetic promoters upstream of a YFP 

reporter gene. Each promoter is composed of a cis-regulatory element (CRE) which is built 

from random ligation of different TFBSs for four different transcription factors. Each 

transcription factor is represented by three possible sites, resulting in 12 different TFBSs 



represented in the library. The four TFs represented in the library are: GCR1, MIG1, RAP1, 

& REB1, key transcription regulators in this organism, whose combined set of targets 

represent ~42% of yeast genes.  In addition, all promoter variants have a basal TATA-box 

containing a minimal promoter downstream to the CRE. In order to recognize uniquely each 

variant both in DNA and RNA sequencing, a unique barcode was added to the 3’ UTR of the 

reporter gene, and each barcode was paired to its appropriate CRE through sequencing (See 

Fig 8).  

For the purpose of measuring the cost associated with each promoter in the library I applied 

the same method as in section 6.1.1, in which the relative fitness of each variant in a pooled 

library is measured using a competition assay. In addition to cellular fitness, I also measure 

the expression level of each variant using RNAseq of the barcoded region. 

The competition assay was held in two growth conditions, a. optimal growth conditions on 

YPD media; b. YPD media with 1.7 mM DTT. The second condition was chosen since in an 

analysis of expression profiles of different stress conditions125, I recognized that specifically 

under DTT, genes that are targets of both GCR1 & RAP1 demonstrated a coordinated 

expression reaction to the stress, which might imply that those TFs act coordinately as a 

response to this stress. 

In order to support observations from this experiment, another dataset of fitness measurement 

in yeast was analyzed. In a recent work6, the authors measured fitness values of 81 

endogenous genes in S.cerevisiae under different expression levels. To drive the genes to 

different expression levels they have used a set of 120 synthetic promoters. While in that 

work the authors analyzed the data from a gene point of view, this dataset provides rich 

fitness measurements for 120 synthetic promoters in different genetic backgrounds. For the 

purpose of this project, these fitness measurements are analyzed from the promoter point of 

view. 



 

Figure 8 – Synthetic promoter library presents reproducible fitness measurements with no 

correlation to expression levels 

A. Promoter library structure as was created by Mogno et al123. Double-stranded oligonucleotides 

encoding TFBS were mixed in a pool and ligated randomly to create a CRE library. After cloning CRE 

and barcode (BC) sequences into a reporter plasmid, the concordance between CREs and BCs was 

determined via sequencing, each BC identifies a single CRE. The cassette containing the library of 

CREs upstream of a basal promoter driving YFP and BC was integrated into the S.cerevisiae genome 

at the TRP1 locus. B. Each point in the plot represents a variant in the library. No significant 

correlation is observed between RNA expression level, and fitness effect. C. scatter plots and 

Pearson correlation of fitness effects from the first 3 repeats of the competition in YPD at day 10 (only 

3 repeats are shown for the sake of clarity, mean Pearson correlation across all 45 pairwise 

correlations is 0.74). D. Distribution of mean fitness effect across repeats at YPD day 10 (top), and 

distribution of standard error (bottom). The error in mean is significantly lower than the mean fitness 

values. 

 

Competition experiment 

Ten independent repeats of a competition experiment were carried out in YPD media, another 

ten repeats were carried out in a YPD+DTT media. Each repeat was diluted in 1:120 ratio 

once a day (~ seven generations), and every two days a sample was frozen from each repeat. 

The experiment lasted for 16 days (~ 112 generations). 

Following the competition experiment, genomic DNA was extracted from samples of the 

ancestral population, and days 6, and 10 of the competition experiment. The barcoded region 



was amplified and deep-sequenced to measure the relative frequency of each variant in the 

library at any sample.  

In addition, to measure expression level of each variant, at the start and at the end of the 

competition experiment, three samples from the ancestral population, and from day 10, were 

grown to mid-log phase and RNA and DNA were extracted.  

Relative fitness of each variant is derived from the following equation: 

𝑓(𝑡) = 𝑓0 ∙ (1 + 𝑠)𝑡 ≈ 𝑓0 ∙ 𝑒𝑠𝑡 

Where f is the variant frequency, t is the generation number and 𝑠 is the fitness effect. Hence 

s is given by: 

𝑠 =
ln (

𝑓(𝑡)
𝑓0

) 

𝑡
 

The per-cell expression level is calculated by dividing the observed frequency of the variant 

in the RNA sequencing, by the observed frequency in DNA sequencing.  

The competition experiment in YPD and in YPD+DTT yielded similar results, and no 

significant promoter was enriched in one condition compared to the other. Therefore, in this 

report, only results from the YPD experiment are presented. 

 

Consistent fitness values observed, but no correlation between fitness and expression levels 

Following my results from the previous project126 (Appendix 1), and previous studies7,36,127, I 

expected that higher expression level in the library will manifest as lower fitness, due to the 

cost of expressing the unneeded reporter gene. However, the results show no correlation 

between expression level and cellular fitness (Fig 8B). A possible explanation for the lack of 

correlation is that the differences in expression loads spanned by this library are not big 

enough to result in a significant difference in burden in yeast cell. It should be noticed that 

previous studies, including ours126, that demonstrated the cost of gene expression using such 

negative correlation when driving a single copy of a reporter gene to different expression 

levels where done in bacteria7,127. However, in yeast such negative correlation was observed 

only between strains having different copy numbers of a plasmid containing the reporter 

gene, and the reporter gene was expressed using a very strong promoter (TDH3)36, resulting 

in a much wider range of expression levels. Hence, my present result might correspond to 

previous results on cost of gene expression in S. cerevisiae together indicating that a single 

gene copy expressed in yeast does not affect appreciably measured cost. 



Nevertheless, fitness values are consistent across the independent repeats (Fig 8C). Meaning, 

the observed fitness values are a result of the genetic differences between the library variants. 

Hence, the synthetic promoter architecture contributes to fitness differences in the library. 

 

Analysis of promoter features contributing to fitness 

Despite the overall lack of correlation between fitness and expression I could still ask if there 

are features of the promoter architecture that affect fitness. First, I wish to check if the 

identity of the transcription factor associated with a binding site affects fitness. For that 

purpose, I examine the fitness distribution of all promoters with at least one binding site for a 

given transcription factor, compared to all promoter with no site for that transcription factor. 

Fig 9A, demonstrates that there is no observable effect in fitness for any specific transcription 

factor in the library. 

I next turn to look for other promoter features that contribute to increased or reduced cost. 

For that purpose, I classify two groups of variants with fitness values from the extreme ends 

of the distribution. 337 out of 1835 of the original variants were extinct from the population 

until day 10, in at least 9 out of the 10 repeats and they are classified as “Extinct variants”. 

289 variants have above average fitness values in at least 9 repeats and they are classified as 

“High-fitness variants” (Fig 9B). By comparing the two extreme groups I can examine 

features that are enriched in the high or low fitness group. 

A significant effect is observed when comparing the fitness distributions of promoters with 

different total number of binding sites (irrespective of TFBS identity) (Fig 9C). Surprisingly, 

promoters with a single binding site have higher fitness compared to all other promoters. In 

addition, when comparing the distribution of number of binding sites between the high-

fitness, the extinct groups, and the other promoters, it can be seen that higher fitness variants 

tend to have less binding sites (Fig 9D). 

A potential reason for this effect is that higher number of sites in a promoter increases the 

demand for its associated transcription factor(s), which in turn decreases the supply of 

available transcription factors in the cell, for the rest of the transcriptome. However, such a 

model would predict that there will be a negative correlation between the number of binding 

sites in a promoter and its effect on fitness, and in Fig 9C no such correlation is observed for 

promoters with more than one binding site. This result suggests that there might be another 

explanation for the manner in which the number of binding sites affects cellular fitness.  



Another feature which demonstrates significant difference in distribution between the high-

fitness and the extinct group is predicted nucleosome occupancy (Fig 9E). Using a 

computational tool for predicting nucleosome occupancy128, a predicted nucleosome 

occupancy for the reporter gene was calculated using the sequence as input, the sequence 

fragment that was taken for this calculation includes, the reporter gene, its synthetic 

promoter, and 1kb upstream to it. For each promoter a predicted nucleosome occupancy ratio 

score is calculated by dividing the number of occupied positions by the length of the 

promoter. In general I observe a significant (p-value = 10−6; effect size (probability of 

superiority129) = 60%) trend – higher nucleosome occupancy ratio is typically associated with 

lower fitness. A previous work has classified natural yeast promoters into two distinct 

clusters, one with high nucleosome occupancy at the promoter, and the other with low 

nucleosome occupancy at the promoter130. They further demonstrate that they high 

occupancy promoters result in higher expression noise, and present higher histone turnover. 

These properties might explain why I observe higher cost for promoters with higher predicted 

occupancy.  

Each of the TFs in this collection was represented by TFBSs with varying strengths, as 

gauged by the Position Weight matrix score. I next turned to examine potential correlation 

between this PWM score and fitness. Since promoters with a single binding site demonstrate 

different behavior than other promoters it is interesting to examine separately the 24 single-

site variants. In Fig 9F it can be seen that there is no correlation between the fitness and the 

PWM score 131 of the transcription factor. Moreover, as seen for the entire library (Fig 9A), 

there is no observable contribution of transcription factor identity to fitness, and in addition 

there is no preference of one orientation over the other. Likewise, I could detect no 

correlation between the orientation of the motif (in forward or reverse strand) and fitness 

effect (Fig 9F). 

In addition to the results presented in this section, other features were tested and yielded no 

significant contribution to the fitness differences between promoters. Those features are: 

Promoter’s GC content; Shanon’s entropy of the promoter; TFBS orientation (forward vs. 

reverse); Consensus sites vs. non-consensus sites. Further, analysis of the following features 

results in significant fitness differences, but the observed contribution can be explained by 

correlation of the feature to one of the features mentioned above: Number of unique 

transcription factors represented in a promoter (regardless of number of sites, this feature is 

highly correlated to the number of TFBS); Minimal edit distance to natural promoters in the 

genome, where each promoter is represented by its TFBS arrangement (this features is 



correlated to the number of TFBS, promoters with low number of TFBS trivially, have lower 

edit distance to natural promoters). In conclusion, I mainly observe an intriguing association 

between promoters with a single binding site, and reduced cost. However, the lack of effect 

for the number of sites in the case of multiple site promoters, and the lack of plausible 

mechanism to explain this observation, leave this observation with convincing enough 

evidence. 

Figure 9 – number of TFBS in promoter affects fitness regardless of TF identity 

A. In each plot, the fitness distribution of all promoters that include a site for the given TF (colored 

violin), is compared to the fitness distribution of all promoters without a site for that TF (grey violin). 

Black line represents the median of the distribution. B. Variants which are extinct from the population 

in at least 9 out of 10 repeats are classified as “Extinct variants” (red). Variants with fitness value 

above the mean fitness of a repeat in at least 9 out of 10 repeats are classified as “High-fitness 

variants” (blue). C. fitness distribution for promoters grouped by their number of binding sites. D. the 

distribution of number of binding sites for the High-fitness group (blue), extinct group (red), and the 

entire population (grey). E. Violin plots represent the predicted nucleosome occupancy ratio of the 

high-fitness variants (blue), extinct variants (red), and the entire library (grey). Black horizontal line 

represents the median of the distribution. F. Each dot in the plot is a promoter with a single TFBS. 

Each of the 4 transcription factors is represented by 6 binding sites, 3 possible sequences, each of 

them in a forward (circle) or reverse (triangle) orientation. The x-axis represents the PWM score as 

was calculated by [123] based on the PWM matrix in [131]. The y-axis represents the mean fitness effect 

of each promoter as was measured in the competition experiment. 

 

  



A second dataset of promoter’s contribution to fitness corroborates the effect of number of 

binding sites 

To further examine the effect of promoter architecture on cellular fitness I turned to analyze 

an existing dataset of fitness measurements of synthetic promoters in S. cerevisiae. In a 

recent work6 the authors measured the effect of endogenous gene expression level on cellular 

fitness for 81 genes. They did so by creating a synthetic construct in which an endogenous 

gene is transcribed using a set of 120 synthetic promoters, each with a known expression 

level from a previous research20, following by a competition experiment of the entire library. 

This research provided a fitness Vs. expression curve for each endogenous gene (Fig 10), but 

naturally not every promoter variant fits perfectly on the gene’s curve.  

For the purpose of this project I utilize this dataset to analyze its fitness data from the 

promoter point of view. For each synthetic promoter 81 fitness values were measured when 

driving different endogenous genes, and for each of these genes an expected fitness at a given 

expression level can be extracted from the analysis done in the original paper6. Hence, for 

each promoter a fitness-residual score can be calculated for each of the measured genes by 

subtracting the expected fitness for this gene given its fitness-expression curve from the 

measured fitness of this promoter-gene variant (see Fig 10D for example). Using the fitness-

residual score I can control for the endogenous gene expression contribution to cellular 

fitness and isolate the contribution of the synthetic promoter itself to fitness. After sorting all 

120 promoters according to their median fitness-residual score (Fig 11A), I classify the 

bottom 23 promoters as negative fitness residual promoters, and the top 31 promoters as 

positive fitness-residual promoters (See Fig 11 legend for details). 

Similarly, to Fig 9C,D I turn to look for the effect of the number transcription factor binding 

sites on the promoter’s fitness residual scores. It can be seen in Fig 11B,C that as in my 

current experiment this dataset also provides evidence for a correlation between the number 

of binding sites, to the promoter’s contribution to cellular fitness. As opposed to the current 

experiment, here promoters with more than 2 binding sites have even lower fitness-residual 

scores, however, there is a low number of many-TF variants in this library (n=12), so it 

would be hard to base a conclusion based on this observation. 



 

Figure 10 - Fitness measurements for 120 synthetic promoters driving 81 endogenous genes 

A. A library of 120 synthetic promoters driving 81 endogenous genes was created by Keren et al6. 

When the expression level achieved by each synthetic promoter was previously measured20. B. The 

fitness of each promoter-gene in the library was measured using a pooled competition experiment. C. 

For each gene, a curve of fitness as a function of expression was created using the 120 fitness 

measurements for each gene and using some filtering techniques. D. An example of a fitness-

expression curve for TUB2 gene. Each grey dot represents a fitness measurement for a variant with a 

different synthetic promoter driving this gene. For each promoter a fitness residual score is calculated 

by subtracting its expected fitness given the curve from the measured fitness value (blue, and red 

dots are positive, and negative fitness-residual examples). 

Figure 11 - In a second experiment, promoters with less binding sites demonstrate 

higher fitness 

A. All 120 promoters sorted by their median fitness residual. Each box represents the distribution of 

fitness-residual scores for a specific promoter taken from 81 promoter-gene variants. In each box, 

vertical limits represent 1st and 3rd quartiles, horizontal line represents median value, and circle 

represents mean value. A group of negative fitness-residual promoters (red) is defined as all the 



promoters with median value below the highest promoter for which the 3rd quartile value is negative. 

Respectively a group of positive fitness-residual promoters (blue) is defined by as all the promoters 

with median value above the lowest promoter for which the 1st quartile value is positive. B. Promoters 

are separated according to their number of transcription factor binding sites (1,2, or >2). For each 

group the distribution of median fitness-residual score is depicted with a violin plot. The single-TF 

group has significantly higher fitness-residual distribution compared to the 2-TF group. C. The 

distribution of the number of binding sites is plotted for the positive fitness-residual group (blue), 

negative fitness-residual group (red), and the others group (grey). It can be seen that the positive 

group is enriched with single-TF promoters. 

 

6.1.3. Synthetic Intron library have no significant effect on other cellular 

functions in-trans 

Another important aspect of gene expression regulation as described in Part II of this thesis is 

splicing regulation. Here I wish to test if introduction of a synthetic intron into the yeast 

genome affects cellular fitness and/or the splicing efficiency of other intron-containing genes 

in-trans, and if it is dependent on the intron architecture. For that purpose, I used the 

synthetic library described in part II, and applied to it two more high-throughput assays. I 

first performed a competition assay like I did to the other libraries to measure the relative 

fitness of each variant in the library. Next, in order to check the effect of intron architecture 

on other intron containing genes, I inserted into the library’s yeast strain an intron-containing 

fluorescent reporter, with a fixed intron64. Then, after integration of the library, this reporter 

can serve as a reporter for the effect of the library’s intron on splicing efficiency of this 

probe, which may reflect on splicing of the natural intron-containing genes in the genome. 

Introduction of a new intron to the genome might affect cellular fitness through affecting 

supply and demand economy of the shared splicing machinery132–134, or through direct 

energetic costs involved in the spliceosome activity. In section 6.1.1, I demonstrated how 

subtle changes at the 5’ UTR of a gene affect cellular fitness in bacteria. Hence, since in 

eukaryotic cells mRNA splicing involves a major molecular machine, I hypothesized that 

changes in intron architecture might impose a different burden on the cell. I measured cellular 

fitness of each variant in the library using a serial dilution competition assay of the entire 

library in a pool for 100 generations, followed by sequencing of the barcodes at 5 timepoints, 

then I calculated fitness using a log-linear regression of the relative frequencies of each 

variant at the measured timepoints. I performed the competition assay in three independent 

repeats, and additionally, each design was cloned with 4 different unique 8 nucleotides as an 

index, so each variant’s fitness is measured independently 4 times within each repeat. Fitness 



measurements between repeats or indexes have a positive weak correlation (mean pearson 

correlation between repeats r=0.12, and between indexes r=0.05). This suggests that any true 

fitness differences in the library are small and masked by the systematic noise in the system. 

Focusing on variants with consistent fitness measurement between repeats (~20% of the 

library), revealed no effect of splicing on cellular fitness (Fig 12B). Hence, I conclude that in 

my system introduction of one new synthetic intron imposes no apparent burden on the cell. 

Next, I wanted to test if introduction of the library’s synthetic intron influences splicing 

efficiency of other intron-containing genes. For this purpose, I inserted a reporter cassette to 

another location in the genome, with two fluorescent reporters. A YFP gene with an intron, 

such that only when spliced the reporter is expressed, and an mCherry to normalize for 

biological noise. For each variant in my library, I measured the YFP fluorescent levels that 

represent splicing efficiency of an intron-containing gene in-trans and check if they are 

influenced by its own library’s intron architecture and splicing efficiency. YFP fluorescent 

levels were measured in a pool for the entire library by sorting the cells in a flow cytometer 

into 12 bins according to their YFP/mCherry ratio and sequencing the barcodes present in 

each bin. Fluorescent levels of each variant are inferred by reconstructing its distribution 

from its relative frequency in each bin. 

By comparing each variant’s own splicing efficiency to the YFP level I observe that there is 

hardly any effect of the variable synthetic intron on splicing efficiency in-trans. I do observe 

a significant but weak negative correlation (Pearson Correlation -0.085) between splicing 

efficiency and YFP expression (Fig 12A), which might suggest that high splicing efficiency 

might come at the expense of other intron-containing genes. But due to the low level of the 

correlation, I cannot conclude that the introduction of a new synthetic intron affects 

appreciably other intron-containing genes in my system. 

  



 

Figure 12 - Two high throughput assays for measuring effect of intron architecture on cellular 

functions 

A. Library’s intron splicing efficiency Vs. trans-splicing reporter fluorescent levels, colors represent 

density (Pearson r = -0.085, P<10-8). B. Fitness effect distribution for spliced variants (left), and 

unspliced variants (right). There’s no significant difference between the two distributions (t-test, p-

value=0.7) 

 

6.1.4. T-rich elements contribute positively to fitness, and result in surprising 

connection between fitness and gene expression 

 

In section 6.1.1 I have demonstrated how amino acid composition affects the cost of protein 

expression in E. coli. Next, when focusing only on mRNA production I wish to check if 

nucleotide composition has any effect on mRNA production costs in the yeast library. These 

costs might source from direct synthesis cost of the nucleotides, but it might also be affected 

from difference in the energy needed to separate double stranded DNA for GC-rich, or AT-

rich sequences, as the melting temperature of GC pairs is higher than the melting temperature 

of AT pairs. In addition, nucleotide composition might affect properties of the mRNA itself 

like mRNA stability which also relates to expression costs per RNA mulecule, as a less stable 

RNA will result in a higher turnover rate of RNA molecules, to reach the same steady state 

levels. 

