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1. Abstract 
 

The inheritance of quantitative traits upon sexual mating is influenced by multiple genes and 

environmental factors and is a cornerstone of genetics and evolution. This study investigates 

the mechanisms underlying quantitative trait inheritance in Saccharomyces cerevisiae, focusing 

on traits such as gene expression of foreign proteins and cell size. Using over 100 natural yeast 

isolates genetically modified with unique barcodes, fluorescent markers (GFP and RFP), and 

resistance genes, we conducted high-throughput mating experiments employing "all-against-

all" and "one-against-one" strategies. Fluorescence-Activated Cell Sorting (FACS) was used to 

analyze inheritance patterns in over 3,000 offspring combinations. The results revealed 

complex inheritance patterns for fluorescent protein expression upon sexual mating, which 

were influenced by both parental traits and potentially an additional regulatory mechanism. 

Notably, this study introduces the concept of "parental and non-parental inheritance," 

identifying distinct patterns of inheritance that shed light on how specific traits are transmitted 

across generations. In addition to characterizing inheritance patterns, this study explored 

applied applications by identifying strains with interesting inheritance and expression patterns. 

Selected strains were engineered with foreign genes commonly used in industrial processes to 

evaluate their efficiency. Using pan-transcriptomic data and machine learning models, we 

explored correlations between gene expression profiles, genetic variation, and observed traits, 

uncovering key predictors of trait variability. These findings demonstrate the power of S. 

cerevisiae as a model for studying quantitative trait inheritance and offer a robust framework 

for optimizing yeast strains for industrial applications, including foreign protein production, 

bioproduction, and bioengineering. 
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3. List of abbreviations  
 

S. cerevisiae – Saccharomyces cerevisiae 

GFP – Green Fluorescent Proteins 
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FACS – Fluorescence-Activated Cell Sorting. 

Hyg – Hygromycin 

G418 – kanamycin 

Zeo – Zeocin 

Nat – Nourseothricin 

OD – Optical Density 

FS – Forward Scatter 

Doxy – Doxycycline  

NGS – Next Generation Sequencing 

FGF2 - Fibroblast Growth Factor 2 
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4. Introduction  
 

The inheritance of traits across generations of sexually mating organisms is a cornerstone of 

biological research, shaping our understanding of genetics, evolution, and the subtle forces that 

govern life's diversity. While Mendel's laws laid the foundation for inheritance patterns of 

binary traits, the inheritance patterns become far more complex when it comes to quantitative 

traits. These traits, influenced by multiple genes and environmental factors, include 

characteristics like height and metabolic rates (1). For instance, a long-standing question in 

genetics asks: If two individuals with different heights reproduce, how tall will their offspring 

be?  

Such questions underscore the complexity of quantitative traits, which do not adhere to simple 

Mendelian ratios but instead result from the interplay of multiple loci.  In this study, we explore 

quantitative traits such as the gene expression of foreign proteins, antibiotic resistance, and cell 

size in Saccharomyces cerevisiae. Understanding the mechanisms of inheritance for these 

quantitative traits is not only critical for advancing scientific knowledge but also holds immense 

potential for agricultural, medical and industrial applications. Insights into the inheritance of 

quantitative traits can pave the way for more efficient production of foreign proteins, 

revolutionizing industries such as pharmaceuticals, bioengineering, and biotechnology, where 

optimizing protein yield and function is paramount. 

To expand our understanding of the inheritance of quantitative traits, the choice of an 

appropriate model organism is essential. Throughout history, organisms such as E. coli, C. 

elegans, Drosophila, and Saccharomyces cerevisiae have played pivotal roles in uncovering 

the principles of inheritance and gene function (2). For this study, Saccharomyces cerevisiae, 

commonly known as baker’s yeast, was selected as the model organism for investigating the 

genetic basis of quantitative traits. Its unicellular nature, the availability of hundreds of natural 

strains that are fully sequenced and have well-annotated genome, rapid life cycle, and ease of 

genetic manipulation make it an ideal system for addressing complex genetic questions (3,4). 

Furthermore, S. cerevisiae has been widely used to study interactions between genetic and 

environmental factors (5), which are central to understanding the variability of traits influenced 

by multiple genes and environmental contexts.  

A unique advantage of S. cerevisiae as a model organism lies in its unique reproductive biology. 

Unlike many other organisms, yeast can reproduce both sexually and asexually. Asexual 

reproduction occurs through mitotic division, allowing the yeast to clone itself while 

maintaining a haploid or diploid. In its haploid form, it exists as one of two mating types, "A" 

or "alpha," which function as the sexes in yeast reproduction. Mating occurs between haploids 
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of opposite mating types through a well-studied process mediated by pheromones and their 

specific receptors (6). During mating, the genetic material from two parents combines, resulting 

in a diploid organism that inherits traits from both mating types. The ability to alternate between 

haploid and diploid states offers unparalleled flexibility for genetic studies, allowing the 

examination of how specific traits are inherited and how genetic recombination contributes to 

phenotypic diversity (7).  

To study quantitative traits such as gene expression, antibiotic resistance, and cellular 

variability, we used a diverse collection of S. cerevisiae strains and their offspring. Specifically, 

we utilized over 100 genetically manipulated natural isolates, selected from an extensive 

collection of 1,011 strains generously provided by Prof. Gianni Liti from IRCAN, a leading 

expert in yeast population genomics and phylogeny (8). These strains were obtained from 

diverse geographic regions and niches, both wild and domesticated, representing a rich genomic 

resource. This diversity captures the natural variability observed in wild yeast populations and 

provides a robust platform for studying the inheritance of quantitative traits. 

To enable the study of quantitative traits such as gene expression and antibiotic resistance, these 

S. cerevisiae strains were engineered using advanced genetic tools (9). In a recent study 

conducted in our lab by Sivan Kaminsky, over 100 strains were genetically modified to include 

constructs carrying foreign genes, such as antibiotic resistance markers and fluorescent 

proteins. Each mating type was engineered with distinct genetic markers: mating type A strains 

were modified to express hygromycin (Hyg) resistance cassettes, a BleoR resistance marker 

that enabled growth on zeocin (Zeo), and a green fluorescent protein (GFP). Mating type alpha 

strains were engineered to carry nourseothricin (Nat) resistance cassettes, a KanMX resistance 

marker that enabled growth on geneticin (G418), and a red fluorescent protein (RFP). After 

mating, the resulting diploid offspring inherited both sets of markers from their respective 

parents. In addition to analyzing population gene expression levels and antibiotic resistance, 

we investigated noise in protein expression as a quantitative trait. Noise, defined as the 

variability in expression levels relative to the mean among genetically identical cells, arises 

from both intrinsic factors, such as random transcriptional and translational events, and 

extrinsic factors, including differences in cellular states or environments (10). It can be 

calculated for both parents and offspring based on fluorescent protein expression in order to 

follow its inheritance patterns.  

Fluorescence-Activated Cell Sorting (FACS) played a crucial role in this study, enabling the 

precise quantification of GFP and RFP levels in both parents and offspring. This technique also 

allowed for the sorting of cells based on their fluorescent properties, facilitating the isolation of 

subpopulations with specific traits (11). Additionally, FACS was used to measure cell size by 

analyzing the forward scatter area (FS) parameter, a proxy for cellular dimensions (12). Its 
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high-throughput, single-cell resolution proved particularly advantageous for studying 

quantitative traits and their inheritance, allowing for precise measurement of gene expression 

and cellular phenotypes within heterogeneous populations of parents and their offspring (13). 

Complementing FACS, optical density (OD) measurements were employed to quantify 

antibiotic resistance by measuring growth levels under various antibiotic conditions. Together, 

these methodologies provided robust and complementary tools for quantifying and analyzing 

the traits of both parents and offspring and modes of their inheritance. 

To deepen our understanding of the genes and mechanisms involved in the inheritance of 

quantitative traits, we incorporated data from a recently published pan-transcriptome analysis 

of strains in our yeast collection. This comprehensive study identified 4,977 core genes that are 

shared among nearly all strains and 1,468 accessory genes that are present in some of the strains. 

RNA seq provided expression levels of each gene in each strain, providing a detailed map of 

gene expression variability across the natural yeast isolates (14).  From this dataset, we focused 

on ~120 strains that overlapped with our engineered strains, leveraging their transcriptomic 

profiles to explore potential links between gene expression patterns, genetic distance, fitness, 

and fluorescent protein production in both parents and offspring. To analyze these complex 

relationships, we employed machine learning techniques. By correlating gene expression levels 

with additional parameters, such as genetic distance between parents and fitness, we aimed to 

identify factors that play important roles in influencing the inheritance of quantitative traits. 