For this purpose, I have designed a synthetic library of ~13,000 different variants spanning 

different nucleotide compositions. This library was synthesized together with the splicing 

library mentioned in Part I, and was cloned to the same vector, and integrated to the same 

genomic location. 

As in research works aimed to measure the cost of gene expression, I measure the cost by 

expressing an unneeded gene, hence its contribution to fitness should be only through its 



burden to the cell. Here, the unneeded gene is a synthetic non-coding RNA that was created 

by removing any ATG codons (at all possible frames), from an existing gene from the S. 

cerevisiae genome (MUD1). It is expected that the cost of gene expression will be positively 

correlated with expression level (i.e. the fitness will be negatively correlated), as was 

demonstrated in several previous works 7,36,135. It is also possible that the fitness will not be 

correlated with expression level if the expression load is not high enough to affect the fitness 

as was demonstrated in section 6.1.2. 

However, surprisingly I observe a positive correlation between mRNA levels and fitness (Fig 

13A). It is highly unlikely that higher expression of a synthetic non-coding gene will cause 

directly to higher fitness, since I assume this gene is not beneficial. On the contrary, as 

explained above I predict a negative correlation between expression level and fitness. A 

possible explanation would be a causal effect of fitness on expression level, meaning when 

the cells are growing faster they also increase globally the rate of transcription which is 

observed through the expression levels of the library’s gene. A second possible explanation 

would be a confounding factor that increases both the expression level of the gene, and its 

fitness. Such factor could be a feature that increases the stability of the mRNA, which will 

also increase steady state RNA levels, and might also result in reduced cost as it has lower 

demand from the RNA degradation machinery. 

Looking at features that contribute to fitness, I see that fitness is strongly correlated with the 

variant’s T content (Fig 13B), which also correlates with mRNA levels (Fig 13C). This 

correlation might be explained by the total T content in the variable region, or by the length 

of longest uninterrupted repeat of Ts (Fig 13D). It might be possible that T content serves as 

a confounding factor as it might influence both transcription rate, and fitness separately, thus 

creating apparent correlation between the two. However, partial correlation analysis (r=0.27, 

p-value<10-35) rules out this possibility, since according to it fitness and expression level are 

correlated even whn the T content is held constant. 



 

Figure 13 – T-rich elements in non-coding gene correlate with mRNA abundance and fitness 

A. Scatter plot of mRNA abundance levels Vs. fitness effect for ~2,500 library variants with significant 

fitness measurements (Pearson r=0.42, p-value<10-100). B. Scatter plot of the library’s variable 

region’s T content Vs. fitness effect (Pearson r=0.53, p-value<10-100). C. Scatter plot of the library’s 

variable region’s T content Vs. mRNA abundance (Pearson r=0.44, p-value<10-100) D. Scatter plot of 

the library’s variable region’s longest uninterrupted stretch of Ts Vs. fitness effect (Pearson r=0.37, p-

value<10-85) 

 

This observation of positive correlation between mRNA levels and fitness, which is related to 

T content poses an intriguing open question. I hypothesized that this effect might be 

connected to RNA stability, as a previous work demonstrated that U-rich elements at the 3’ 

UTR stabilize the mRNA through base pairing with the polyA tail136. Such stabilization of 

the mRNA would naturally increase mRNA levels, and it might contribute to fitness relative 

to other variants in the library, since those other variants have higher RNA degradation costs. 

An alternative explanation to this correlation is the fact that in the growth media used for the 

competition assay (SD complete), Uracil is provided. Since high expression levels of high 

Thymine content variants will be manifested in higher demand for Uracil for production of 

the mRNA, this might explain why variants with high T have relative advantage over other 

variants. On the other hand, cells growing in this growth medium are also provided with 

Adenine, and I do not observe such relative advantage for high A content variants. 

To test the effect of the growth media, I repeated the competition experiment for this library 

in two additional growth media: a rich medium (YPD), and a synthetic defined media without 



addition of Uracil and Adenine (SD -UA). If the relative advantage of high T content variants 

was a result of the Uracil addition, I would expect to see this advantage decrease in the SD -

UA media as no Uracil is provided for the cell. Moreover, in the rich medium I also expect 

the fitness advantage to decrease since in this case all the nucleic acids are provided in the 

media, and there should not be an advantage to high T variants over other variants. It can be 

seen in Fig 14 that the strong correlations between T content and fitness that were observed 

in SD complete media (Fig13) were not reproduced in the two other growth media. mRNA 

levels were not measured for the two additional growth media. This observation indicates that 

most probably the relative advantage for high T content variants was a result of supplying the 

cells with Uracil in the growth media, and therefore, I decided to not follow through and 

further investigate this result. 

 

Figure 14 – Different growth media do not reproduce the fitness advantage of high T content 

variants 

A-C. the same as Figures 13A,B,D respectively, but for rich media (YPD). Fitness vs. mRNA level 

correlation is not significant (p-value = 0.5). Fitness Vs. T content present a weak positive correlation 

(r=0.09, p-value<10-4). Fitness Vs. longest T stretch present a weak positive correlation (r=0.06, p-

value=0.006). D-F. the same as Figures 13A,B,D respectively, but for synthetically defined media 

lacking Uracil and Adenine (SD -UA). Fitness vs. mRNA level present weak correlation (r=0.06, p-

value = 0.01). Fitness Vs. T content present a weak positive correlation (r=0.08, p-value<10-4). 

Fitness Vs. longest T stretch correlation is not significant (p-value>0.05). 

  



6.2. Part II – Sequence determinants and evolution of splicing in yeast species 

High-throughput splicing efficiency measurements of thousands of synthetic introns 

To explore how the intron architecture affects splicing efficiency, I designed a synthetic 

oligonucleotide library19  of 18,061 variants. All the oligonucleotides were cloned into the 

same location inside a synthetic non-coding gene that was then integrated into the yeast 

genome. I cloned the library into a non-coding gene to avoid any differences between 

variants that might result from differences in translation.  

Each oligo consists of fixed primers for amplification and cloning, a unique 12nt barcode, 

and a 158nt oligo that includes a unique intron sequence design within it. All synthetic intron 

sequences were introduced into a mutated version of the natural S. cerevisiae gene MUD1 

lacking any ATG codon in all reading frames. The expression of the gene is driven by a 

synthetic promoter that was chosen from an existing promoter library 20,137 based on its high 

expression and low noise characteristics. The entire intron-containing gene library was 

integrated into the YBR209W dubious open reading frame in S. cerevisiae genome using a 

high-throughput Cre-Lox based method138 (Fig 15). 

Each intron design in the library is characterized by the sequence of its three functional sites 

(5’SS, BS, 3’SS), its length, the distance between its BS and 3’SS, and by the length of a 

short U-rich element upstream to the 3’SS.  

Library subset Number of 

variants 

Synthetic Combinatorial designed introns 4,713 

Synthetic introns with splice sites mutations  4,505 

Synthetic introns with consensus splice sites and different background 

sequences 

1,377 

Natural introns’ sequences from yeast species 1,173 

Natural introns with mutated splice sites 1,328 

Two-introns designs 823 

Negative control 4,142 

Table 1 -  Summary of the different subsets composing the library and the number of variants 

in each of them 

http://sciwheel.com/work/citation?ids=2437098&pre=&suf=&sa=0


 

The library was composed of four major subsets (see Table 1): the first subset was created in 

a combinatorial design by introducing different splice site sequences with their exact 

sequence as observed in the genome, on the background of the MUD1 derived gene. Introns 

were created with different lengths and different BS-to-3’SS length that represent the length 

characteristics of introns from non-ribosomal genes. In each oligo, an intron was created by 

replacing the background sequence at positions 6-11 with a 5’SS sequence, and then 

according to a choice of intron length, and BS-to-3’SS a BS sequence and a 3’SS were placed 

instead of the background sequence at corresponding positions. In addition, three versions of 

short poly uridine sequence were inserted upstream to the 3’SS. The second subset was based 

on perturbations to the former subset by introducing mutations to the genome-observed splice 

site sequences, in addition a set of synthetic variants was created by introducing only 

consensus splice sites sequences at varying length properties, within different background 

sequences. A third subset of the library was composed of introns that naturally occur in S. 

cerevisiae and in other yeast species, these introns’ sequences were inserted into the 158 

synthetic oligo, such that only the intron sequence was inserted instead of the background 

sequence at the 5’ end of the oligo (introns longer than 158 nucleotides were not taken for 

this set). Lastly, the fourth subset of variants was composed of designs with two short introns, 

one next to the other, separated by a short exon. The introns’ sequences used for this subset 

were natural introns taken from S. cerevisiae genome that are short enough to fit with another 

intron inside the 158 oligo. This last subset enables me to study the potential of the S. 

cerevisiae splicing machinery to process genes with multiple introns and to create alternative 

splice variants. 

Splicing efficiency of each variant was measured using targeted RNA sequencing of the 

library’s variable region. The sequence amplicon that was deep-sequenced included both the 

unique barcode of each intron design and its entire variable region, in either its unspliced or 

spliced forms. This allowed me to calculate splicing efficiency for each intron design. 

Shortly, each variant was identified by its unique barcode, and then the relative abundances 

of the spliced and unspliced isoforms were determined by aligning exon-intron and exon-

exon junction sequences against the RNAseq reads. Splicing efficiency was defined as the 

ratio between the spliced isoform abundance and total RNA abundance. If for a specific RNA 

read, neither an unspliced isoform nor a spliced isoform of the designed intron were 

identified, I searched for an mRNA isoform that might have been created by a novel splicing 



event. This was achieved by identifying uninterrupted gaps in the alignment of the full 

sequence to the RNAseq read. 

Figure 15 - A designed synthetic intron library in budding yeast 

A large oligonucleotide library of designed introns was synthesized and cloned into a synthetic non-

coding gene. The gene was then integrated into the budding yeast S. cerevisiae genome, to create a 

pooled yeast library. Then splicing efficiency was measured using targeted RNAseq of the intron’s 

region, identification of RNAseq reads according to the barcode, and spliced isoform identification 

using alignment of exon-intron and exon-exon junctions. Inset: oligonucleotide design strategy - All 

oligos were identified using a unique 12nt random barcode at their 5’ end; i) A set of synthetic introns 

was created by combinatorial design of different splice site sequences and other intronic features; ii) 

A set of natural introns from S. cerevisiae and other 10 yeast species was introduced into the library; 

iii) a set of synthetic two-intron genes was created by pairing together short intron sequences with an 

exon separating between them.  

 

Synthetic introns are successfully spliced within the genomic construct 

13,096 variants in the library were designed with a single intron (The remaining 4,695 are 

negative control variants or two-intron variants). For 33.5% of these single intron variants, I 

observed the designed splice isoform with median splicing efficiency of 0.428, where a value 

of 1 means that all RNA reads are from the spliced isoform. For comparison, 4,142 variants 

were designed as negative controls. These negative control variants are not expected to be 

spliced, as they were designed by introducing random sequences instead of splice site 

sequences. In this negative control set, only 1.9% yield a spliced isoform with a median 



splicing efficiency of 0.039. In addition, when examining the natural introns of S. cerevisiae 

included in my library, I see that 84% of them yielded spliced isoforms, with median splicing 

efficiency of 0.675. 

To verify that the introduction of a 12nt barcode upstream of the intron does not have a 

significant effect on splicing efficiency, I attached four different barcodes for a randomly 

chosen set of 517 designs. When comparing the variance in splicing efficiency of these 

quartets (considering only designs with non-zero splicing efficiency) to a set of randomly 

chosen quartets, I see that the mean variance of the multiple barcode set is much lower than 

the mean variance of each of 104 randomly shuffled variants quartets from the same set (data 

not shown), indicating that the barcode choice exerts at most a low effect on splicing 

efficiency. 

 

Splicing efficiency is positively correlated with RNA abundance 

When examining total RNA abundance, I see a positive correlation between splicing 

efficiency and total RNA abundance (i.e. summed level of unspliced and spliced isoforms) 

for the set of variants that are successfully spliced (Fig 16A). Since the calculation for 

splicing efficiency is dependent on total RNA abundance, I compare this result to a random 

set taken from the same distribution which does not present any correlation. This observation 

that total mRNA levels are correlated with splicing efficiency is interesting since in S. 

cerevisiae most genes do not contain an intron, and many genes have high expression despite 

having no intron, so one might expect that the act of splicing would not affect the levels of 

total RNA. Moreover, this experiment was done on synthetic genes that were not selected in 

evolution to regulate their gene expression through splicing. Thus, the correlation observed 

here between RNA expression level and splicing efficiency suggests a molecular mechanism 

at work. For example, the correlation might be explained by effects of splicing on nuclear 

export139, or on RNA stability140. In particular, it may be suggested that variants for which 

RNA molecules are spliced are exported more efficiently and hence splicing can enhance 

steady-state RNA levels. 

 



Figure 16  - A set of combinatorically designed synthetic introns elucidate contribution 

of different features to splicing efficiency 

A. Scatter plot of the total RNA abundance and splicing efficiency for all the variants with splicing 

efficiency >0 shows a significant positive correlation between RNA level and splicing efficiency 

(Pearson r=0.4 p-value<10-72). B. Splice site motifs for S. cerevisiae introns, one can notice a 

dominant consensus sequence for the 5’SS and BS, and two consensus sequences for the 3’SS. C. 

Distribution of splicing efficiency for synthetic intron variants with consensus splice sites (orange), is 

significantly higher than splicing efficiency distribution for non-consensus splice sites (grey) (two 

sample t-test, p-value<10-80). Black horizontal line represents mean splicing efficiency. D-F. effect of 

non-consensus splice site sequences on splicing efficiency. Violin plots represent the distribution of 

the difference in splicing efficiency between a variant with a single non-consensus splice site, to a 

corresponding consensus sites variant which is identical in any other parameter. For the 3’SS since 

there are two consensus sequences, AAG variants were compared against the average of the two 

consensus variants, and CAG/UAG variants were compared against the other consensus variant. Pie 

charts show the relative abundance of each splice site in S. cerevisiae genome (orange slice 

represents the consensus site, and other colors correspond to the colors in the violin plots). In the 

case of the BS, NNCUAAC non-consensus variants represent all sequences that fit this template but 

different from the consensus sequence UACUAAC. G. Splicing efficiency distribution is binned 

according to poly uridine tract enrichment, which is calculated as the U content at a window of 20 

nucleotides upstream to the 3’SS. I see a significant positive correlation, compared to a non-

significant correlation for Y-rich elements (data not shown, Pearson r=0.95 p-value=4·10-3). 

 

  



Combinatorial design of introns elucidates features contribution to splicing efficiency 

I first analyzed the set of synthetic introns created by combinatorial design of different splice 

site sequences and length properties. I noticed that introns that contain the consensus splice 

site sequence in all three splice sites are better spliced than introns with at least one non-

consensus splice site (Fig 16B,C). Next, for each of the non-consensus splice site variants I 

examined how it affects splicing efficiency by analyzing variants with a single non-consensus 

splice site, and comparing their splicing efficiency to the corresponding design with 

consensus splice sites and otherwise identical sequence (Fig 16D-F). I notice that almost all 

non-consensus branch site sequences result in much worse splicing, meaning that the 

consensus splice site is crucial for efficient splicing (Fig 16E). On the other hand, in the 5’SS 

while on average the non-consensus variants are spliced less efficiently I do observe a 

substantial number of variants that are spliced better than the corresponding variant with 

consensus site (Fig 16D). I also notice that for two of the splice site variants, lower splicing 

efficiency is observed only for longer introns (data not shown). For the 3’SS I see that there 

is no measurable difference in splicing efficiency between the three variants found in the 

genome, although two of them are significantly more abundant than the third (Fig 16F). The 

fact that the AAG 3’SS variants are spliced as well as the two YAG 3’SS variants is 

surprising due to the fact that ~95% of introns in all eukaryotes use a YAG 3’SS141. I used a 

set of variants with random mutations in their splice sites, to analyze the effect on splicing 

efficiency of all possible single nucleotide mutations in the three splice sites, and this analysis 

replicated the results observed for the splice sites variants found in the genome (data not 

shown). 

Next, I examined how other intron features can affect splicing efficiency. In other eukaryotes, 

further than the splice sites, an intron is characterized by a poly-pyrimidine tract upstream to 

the 3’SS142, However, it was noticed that in yeast a weaker feature is observed, and it is 

characterized by short uridine-rich sequence instead of pyrimidine (U or C)53,143. Using my 

library I examine the effect of uridine rich sequences upstream to the 3’SS, by binning 

variants according to their U content in a 20nt window upstream to the 3’SS, and comparing 

the splicing efficiency distribution in each bin (Fig 16G). I noticed that higher U content in 

this window is correlated with increased splicing efficiency. To demonstrate that the 

observed effect is due to specifically uridine enrichment and not generally pyrimidine, I 

repeat the same analysis by binning according to Y content, considering only variants with 

well balanced U and C composition, and I observe no correlation between Y enrichment and 



splicing efficiency (Fig 17A). This result is the first experimental evidence that S. cerevisiae 

splicing machinery is specifically affected by a poly uridine tract, as opposed to other 

eukaryotes142. 

Previous studies have associated other intronic features with splicing efficiency: intron 

length144,145, the distance between the branch site and the 3’SS (BS-to-3’SS length)47,48,146, 

and intronic GC content47,64,147,148. The data from this library significantly supports the effect 

of intronic GC content (Fig 17B). As for intron length, I do not observe a specific length that 

is spliced more efficiently (Fig 17C). I note that introns taken for this library were bounded 

by a length of 158nt and the distribution of intron lengths represented in this library 

represents the length distribution of introns from non-ribosomal genes in S. cerevisiae. 

Introns from ribosomal genes are longer (mean intron length of ~400 nt), and these lengths 

are not represented in this work. I also did not observe a significant preference for a BS-to-

3’SS length in terms of splicing efficiency. 

 

Figure 17  - A set of combinatorically designed synthetic introns elucidate contribution of 

different features to splicing efficiency 

A. Splicing efficiency distribution is binned according to poly-pyrimidine tract strength , which is 

calculated as the Y (i.e. C or U) content at a window of 20 nucleotides upstream to the 3’SS. In order 

to specifically check elements that are not U-rich, only elements with at least 30% C out of their Y 

content are taken into account. Correlation is not significant (p-value=0.79), compared to the highly 

significant correlation for U-rich elements (Fig 3GD). B. Splicing efficiency distribution binned 

according to intronic GC content (Pearson r=-0.85 p-value<0.01). C-D. Splicing efficiency distribution 

of spliced variants for (C) different intron lengths, or (D) different BS-to-3’SS length. 

 



Cryptic splicing events drive intron evolution 

Up to this point, I have focused on designed splicing events. That is, successful splicing of 

the designed intron of each variant in the library. However, my designs might result in cryptic 

splicing isoforms, different than the ones I designed. To identify such splicing events, for 

each variant, I looked for cryptic spliced isoform by aligning the RNAseq reads to the full 

unspliced sequence, allowing large gaps in the alignment. A long uninterrupted gap in the 

RNA read is potentially a spliced intron, and if at least one of its ends is not found at the 

designed ends of this variant I label it as a cryptic intron. 

I found cryptic splice isoforms in 25.2% of the variants designed to have a single intron with 

a median splicing efficiency of 0.038 for the cryptic splice isoforms, compared to the median 

splicing efficiency of 0.428 for the designed splice isoforms. As a comparison, only 3.1% of 

the negative control variants presented a cryptic spliced isoform, with a median splicing 

efficiency of 0.07. I then studied the location of the cryptic intron ends relative to the 

intended intron ends, I see that 87% of them have the same 5’SS as the designed intron and of 

course not the designed 3’ SS, while only 1% of them have the designed 3’SS, but then not 

the designed 5’SS (Fig 18A). This observation suggests that a vast majority of cryptic 

splicing events are a result of selection of an alternative 3’SS during the splicing process. I 

acknowledge the fact that due to my amplicon sequencing based method, there is a low 

chance to detect upstream alternative 5’SS selection, and possibly selection of alternative 

5’SS might result in unfinished splicing intermediant product149 which also wouldn’t be 

detected by my method. Previous work has also found that there are a significant number of 

alternative 3’ splice site usage events in S. cerevisiae and suggested that the 3’SS choice can 

be explained by local RNA secondary structure at the original 3’SS150. To examine this 

observation, when analyzing my synthetic introns data, I considered the distribution of RNA 

free energy (𝚫G) at a window of 30 nucleotides around the designed 3’SS. I notice that 

spliced variants with no cryptic splicing have more open structures at their 3’SS compared to 

spliced variants with cryptic splicing, and to a greater extent than unspliced variants with 

cryptic introns (Fig 18B). When studying the chosen alternative 3’SS I see that 70% of the 

alternative isoforms are spliced at one of the three sequence motifs found in the genome 

([U/C/A]AG) (Fig 18C) and that 68.5% of them are spliced at the first downstream 

occurrence of this 3’SS motif after the designed 3’SS. Those isoforms that are spliced at the 

first downstream 3’SS motif, are more efficiently spliced than other cryptic splice isoforms 

(Fig 18D). 