This study is distinctive in its approach, combining the use of over 100 genetically manipulated 

sexually reproducing strains from an extensive collection of 1,011 isolates offering an 

unparalleled opportunity to explore the natural variability inherent in wild yeast populations. 

These isolates, collected from diverse geographic regions and niches, represent a broad 

genomic resource that has been largely underutilized in studying inheritance of quantitative 

traits. Moreover, the integration of genetic constructs carrying foreign genes, such as antibiotic 

resistance markers and fluorescent proteins, provides a novel framework for tracking 

inheritance patterns and paves the way for the development of methodologies to use in the 

industry of foreign protein production. By leveraging these unique resources and tools, this 

study addresses gaps in our understanding of the mechanisms governing quantitative trait 

inheritance, offering insights with both scientific and industrial relevance.  
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5. Goals 

 

The goal of this study is to investigate the mechanisms governing the inheritance of quantitative 

traits in Saccharomyces cerevisiae upon sexual mating focusing on traits such as gene 

expression of foreign proteins, antibiotic resistance, and cell size. Leveraging a diverse 

collection of genetically engineered natural isolates and their sexual mating offspring 

combinations, this research aims to uncover the contributions of genetic variation and other 

factors to the variability of these traits across generations. The findings aim to advance our 

understanding of quantitative trait inheritance and explore practical applications in optimizing 

foreign protein production within industrial biotechnology. 

To achieve this, the study is structured around the following aims: 

Aims: 

1. Establishing a Comprehensive Offspring Library. Developing an extensive library of 

over 3,000 diploid offspring combinations, enabling the measurement and quantification of 

traits using advanced methods such as Fluorescence-Activated Cell Sorting (FACS) and 

optical density (OD) assays. 

2. Investigating Gene Expression and Cell Size Quantitative Trait Inheritance in 

Natural Isolates. Utilizing over 100 genetically engineered natural isolates from a diverse 

collection of 1,011 strains to study how genetic variation influences the inheritance of 

foreign protein expression and cell size in diploid offspring. 

3. Identifying Genes That Govern Patterns of Inheritance. Analyzing the relationships 

between parental and offspring traits by computationally comparing expression levels. 

Integrating data from a published pan-transcriptome analysis to identify potential links 

between natural genes’ expression profiles, parental genetic distance, fitness, cell size, 

expression noise and the inheritance of quantitative traits. 

4. Exploring Applications in Selective Breeding. Assessing the feasibility of employing 

selective breeding techniques to enhance yeast strains, leveraging insights into quantitative 

trait inheritance to optimize foreign protein production for industrial applications such as 

pharmaceuticals and bioengineering. 
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6. Material and methods  
 

Please note that all listed primers and PCR protocols can be found in the Appendix in Table 1 

and Table 2. 

 

6.1. Yeast strains and growth conditions  

The yeast strains used in this study were derived from wild-type Saccharomyces cerevisiae 

strains, part of a collection of natural isolates curated in (8). In a previous experiment conducted 

in our laboratory, approximately 100 strains from this collection were selected and transformed 

with a genomic construct inserted into the HO locus. This construct included a unique 20-bp 

barcode specific to each strain, resistance genes, fluorescent markers, and a system based on 

Cre-lox recombination. The Cre-lox system facilitates barcode fusion following sexual mating, 

allowing parental identification of the two parents of each offspring through sequencing of the 

fused barcode. In addition to the natural isolates, two other strains were engineered to serve as 

comparative models: the lab strain BY4741/2 (MATa/alpha his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 

and the industrial strain CEN.PK.1C/1D (MATa/alpha ura3-52 trp1-289 leu2-3,112 his3Δ1 

MAL2-8c SUC2). Both mating type A and mating type alpha cells from each strain were 

transformed with the same construct to ensure consistency in the experimental design. After 

transformation, diploid cells carrying the constructs were selected and induced to sporulate. 

Haploid spores of both mating types were isolated using haploid-specific antibiotics. In mating 

type A strains, the construct introduced green fluorescent protein (GFP) and hygromycin (Hyg) 

resistance cassettes, along with a BleoR resistance marker that enabled growth on zeocin (Zeo). 