The observation that the S. cerevisiae splicing machinery can easily misidentify 3’SS leads 

me to hypothesize that mechanisms to avoid such cryptic splicing events must exist, as these 

events can result in frameshifts and appearance of a premature stop codon. Hence, I checked 

if I observe a selection against 3’SS motifs near the 3’ end of natural introns in the genome. I 

registered all S. cerevisiae introns at their 3’ end and calculated the frequency of the two 

dominant 3’SS motifs ([C/T]AG) around introns’ end. Indeed, I found a depletion of these 

motifs at a window of -50 to +30 around introns’ end compared to a null model based on 

1000 random sets of genomic loci (Fig 18E).  

Figure 18 - Cryptic splice isoforms are produced due to selection of alternative 3’SS 

A. Relative splice site position distribution for cryptic introns (relative to the designed splice site 

position), for the 5’ splice site (left), and the 3’ splice site (right). B.  Distribution of 𝚫G values at a 

window of 30 nucleotides around the designed 3’SS for variants with designed splice isoform and no 

cryptic splice isoform (red), variants with both designed and cryptic splice isoform (blue), and variants 

with only cryptic splice isoform (green). The difference between all three distributions is significant (t-

test, p-value < 10-18). C. Sequence motif of the 3’SS for all cryptic intron isoforms detected. D. The 

distribution of splicing efficiency for cryptic splice isoforms, binned according to isoforms in which the 

cryptic intron is spliced at the first appearance of a 3’SS motif (red), or isoforms for which the last 3 

nucleotides of the introns are not a 3’SS motif. (t-test, p-value<10-100). E. 3’SS motif avoidance pattern 

around introns’ 3’ end in the S. cerevisiae genome. All S. cerevisiae intron-containing genes were 

registered according to the 3’ end of their intron. The black line presents the frequency of TAG/CAG 

motif for each position. The red dashed line presents the expected frequency by averaging the motif 

frequencies over 1000 sets of sequences registered according to random positions inside coding 

genes. 

 



Co-evolution of the splicing machinery and intron architecture across yeast species  

Our system allows me to introduce any short intron sequence into the S. cerevisiae genome. 

This gives me the opportunity to study the evolution of intron architecture by introducing 

introns from other yeast species and observing how well they are spliced in my system. I first 

introduced all the naturally occurring introns from the S. cerevisiae genome that can fit in my 

oligonucleotide design length constraint. For each intron I inserted the full length of the 

intron flanked by 5 exonic nucleotides from each end, this sequence was inserted on the 

background of the standard MUD1 derived background sequence of the library, at its 5’ end. 

Hence, the length limit for an intron was 148 nucleotides, amounting to 149 introns out of 

299 in this species. It should be noted that this limit on intron length forces me to use only 

introns from non-ribosomal genes in my library, as all the introns in ribosomal genes in S. 

cerevisiae are significantly longer (mean length of ~400 nucleotides).  

Next, for each natural S. cerevisiae intron, I included in my library introns from orthologous 

genes of the S. cerevisiae intron-containing genes from a set of 10 other yeast species, with 

orthology identified by48. I found that most S. cerevisiae endogenous introns are spliced in 

my system (85.5%). Interestingly, introns from most of the other species are typically spliced 

at similar efficiencies (Fig 19A). Furthermore, for each species I compared each one of its 

introns to the intron of its orthologous gene in S. cerevisiae and define ΔSE as the difference 

in splicing efficiency for introns of the same gene. I found that many of the non S. cerevisiae 

introns are spliced better than their S. cerevisiae orthologs (Fig 19B), suggesting that S. 

cerevisiae introns are not specifically optimized for high splicing efficiency by their own 

splicing machinery. 

Although I did not see a specific preference for the natural introns of S. cerevisiae, I still 

observe that introns from some species like E. cymbalariae or K. thermotolerans, are spliced 

in lower efficiency compared to introns from other species. I further note that these two 

species do not stand out phylogenetically from others (Fig 19A,B). Hence, I hypothesized 

that introns from these species might have been optimized to evolutionary changes in the 

splicing machinery. One such candidate could be the gene U2AF1, which is a splicing factor 

that is associated with the location of the branch site relative to the 3’ end of the intron47. This 

gene is missing in 6 out of 11 of the yeast species I analyze here, including from S. 

cerevisiae, and in additional species (T. blatae) it is highly mutated and probably non-

functional48. Indeed, the 11 yeast species I used here show a different distribution of BS-to-

3’SS distances, that is concordant with the absence or presence of U2AF1 (Fig. S4A), while 



other properties are not significantly different between the two groups (Fig. S4B-E) (intron 

length does seem to differ between the two groups, but this difference is solely ascribed to the 

BS-to-3’SS distance, as can be seen by the lack of difference in 5’SS-to-BS distance (Fig. 

S4B,C)). When comparing the distribution of splicing efficiencies between introns from 

species with or without a copy of U2AF1, I observed that introns that come from species 

lacking U2AF1 are better spliced in my S. cerevisiae system which also lacks U2AF1 (Fig 

19C). Hence, I suggest that those introns were better optimized to splicing machinery lacking 

this factor, while introns that were adapted to machinery that use this factor are less suitable 

to S. cerevisiae splicing machinery. 

In the previous section, I demonstrated that S. cerevisiae has a tendency to splice cryptic 

introns at alternative 3’SS downstream of the original site, which leads to a selection against 

3’SS motifs near introns 3’ end. Interestingly, when performing the same analysis for the 

other 10 yeast species I found that all but four species present significant S. cerevisiae-like 

avoidance of 3’SS sequence motifs near their introns 3’SS. Strikingly, the 7 species that show 

the avoidance signal are those lacking U2AF1, and the one species with highly mutated copy 

of this factor (Fig 19D, Fig. S5). This result suggests that loss of the U2AF1 gene results in a 

flexible recognition of the 3’SS, which in turn generates a selective pressure to avoid 3’SS 

motifs near the intended 3’SS in order to avoid cryptic splicing events. On the other hand, 

splicing machinery that includes U2AF1 results in a more stringent 3’SS recognition, 

possibly due to tight constraints on the BS-to-3’SS distance. 

 



Figure 19 - Analysis of ortholog introns from other yeast species reveals intron architecture 

evolution 

A. Splicing efficiency distribution of spliced variants for introns from orthologs of S. cerevisiae intron-

containing genes. A species phylogenetic tree (created according to63) is presented above the 

corresponding violins. The number of introns included in the library from each species are indicated 

after each species name. B. Percent of introns that are spliced better than their S. cerevisiae ortholog 

intron for each species. C. Splicing efficiency distribution for introns that come from species that have 

a copy of U2AF1 splicing factor (left), and introns that come from species without U2AF1 splicing 

factor (t-test, p-value<10-9). D. Hypothesis test for the 3’SS motif avoidance for each of the 11 

species upstream (top) or downstream (bottom) to the 3’SS. P-value was calculated by comparing the 

mean frequency of the 3’SS motif at a 30nt window upstream/downstream to the 3’SS against 105 

sets of sequences each composed of coding genes sequences registered according to randomly 

chosen positions. Species with a copy of U2AF1 are marked in red, species with malfunctioned 

U2AF1 are marked in purple, and species without any copy of U2AF1 are marked in black. 

 

A computational model elucidates important features that govern splicing efficiency 

I created a large collection of single intron variants, with a systematic exploration of different 

intron design features. This wide collection of variants allows me to train a computational 

model that predicts splicing efficiency values from sequence features. For the purpose of this 

model I used a set of all single-intron variants including both synthetic and natural introns 

and excluding negative control variants (N=12,745). I trained a gradient boosting model151,152 

using a 5-fold averaging cross-validation technique153 on randomly chosen 75% of the 

variants set (N=9,558). As an input to the model, I used a set of 39 features, comprising the 



splice site sequences (as a categorical feature), intron length parameters, GC content, 3’ u-

rich element, and local secondary structure predictions at each splice site (see a full list of 

parameters at table S1). The model predictions were tested on the remaining 25% of the set of 

single-intron variants used for this model (N=3,187). Predicted splicing efficiency values for 

the test set are reasonably well correlated with the measured splicing efficiency values 

(Pearson r=0.75, Fig 20A). 

The predictive model enables me to examine the contribution of each feature to a successful 

prediction of splicing efficiency. I used Shapley values154 to infer individual features' 

importance. Meaning, I analyzed the global contribution of each feature to the predicted 

splicing efficiency value across all observations, moreover, in Figure 20B I present the 

individual feature contribution for each observation (i.e. library variant) of the 8 most 

important features according to this analysis, the distribution of Shapley values for each 

feature, and it’s correspondence with the feature’s values. I notice that the most important 

feature is the sequence of the BS which corresponds with the large difference in splicing 

efficiency I observed for non-consensus BS variants (Fig 16E). Next, I notice that intronic 

GC content has high contribution, as low GC content contributes to higher splicing 

efficiency, which corresponds to previous findings64,147. The 5’SS sequence also has a high 

contribution to efficient splicing. Interestingly, while the 3’SS sequence is considered one of 

the defining features of introns, it is only ranked 8th in terms of importance for the model 

predictions. In terms of local secondary structure, I see that only the local structure around 

the 3’SS is among the top 8 features, where I observe that open structure (high 𝚫G) around 

the 3’SS contributes positively to splicing efficiency. 



Figure 20 - Sequence features contribution to successful splicing are derived from a 

computational model 

A. Measured splicing efficiency values versus predicted splicing efficiency values of the test set 

variants (N=3,187) as predicted by a gradient boosting model using 5-fold averaging cross-validation 

technique (Pearson r=0.75 p-value<10-100). B. Distribution of Shapley values for the top 8 features 

when ranked according to the mean absolute value of the Shapley values. The x-axis represents the 

Shapley values, the higher the absolute value of the mean of the distribution, the higher its 

contribution to the model predictions. Positive values mean that the feature is predicted to improve 

splicing efficiency, and negative values mean that the feature is predicted to reduce splicing 

efficiency. Sample points are colored according to their feature’s value for numerical features, and for 

splice site sequences that are treated as categorical features, they are colored by the splice site 

relative abundance in the S.cerevisiae genome (high values represent abundant sequence variants). 

 

S. cerevisiae has the capacity to alternatively splice two tandem introns, thus generating 

alternative splice variants from the same RNA 

Alternative splicing is not considered to have a major role in gene expression regulation in S. 

cerevisiae. There are 10 known genes with two tandem introns in the S. cerevisiae genome155, 

and most of them are not known to be alternatively spliced. Previous works have examined 

alternative splicing of a two intron gene in S. cerevisiae by studying the spliced isoforms of 

the two genes that are known to be alternatively spliced (i.e. DYN2 and SUS1)56,59,156. In these 

works, the regulation of alternative splicing of a specific gene was studied through chemical 

or genetic perturbations56 or changing environmental conditions59. Here I use my library to 

provide a novel unbiased examination of the potential of S. cerevisiae splicing machinery to 



alternatively splice a synthetic two intron gene. This system allows me to examine intronic 

features that may facilitate alternative splicing. 

I created a subset of the library with two short introns separated by an exon. For this set I 

chose 25 short introns (<76 nucleotides), 10 of them are the 10 shortest natural introns in S. 

cerevisiae, additional 10  were randomly chosen from all the natural S. pombe introns that fit 

to the length limits and use splice sites that are found in S. cerevisiae as well, and lastly, I 

created 5 synthetic introns with consensus splice sites, a length of 56 nucleotides, and BS-to-

3’SS distance of 20. Using these 25 short introns, I created a set of variants composed of all 

possible pairings of two introns, where the first intron was inserted at the 5’ end of the 

variable region, and the second intron at the 3’ end of the variable region, separated by an 

exon, the exon sequence was taken from the MUD1 based background sequence used for 

other parts of the library. 

Using this set of two-intron variants, I tested whether S. cerevisiae has the potential to 

alternatively splice and produce multiple spliced isoforms when given a two-intron gene. 

Such two-intron designs can result in 5 possible isoforms (Fig 21A). For each variant, I 

measured the relative frequency of each of the isoforms by aligning its predicted exon-exon 

junctions to the RNAseq reads. I observed all 4 spliced isoforms, as well as the unspliced, in 

my data (Fig 21B). Interestingly, out of 614 variants that are spliced, 130 variants have more 

than one spliced isoform observed for the same pre-mRNA sequence. This observation 

suggests that S. cerevisiae splicing machinery has the capacity to alternatively splice many 

possible two-intron sequences, and not only the two natural genes that are known to be 

alternatively spliced. This is despite the fact that its splicing machinery lacks some of the 

auxiliary factors involved in alternative splicing. 

 

To decipher which intron properties contribute to multiple spliced isoforms, I analyzed all the 

possible 100 pairs assembled from natural S. cerevisiae introns. For each of the 10 introns in 

this analysis I counted the number of variants for which I observed an isoform in which this 

intron was spliced out. Then I ranked the 10 introns according to the number variants in 

which each of them was spliced (regardless of its position as the 1st or 2nd intron). I noticed 

that multiple isoforms are observed mainly when both introns are ranked high. A single 

isoform is observed when one intron is ranked low and the other high, and when a pre-mRNA 

consists of two introns that are ranked low, splicing is hardly observed (Fig 21D).  

I next compared the abundance of splice variants that spliced either one of the two introns. 

There were two alternative hypotheses that I could test, namely that in each pair of introns 



one of them will be better spliced than the other, or that the location of the two introns in the 

gene will dictate, so that either the up-stream or down-stream introns will be better spliced. I 

notice that isoforms with only the upstream or only downstream intron spliced, appear in 

similar numbers and have similar splicing efficiency distributions (Fig 21B). Furtner, when 

comparing the proportion of spliced variants for each intron sequence between variants in 

which it was placed as the up-stream intron, and variants in which it was placed as the down-

stream intron, I see that those two measurements are in high agreement (Fig 21C), indicating 

that splicing efficiency of each intron is dependent mainly on its sequence, and less on the 

relative locations of the two introns in the gene.  

To further elucidate which features allow production of several isoforms from the same 

sequence, I used a computational model as was used for the single intron variants. In this 

case, the input features for the model are the same 39 features as for the single intron case but 

multiplied by two, as I took the set of features for each of the introns, in addition, GC content 

and intron length were calculated also for the exon skipping isoform, which yields a total of 

80 features. Similarly to the single intron case, I train a gradient boosting model, but in this 

case, I use it to predict a multi-class classification problem, where each combination of 

isoforms is considered as a different class, and a variant is assigned to a class according to the 

isoforms observed for it, ignoring their relative frequency (I exclude the “Both introns” 

isoform from this analysis as it wasn’t observed in enough samples). I use 5-fold cross-

validation technique, where each time I take 20% of the variants set as a validation set and 

train the model on the remaining 80%, the model performances are inferred by examining all 

the variants predictions when each of them was in the validation set. The model manages to 

classify correctly in 68% of the cases, with a weighted average F1 statistic of 0.656. I infer 

the most important features for each class using a Shapley value analysis as was done for the 

single-intron model (Fig 21B). In figure 21D I summarize this analysis by looking at 6 

features that had a significant contribution in at least one of the classes. First, I can see that a 

sequence is predicted to be unspliced mainly if its first 5’SS and second BS contribute 

negatively, thus preventing successful splicing of any of the 3 introns. Second, I notice that in 

order to get only “Intron 1”,  “Intron 2”, or “Exon skipping” isoform, the features for the 

spliced intron should contribute positively, but also the features unique for the other introns 

should contribute negatively. And finally, for a combination of spliced isoforms I see that all 

features should contribute positively, but specifically, the short intron length contributes the 

most. I notice that due to my design approach, short intron lengths result also in a longer exon 



between them, so it is possible that the length of the exon between the two introns is also 

important to allow alternative splicing. 

Figure 21 - Tandem two-intron designs demonstrate a capacity of S. cerevisiae to alternatively 

splice two introns. 

A. Five possible isoforms can be observed for a two-introns design. B. Distribution of isoform’s 

relative frequency for the 4 possible spliced isoforms. C. Intron performances when placed as the first 

intron Vs. placed as the second intron. Each dot represents a single intron sequence, the x-axis 

represents the proportion of variants with this intron spliced as the first intron, and y-axis axis 

represents the same for the second intron variants (Spearman correlation r=0.88 p-value=10-8). D. 

The number of observed isoforms for each of the natural S. cerevisiae intron pair variants. Each 

number represents a different intron sequence, and they are ordered according to the number of 

variants in which the intron was spliced. E. Feature importance (Shapley values) derived from a 

gradient boosting model trained on a multi-class classification problem aiming to predict which spliced 

isoforms are observed for each variant. A set of Shapley values is calculated for each class (i.e. set of 

isoforms), and I present features that have a mean absolute value >3 standard deviations in at least 

one of the classes. For each feature and each class, I present the mean absolute value multiplied by 

an “effect sign” to indicate if the feature contributes positively/negatively to produce this isoform (for 

details on “effect sign” calculation, see Materials and Methods) 

  



6.3. Part III – The economy of expressing a shared public-good compound  

A synthetic library creates a variation in the production levels of a public-good enzyme in 

yeast 

A general aspect of gene expression economy which can be studied in a systematic manner is 

the economy of production and secretion of common goods which are consumed by a 

community of cells. In unicellular organisms most of the cell’s resources are devoted to 

intracellular functions which benefit only the cell itself. Nevertheless, microorganisms mostly 

live in colonies, and some of the cell’s proteome are proteins which are secreted to the 

environment and benefit other cells in its environment. 

Secreted proteins affect the cellular economy in a more complex manner since they break the 

direct relationship between cost and benefit. A cell might invest resources in producing a 

protein which is beneficial to the colony, but a neighboring cell can enjoy this common good, 

without investing resources of its own. In the simpler case of an intra-cellular gene, a cell that 

will optimize its cost-benefit ratio will prevail, but what would be the dynamics in the case of 

a secreted gene? 

A known model system for public-good cooperation dynamics in budding yeast is sucrose 

metabolism. Yeast cells cannot intake the disaccharide sucrose into the cell, however when 

the preferred monosaccharaides glucose and fructose are not available, it can metabolize 

sucrose, by converting to glucose and fructose extra-cellularly9,157. The gene which is 

responsible for that reaction is SUC2 that expresses the enzyme Invertase, which is secreted 

to the cell’s periplasm158 where it can hydrolyze the sucrose in the media, and release the 

monosaccharide products back to the media, where they can be digested through the standard 

glucose and fructose pathways. 

In this work we wish to study how perturbations to regulatory elements that control protein 

secretion affect population dynamics in a complex population that includes strains with 

varying invertase secretion or production levels. The classic regulatory element that controls 

secretion is the signal peptide (SP)87 which is a short sequence at the N terminוד of the 

protein, enriched with hydrophobic amino acids. This sequence targets the nascent protein to 

the endoplasmic reticulum (ER) while it is being translated (Fig 22A). In addition, a recent 

study from our lab has described a new RNA regulatory motif that is presumed to modulate 

protein secretion by targeting their RNA molecules to the ER. This motif is termed Secretion-

Enhancing Cis Regulatory Targeting Element (SECReTE)93, and is defined as long repeats of 



three way periodicity of pyrimidines (i.e. long NNY repeats) (Fig 22B). SUC2 gene has both 

of these regulatory elements. 

To create a standing variation of yeast cells with varying invertase secretion levels we 

designed and created two synthetic oligo libraries19, the first introduces variations to SUC2’s 

signal peptide, and the second introduces variations to SUC2’s SECReTE motif. The two 

libraries were designed to systematically introduce different types of mutations (i.e. 

synonymous, non-synonymous, enhancing/decreasing hydrophobicity, enhancing/decreasing 

Y content etc). Each of these libraries was cloned separately to S. cerevisiae cells to create 

two SUC2 secretion libraries, through perturbations of two different mechanisms and 

regulatory elements. The SP library was designed with 4,500 variants, and the SECReTE 

library was designed with 4,800 variants.  

The two libraries were cloned separately into a yeast integrative plasmid159 that includes the 

wild-type sequence of S. cerevisiae SUC2 gene. Each library replaced the relevant region in 

the WT sequence. The plasmid library was then inserted into an S. cerevisiae strain for which 

the SUC2 in its original location was deleted, the library’s SUC2 gene was inserted to 

chromosome X, (Fig 22C). 

 

Figure 22 – Perturbations to SUC2 secretion levels using two synthetic libraries 

A. The translated signal sequence is recognized by the SRP protein that co-translationally targets the 

translating ribosome to the ER. Adapted from87 B. The mRNA transcript containing the SECReTE 

motif is recognized by a putative SECReTE binding protein that facilitates translocation of the mRNA 

to the ER. Presumably, the enhanced association of SECReTE containing transcripts to the ER 

promotes secretion93. C. Two synthetic oligo libraries were designed and synthesized, one for the 



SUC2 SP, and one for the SUC2 SECReTE motif. Each of the libraries was separately cloned and 

inserted into S. cerevisiae genome. The relative fitness of library’s variants was measured in two 

different conditions, galactose to measure differences in cost of gene expression, and sucrose to 

measure differences in both cost and invertase activity. 

 

Measuring cost of gene expression and public-good associated fitness using two competition 

assays 

To study the population dynamics of the different library strains we wished to separate the 

cost component from the benefit component of expressing the different SUC2 variants. As we 

described in section 6.1, cost of gene expression can be measured by measuring fitness 

differences between variants of unneeded gene. In the case of SUC2, it is known that the gene 

is activated by glucose repression160, but it is needed for the cell’s metabolism only when 

grown on sucrose or raffinose. Hence, if we grow the cells on galactose, they will express 

SUC2, but in this condition the gene is unneeded. So, by preforming a competition assay with 

galactose as the carbon source we could measure differences in the cost of expressing 

different SUC2 variants. Next, we wished to measure the effect of the SUC2 variation on the 

benefit from the gene, and on the population dynamics. For that purpose, we performed a 

competition assay on sucrose containing media (Fig 22C).  

Before starting the competition assay on the entire library we ran preliminary competition 

assays with three existing variants of SUC2 that differ in their SECReTE motif93. In this 

preliminary competition we noticed that the main differences in fitness between the strains 

are observed during exponential growth (data not shown). Therefore, for the SECReTE 

library we chose to run the competition experiment while maintaining the cells in exponential 

growth. This was done by diluting the cells culture every 12 hours while the culture was in 

mid-log phase (OD600 ~ 0.5).  

On the other hand, as a preliminary experiment for the SP library, we isolated specific strains 

from the library by plating and choosing single colonies. We then compared between the 

strains by measuring their growth curve during overnight growth and noticed that differences 

between those variants are manifested also in the stationary phase. Therefore, for the SP 

library the competition was done by diluting the cell culture every 24 hours when the culture 

had reached stationary phase. 

The SECReTE library competitions on both media was run for 32 generations and samples 

were taken for deep sequencing of the library’s variable region at generations 

{0,4,8,12,16,24,32}. The SP library competitions on both media was run for 90 generations 



and samples were taken for deep sequencing of the variable region at generations {0, 11, 22, 

56, 90}. Competition of each library in each growth condition was done in six independent 

repeats. 

 

SECReTE library demonstrates combination of public-good related fast dynamics, and 

slower cost related dynamics 

We first infer relative fitness of each variant in the library using log-linear regression of the 

frequency of each variant as a function of number of generations. As a first assessment for 

effect of true biological differences in the library as opposed to random noise, we analyze the 

correlation between independent repeats. In the SECReTE library competitions we notice that 

the mean pairwise correlation coefficient between repeats in the sucrose competition 

experiment (Pearson, 𝑟=0.52) is appreciably larger than the mean pairwise correlation 

coefficient in the galactose competition experiment (Pearson, 𝑟=0.29) (Fig 23A, for visual 

clarity only a single pair of repeats is presented). This result indicates that when the library is 

grown on sucrose the true biological differences between variants have stronger effect 

compared to when grown on galactose, suggesting that the modifications to the SECReTE 

motif introduced in this library indeed affect the functionality of invertase. 

 

Figure 23 – Pairwise correlations between repeats 

A. scatter plot of the SECReTE library’s variants fitness as inferred from repeat #2 Vs. repeat #3, in 

the galactose competition experiment (left, Pearson r=0.27, mean Pearson pairwise correlation 

�̅�=0.29), compared to the sucrose competition experiment (right, Pearson r=0.49, mean Pearson 



pairwise correlation �̅�=0.52). B. scatter plot of the SP library’s variants fitness as inferred from repeat 

#2 Vs. repeat #3, in the galactose competition experiment (left, Pearson r=0.69, mean Pearson 

pairwise correlation �̅�=0.66), compared to the sucrose competition experiment (right, Pearson r=0.64, 

mean Pearson pairwise correlation �̅�=0.65). 

 

Next, when comparing the variant’s fitness between the two growth conditions we notice a 

significant positive correlation between fitness on sucrose and fitness on galactose (Pearson, 

r=0.35), Figure 23A. Nevertheless, like the analysis presented in section 6.1.1, we are 

interested more in the residuals from the linear regression line between the fitness in the two 

conditions. Here, the fitness component that is common to both conditions would be the cost 

of gene expression, and differences in fitness when growing on sucrose compared to 

galactose would represent functional differences in sucrose metabolism and invertase 

activity. Therefore, the residuals of this regression line should correspond with the fitness 

derived from SUC2 benefit. Similarly to the analysis presented in 6.1.1 we define positive 

and negative fitness residual variants, as variants who consistently demonstrate positive or 

negative fitness residual across all pairwise comparisons (Fig 24A, see materials and methods 

for detailed description on positive/negative residual variants definitions). We observed 88 

positive fitness residual variants, and 89 negative fitness residual variants, in the SECReTE 

library. 

Since the variants in the library differ in their public-good production, we predict that fitness 

values of variants grown on the sucrose media will not be constant and will be dependent on 

the population composition. Therefore, we turn to look also on close-to instantaneous fitness 

measurement, in which we infer fitness from the log ratio of frequencies between consecutive 

generations. We then infer fitness for different timepoints along the competition, and plot the 

mean fitness on sucrose versus the mean fitness on galactose for these timepoints. When 

observing the scatter plot of fitness on sucrose and fitness on galactose, and the location of 

the positive/negative variants as defined above using the regression based fitness (Fig 24B), 

we observe that the positive and negative fitness residual groups present different dynamics. 

We notice that the negative group present extreme negative fitness values only at the start of 

the competition, suggesting that these variants suffer in a sucrose limiting environment but 

only until the population reaches some equilibrium. However, the positive group are a group 

of variants that increase their relative fitness as the competition proceeded, but although they 

were classified as variants with significant residuals from the regression line, we notice that 

when analyzing this group alone a significant correlation between sucrose and galactose is 



observed (Pearson, r=0.79) suggesting that the dominant mechanism contributing to fitness in 

these variants is nevertheless cost of gene expression. 

To further test what differentiates the negative fitness residual group from the rest of the 

library we compared the pyrimidine (Y) content of this group to the positive residual group 

and the entire SECReTE library. We chose to look at Y content because the SECReTE motif 

is characterized by enrichment in Ys. We notice that the negative group has significantly 

lower Y content (Wilcoxon ranksum test, p-value < 10-4) (Fig 24C), while the positive group 

has the same distribution of Y content as the rest of the library. According to our current 

understanding of the SECReTE motif, this suggests that the negative residual variants have 

lower secretion of SUC2 gene, hence we hypothesize that these variants suffer from reduced 

level of sucrose degradation product at the start of the competition because of reduced selfish 

production, until the population stabilizes in subsequent generations and these variants can 

enjoy degradation products from neighboring cells. 

Moreover we looked at enrichment or depletion of R-to-Y mutations in both the negative 

residual group and the positive residual group. We analyzed the frequency of SNPs at 

different sites both for the positive and negative group and compared them to the frequency 

of SNPs in the entire library. Position in which there was a significant enrichment or 

depletion in mutation rate are presented in Fig 24D. We notice that the negative group has 

less SECReTE enhancing mutations near the natural SECReTE motif site compared to the 

rest of the library, suggesting again that these variants have lower secretion levels. 

  



 

Figure 24 – population dynamics of the SECReTE library 

A. Scatter plot of the mean fitness as inferred from all timepoints using log-linear regression of relative 

frequency data. Positive fitness residual variants are marked in blue and negative fitness residual 

variants are marked in red (see materials and methods for how these groups were defined). Fitness in 

the two condition is weakly correlated (Pearson, r=0.35). B. Fitness on sucrose Vs. fitness on 

galactose in presented in (A), only here in each plot the fitness is derived by the log ratio of frequency 

between two timepoints separated by 8 generations. The timepoints taken for each panel are 

indicated on top of the panel. Blue and red variants are the positive or negative fitness residual 

variants as defined using the regression based fitness, exactly as described in (A). C. Distribution of 

pyrimidine (Y) content for negative/positive fitness residual variants, and for the entire library. 

Negative fitness residual variants have significantly lower Y content compared to the entire library 

(Wilcoxon ranksum test, p-value < 10-4). D.  Mutations enrichment per location for both the negative 

and positive fitness residual groups. At each position an enrichment score was calculated by the 

fraction of variants containing an R-to-Y mutation in this position in each fitness residual group, 

subtracted by the ratio of this mutation in the entire library. Positive value means that the mutation 

was enriched in this group, a negative score means that the mutation is depleted from this group. 

Only positions with statistically significant mutation enrichment score are presented (Two proportion Z 

test, corrected for multiple hypothesis using FDR value of 0.05161). The horizontal black line 

represents the location of the natural SECReTE motif of SUC2 within the library’s variable region 

(138-177).  

 

Signal peptide library also demonstrates a combination of fast and slow dynamics 

When analyzing the SP library competition experiments, we first notice that in both sugars 

there is a good correlation between repeats (mean pairwise Pearson correlation �̅�=0.66 for 



galactose, and �̅�=0.65 for sucrose, Fig 23B).  Moreover, when comparing the mean fitness 

inferred from the entire competition experiment using log-linear regression in both conditions 

we notice a high correlation between fitness on galactose and fitness on sucrose (Fig 25A, 

Pearson r=0.7). This high correlation might indicate that the dominant factor contributing to 

fitness differences in this library is the cost of gene expression. However since we predict 

that fitness differences due to invertase activity will change along time as the population 

structure changes, we also analyzed this correlation as a function of time by calculating 

“instantaneous fitness” i.e. the log-ratio of frequencies between subsequent timepoints. By 

comparing the correlation between instantaneous fitness on both sugars in the first timepoint 

and in the last timepoint we see that indeed the correlation is specifically high in the last 

timepoint (Fig 25B, Pearson r=0.3 and, 0.76 in generation 11 and 90 respectively). Now we 

wish to analyze the temporal dynamic of this correlation along the competition, however, 

since the time difference between subsequent time-points was not constant, it is not trivial to 

compare between correlation values (since during longer time period we expect the signal to 

noise ratio to increase). Therefore, in order to properly compare the correlation in 

instantaneous fitness between the two sugars across time, we decided to compare in each 

timepoint the “between-condition mean pairwise correlation”, and “within conditions mean 

pairwise correlation”. In order to compare between the two values we take the difference 

between the Fisher Z transformations162 of each correlation value, as this transformation 

transforms the correlation coefficient to approximately normal distribution. We expect to see 

a negative value for this score, as we expect the between-condition correlation to be lower, 

the more negative the score, it means that the within-condition correlation is more distinct 

than the between-conditions correlation which suggests a stronger effect for the SUC2 

functionality on fitness. We observe lower between-conditions correlation for the first 

timepoint compared to later timepoint (Fig 25C), which like in the SECReTE library case 

suggests that differences in invertase activity are more dominant at the start of the 

competition. 



 

Figure 25 - population dynamics of the signal peptide library 

A. Scatter plot between mean fitness on sucrose and mean fitness on galactose. Fitness values are 

calculated by log-linear regression across all timepoints (Pearson, r=0.7, p-value<10-100). B. Scatter 

plot between conditions of instantaneous fitness calculated as the log ratio of frequencies between 

subsequent timepoints normalized by the difference in generations between the two timepoints. The 

left panel presents the instantaneous fitness for the time period between generation 0 and generation 

11 (Pearson, r=0.3, p-value<10-100), and the right panel presents the instantaneous fitness for the time 

period between generation 56 and generation 90 (Pearson, r=0.76, p-value<10-100). C. The difference 

between the Fisher Z transformation of “between conditions mean pairwise correlation” and the mean 

of the two “within condition pairwise correlation”. Filled circles represent scores that are significantly 

lower than zero (Z-test). D. Scatter plot of instantaneous fitness Vs. total hydrophobicity score of the 

50 amino acids variable region (Kyte-Doolitle). Left panel presents the instantaneous fitness for the 

time period between generation 0 and generation 11 (Pearson, r=0.27, p-value<10-80), and the right 

panel presents the instantaneous fitness for the time period between generation 56 and generation 90 

(Pearson, r=-0.02, p-value=0.13). E. Pearson correlation coefficient between hydrophobicity score 

and instantaneous fitness on each condition. Filled circles represent statistically significant values 

(corrected for multiple hypotheses using Bonferoni correction). 

 

Signal peptide activity is associated with its hydrophobicity, therefore we decided to test a 

possible correlation between the variable region hydrophobicity score calculated using the 

Kyte-Doolitle score122, and instantaneous fitness on sucrose at different timepoints. At the 

first timepoint we observe a significant correlation between fitness and hydrophobicity 

(Pearson r=0.27, p-value < 10-80), while in the last timepoint no such correlation is observed 

(Pearson, p-value =0.13) (Fig 25D). When examining this correlation across all timepoints, 



and also for the galactose fitness measurements, we notice that a significant correlation is 

observed only in sucrose and only in the first timepoint (Fig 25E).  

Following this result, we hypothesize that in the signal peptide library, at the start of the 

competition there is an advantage for variants that secrete higher levels of invertase, but when 

the population reaches a steady state in terms of public-good production and enough 

degradation products are shared in the media, the cost component becomes more dominant. 

This conclusion goes in line with what we have seen with low Y content variants in the 

SECReTE library. 

 

  



7. Materials and methods 

7.1. Gene architecture that minimize the cost of gene expression 

Library architecture  

The synthetic library was provided to me by Goodman et al. 25 and is fully described there. In 

short, each variant in the library harbors a unique 5’ gene architecture that is composed of a 

promoter, a Ribosome Binding Sites (RBS) and an N’-terminus amino acid fusion of 11 

amino acids followed by a sfGFP gene. The library as a whole includes: two promoters with 

either high or low transcription rate. Three synthetic RBSs with strong, medium, or low 

translation initiation rates, as well as 137 different genomic RBSs that were defined as the 

20bps upstream to the ORF of 137 E. coli genes.  And finally, 137 coding sequences (CDS) 

consisting of the first 11 amino acids from the same genes. Each CDS appears in the library 

in 13 different nucleotide sequences representing alternative synonymous forms. All 

combinations amounted in 14,234 distinct library variants. 

Competition Assay 

Competition experiment was carried out by serial dilution. The library was grown on 1.2ml 

of LB + 50g/ml kanamycin at 30°C, the exact same conditions as was used in Goodman et 

al. to measure GFP expression level. We grew six parallel, independent lineages and each 

was diluted daily by a factor of 1:120 into fresh media (resulting in ~6.9 generations per 

dilution). This procedure was repeated for 12 days and samples were taken from each lineage 

every four days (~27 generations), mixed with glycerol and kept at -80°C. 

Library preparation and sequencing  

Plasmids from time zero (library “ancestor”) and all other samples were purified with a 

QIAgene mini-prep kit and used as templates for PCR to amplify specifically the variable 

region of all variants in the population. To minimize PCR and sampling biases, we used a 

large amount of template, ~500ng of DNA, and a relatively short PCR of 26 rounds. The 

forward primer (sequence: CAGCTCTTCGCCTTTACGCATATG) was paired with 5 

different reverse primers that are one bp shifted from each other to insure that library 

complexity was high enough for Illumina sequencing: 

R1: GACAATGAAAAGCTTAGTCATGGCG ; R2: 

ACAATGAAAAGCTTAGTCATGGCG 

R3: CAATGAAAAGCTTAGTCATGGCG ; R4: AATGAAAAGCTTAGTCATGGCG 

R5: ATGAAAAGCTTAGTCATGGCG 



PCR products were then run on BluePipin to capture the correct amplicon size of ~140 bps 

and remove any un-specific amplicons. Then, DNA buffer was exchanged using Agencourt 

AmPure SPRI bead cleanup protocol. Hiseq library was prepared next using the sequencing 

library module from Blecher-Gonen. et al. 2013 163. In short, blunt ends were repaired, 

Adenine bases were added to the 3' end of the fragments, barcode adapters containing a T 

overhang were ligated, and finally the adapted fragments were amplified. The process was 

repeated for each sample with a different Illumina DNA barcode for multiplexing, and then 

all samples were pooled in equal amounts and sequenced. We performed a 125bp paired end 

high output run on HiSeq 2500 PE Cluster Kit v4. Base calling is performed by RTA v. 

1.18.64, and de-multiplexing is carried out with Casava v. 1.8.2, outputting results in FASTQ 

format. 

Data processing 

De-multiplexed data was received in the form of FASTQ files split into samples. First, 

SeqPrep (https://github.com/jstjohn/SeqPrep) was used to merge paired reads into a single 

contig, to increase sequence fidelity over regions of dual coverage. The size of each contig 

was then compared to the theoretical combined length of the forward primer, the reverse 

primer and the variable region of the variants. Next, the forward and reverse primers were 

found on each contig (allowing for 2 mismatches) and trimmed out. This step was performed 

for both the forward and reverse complement sequences of the contig, to account for non-

directional ligation of the adaptors during library preparation. Then, the reverse primer was 

searched at the last 5 nucleotides of the contig to account for different primer lengths. After 

primers were trimmed, the contig was tested again for its length to ensure no indels had 

occurred. Contigs were then compared sequentially to the entire library, comparing the 

sequence of each contig to the sequence of each variant. Any contig without a matching 

variant within two mismatches or less was discarded. Contigs with more than a single 

matching variant with the same reliability were also discarded due to ambiguity. Each contig 

that passed these filters was counted in key-value data structure, storing all variants in the 

library and their frequency in each sample. These data were then used for all downstream 

analyses. 

Fitness estimation 

Fitness effect is derived from the following equation: 

𝑓(𝑡) = 𝑓(𝑎𝑛𝑐) ∙ (1 + 𝑠)𝑡 ≈ 𝑓(𝑎𝑛𝑐) ∙ 𝑒𝑠𝑡  

Where f is the variant frequency, t is the generation number and 𝑠 is the fitness effect. 



To extract fitness effect, we took the logarithm of the ratio between the frequency of a variant 

at a certain time point and its frequency at time zero. We then divided this value by the 

number of generations. This calculation was performed both for generation ~84 and 

generation ~56 

GFP expression level estimation 

GFP expression levels were taken from Goodman et al. 25 data, in which it was calculated 

using the method described in Kosuri et al.21. In short, cells were sorted into 12 expression 

bins using FACS, and in each bin the relative frequency of each variant was measured using 

deep-sequencing. The estimated expression level of each variant was then calculated by 

computing the weighted geometric mean of the bins’ median expression level, using the 

relative frequency of each variant as the bin’s weight. 