In mating type alpha strains, the construct introduced red fluorescent protein (RFP) and 

nourseothricin (Nat) resistance cassettes, along with a KanMX resistance marker that enabled 

growth on geneticin (G418). The haploid-specific promoters driving BleoR and KanMX 

facilitated efficient selection of haploids. Following mating and recombination, offspring 

inherited resistance to both Hyg and Nat, driven by diploid-specific promoters, and exhibited 

dual fluorescence with both GFP and RFP markers. These modifications facilitated strain-

specific identification, offspring tracking, and selection under various growth conditions. This 

system was originally developed and is comprehensively described in the doctoral thesis of 

Sivan Kaminski Strauss (15). (Figure 1, Appendix). 

Media and antibiotics used in this study: 

YPD (Rich Media): Contains 10 g/L yeast extract, 20 g/L peptone, and 20 g/L glucose. 

SD Comp (Synthetic Defined Media): Contains 1.7 g/L nitrogen base (without amino acids 

and ammonium sulfate), 1 g/L monosodium glutamic acid (MSG), 1.5 g/L amino acid mix, and 

20 g/L glucose. 
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SD Comp + DOXY: Same as SD, with the addition of 10 µg/mL doxycycline. 

The antibiotics Hyg, Zeo, Nat, and G418 were added as necessary to any media that does not 

include ammonium sulfate. The concentrations of these antibiotics varied depending on the 

specific experiment. They were used for the selection of mating types, diploids, and haploids, 

facilitating the maintenance and tracking of genetically modified yeast strains. 

Antibiotic basal concentration and initials: 

Hygromycin (Hyg) - 300ug/ml 

Zeocin (Zeo) - 150ug/ml 

Geneticin (G418) - 200ug/ml 

Nourseothricin (Nat) - 100ug/ml 

6.2. FACS measurements of Fluorescent Protein Levels in Parental 

Strains 

Starters were prepared from frozen stock and grown for 48 hours in YPD media supplemented 

with antibiotics to prevent contamination. Two 96-well plates were prepared for mating type A 

(77 strains in total), and one plate was prepared for mating type alpha (42 strains in total). 

Antibiotics were added as follows: 

Mating type A: 50 µg/mL Zeo, prepared from a stock solution of 100 mg/mL. 

Mating type alpha: 200 µg/mL G418, prepared from a stock solution of 200 mg/mL. 

After reaching the stationary phase (108 cell/ml), confirmed by cell counting under a 

microscope, the cells were diluted 1:10 with SD Comp media supplemented with the 

corresponding antibiotics. Three technical replicates were prepared for each plate. The cells 

were then allowed to grow to mid-log phase (~4.5 hours). 

To prepare for Fluorescence-Activated cell sorting (FACS) analysis, the cells were diluted at a 

1:10 ratio into PBS with EDTA at a final concentration of 0.05 M to reduce cell clumping. The 

plate was shaken for 2 minutes to ensure proper mixing, and then it was loaded into the FACS 

plate reader for analysis. (FACS) measurements were performed using an Attune NxT Flow 

Cytometer equipped with 405-, 488-, 561-, and 638-nm lasers. GFP was detected by excitation 

at 561 nm and emission collection using a 530/30 BP filter, while RFP (mCherry) was detected 

by excitation at 561 nm and emission collection using a 620/15 BP filter. The threshold was set 

on forward scatter (FSC) at 7.0 × 10³ to minimize background noise and capture relevant events. 

Data were acquired for 50,000 cells per well, measuring side scatter (SSC) for granularity, FSC 

for cell size, and fluorescence intensity for GFP and RFP. These optimized settings ensured 

high-quality data collection and robust gating, allowing the analyzed population to consist 

exclusively of single, viable cells (Figure 2, Appendix). 
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6.3 Sonication Test to Ensure Single cell measurement  

To ensure that FACS measurements accurately reflect single-cell fluorescence and not the 

fluorescence intensity of clumps, and to enable accurate comparisons between the fluorescence 

intensity of wild strains and the non-clumpy engineered lab strains and CEN.PK, a sonication 

test was performed on selected strains. Eight mating type A strains and 11 mating type alpha 

strains were chosen from the “natural strain collection”, along with both mating types of the 

lab strains and CEN.PK. Starters were prepared from frozen stocks and grown for 48 hours in 

YPD media supplemented with antibiotics to prevent contamination. Mating type A strains were 

cultured in media containing Hyg at a final concentration of 0.3 mg/mL, while mating type 

alpha strains were cultured in media containing Nat at a final concentration of 0.1 mg/mL. 