In order to validate this data, we estimated the GFP expression level from the raw data in 

Goodman et al. by fitting gamma distribution parameters (suggested before as a model to 

capture noise, or spread of expression values of a gene within an isogenic population 164) to 

the histogram of each variant’s frequencies in all bins. This gamma distribution follows this 

equation: 𝑃(𝑥) =
𝑥𝑎−1𝑒

−
𝑥
𝑏

𝑏𝑎Γ(𝑎)
 where Γ denotes the gamma function. 

These two estimation methods are highly correlated (Supplementary Figure 5C, r=0.94, p-

Value<10−200). However, we noticed that ~600 variants showed high expression levels 

according to the gamma fit method, while coming from the entire range of expression level 

using the geometric mean method. When closely examining these cases, we noticed that the 

source for the disagreement between the two methods is that these variants were observed 

only in two bins, with one of them being the highest bin, and the other not being the second 

highest. Therefore, we decided that the expression estimation for these variants is unreliable 

and excluded them from our analyses. 

Calculation of fitness residuals and classifying variants according to their positive or negative 

fitness residual sign 

We defined "fitness residual" of a variant as the difference between the observed fitness by 

FitSeq and the fitness predicted by a linear model given the variant’s GFP expression level. 

To calculate fitness residual, we performed the following steps: 

First, we filtered out variants that demonstrate a lower GFP level than 211[AU], since below 

this threshold the GFP measurement method is not sensitive to accurately measure GFP. We 

also excluded variants with a GFP level above 217.5[AU], as above this threshold the 



measurement method saturates. Notably, only variants with the “high promoter” were 

included in the analysis, since almost all “low promoter” variants did not pass the protein 

level filter. This decision was essential as the few “low promoter” variants that did pass this 

threshold show biased values of sequence features, such as a very low GC-content, which 

could mask real signals. 

Next, we fitted a linear regression model between fitness and GFP expression levels for each 

of the six independent FitSeq repeats separately at each of the last two time points 

(generations ~56 and ~84). Then, variants for which fitness residual was in the top or bottom 

5% were excluded and a new regression line was fitted in order to reach a better fit. These 

outliers were excluded only for the sake of fitting a regression line and were still included in 

our downstream analyses. Then, a fitness residual score was calculated for each variant at 

each repeat of the experiment and on each of the two time points. 

We then split the variants into two groups: positive or negative fitness residual variants. To 

account for random processes (experimental errors and drift), "positive" or "negative" class 

was assigned for a given variant only if it showed a positive/negative fitness residual sign in 

at least 5 lineages in both time points. The set of all the above filters resulted in 975 variants 

in the positive variant group and 815 in the negative variant group. 

Since we noticed that some of the negative variants have extreme negative fitness residual 

values, we further classified them as “underachievers”. Underachiever variants were defined 

as variants that repeatedly showed fitness residual values in the bottom 5% of the entire 

library. Similar to the positive/negative classification, a variant is assigned as 

“underachiever” only if it is found in the bottom 5% in at least 5 out of the 6 linages in both 

time points, which resulted in 80 variants. 

Parameter comparison between two fitness residual groups 

A one-sided Wilcoxon rank-sum test was used to compare the distributions of different 

sequence parameters between the positive and negative fitness residual groups. We also 

tested the effect size of each parameter using the “Probability of superiority” method 129 that 

calculates the probability to randomly choose a member from group A with a higher value 

than a random member from group B. 

To compare between effect sizes according to GFP expression levels, we split the positive 

and negative variant groups into three quantiles according to GFP expression levels. Then, 

the effect size for hydrophobicity or amino acid synthesis cost between positive and negative 

variants were calculated for each quantile. We then performed an empirical p-Value 



estimation by randomly choosing three data sets with the same number of variants, and 

computed the effect size at each set. This sampling was performed 104 times, and p-Value 

was estimated by counting the number of times the difference in effect sizes between the first 

and second sets and between the first and third sets were lower in the real data than the 

difference in effect sizes of the random groups. 

Calculating translation initiation rate per variant 

We estimated the translation initiation rate of each variant with the “RBS calculator” 165,166, 

which simulates initiation rates given a UTR and a coding sequence. This calculation is 

achieved by using a bio-mechanic model combining the affinity to the anti-Shine Dalgarno 

sequence of the ribosome, mRNA secondary structure of the UTR and coding sequence, and 

steric interference of the ribosome and the mRNA. 

Ribosomal mean elongation time estimation 

To evaluate codon-decoding times by the ribosome we used a published values 111, which 

were derived from ribosome profiling data 115. Mean elongation times for each of the 61 

sense codons are driven from measured ribosome density, when the ribosome A site is on a 

codon, averaged over all the appearances of the codon within mRNAs. This measurement 

estimates the translation elongation time of each codon, and its inverse which represents 

translation speed correlates significantly (r=0.46 for E. coli) with tRNA availability. The final 

score given to each variant was the harmonic mean of its elongation time values over the first 

11 amino acids. 

Folding energy estimation of mRNA secondary structure 

We calculated folding energy of mRNA secondary structure for each variant by using the 

ViennaRNA package algorithm 167. Each sequence was computed by a sliding window, 

whose starting position ranged from position -18 to position 32. The calculation was repeated 

with different window sizes (20-60bps). All calculations were done assuming a temperature 

of 30oC. 

Model for estimating translation velocity based on anti-Shine Dalgarno affinity 

The Shine-Dalgarno affinity was calculated identically to Li et al. 120. In short, for each 

position we calculated the affinity of 8-11bps upstream of that position (the distance between 

the ribosome A site and the aSD site) to the anti-Shine Dalgarno motif. The free energy of 

interaction between the aSD motif and the mRNA sequence (ΔG) was calculated for all 

possible 10mer sequences for that position using the RNA annealing function from the 



ViennaRNA package algorithm 167, and the highest affinity (lowest energy) score was used. 

We calculated the affinity for all positions for which the annealing with the aSD motif resides 

in the 11-amino acid fusion (positions 19-33) and then transformed all affinities of a given 

variable sequence to estimated ribosomal velocity as follows.  

We converted the ΔG estimates into the equilibrium constant of the interaction, K by: 

𝐾 = 𝑒−
Δ𝐺
𝑅𝑇  

Where 𝛥𝐺 denotes the SD affinity, 𝑅 denotes the gas constant and 𝑇 denotes the temperature. 

This equilibrium constant, at the nth codon along a sequence, is defined in turn, given the 

association reaction rate (𝑘𝑓) which represents the association to the current site (𝑛), and a 

dissociation reaction (𝑘𝑏) that represents the dissociation to the current site as:  

𝐾 =
𝑘𝑓𝑛

𝑘𝑏𝑛

 

The elongation velocity (𝑣) as the ribosome moves from current site 𝑛 to the n+1 site is given 

by the harmonic mean of the dissociation reaction of site 𝑛 and the association reaction of site 

𝑛 + 1:  

1

𝑣𝑛→𝑛+1
=

1

𝑘𝑏𝑛

+
1

𝑘𝑓𝑛+1

  

𝑣𝑛→𝑛+1 =
𝑘𝑏𝑛

𝑘𝑓𝑛+1

𝑘𝑏𝑛
+ 𝑘𝑓𝑛+1

 

We further assume that the association reaction rate is not dependent on the sequence, 

therefore for every 𝑛, 𝑘𝑓𝑛
= 𝑘𝑓. Introducing equations (i)-(ii) to the equation (iv), results in a 

term for the ribosomal velocity at a specific position by the anti-Shine Dalgarno affinity: 

𝑣𝑛→𝑛+1 =
𝑘𝑓 ∙ 𝑘𝑓𝐾−1

𝑘𝑓(1 + 𝐾−1)
= 𝑘𝑓

𝑒
Δ𝐺
𝑅𝑇

1 + 𝑒
Δ𝐺
𝑅𝑇

  

To calculate the average ribosomal velocity across the entire N-terminus fusion sequence of 

each library variant, we calculated the harmonic mean of the velocity values for all positions. 

The analysis was performed also at a codon resolution, taking into account only positions of 

the sequence that are the first nucleotide of codons, which yielded similar results to the 

nucleotide-based analysis. 

Amino acid property estimation of N-terminus fusion amino acids 

Hydrophobicity of each 11-amino acid N-terminus peptide was calculated according to its 

score on the Kyte-Doolittle scale 122. Amino acid cost was derived from Akashi and Gojobori 



120 in the form of the amount of energy consumed for its production in high energy ATP or 

GTP bonds. Cost was either evaluated per amino acid or summed for the whole peptide. 

Supply of amino acids were derived from Bennet et al. 121, which measured cellular 

concentrations of amino acid in exponnentially grown E. coli. Notably, two amino acids are 

missing from this table (Gly & Cys), and two amino acids are indistinguishable (Lys & Ile). 

Therefore, those 4 amino acids were excluded from the this analysis. The demand per amino 

acid was calculated by multiplying the frequency of each amino acid in each E. coli gene by 

the median ribosome profiling score of the gene 115. The sum of all genes was defined as the 

total amino acid demand. 

Amino acid enrichment in positive and negative variant groups 

To calculate the frequency of the various amino acids in the collective proteome in either the 

positive or the negative fitness residual group, we counted the occurrences of each amino 

acid in each variant. We then summed this number for each amino acid across all variants in 

each group and divided the sum by the number of variants in each group multiplied by 11. To 

quantify the relationship between amino acid enrichment and energetic-cost or availability we 

calculated the frequency ratio of each amino acid by dividing the amino acid frequency of the 

positive fitness residual group by the frequency of the negative group. We then calculated the 

Pearson correlation between the log2 amino acid enrichment ratio and the amino acid 

energetic-cost or their availability. 

Comparing fitness residual among variants with the same N-terminus fusion by Δfitness-

residual 

We defined Δfitness-residual as the difference between the fitness residual of a given variant 

with the average fitness residual of the variant group with the same N-terminus amino acid 

fusion. Therefore, ∆fitness-residual measures the expression cost of a variant normalized to 

its GFP expression level and its N-terminus amino acid sequence. We then spilt each variant 

group of the same N-terminus fusion to above-average and below-average variants and 

calculated for each sub group the mean value for six features (RNA levels, translation 

initiation rates, translation efficiency, codon decoding speed (MTDR), mRNA secondary 

structure, and anti-Shine Dalgarno affinity). For each feature, the mean value of the below-

average (x-axis) and above-average (y-axis) ∆fitness-residual groups were depicted as a 

scatter plot, in which each point represents a different N-terminus fusion. Then, the deviance 

of all dots from the identity (X=Y) line was calculated and tested for significance with a one-

tailed Student’s t-test. To compute an effect size for this enrichment, we used Cohen’s d: 𝑑 =



�̅�ℎ𝑖𝑔ℎ−�̅�𝑙𝑜𝑤

𝑆
 where �̅�ℎ𝑖𝑔ℎ\𝑙𝑜𝑤 represents the mean of the feature in the above- or below-average 

group, and 𝑆 represents the standard deviation of the feature in the entire set of library 

variants that was used in this study. 

A multiple linear regression model to predict fitness residual 

We performed a multiple linear regression using all eight features as independent variables 

(RNA levels, translation initiation rate, translation efficiency (GFP protein/mRNA), mRNA 

secondary structure, codon-decoding speed, aSD affinities, amino acid metabolic cost and 

hydrophobicity) and the mean fitness residual across six repeats of FitSeq as the dependent 

variable. The regression yielded a coefficient for each feature, which were all used in order to 

predict fitness residual of a given variant. 

As a negative control for this model we randomly shuffled each of the features in the library, 

trained a mock model on this shuffled library, and computed the Pearson correlation 

coefficient between the observed fitness residual and the expected fitness residual according 

to the mock model. In order to compute a p-Value we repeated this process 105 times, and 

counted the number of times the correlation coefficient from the mock model was higher than 

the correlation coefficient from the real model. 

To predict fitness residual of natural E. coli and B. subtilis genes, a second regression model 

was performed, in which we excluded translation efficiency (due to lack of data for the entire 

~4000 E. coli genes) and hydrophobicity (due to the fact that hydrophobic motifs in 

membrane proteins are functional, hence including this feature might lead to wrong 

estimation of membrane proteins). We also used Lasso regularization and feature selection 

method 168 with Matlab’s “lassoglm” function from the “Statistics and Machine Learning” 

toolbox to avoid overfitting of the model. The 𝜆 value was chosen as the value for which the 

deviance was one standard deviation higher than the minimum deviance achieved in a 1000-

fold cross validation. Out of the six features used for this model, none were excluded by 

Lasso method. This model performed well in predicting fitness residual of the library variants 

and a cross validation test resulted in correlation of r=0.3 (p-Value=10-10). 

This model was then used to predict fitness residual scores for natural E. coli (strain 

MG1655) and B. subtilis (strain 168) genes. For each gene of these species, we computed a 

score for each feature of the model. We used RNA levels for E. coli from a previous RNA-

seq experiment in which cells ware grown in LB and were harvested at the logarithmic 

growth phase. We used published RNA data for B. subtilis 169. Translation initiation rates was 

computed with the same initiation rate model as was used for the library variants 165,166. 

https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Dependent_variable


mRNA secondary structure, codon-decoding speed and aSD affinities were calculated as 

explained for the library variants. MTDR values for both species were taken from published 

data 111. Amino acid metabolic cost was calculated as the mean value for the entire protein, 

and for both species the same cost was assigned for each amino acid 120. Protein expression 

levels for both species were taken from the integrated datasets in Pax-Db 170.  

As a negative control for the prediction of fitness residual for natural E. coli genes, we 

generated a mock model by randomly shuffling each of the features in the library, training a 

linear regression model on this shuffled library and using it to predict fitness residual for all 

E. coli genes. We then compared the standard deviation of the fitness residual predictions by 

the real model to the one of the mock model. This analysis was repeated 105 times to 

compute a p-Value for the chance of the real model to show a higher standard deviation than 

the mock model. 

Cross validation sets 

Cross validation tests of the regression model were performed by randomly choosing training 

and test sets, in proportions of 70% and 30% of the entire library variants, respectively. In 

order to account for the fact that some of the information lays in the amino acid sequence, the 

training/test sets were also separated by the N-terminus amino acid peptide sequences with 41 

peptide sequences (~30%) chosen as test set, and the rest as training sets. 10-fold cross 

validation was performed by randomly generating ten different pairs of training and test sets. 

The results are based on the average across these 10 repeats. 

RNA fitness residual calculation 

To evaluate mRNA fitness residuals, we repeated the same calculation as described for 

fitness residual only with the mRNA levels instead of protein levels placed on the x-axis. 

 

7.2. Optimization of gene expression through promoter architecture 

Library design 

This library includes ~2000 different synthetic promoters upstream of a YFP reporter gene. 

Each promoter is composed of a cis-regulatory element (CRE) which is built from random 

ligation of different TFBSs for four different transcription factors. Each transcription factor is 

represented by three possible sites, resulting in 12 different TFBSs represented in the library. 

The four TFs represented in the library are: GCR1, MIG1, RAP1, & REB1. In addition, all 

promoter variants have a basal TATA-box containing a minimal promoter downstream to the 



CRE. In order to recognize uniquely each variant both in DNA and RNA sequencing, a 

unique barcode was added to the 3’ UTR of the reporter gene, and each barcode was paired to 

its appropriate CRE through sequencing (See Fig 8). 

I got the library as 3 separate yeast cells pools frozen in glycerol. The 3 sets represented 3 

different parts of the library, and they were separated due to the synthesis technique 

employed in the Cohen lab when creating it. After receiving the pooled libraries, I mixed 

them into a single pool. Each of the sets had different number of unique variants, an I wished 

to mix such that eventually all variants will be represented equally. Hence, before mixing I 

counted the cell density in each subpool, and mixed them in appropriate ratios according to 

the number of unique variants in each subpool. 

Growth media 

Growth media used for this part: 

 YPD - 10g/L yeast extract, 20 g/L peptone, 20 g/L glucose 

 YPD + DTT - 10g/L yeast extract, 20 g/L peptone, 20 g/L glucose, 1.7mM DTT 

 

Competition experiment 

Ten independent repeats of a competition experiment were carried out in YPD media, another 

ten repeats were carried out in a YPD+DTT media. Each repeat was diluted in 1:120 ratio 

once a day (~ seven generations), and every two days a sample was frozen from each repeat. 

The experiment lasted for 16 days (~ 112 generations). 

Following the competition experiment, genomic DNA was extracted from samples of the 

ancestral population, and days 6, and 10 of the competition experiment. 

Fitness estimation 

Fitness effect is derived from the following equation: 

𝑓(𝑡) = 𝑓(𝑎𝑛𝑐) ∙ (1 + 𝑠)𝑡 ≈ 𝑓(𝑎𝑛𝑐) ∙ 𝑒𝑠𝑡  

Where f is the variant frequency, t is the generation number and 𝑠 is the fitness effect. 

To extract fitness effect, I took the logarithm of the ratio between the frequency of a variant 

at a certain time point and its frequency at time zero. We then divided this value by the 

number of generations. This calculation was performed both for generation ~42 and 

generation ~70. 

RNA extraction, genomic DNA extraction, and next generation sequencing 



RNA extraction, cDNA synthesis, genomic DNA extraction, library preparation for next 

generation sequencing, and mapping of sequencing results were done in the same manner as 

was done for the non-coding RNA library (See section 7.3) . 

Primers used for next generation sequencing library preparation are prDSO1-7 (see table S2) 

 

7.3. Non-coding RNA library in yeast 

This section relates to results sections 6.1.3, 6.1.4, and 6.2 

Synthetic library - general design notes 

I used Agilent’s oligo library synthesis technology19 (Agilent Technologies) to produce a 

pool of 45,000 designed single-stranded DNA oligos at a length of 230 nucleotides. Each 

oligo includes two 30 nucleotides fixed homology regions at their 5’ and 3’ end for 

amplification and cloning, and a 12 nucleotide unique barcode downstream to the 5’ 

homology. This leaves an effective variable region of 158 nucleotides for each variant. The 

entire synthesized library was composed of 3 sub-libraries that are separated in the initial 

amplification stage using different homology sequences.  

The experiments and data reported in sections 6.1.3 and 6.2 are based on one sublibrary with 

24,510 variants (termed SplicingLib1). The experiments and data reported in section 6.1.4 are 

based on a second sublibrary with 13,257 variants (termed NucleotideCompLib). 

Barcodes were chosen such that the minimal edit distance between any two barcodes will be 

greater than 3 to allow for single error correction for all types of errors including 

insertion/deletion which are the common error types in oligo synthesis. 

The library was designed as a non-coding RNA library to avoid possible differences between 

variants that result from translation. Hence, for each variant, any occurrence of ATG triplet at 

any frame was mutated to avoid occurrences of a start codon. Except for cases where a 5’SS 

includes an ATG triplet, in which case, a stop codon was introduced 2 codons downstream of 

the ATG.  

Synthetic library – splicing library variants design 

The synthetic introns library is composed of several sets of variants. A first set is based on a 

combinatorial assembly of intron features. Six features were chosen to represent an intron, 

and all the possible combinations of features were combined to create a set of 5,331 synthetic 

introns. The features used for this set are: the three splice sites, 5’SS, BS, 3’SS, intron length, 

BS-to-3’SS length, and a 3’ U-enriched sequence element. For each feature, a set of few 

values was chosen, the 5’SS and 3’SS sets included all the splice sites variants that are found 



in S. cerevisiae genome (5 sequence variants for the 5’SS, and 3 for the 3’SS). The BS 

included the consensus BS sequence (TACTAAC), and three template sequences with two 

random nucleotides at the first two positions, since non-consensus BS sequences differ 

greatly in these positions (NNCTAAC, NNCTAAT, NNTTAAC). For the intron length 

feature, 5 representing lengths were chosen (73, 89, 105, 121, and 137 nucleotides), and for 

the BS-to-3’SS length 4 representing lengths were chosen (20, 30, 40, and 50 nucleotides). 

For the 3’ U-enriched sequence element, 3 sequences at different lengths were used 

(ATTTTTAA, TTTAA, TAA). In addition, For each of the splice sites, a random control 

sequence was created and a set of control variants was created by assembling the three 

control sites with all combinations of the other features.  