The same protocol outlined in the preceding chapter was followed, with one key modification: 

the cells were subjected to sonication immediately prior to FACS measurement. Sonication was 

performed using a sonication device, “Bioruptor Plus,” set to low intensity. Each sample 

underwent three rounds of sonication for 30 seconds, with 30-second intervals between rounds 

to prevent overheating and maintain cell viability. In parallel, the fluorescence intensity of the 

same strains from the same batch was measured without sonication for comparison. For each 

strain and treatment, three technical repeats were performed to ensure consistency and 

reproducibility. 

 

6.4. “All-Against-All” Mating, FACS Sorting, Library Preparation, 

and Barcode Sequencing 

6.4.1. Mating and Post-Mating Selection 

Starters were prepared from frozen stocks and grown for 20 hours in SD Comp media 

supplemented with antibiotics to prevent contamination by bacteria and other nonresistant 

microorganisms. Two 96-well plates were prepared for mating type A (96 strains in total), and 

one 96-well plate was prepared for mating type alpha (48 strains in total). For mating type A, 

50 µg/mL Zeo was added, prepared from a stock solution of 100 mg/mL. For mating type alpha, 

200 µg/mL G418 was added, prepared from a stock solution of 200 mg/mL. After reaching 

stationary phase, the cells were diluted 1:50 into SD Comp media containing Zeo and G418 at 

the same concentrations. After 12 hours, the cells were diluted 1:5 into fresh SD Comp media 

with antibiotics and allowed to grow for 4.5 hours until they reached mid-log phase, confirmed 

by counting two representative strains. 

To ensure equal representation of cells from each mating type, OD values were measured to 

determine the appropriate volumes for mixing each strain. Most strains had an OD value around 

0.15, and a cutoff of 0.8 was used for volume adjustments. For mating type A, 10 µL was taken 

from strains with OD values above 0.15, and 14 µL from strains with OD values below 0.15, 
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resulting in a mixture where each mating type A strain was represented by approximately 5*105 

cells. For mating type alpha, 18 µL was taken from strains with OD values above 0.15, and 29 

µL from strains with OD values below 0.15, generating a mixture where each mating type alpha 

strain was represented by approximately 5*105 cells. To facilitate "all-against-all" mating, 50 

µL of each mixture was transferred into five wells of a 24-well plate. Each well contained 900 

µL of SD Comp media supplemented with 10 µg/mL doxycycline (Doxy) to activate the 

barcode fusion system. The plates were incubated without shaking at 25°C for 20 hours.  

Following incubation, to eliminate any remaining haploid (parents) cells that did not undergo 

mating, the cells were diluted 1:200 into SD Comp media containing 10ug/ml Doxy and basal 

concentrations of both Hyg and Nat. This selective pressure ensured that only offspring that 

inherited resistance to both antibiotics survived, while parental strains - resistant to either Hyg 

(mating type A) or Nat (mating type alpha) - were eliminated. The antibiotic concentrations 

used were 300 µg/mL Hyg, prepared from a stock solution of 500 mg/mL, and 200 µg/mL Nat, 

prepared from a stock solution of 100 mg/mL. Cultures were incubated for 24 hours at 30°C 

with shaking. 

6.4.2. FACS Sorting  

Prior to sorting, cells were prepared to ensure optimal conditions. Cultures were confirmed to 

be in the stationary phase, and to eliminate clumps and ensure uniformity, samples underwent 

sonication at a voltage level of 2 for 30 seconds. This process was repeated twice, with cells 

placed on ice between sonication cycles to prevent overheating and to maintain viability. 

Sorting of offspring displaying both GFP and RFP markers was performed using a FACS Aria 

Fusion instrument (BD Biosciences) equipped with 405, 488, 561, and 640 nm lasers and a 100 

µm nozzle, controlled by BD FACS Diva software v8.0.1 (BD Biosciences) at The Weizmann 

Institute of Science Flow Cytometry Core Facility. Double-positive cells, displaying 

fluorescence for both GFP and RFP, accounted for approximately 85% of the total population, 

with GFP-RFP fluorescence levels differing by approximately 1-fold. 