Full oligo sequences were based on a background sequence that was derived from the intron-

containing region of MUD1 gene from S. cerevisiae genome (positions 4-161 in MUD1 open 

reading frame), followed by randomization of its three splice sites. Each oligo sequence was 

created by placing a 5’SS 5 nucleotides downstream of the effective variable region instead 

of the background sequence in this position. Then a BS, U-rich element, and 3’SS sequences 

were placed in a similar manner according to the chosen length parameters of each variant. In 

addition, a set of 2,094 variants was created by taking only the consensus splice site 

sequences at different lengths and incorporating them within 9 additional background 

sequences, the first two from UBC9, and SNC1 genes in a similar manner, and the remaining 

7 based on random sequences.  

A second set is based on mutating consensus sites’ variants from the previous set. 3,607 

variants were created by introducing random mutations to splice site sequences. 1,344 

additional variants were created by mutating positions adjacent to splice sites with the aim to 

create a stem-loop RNA structure at the splice sites. This aim was achieved by introducing 

random mutations and selections in-silico of variants for which RNA secondary structure 

tool167 predicts that the splice site will be base-paired within a stem-loop structure. 

A third set was based on 1,297 naturally occurring introns from 11 yeast species. I first took 

all the endogenous intron sequences from S. cerevisiae155 that fit into my 158 nucleotides 

effective variable region (149 introns). Each intron was inserted with a flanking region of 5 

nucleotides from each side on the background of the MUD1 derived background sequence 

described above. Next, I took intron sequences from orthologs of these intron-containing 

genes from a set of 10 other yeast species and added them to the library in the same manner. 

Intron annotations were taken from48. In addition, I also incorporated into the library a set of 

200 randomly chosen introns from S. pombe that have S. cerevisiae-like splice sites. For the 



S. cerevisiae and S. pombe sets, I also created a set of 3,151 variants with random mutations 

in introns’ splice sites. 

Finally, a fourth set of 1,467 variants was created by combining two intronic sequences to 

create synthetic two-intron variants. For this set, I chose all the introns from S. cerevisiae 

genome shorter than  76 nucleotides (10 introns), plus 10 randomly chosen short introns from 

S. pombe genome and an additional 5 synthetic introns based on combining consensus splice 

sites on the background of a random sequence. Each variant sequence was created by placing 

two introns on the background of the MUD1 sequence, the first intron at the 5’ end of the 

variable region, and the second at the 3’ of the variable region. All possible pairs of intronic 

sequences were created and introduced to the library. In addition, for each two-intron variant, 

a corresponding variant of a joined long intron was created by removing the BS and 3’SS of 

the first intron, and the 5’SS of the second intron. These sequences were replaced by the 

corresponding sequence in the MUD1 background sequence. 

Synthetic library – nucleotide composition variants design 

The nucleotide composition library was designed by systematically creating random 

sequences with a defined nucleotide composition. I defined 405 sets of quartets representing 

the relative frequency of each of the four nucleotides. For each such set I randomly chose 25 

158 nucleotides sequences taken from the distribution defined by the composition set. In 

addition, when assigning the 12 nucleotide barcode to this library I chose barcodes with 

similar nucleotide composition to be assigned to each variant. 

 

Construction of master plasmid 

In order to integrate the library into S. cerevisiae genome, I used a Cre-Lox based method138. 

I built a master plasmid to clone the library into, which is compatible with this method. The 

master plasmid was based on pBAR3138. A Lox71 site was cloned into pBAR3 to allow Cre-

Lox recombination using restriction-free cloning method171 (primers prDS20, prDS21) to 

create pDS101. Then I cloned into the plasmid a background sequence that will serve as the 

library’s non-coding gene. A non-coding sequence was designed by taking the sequence of 

MUD1 intron-containing gene from its transcription start site to its 3’ UTR(-70 to 1106, 

relative to the start codon), excluding a region around the intron into which the oligo library 

would be cloned (-45 to 211, relative to start codon). The background sequence was then 

mutated at any occurrence of ATG to avoid start codons, and additional 27 sites were 

mutated to reduce homology to the endogenous copy of MUD1 in the genome. In the cloning 



site of the oligo library two 20 nucleotides sequences were added, to be used as homology 

sequences during library cloning. Upstream to the background gene I added a synthetic 

promoter taken from a published promoter library that was chosen for its high expression 

level and low noise (Promoter id #2659, from Supp table 3 in Sharon et al.20). Downstream to 

the background gene I added ADH1 terminator sequence. The entire promoter+background 

gene+terminator construct (total length of 1,397 nucleotides) was synthesized as a Gene 

Fragment (Twist Bioscience). The synthesized background gene was cloned into pDS101 

using NEBuilder HiFi DNA Assembly (New England Biolabs) to create pDS102 (primers 

prDS22, prDS23). 

Synthetic library - cloning and amplification of plasmid library 

Synthetic oligos were first amplified according to Agilent’s recommendations172. Library 

oligos were amplified using sublibrary specific homology plus 4 different 8 nucleotide 

sequences that were inserted to serve as an index for control purposes, such that every unique 

variant could be measured independently 4 times, and a homology sequence to the master 

plasmid for cloning. 

The library was amplified in 4 PCR reactions, Each PCR reaction included: 

 25 ul - KAPA HiFi HotStart ReadyMix (Roche) 

 1.5 ul - 10uM forward primer (prDS45-48 for SplicingLib2, prDS55-58 for 

SplicingLib1) 

 1.5 ul - 10uM reverse primer (prDS49 for SplicingLib2, prDS59 for SplicingLib1) 

 200 pM of DNA oligo library 

 H2O to complete volume to 50ul 

 

PCR program: 

 95℃ 3 min 

 98℃ 20 sec 

 58℃ 15 sec 

 72℃ 15 sec 

 Repeat steps 2-4 for 15 cycles 

 72℃ 1 min 

After amplification, the PCR product was cut from gel, purified using Wizard SV Gel and 

PCR Clean-Up System (Promega), and all 4 reactions were pooled together. The master 

plasmid pDS102 was linearized using PCR reaction (primers prDS62, prDS63). Then a 



plasmid library was assembled using 4 independent reactions of NEBuilder HiFi DNA 

Assembly (New England Biolabs) to avoid biases in assembly that might affect the library’s 

distribution. 

From this stage, I followed Agilent’s library cloning kit protocol173  steps 2-7. In short, the 

plasmid library was purified using AMPure XP beads (Beckman Coulter), then inserted to 

electrocompetent E.coli cells (ElectroTen-Blue, Agilent Technologies) using electroporation. 

Then bacterial cells were inoculated into two 1 liter low gelling agarose LB bottles, in order 

to grow isolated colonies in 1-liter volume. After 48 hours of growth in 37oC bacterial cells 

were harvested using centrifugation, and cells were grown overnight on liquid LB media in 

37oC. Finally, the amplified plasmid library was extracted from bacterial cells using 4 

reactions of Midiprep kit (Macherey-Nage NucleoBon Xtra Midi Plus). 

Growth media 

Growth media used in this work: 

 YPG - 10g/L yeast extract,  20 g/L peptone, 20 g/L galactose 

 YPD - 10g/L yeast extract,  20 g/L peptone, 20 g/L glucose 

 SC complete - 6.7 g/L nitrogen base without aminoacids, 20 g/L glucose, 1.5 g/L 

amino acid mix 

 SC -URA - 6.7 g/L nitrogen base without aminoacids, 20 g/L glucose, 1.5 g/L URA 

drop-out mix 

Yeast strain construction 

The yeast strain for which the library was inserted was based on SHA185, S. cerevisiae strain 

with Cre-Lox landing pad  (derived from BY4709, ura3Δ ybr209w::GalCre-KanMX-

1/2URA3 -lox66) kindly supplied to me by Sasha F. Levy’s lab. In order to measure the 

effect of the library’s synthetic intron on splicing efficiency of other intron-containing genes 

in-trans I inserted into the genome a fluorescent reporter cassette. A cassette of mCherry, and 

intron-containing YFP was taken from an existing reporter library that includes all natural 

introns from S. cerevisiae genome64. From this library I chose an intron with medium splicing 

efficiency (YDL108W intron) such that it will have potential to increase or decrease its 

efficiency. 

As part of this work I measured the relative fitness of each variant in the library using a 

competition assay. I did not want the intron-containing reporter to be expressed during the 

competition assay to avoid any feedback effect due to differential expression of the reporter. 



Therefore, I replaced the promoter of the intron-containing YFP with an inducible CUP1 

promoter. 

The modified reporter cassette was assembled from three fragments using NEBuilder HiFi 

DNA Assembly (New England Biolabs). The mCherry fragment, and YFP-NAT fragment 

were amplified from the intron-containing reporter strain kindly supplied to me by Maya 

Schuldiner’s lab. CUP1 promoter fragment was amplified from BY4741 S. cerevisiae strain 

(primers prDS1, prDS6-10). The assembled cassette was transformed to the HO locus of 

SHA185 S. cerevisiae strain to create yDS101 strain, and was plated on YPD+NAT agar 

plates for selection. 

Synthetic library - integration into yeast genome 

Transformation of the plasmid library to yeast cells was done using a Cre-Lox based high 

throughput genomic integration method138, that inserts the plasmid sequence into the 

YBR209W dubious open reading frame. yDS101 yeast cells were transformed with 500ug 

plasmid library and grown overnight in YPG media to induce Cre expression. Then cells 

were plated on selective media (SC-Ura) approximately 50 plates per transformation. I 

counted the number of colony-forming units by plating diluted samples and got 1.5106 CFUs 

for SPlicingLib1, and 0.9105 CFUs for SplicingLib2 which are ~60 and ~50  times the 

number of unique variants in the library accordingly. 

Flow cytometry sorting to determine YFP fluorescence levels of library variants 

In order to measure YFP fluorescence levels of each variant in the library I used a FACS 

sorting assay followed by deep-sequencing of each bin. Yeast library cells were grown for 24 

hours in SC complete media, and then diluted to fresh SC complete + 100uM Copper(II) to 

induce YFP expression, and grown overnight, dilution ratio was calculated such that the 

culture will reach a cell density of 107 cells/ml (mid-log phase) the morning after.  

Cells were sorted using BD FACSAria FUSION in the Weizmann institute flow cytometry 

unit. Cells were sorted into 12 equally populated bins according to their YFP/mCherry ratio. 

YFP fluorescence level represents the in-trans splicing efficiency, and mCherry is used to 

normalize for variation between cells. In each bin I sorted 3105 cells, and then grown them 

overnight before harvesting the cells for genomic DNA extraction. 

YFP fluorescence levels were measured only for SplicingLib1. 

Pooled competition assay to measure relative fitness 



To measure the relative fitness of each variant in the library I used a pooled competition 

assay, followed by deep sequencing of the library’s barcode. The competition was done in 3 

independent repeats. The library was grown in ~3ml of SC complete media + Doxycycline to 

prevent bacterial contamination in 15 ml falcon tubes at 30oC. Once every 24 hours, 96ul of 

the culture were transferred to 2.98ml of fresh media. Then 1.5ml of the grown culture from 

the previous day, was centrifuged, and the pellet was frozen for DNA extraction. I conducted 

the competition for 20 days, which accounts for 100 generations. 

RNA extraction, cDNA synthesis, and genomic DNA extraction 

Total RNA of the library cells was extracted in two independent repeats. Library cells were 

grown overnight in SC complete media, and then diluted to a fresh media by 1:100 and 

grown for an additional 6 hours until they reached OD600 of 0.5, such cells are harvested in 

mid-log phase. The cell culture was centrifuged for 45 seconds at 4,000g and the pellet was 

immediately frozen in liquid nitrogen. 

RNA was extracted using MasterPure Yeast RNA Purification Kit (Lucigen), and treated 

with TURBO DNase (ThermoFischer) to remove any residues of genomic DNA. I then 

synthesized cDNA using reverse transcription with random primers using qScript Flex cDNA 

Synthesis Kit (QuantaBio).  

To normalize RNA levels by the relative frequency of each variant in the sample, I extracted 

genomic DNA from the same samples used for RNA extraction. Cells were harvested and 

frozen at mid-log the same as for RNA extraction. In addition, genomic DNA was also 

extracted from frozen samples taken from the FACS sorting, and competition experiments. 

DNA was extracted from all samples using MasterPure Yeast DNA Purification Kit 

(Lucigen).  

Next-generation sequencing - library preparation 

Both cDNA and genomic DNA samples were prepared for sequencing in the same manner. I 

used a two-step PCR protocol to amplify the library’s variable region and link it to Illumina’s 

adaptors with indexes. 

The first PCR reaction was used to amplify the variable region and link homology sequences 

to Illumina’s adaptors, I performed 8 parallel reactions to each sample to reduce PCR biases. 

I used 6 different forward primers each with one extra nucleotide, to create shifts of the 

amplicon sequence to avoid low complexity library.  

Each reaction included: 

 25 ul - KAPA HiFi HotStart ReadyMix (Roche) 



 1.5 ul - 10uM forward primer (prDS137-142) 

 1.5 ul - 10uM reverse primer (prDS143) 

 100ng DNA 

 H2O to complete volume to 50ul 

 

PCR program: 

 95℃ 3 min 

 98℃ 20 sec 

 58℃ 15 sec 

 72℃ 15 sec 

 Repeat steps 2-4 for 20 cycles 

 72℃ 1 min 

Next, I pooled all 8 reactions for each sample and purified the PCR product using AMPure 

XP beads (Beckman Coulter). The second PCR was used to link specific indexes to each 

sample so I can multiplex several samples in a single sequencing run.  

Each reaction included: 

 25 ul - Phusion High-Fidelity PCR Master Mix with HF Buffer (New England 

Biolabs) 

 2.5 ul - 10uM forward primer (prDS144) 

 2.5 ul - 10uM reverse primer (prDS145) 

 1-5ng DNA 

 H2O to complete volume to 50ul 

 

PCR program: 

 98℃ 30 sec 

 98℃ 10 sec 

 62℃ 20 sec 

 72℃ 15 sec 

 Repeat steps 2-4 for 15 cycles 

 72℃ 5 min 

Next, I purified the PCR product using AMPure XP beads (Beckman Coulter), quantified 

final concentration using Qubit dsDNA HS (ThermoFischer), diluted all samples to 4nM, and 

pooled together all the samples. NGS library was sequenced in Illumina NextSeq 500 system, 



using 150x2 paired-end sequencing. I obtained a total of 13.9, 12 million reads for the two 

RNA samples of SplicingLib1, and 1.9, 1.9 million reads for the two corresponding DNA 

samples, and 1.6, 2 million reads for the two RNA samples of SplicingLib2, and 0.25, 0.2 

million reads for the two corresponding DNA samples. Samples from the competition assay 

had average coverage of 10 million reads per sample, and samples from the FACS sorting 

assay had average coverage of 4 million reads per sample. 

Mapping sequencing reads to the library’s variants 

Sequencing reads from all samples were processed the following way: I first merged paired-

end reads using PEAR174, next I trimmed homology sequences and demultiplexed the reads 

according to the 4 control indexes using Cutadapt175, then I clustered all unique reads using 

‘vsearch --derep_prefix’176. 

All the unique reads were mapped to a library variant according to the first 12 nucleotides in 

the read, which are the designed barcode. A read was mapped to one of the library’s variants 

by searching the barcode with minimal edit distance to the read’s barcode. If this minimal 

distance was <3, and only a single library barcode is found in this distance, the read was 

aligned to this variant. 

Data analysis 

All data analysis except the gradient boosting model were done in Matlab (R2018b). Gradient 

boosting modeling was done in Python 3.7. 

Computing splicing efficiencies 

For each variant, the mapped reads obtained from the RNA sequencing were first classified 

into three possible types: unspliced, intended spliced isoform, and undetermined. A read was 

classified into one of these types using an alignment of 40 nucleotide sequences representing 

exon-intron, and exon-exon junction sequences. I aligned each read to the reference junction 

sequences using local Smith-Waterman alignment (swalign function in Matlab), and a 

normalized alignment score was defined the following: 

𝐽𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =
𝑆𝑊(𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑎𝑑)

𝑆𝑊(𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
 

If the normalized score was >0.8 I infer the junction is positively aligned to the RNA read. 

A read was classified as unspliced if it was aligned to the exon-exon junction, and not aligned 

to the two exon-intron junctions. A read was classified as ‘intended spliced isoform’ if it was 

aligned to the exon-exon junction and not to the two reference exon-intron junction. All other 

reads were classified as undetermined. 



Intended splicing efficiency for each variant was then calculated for each index according to: 

𝑆𝐸 =
𝑠𝑝𝑙𝑖𝑐𝑒𝑑 𝑖𝑠𝑜𝑓𝑜𝑟𝑚 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑅𝑁𝐴 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒
 

A final splicing efficiency value for each variant was then set by taking the median between 

indexes in each repeat and then taking the mean between the two repeats. 

The undetermined reads were further analyzed to search for unintended spliced isoforms, 

meaning, isoforms that result from splicing of an intron different than the designed intron, 

hence no exon-intron reference junction could be defined. Each read was aligned against the 

full reference design with the following parameters to the Smith-Waterman algorithm 

(Gapopen = 100, ExtendGap=1) in order to allow for alignment with long uninterrupted gaps, 

if the normalized alignment score was <0.7 and the number of mismatches in the alignment 

was <6, a read was set as unintended spliced isoform. Then the 5’ and 3’ end of the intron 

were set according to the ends of the uninterrupted gap.  

For each variant, unintended isoforms were clustered according to their 3’ and 5’ intron ends, 

and for each cluster, I calculated the splicing efficiency as described above for the intended 

spliced isoforms. Unintended spliced isoforms were counted only for isoforms with splicing 

efficiency higher than 0.01. 

Computing two-intron spliced isoforms ratio 

For the set of two-intron variants, I needed to classify each read to one of five possible 

isoforms: unspliced, intron 1, intron 2, exon-skipping, or ‘both introns spliced’. Reads were 

classified into one of these isoforms according to junction’s alignment as described above. A 

read was classified to an isoform according to the following conditions: 

 Intron 1 - positive alignment to the exon1-exon2 junction, and negative to the exon1-

intron1 and intron1-exon2 junctions. 

 Intron 2 - positive alignment to the exon2-exon3 junction, and negative to the exon2-

intron2 and intron2-exon3 junctions. 

 Exon-skipping - positive alignment to the exon1-exon3 junction, and negative to the 

exon1-intron1 and intron2-exon3 junctions. 

 Both introns - positive alignment to the concatenated exon1-exon2-exon3 junction, 

and negative to all the 4 exon-intron junctions. 

 Unspliced - negative alignment to both exon1-exon2 and exon2-exon3 junctions, and 

positive alignment to all 4 exon-intron junctions. 

 



Then the splicing ratio of each isoform was determined by the ratio of its spliced isoform 

abundance and the total RNA abundance. 

Total RNA abundance, and data filtering 

Genomic DNA levels were used to determine total RNA abundance, and to filter outlier 

spliced isoforms. 

To determine total RNA abundance I wish to normalize by the variant’s frequency in the 

population. Hence, Total RNA abundance of variant x was determined according to: 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑁𝐴 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒(𝑥) = log10 (
𝑅𝑁𝐴 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥)

𝐷𝑁𝐴 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥)
) 

Some RNA read alignments might be inferred as spliced isoforms due to errors in synthesis, 

or systematic errors in alignment. Therefore, the splicing efficiency calculation was done also 

on the DNA samples, and if a variant had an intended or unintended splicing efficiency 

higher than 0.05 in the DNA samples the corresponding value was set to zero. 

Inferring YFP fluorescence levels of each variant 

Fluorescence levels of each variant were inferred using the same method described in 

(Kosuri et al. 2013). In short, I mapped each read to one of the library’s variants using 

barcodes as described above. Then I normalized the read count in each bin by the total 

number of reads in the bin to get the relative frequency of each variant within the bin 𝑓𝑖𝑗 fij.  

𝑓𝑖𝑗 =
𝑟𝑒𝑎𝑑𝑠𝑖𝑗

∑ 𝑟𝑒𝑎𝑑𝑠𝑖𝑗𝑖
 

Then for each variant I normalized the read frequency in a bin, by the sum of frequencies 

across all bins, to get its relative representation in each bin 𝑎𝑖𝑗 . 

𝑎𝑖𝑗 =
𝑓𝑖𝑗

∑ 𝑓𝑖𝑗𝑗
 

Then, the fluorescence level for each variant 𝑌𝑗 was calculated by taking the weighted 

geometric mean of fluorescence levels across bins, where 𝑎𝑖𝑗  is the weight of bin 𝑗, and 𝑚𝑗 

is the median YFP fluorescence level of bin j. 

𝑌𝑗 = 𝑒∑ 𝑎𝑖𝑗 log(𝑚𝑗)𝑗  

http://f1000.com/work/citation?ids=1028938&pre=&suf=&sa=0


Inferring relative fitness from competition assay 

Relative fitness of each variant in the library was inferred from sequencing 5 time points 

along a 20 days competition assay. I sequenced samples from days: 0,1,2,17,20 which 

correspond to generations 0,5,10,85,100. I mapped each read to one of the library’s variants 

using barcodes as described above. 

For each sample I calculated the relative frequency of each variant, by normalizing the read 

count of each variant by the total read count of this sample. Then for each variant I calculated 

fitness by performing log-linear regression between the vector of frequencies for each 

variant, and the vector of generations. The fitness is then taken as the slope of this regression. 

The competition was done in 3 independent repeats, and in addition each variant was cloned 

with four 8 nucleotides sequence which serves as an index, to allow me to detect outliers that 

might result from beneficial mutations in-trans. When looking at correlations between 

repeats and indexes I see weak positive correlations. So, I wanted to examine only variants 

that present reproducible fitness measurements. For each variant I infer 12 fitness 

measurements (3 repeats times 4 indexes). I calculate the mean  and standard deviation  of 

this fitness vector for each variant, and consider only variants for which the coefficient of 

variation is smaller than 1 (<1), and the standard deviation is smaller than 0.01 (<0.01). 

This method was used both for the synthetic intron library (section 6.1.3) and the nucleotide 

composition library (section 6.1.4). 

3’SS avoidance calculation 

For each of the 11 yeast species, I examine the frequency of the 3’SS sequence motif, to 

check if it is avoided near introns’ 3’ end. First, I calculate the frequency of the two major 

3’SS sequences ([C/T]AG) at positions relative to the introns' 3’ end. For that purpose, in 

each species, I register the sequences of all the intron-containing genes at their intron’s 3’ end 

and set the end of the intron as position 0. Then, at every position downstream or upstream to 

the intron end, I count the number of occurrences of the two 3’SS sequences and divide it by 

the number of introns in each species. 

Then I test if there is a statistically significant depletion of this motif at a window of 30 

nucleotides upstream or downstream of the intron end. I perform the statistical using 

sampling of random control sets. Each control set includes N random positions from coding 

regions in the same genome, where N is the number of introns in a species. Those positions 

are set as the reference positions at which I register N sequences and measure the 3’SS motif 

frequency around them. I randomly sample 105 such control sets, and then I count the number 



of sets for which the mean frequency within a window of 30 nucleotides is lower than the 

mean frequency in the true introns set. p-value is defined according to: (𝑓𝑚𝑜𝑡𝑖𝑓
𝑖𝑛𝑡𝑟𝑜𝑛𝑠 and 𝑓𝑚𝑜𝑡𝑖𝑓

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

are the frequency of the 3’SS motif at the true introns set, or the control set accordingly) 

𝑝 − 𝑣𝑎𝑙𝑢𝑒(𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚) = [ ∑ 𝑓𝑚𝑜𝑡𝑖𝑓
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

−3

𝑖=−32

< ∑ 𝑓𝑚𝑜𝑡𝑖𝑓
𝑖𝑛𝑡𝑟𝑜𝑛𝑠

−3

𝑖=−32

] ∙ 10−5  

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒(𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚) = [∑ 𝑓𝑚𝑜𝑡𝑖𝑓
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

30

𝑖=1

< ∑ 𝑓𝑚𝑜𝑡𝑖𝑓
𝑖𝑛𝑡𝑟𝑜𝑛𝑠

20

𝑖=1

] ∙ 10−5  

 

A computational model for predicting single-intron splicing efficiency 

I used a gradient boosting regression model to predict splicing efficiencies of library variants. 

The gradient boosting implementation is based on LightGbm152  library for Python, and the 

feature importance inference is based on SHAP154 library for python. 

Each variant is characterized by a set of 39 features (see table S1). I took a set of 15,516 

variants that includes all the designed single intron variants, excluding negative controls and 

the 1,704 variants set with identical intron features. This set was randomly divided into a 

training set composed of 75% of the variants and a test set with the remaining 25%. I then 

trained the model on the training set using 5-fold averaging cross-validation technique153, 

meaning, I divided the training set to 5 subsets, each time training the model on 4 of 

them,  using the fifth as a validation set, and predicting the splicing efficiency value for the 

test set. Thus, creating 5 different predictions for the test set, which I next averaged to create 

a single prediction. 

The parameters given to the model are the following: 

 Number of leaves - 50 

 Learning rate - 0.1 

 Feature fraction - 0.8 

 Bagging fraction - 0.8 

 Bagging frequency - 5 

 Number of boost rounds - 500 

 Number of early stopping rounds - 5 

 



Feature importance was inferred by running Shapley value analysis154 on the training set for 

each of the 5 k-fold iterations, followed by averaging the Shapley values over the 5 iterations. 

A computational model for predicting two-intron spliced isoforms 

I used gradient boosting classification to predict which set of isoforms will be produced from 

a two-intron variant. The gradient boosting implementation is based on LightGbm library for 

Python, and the feature importance inference is based on SHAP library for python. 

I took a set of 1,414 two-intron variants, and each variant was characterized by the 39 

features of each of its two introns (the same features as for the single intron variants, see table 

S1), in addition, the GC content and intron length of the exon-skipping intron were also 

added as features to create a set of 80 features (39 features for each of the two introns, plus 2 

extra features for the “exon-skipping” intron). I then classified the variants according to the 

splice isoforms seen for each variant in the data (excluding the ‘both introns spliced’ isoform 

because there were not enough cases for it). Each class is characterized by a set of isoforms 

that appear together for the same variant, the isoforms are namely, intron 1, intron 2, and 

exon-skipping. 

In this classification task, I are interested specifically in the feature importance, so I trained a 

model on the entire set using 5-fold averaging cross-validation technique as described above. 

The Shapley values analysis outputs a set of Shapley values for each feature, for each of the 8 

classes. I are looking for features that have a high contribution in at least one of the classes. 

So, I decided to look only at features that have an absolute mean Shapley value greater than 3 

times the standard deviation of all Shapley values, in at least one of the features. I find 6 such 

features (Fig 21D). Then for each of these features in each of the classes, I present the 

absolute mean Shapley value which presents the total importance of this feature for this class, 

multiplied by the feature importance sign. A positive sign means that a variant that has a 

value in this feature which contributes positively to splicing efficiency, is more likely to be 

found in this class, while a negative sign, means that a variant that has a value in this feature 

that contributes negatively to splicing efficiency is likely to be found in this class. Feature 

importance sign is calculated by computing the Pearson correlation between the feature 

values and the Shapley values both for the single-intron set described above, and the two-

intron set for each class described here. If the two correlations have the same sign (meaning, 

the feature has the same effect as in the single intron case), the feature importance sign is set 

to ‘1’, otherwise, if the two correlations have opposing signs, the feature importance sign is 

set to ‘-1’. 



7.4. Yeast SUC2 secretion libraries 

Strains and plasmids 

All Saccharomyces cerevisiae strains used for this part are based on the BY4741 (MATa 

his3Δ1, leu2 Δ 0, met15 Δ 0, ura3 Δ 0) genetic background. The library was inserted on a 

background of deletion of the natural copy of SUC2 gene, so the strain used for the library 

construction was BY4741 ΔSUC2::NAT.  

 

pGS2223 – Plasmid created for the construction of the Suc2 secretion variant library. It is 

based on the integrative plasmid pCfB2223 from the EasyClone 2.0 Yeast Toolkit159, which 

includes a Kan resistance gene and homologous regions for an integrative site on 

chromosome X.33 The WT SUC2 gene was cloned into this plasmid to create pGS2223 using 

the NEBuilder HiFi DNA Assembly according to its reaction protocol. 

Growth media 

 YPD - 10 g/L yeast extract, 20 g/L peptone and 20 g/L glucose. 

 YP-Gly - 10 g/L yeast extract, 20 g/L peptone, 30 g/L glycerol. 

 SD - 6.7 g/L nitrogen base, 1.5 g/L mix of all amino acids and 20 g/L glucose. 

 SC-sucrose - 6.7 g/L nitrogen base, 1.5 g/L mix of all amino acids and 20 g/L sucrose. 

 SC-low sucrose- 6.7 g/L nitrogen base, 1.5 g/L mix of all amino acids, 0.5 g/L 

sucrose, and 0.05 g/L glucose. 

 SC-low galactose- 6.7 g/L nitrogen base, 1.5 g/L mix of all amino acids, 1 g/L 

galactose 

 LB – Media composed of tryptone 10 g/L, yeast extract 5 g/L, Nacl 10 g/L. 

Cloning of plasmid sub-libraries 

~18,000 DNA fragments of 300bp each, that contain the designed sequences, were ordered 

from Twist Bioscience. From these fragments, 200bp-long oligos were amplified into sub-

libraries based on their location in the SUC2 gene, with the middle 150bp being the variable 

region. The 100bp that were not amplified are not part of the SUC2 gene and were relevant 

for a previous method that was tried for cloning the secretion variant library, which proved 

not to work for our needs. 

 

For the SECReTE sub-library each PCR reaction included: 

 25ul Phusion High-Fidelity PCR Master Mix 



 7.5 ul 10uM F primer (primers prGS3, prGS5 table S2) 

 7.5 ul 10uM R primer (primers prGS4, prGS6 table S2)  

 0.75 ul library DNA 

 ddW: complete volume to 50ul 

PCR program: 

 98℃ - 30 sec 

 98℃ - 10 sec 

 51℃ - 20 sec  

 72℃ - 30 sec 

 Repeat steps 2-4 for 20 cycles 

 72℃ - 10 min 

For the SP sub-library each PCR reaction included: 

 25ul Phusion High-Fidelity PCR Master Mix 

 11.5 ul 10uM F primer (prGS1, table S2) 

 11.5 ul 10uM R primer (prGS2, table S2)  

 0.2 ul library DNA 

 ddW: complete volume to 50ul 

PCR program: 

 98℃ - 30 sec 

 98℃ - 10 sec 

 47℃ - 20 sec  

 72℃ - 30 sec 

 Repeat steps 2-4 for 20 cycles 

 72℃ - 10 min 

 

In parallel, the backbone plasmid pGS2223 (that the oligos will later be cloned into) was 

created by cloning the WT SUC2 gene into the linearized integrative plasmid pCfB2223 from 

the EasyClone 2.0 Yeast Toolkit159, using NEBuilder HiFi DNA Assembly cloning kit. 

The linearization PCR reaction included: 

 25ul KAPA HiFi HotStart 

 1.5 ul 10uM F primer (prGS13, table S2) 

 1.5 ul 10uM R primer (prGS14, table S2)  

 25 ng plasmid DNA 

 ddW: complete volume to 50ul 

PCR program: 

 95℃ - 3 min 

 98℃ - 20 sec 

 56℃ - 15 sec  

 72℃ - 5 min 

 Repeat steps 2-4 for 25 cycles 

 72℃ - 9 min 

 

 



pGS2223 was then linearized, specific to each sub-library location, by performing a PCR 

reaction that amplified the vector using primers in opposite directions to each other, which 

then removed the relevant variable region.  

Each such vector linearization reaction included: 

 25ul KAPA HiFi HotStart 

 1.5 ul 10uM F primer (primers prGS15, prGS17, prGS19, table S2) 

 1.5 ul 10uM R primer (primers prGS16, prGS18, prGS20, table S2)  

 25 ng plasmid DNA 

 ddW: complete volume to 50ul 

PCR program (for SECReTE library): 

 95℃ - 3 min 

 98℃ - 20 sec 

 50℃ - 15 sec  

 72℃ - 5 min 

 Repeat steps 2-4 for 25 cycles 

 72℃ - 9 min 

PCR program (for SP library): 

 95℃ - 3 min 

 98℃ - 20 sec 

 49℃ - 15 sec  

 72℃ - 1 min 

 Repeat steps 2-4 for 25 cycles 

 72℃ - 9 min 

 

The amplified oligo sub-libraries were cloned into the relevant linearized plasmids using 

NEBuilder HiFi DNA Assembly cloning kit with a 1:2 vector:insert ratio, replacing the 

removed region. The product was then cleaned with 1.5X AMPure XP beads according to the 

one-sided manufacture protocol. 

Bacterial transformation of sub-libraries 

The clean product of the plasmid sub-libraries was transformed by electroporation into 

ElectroTen-Blue Electroporation Competent Cells (Agilent). For each sub-library, between 4-

8 electroporation reactions were performed (depending on the resulting efficiency) and 5.5ul 

of the purified plasmids was added per reaction. The electroporation protocol was used from 

the Agilent’s library cloning protocol173. In this protocol, the plasmid DNA was added to 

thawed ElectroTen-Blue Competent Cells and moved to a chilled cuvette which was then 

placed in the electroporator. After the cells were electroporated, they were immediately 

resuspended in a rich medium and moved to a fresh tube to recuperate in a shaking incubator 

set at 37˚c for one hour. Next, the cells were plated on 20-30 LB+amp plates for selection. 

The plates were then scraped and all colonies from the same sub-library were pooled together 



reaching an estimated 1012 cells suspended in ~40-60 ml of DDW (2ml was used to scrape 

each plate). The estimated cell count of 1012 is based on the ~106 single colonies grown per 

sub-library and estimating about 106 cells in each single colony. From the pooled culture, 

some glycerol stocks were made by suspending the culture to a final concentration of 30% 

glycerol, then being frozen and stored at -80˚c. The plasmid sub-library was extracted 

directly from the rest of the pooled culture using Promega midiprep kit.  

Integration of plasmid libraries into yeast cells 

The purified plasmid sub-libraries were linearized using the restriction enzyme NotI, 

according to the manufacturer protocol. Sixteen such reactions were performed per sub-

library to ensure sufficient material for the subsequent transformation.  

The linearized plasmid product was then cleaned with 1.5X AMPure XP beads and 

transformed into Δsuc2 yeast strain using heat shock transformation. 

20 transformation reactions were performed per sub-library to ensure sufficient 

representation of the library. Transformed cells were plated on YPD + G418 + NAT selection 

plates. G418 selection was done to select for successful transformation of the SUC2 gene, 

and NAT selection was done to select for the Δsuc2 strain. The plates were then scraped and 

all colonies from the same sub-library were pooled together in ~80 ml of DDW. From this 

pool, some glycerol stocks were made by suspending the culture to a final concentration of 

30% glycerol, then being frozen and stored at -80˚c 

Due to the transformation resulting in not only the expected colonies (with library insert in 

the correct location) but also in petite yeast cells, we grew the pooled sub-libraries on 

glycerol for one day to exclude the petite cells from the pool. For the glycerol growth, 200ul 

from the pooled yeast sub-library (which contains ~1.5x109 cells) was added to 100ml of YP-

glycerol and grown in a shaking incubator at 30˚c for ~ 24 hours. Then, glycerol stocks were 

frozen as previously described and stored at -80˚c. Colony PCR directed to insertion 

junctions was used to verify integration of the library in the correct location (See primers 

prGS27-30, table S2). 

SECReTE sub-library Competition assay 

Competition assays on two growth media was done for the SECReTE sub-library to measure 

the variants fitness on sucrose and galactose. Competitions experiments were done on SC-

low sucrose and on SC-low galactose, both with added Doxycycline, at 30˚c for 4 days. 

Before starting the competition, the pooled sub-library was grown in 5ml of SC-low sucrose 

media and in 5ml of SC-low galactose media for 24 hours until reaching stationary phase. For 



each medium, the OD600 of the culture was measured and then diluted to reach mid-log (in 

this case, OD600 of ~0.6) after 12 hours. This mid-log culture was the starter for the 

competition experiment since we did not want to include the lag of exiting stationary phase in 

our experiment and was diluted to reach OD600 of ~0.6 over the next 12 hours. 

Throughout the experiment, for each medium, the cells were grown in 5ml cultures in glass 

25ml falcon tubes in a roller. Every 12 hours, the OD600 of the culture was measured and 

based on the OD600, the culture was diluted to reach the OD600 of 0.6 at the following time 

point. This dilution factor was typically approximately 1:16 which allowed for ~4 generations 

per time point. At each dilution, cells were sampled for sequencing. 

Competition in each media was done in 6 independent repeats, and samples from the 

following generations were used for sequencing {0, 4, 8, 12, 16, 24, 32}. 

Signal peptide sub-library competition 

Competition assays on two growth media was done for the signal peptide sub-library to 

measure the variants fitness on sucrose and galactose. Competitions experiments were done 

on SC-low sucrose and on SC-low galactose, both with added Doxycycline, at 30˚c for 16 

days. The cell culture was diluted once every 24 hours when the cells had reached stationary 

phase at dilution rate of 1:50. At each dilution a cell pellet was frozen for subsequent 

sequencing. Bot competition experiments were done in 6 independent repeats. Samples were 

taken for sequencing at days {0,2,4,10,16} which represent approximately generations 

{0,11,22,56,90}. 

Genomic DNA extraction, and next generation sequencing 

Genomic DNA extraction, and library preparation for next generation sequencing was done 

in the same manner as for the non-coding RNA library (see section 7.3) 

SECReTE library sequencing library preparation was done with primers prGS33-38, SP 

library sequencing library preparation was done with primers prGS43-48 (table S2). 

Mapping sequencing reads to the library’s variants 

Sequencing reads from all samples were processed the following way: We first merged 

paired-end reads using PEAR174, we trimmed homology sequences using Cutadapt175. 

Next, only for ancestor samples of each sub-library we clustered all unique reads using 

‘vsearch --derep_prefix’176. The purpose of this step was to detect if there are variants in the 

library that were not part of the original design, that could come from synthesis errors. 

Detected undesigned variants with >100 reads in the ancestor sample were treated as a a new 



library variant. In the SECReTE library 5,474 undesigned variants were detected and added 

to the original 4,800 variants. In the SP library 759 undesigned variants were detected and 

added to the original 4,500 variants. 

For mapping each read to its library variants we used bowtie2 alignment177. We construct an 

artificial genome with all the library variants (including the newly found undesigned variants) 

as “chromosomes” and aligned the next generations sequencing reads to this genome. Then 

we counted the number of aligned reads per each variant. 

Definition of positive and negative fitness residual variants 

The purpose of this analysis is to isolate variant groups that differ significantly in their fitness 

on sucrose compared to their measured fitness on galactose. We looked for variants that 

repeatedly demonstrate such behavior across all pairwise comparisons between repeats, hence 

we did the following analysis for all 36 pairwise comparisons of repeats on sucrose and 

galactose: 

We first calculated a regression line which represents the best fit for agreement between the 

two conditions. For the purpose of this regression analysis we filtered out variants with low 

fitness values (|𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝜇(𝑓𝑖𝑡𝑛𝑒𝑠𝑠)| < 2𝜎(𝑓𝑖𝑡𝑛𝑒𝑠𝑠)), as this variants’ fitness 

measurement is more influenced by noise and by bias the regression analysis. We did a linear 

regression analysis with 95% confidence interval, then a variant was considered as positive 

fitness residual variant for this pairwise comparison, if its fitness value was larger by 0.005 

than the higher confidence interval line, or negative if lower by 0.005 than the lower 

confidence interval line. Eventually variants were classified as positive or negative if they 

were classified as such in at least 34 of 36 pairwise comparisons. 

  



 

8. Discussion 

Cells in nature must execute different genetic programs at different conditions. To achieve 

this goal, the expression of each gene is regulated at various levels and at every stage in its 

life cycle. The synthesis of a gene is regulated both at the transcription level and at the 

translation level, and the steady state level of the gene is also regulated by regulating the 

degradation of both its mRNA copies, and the protein. Moreover, the delivery of the protein 

to its cellular destination is regulated by several additional mechanisms. In addition, in many 

cases, to produce a final protein product, mRNAs and proteins also undergo several 

processing steps like RNA editing, splicing, or post translation modifications. Each of these 

steps is regulated through complex cellular systems. The operation and regulation of these 

systems comes with a cost to the cells. As these systems are composed of limited resources 

and require energy to operate, they must obey economic rules of supply and demand and their 

activity can be optimized according to cost-benefit tradeoffs. Therefore, I hypothesized that 

different molecular machineries and their associated cis-regulatory elements have evolved to 

optimize these tradeoffs. 

Some genes participate in a more complex economic setting, as they encode for a secreted 

protein which serves as a public-good compound. Meaning, a cell that express this protein 

invests the costs in expressing it, but the benefits from this protein are shared with 

neighboring cells. Through these genes, unicellular organisms apply cooperative strategies, 

and the economic principles that act on them involve complex game theoretic models of 

interaction between different actors. 

In this study I set out to elucidate how the genetic architecture of different cis-regulatory 

elements contribute to the economy of gene expression. First within the cell, studying the 

economy of expressing genes that act only intracellularly, and second using a model public-

good enzyme to study the economic principles that govern cooperative population dynamics. 

Understanding mechanistic features that contribute to optimizing gene expression, helps us to 

better understand how the genome was shaped through evolution through selection acting to 

better optimize gene expression. 

I approached this question by utilizing and designing a set of synthetic oligo libraries. 

Through combination of massively parallel reporter assay (MPRA), pooled competition 

assay, and targeted deep sequencing, I used these libraries to systematically test how different 

regulatory elements contribute to gene expression regulation, and its economy. 



In the first part of my research I demonstrated how the cost of gene expression in bacteria can 

be regulated even at a specific and desired expression level. I further demonstrated that this 

cost is affected by different features at all levels of the Central Dogma. I showed how the cost 

of producing a protein at a given expression level is affected by mRNA properties such as 

secondary structure, codon usage, and affinity to the anti-Shine Dalgarno (aSD) motif of the 

ribosome. I suggest that these features affect the optimization of gene expression through 

regulation of translation elongation speed. However, these features have opposing predicted 

effects on elongation speed, and therefore the contribution of translation regulation to cost 

optimization is yet undecided. I also demonstrated that properties of the amino acids that 

compose the final protein contribute to the cost of producing it. Either directly through the 

synthesis cost of the amino acids, or indirectly through possible toxic effects of the protein. 

I further demonstrated that there are sufficient degrees of freedom for a gene to evolve a cost-

reducing architecture, even when its amino acid sequence is constant. Hence, this study 

suggests design elements that could be both utilized for better heterologous gene expression 

or by natural selection for the optimization of natural genes. 

In addition, I showed that regulating initiation and mRNA levels affects expression cost, as 

increasing the number of proteins that are produced per mRNA is associated with reduced 

cost per expression level. This architecture could be beneficial because it reduces energy and 

resource consumption that are devoted to mRNA production. If cost-reducing, why genomes 

do not utilize even further the strategy of low transcription and mRNA abundance, combined 

with high translation initiation? One potential reason is that too low mRNA levels might lead 

increased response time to an environmental signal125 or to increased expression noise178, 

although the data from our experiments did not show a relationship between gene expression 

noise and cost. It is thus expected that natural genes would show a tradeoff between cost 

reducing architectures, and designs that satisfy other requirements such as controlled noise 

and short response times179. 

Following this observation, I decided to focus specifically on the cost of producing mature 

mRNA, by studying the cost of expressing a synthetic non-coding gene. For this purpose, I 

chose to work with the buddying yeast S. cerevisiae as a model system, since RNA 

processing is richer in eukaryotes and I predicted that genetic variation in a non-coding gene 

will result in higher variation in terms of cost. 

First, I utilized a synthetic promoter library26 to study the effect of promoter architecture on 

gene expression. While significant differences in fitness were observed in this library, I did 

not observe the predicted correlation to expression level. Presumably because in yeast the 



differences in expression level of a single copy gene do not create sufficient differences in 

burden. I notice, that in other work that studied the cost of gene expression in S. cerevisiae36, 

the range of expression load was much higher due to differences in copy numbers of the 

reporter gene. As for differences in cost between different promoter architecture, I observed 

an association between the number of transcription factor binding sites and cost, but the 

results were not conclusive enough. 

Next, I designed a large oligo library of different designs of a synthetic non-coding gene to 

study the effect of transcribed genetic features on the cost of producing mature mRNA. Using 

a subset of this library I observed a surprising relationship between thymidine content, 

reduced cost, and increased expression level, suggesting a surprising phenomenon of negative 

correlation between cost of gene expression and expression levels. However, there are no 

sufficient evidence to support this potential conclusion. 

I further used this library to study the effect of intron architecture on the cost of gene 

expression by introducing about 20,000 different synthetic introns into S. cerevisiae genome. 

I measured the cost of introducing an heterologous intron both through competition assay, 

and by an intron-containing reporter gene in-trans, to test how introduction of another intron 

imposes burden on the cell by affecting the splicing regulation of other intron-containing 

genes. However, in this study I did not detect measurable effects for introduction of a 

synthetic intron on the wellbeing of the cell. This result suggests that the operation of the 

splicing machinery on a single gene is not a limiting factor in terms of resource allocation in 

the cell. In contrast, a different work from our lab has shown that under a strong selective 

pressure cells can adapt by accumulating mutations in introns that increase the expression 

level of a resistance gene180. 

In a second part of this research I utilized the synthetic intron library mentioned above to 

decipher how intronic architecture affects splicing regulation in budding yeast. Since S. 

cerevisiae genome includes a low number of introns, the natural variation that exists in the 

genome is not sufficient to understand all the principles that govern splicing regulation in this 

organism. Therefore, this large synthetic library created a unique opportunity to decipher 

such principles. 

A subset of this library was used to study the evolution of introns architecture by introducing 

into it natural introns from 11 yeast species. I tested if introns that come from different hosts 

that use modified splicing machineries are spliced differently when processed by the S. 

cerevisiae machinery. I suggest that a loss of a splicing factor (U2AF1) that occurred in some 

of the yeast species examined here, affects intron architecture through the distance between 



the branch site and the intron’s 3’ end. I then observe that introns coming from hosts 

including this factor are spliced less efficiently in this system lacking the U2AF1 factor. 

Interestingly, in humans, a mutation in U2AF1 was associated with hematopoietic stem cell 

disorders that can progress into acute myeloid leukemia, and this mutation was shown to 

cause misplacing events which are presumed to be related with the disease181–183. 

I suggest that introns evolved to adapt to the presence or absence of U2AF1 splicing factor. 

Additionally, I found that the loss of this splicing factor is accompanied by a genomic 

depletion of the 3’SS motifs near introns’ 3’ ends. I hypothesize that in species that lack 

U2AF1 splicing factor the splicing machinery misidentifies the intended 3’SS due to similar 

sequence motifs near that site. This imposes a burden on the cell by creating unintended 

transcripts and proteins that need to be processed by the degradation machineries. This in turn 

creates a selective pressure to avoid such cryptic 3’SS motifs near the intended 3’SS. This 

hypothesis is supported by the fact that many cases of alternative 3’SS isoforms are observed 

both in this study and in previous findings in S. cerevisiae60,150. This is a demonstration of a 

biological machinery that is permissive, where even a few random mutations in the sequence 

can create a new recognition site for it to act on. Similar permissive behavior was recently 

shown in bacteria for the RNA polymerase and the probability of a random sequence to 

create a promoter184. 

Regulated alternative splicing is the focus of many studies on splicing because of its effect on 

increasing the proteomic diversity of the genome67,68,70. In yeast, there are very few known 

examples of functional alternative splicing56–59. However, using the relative simplicity of the 

yeast splicing machinery, I aimed to decipher novel ways by which alternative splicing is 

carried out in biological systems. The hallmark of such effort will be to create a synthetic 

gene that is alternatively spliced to different isoforms in reaction to different environmental 

conditions. Here I provide the first step towards this aim by creating a set of multiple two-

intron designs and by characterizing which of them give rise to multiple RNA isoforms. I 

found that the potential for creating multiple isoforms is mainly dictated by the individual 

splicing capacity of each of the two introns irrespective of their relative location. If both 

introns are designed for efficient splicing, their corresponding two-intron design will have the 

capacity to create multiple isoforms. This result suggests that alternative splicing might be an 

easily evolvable trait whose evolution might have not necessarily required sophisticated 

evolution in trans as an initial evolutionary step.  

Lastly, I presented here initial results of an ongoing project in which I study the population 

dynamics in two complex communities that include varying levels of production and\or 



secretion of a public-good enzyme. The results presented here indicate that during a 

competition experiment of these populations different dynamics are observed at different 

time scale. I further hypothesize that these different temporal dynamics are associated with 

the differences between effects of expression cost on fitness, as opposed to shared enzymatic 

activity by the public-good protein. In a future work I will further characterize the variants in 

this library by measuring the enrichment of the variant’s mRNA in the ER. 

To summarize, by using the powerful tool of large synthetic libraries I was able to 

systematically explore the function and associated cost of different cis-regulatory elements in 

a manner that is not possible by studying merely the natural variation in the genome. Finally, 

these experiments enabled me to infer how economic principles of optimizing cost while 

maintaining desired expression levels have shaped the genome throughout evolution. 
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10. Appendix - Supplementary tables 

Table S1 - gradient boosting model features 

Feature name Feature type 

5’SS sequence categorical 

BS sequence categorical 

3’SS sequence categorical 

Intron GC% numeric 

U-enrichment @ 3’ end numeric 

Intron length numeric 

BS-to-3’SS length numeric 

5’SS ΔG (30nt window) numeric 

BS ΔG (30nt window) numeric 

3’SS ΔG (30nt window) numeric 

3’SS GC% (30nt window) numeric 

5’SS stem length numeric 

BS stem length numeric 

3’SS stem length numeric 

5’SS stem arm numeric 

BS stem arm numeric 

3’SS stem arm numeric 

5’SS fraction of nucleotides based paired numeric 

BS fraction of nucleotides based paired numeric 

3’SS fraction of nucleotides based paired  numeric 

5’SS - is 1st nucleotide paired categorical 

5’SS - is 2nd nucleotide paired categorical 

5’SS - is 3rd nucleotide paired categorical 

5’SS - is 4th nucleotide paired categorical 



5’SS - is 5th nucleotide paired categorical 

5’SS - is 6th nucleotide paired categorical 

BS - is 1st nucleotide paired categorical 

BS - is 2nd nucleotide paired categorical 

BS - is 3rd nucleotide paired categorical 

BS - is 4th nucleotide paired categorical 

BS - is 5th nucleotide paired categorical 

BS - is 6th nucleotide paired categorical 

BS - is 7th nucleotide paired categorical 

3’SS - is 1st nucleotide paired categorical 

3’SS - is 2nd nucleotide paired categorical 

3’SS - is 3rd nucleotide paired categorical 

 

Table S2 - List of primers 

 

Name Used for Sequence 

prDS1 NEBuilder assembly of 

reporter cassette 

CTCATAAGCAGCAATCAATTCTATCTATACTTTAAAATGCTTTCTGCATCTATATTACCCTGTTA

TCCC  

prDS6 NEBuilder assembly of 

reporter cassette 

GATCGGCTTACTAATATGGGGCCGTATACTTAC 

prDS7 NEBuilder assembly of 

reporter cassette 

ACGGCCCCATATTAGTAAGCCGATCCCATTAC 

prDS8 NEBuilder assembly of 

reporter cassette 

TCACCTTTAGACATTTTATGTGATGATTGATTGATTG 

prDS9 NEBuilder assembly of 

reporter cassette 

AATCATCACATAAAATGTCTAAAGGTGAAGAATTATTCACTGGTGT 

prDS10 NEBuilder assembly of 

reporter cassette 

CTGGTTGAAACAAATCAGTGCCGGTAACGCTTTTTGTATCTTGAGTCGACACTGGATGGCGGC 

prDS20 RF cloning pBAR3 CCTTCGTTCTTCCTTCTGTTCGGAGGGGACCAGGTGCCGTAAG 

prDS21 RF cloning pBAR3 CCGGGTGACCGATTCGGTAATCCCGGTAGAGGTGTGGTCAATAAG 



prDS22 Linearize pDS101 TCCGAACAGAAGGAAGAAC 

prDS23 Linearize pDS101 GATTACCGAATCGGTCAC 

prDS55 Amplification & cloning 

SplicingLib1 index1 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGAACATCTAAATACGAGGCACTTACTCCG 

prDS56 Amplification & cloning 

SplicingLib1 index2 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGTGTTGGGAAATACGAGGCACTTACTCCG 

prDS57 Amplification & cloning 

SplicingLib1 index3 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGAAGCCATGAATACGAGGCACTTACTCCG 

prDS58 Amplification & cloning 

SplicingLib1 index4 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGGCTAAAGAAATACGAGGCACTTACTCCG 

prDS59 Amplification & cloning 

SplicingLib1 R 

ATTGTGGGGAGTGGAACGCAGTCACATTGATAGGAATAGCGAACTCCAGG 

prDS62 Linearize pDS102 CTTTACACCAACACCCTGAC 

prDS63 Linearize pDS102 TCAATGTGACTGCGTTCCAC 

prDS137 NGS library preparation 

shift0 

ACGACGCTCTTCCGATCTGTCAGGGTGTTGGTGTAAAG 

prDS138 NGS library preparation 

shift1 

ACGACGCTCTTCCGATCTAGTCAGGGTGTTGGTGTAAAG 

prDS139 NGS library preparation 

shift2 

ACGACGCTCTTCCGATCTTCGTCAGGGTGTTGGTGTAAAG 

prDS140 NGS library preparation 

shift3 

ACGACGCTCTTCCGATCTCATGTCAGGGTGTTGGTGTAAAG 

prDS141 NGS library preparation 

shift4 

ACGACGCTCTTCCGATCTACTAGTCAGGGTGTTGGTGTAAAG 

prDS142 NGS library preparation 

shift5 

ACGACGCTCTTCCGATCTTAGCCGTCAGGGTGTTGGTGTAAAG 

prDS143 NGS library preparation 

R 

AGACGTGTGCTCTTCCGATCTGTGGAACGCAGTCACATTGA 

prDS144 NGS library preparation 

PCR2 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT  

prDS145 NGS library preparation 

PCR2 with index 

CAAGCAGAAGACGGCATACGAGAT 

[index]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT  

prDS50 Amplification & cloning 

NucleotideCompLib 

index1 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGAACATCTAACAACGCTTTCTGTGTCGTG 



prDS51 Amplification & cloning 

NucleotideCompLib 

index2 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGTGTTGGGAACAACGCTTTCTGTGTCGTG 

prDS52 Amplification & cloning 

NucleotideCompLib 

index3 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGAAGCCATGACAACGCTTTCTGTGTCGTG 

prDS53 Amplification & cloning 

NucleotideCompLib 

index4 

AAAAGTGGAAGTCAGGGTGTTGGTGTAAAGGCTAAAGAACAACGCTTTCTGTGTCGTG 

prDS54 Amplification & cloning 

NucleotideCompLib R 

ATTGTGGGGAGTGGAACGCAGTCACATTGAAAGTAGGGTTTCTGACCTCG 

prGS1 Oligo Amplification of SP 

lib F 

GCTTTTCTTTTCACTAACG 

prGS2 Oligo Amplification of SP 

lib R 

GAAAGTACAGATGCCATTTG 

prGS3 Oligo Amplification of 

SECReTE lib ins1 F 

GAGTGGGTTTTTCAATGATAC 

prGS4 Oligo Amplification of 

SECReTE lib ins1 R 

GAGAAGGTTCATACCAGAACAC 

prGS5 Oligo Amplification of 

SECReTE lib ins2 F 

AGATCAACCCATTGCTATCG 

prGS6 Oligo Amplification of 

SECReTE lib ins2 R 

TAAAAGTGTAACCACCATCAAG 

prGS13 pCfB2223 linearization  AAGCTATCTGTAACAGGAGCATCGCGTGCATTCATCCG 

prGS14 pCfB2223 linearization GATTGTGACGTGTGGATGCTATCGCACGCATTCCGTTG 

prGS15 pGS2223 linearization 

SP lib 

CAAATGGCATCTGTACTTTC 

prGS16 pGS2223 linearization 

SP lib 

CATATACGTTAGTGAAAAGAAAAGC 

prGS17 pGS2223 linearization 

SECReTE lib ins1 

AAGGTGTTCTGGTATGAACC 

prGS18 pGS2223 linearization 

SECReTE lib ins1 

ATCAATAGTATCATTGAAAAACCC 

prGS19 pGS2223 linearization 

SECReTE lib ins2 

TCTCTTGATGGTGGTTACAC 



prGS20 pGS2223 linearization 

SECReTE lib ins2 

CTTGGGAGCGATAGCAATG 

prGS27 Verification of yeast sub-

libraries 

(down junction) 

CCTGCAGGACTAGTGCTGAG 

prGS28 Verification of yeast sub-

libraries 

(down junction) 

CCGTGCAATACCAAAATCG 

prGS29 Verification of yeast sub-

libraries 

(up junction) 

GTTGACACTTCTAAATAAGCGAATTTC 

prGS30 Verification of yeast sub-

libraries 

(up junction) 

TGACGAATCGTTAGGCACAG 

prGS33 SECReTE NGS library 

preparation shift0 

ACGACGCTCTTCCGATCTAGATCAACCCATTGCTATCGC 

prGS34 SECReTE NGS library 

preparation shift1 

ACGACGCTCTTCCGATCTTAGATCAACCCATTGCTATCGC 

prGS35 SECReTE NGS library 

preparation shift2 

ACGACGCTCTTCCGATCTACAGATCAACCCATTGCTATCGC 

prGS36 SECReTE NGS library 

preparation shift3 

ACGACGCTCTTCCGATCTCTCAGATCAACCCATTGCTATCGC 

prGS37 SECReTE NGS library 

preparation shift4 

ACGACGCTCTTCCGATCTTTAGAGATCAACCCATTGCTATCGC 

prGS38 SECReTE NGS library 

preparation R 

AGACGTGTGCTCTTCCGATCTGAGAAGGTTCATACCAGAACAC 

prGS43 SP NGS library 

preparation shift0 

ACGACGCTCTTCCGATCTGCTTTTCTTTTCACTAACG 

prGS44 SP NGS library 

preparation shift1 

ACGACGCTCTTCCGATCTTGCTTTTCTTTTCACTAACG 

prGS45 SP NGS library 

preparation shift2 

ACGACGCTCTTCCGATCTACGCTTTTCTTTTCACTAACG 

prGS46 SP NGS library 

preparation shift3 

ACGACGCTCTTCCGATCTCTCGCTTTTCTTTTCACTAACG 

prGS47 SP NGS library 

preparation shift4 

ACGACGCTCTTCCGATCTTTAGGCTTTTCTTTTCACTAACG 



prGS48 SP NGS library 

preparation R 

AGACGTGTGCTCTTCCGATCTACGGTGTCATTTGGGTTGTATTG 

prDSO1 PromoterLib NGS library 

preparation shift0 

ACGACGCTCTTCCGATCTTGAATTGTACAAATAACGGCCGAA 

prDSO2 PromoterLib NGS library 

preparation shift1 

ACGACGCTCTTCCGATCTCATGAATTGTACAAATAACGGCCGAA 

prDSO3 PromoterLib NGS library 

preparation shift2 

ACGACGCTCTTCCGATCTTCGTGAATTGTACAAATAACGGCCGAA 

prDSO4 PromoterLib NGS library 

preparation shift3 

ACGACGCTCTTCCGATCTATCGTGAATTGTACAAATAACGGCCGAA 

prDSO5 PromoterLib NGS library 

preparation shift4 

ACGACGCTCTTCCGATCTGCCATTGAATTGTACAAATAACGGCCGAA 

prDSO6 PromoterLib NGS library 

preparation shift5 

ACGACGCTCTTCCGATCTTACCGATGAATTGTACAAATAACGGCCGAA 

prDSO7 PromoterLib NGS library 

preparation R 

AGACGTGTGCTCTTCCGATCTGATAAAGTCAGTGCTTAAACAC 

 