Cells were sorted into three distinct populations: (Figure 3, Appendix): 

1. Sorted High: The top 10% of cells based on GFP and RFP fluorescence intensity, a total 

of ~ 2 million cells. 

2. Sorted Low: The bottom 10% of cells based on GFP and RFP fluorescence intensity, a 

total of ~ 2 million cells. 

3. Total: A middle population including cells from both high and low fractions, a total of ~ 2 

million cells.  

Each sorting was performed in three biological replicates. The sorted cells were frozen for 

downstream processing. 
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6.4.3. Library preparation and sequencing 

DNA was extracted by boiling the cells for 20 minutes in 50 µL solution of NaOH (20 mM). 

The samples were centrifuged for 1.5 minutes, and the supernatant was transferred to a new 

tube. The barcode region was amplified using PCR (See primers 4-5 and PCR 1), with four 

technical replicates prepared for each sample to reduce PCR biases. 

The PCR products were cleaned using SPRI beads. For cleaning, 66 µL of SPRI beads was 

added to 44 µL of the sample, mixed thoroughly by slow pipetting, and allowed to sit at room 

temperature for 7 minutes. The samples were then placed on a magnetic stand for 5 minutes to 

separate the beads, and the clear supernatant was carefully removed. The beads were washed 

twice with 150 µL of 70% ethanol, and after the final wash, the plate was spun down to remove 

residual ethanol. The beads were allowed to dry for 2–5 minutes, and the DNA was eluted in 

25 µL of DDW. Elution was performed sequentially for each technical replicate. After 

amplifying the barcode region, the Illumina (Next-generation sequencing) indexes were added 

using customized I5 and I7 index primers (See primers 6-7 and PCR 2). The resulting PCR 

product was cleaned again using the same SPRI bead method described above. The prepared 

library was sequenced using Illumina. After initial de-multiplexing by the Illumina platform, 

generating paired end reads with a read length of 25 bp. All reads were subsequently processed 

by Cutadapt to retain only the barcode region in the output files (16). Alignment to the reference 

barcode database was performed using Bowtie2 (17). To recover read counts per fused barcode, 

we utilized an in-house script (15). The average coverage per sample was approximately 

3.3*106 read counts. 

6.5. “One-Against-One” Mating and FACS Screening 

6.5.1. Mating the strains  

In this experiment, we mated each pair of strains in a separate well, creating all possible diploid 

offspring combinations. Starters were prepared from frozen stocks and grown for 72 hours in 

YPD media supplemented with antibiotics to prevent contamination. Two 96-well plates were 

prepared for mating type A (96 strains in total), and one 96-well plate was prepared for mating 

type alpha (48 strains in total). For mating type A, 300 µg/mL Hyg was added, prepared from 

a stock solution of 500 mg/mL. For mating type alpha, 200 µg/mL Nat was added, prepared 

from a stock solution of 100 mg/mL. 

After reaching stationary phase, the cells were diluted 1:1000 into SD Comp media containing 

Nat and Hyg at the same concentrations listed above and incubated for 12 hours until they 

reached mid-log phase. To ensure equal representation of cells from each mating type, OD 

values were measured, and a volume equivalent to 5×105 cells was taken from each mating 

type. A total of 35 96-well plates were prepared, with each well containing 130 µL of SD Comp 

media supplemented with doxycycline (Doxy) to activate barcode fusion. The final Doxy 
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concentration was 10 µg/mL, prepared by dissolving 2 mg of Doxy in 200 mL of SD Comp 

media. To each well, 5×105 cells from one strain of mating type A and 5×105 cells from one 

strain of mating type alpha were added. Each well had a final volume of 140 µL. 

The plates were gently shaken for 5 minutes to ensure proper mixing, then incubated at 25°C 

without shaking for 20 hours to allow mating and barcode fusion to occur. This setup ensured 

accurate mating for all strain combinations while maintaining separation for downstream 

assays. 

To eliminate any remaining haploid (parental) cells that did not undergo mating, the cells were 

diluted 1:50 into SD Comp media supplemented with Doxy and basal concentrations of both 

Hyg and Nat. This selective pressure ensured that only the offspring, which inherited resistance 

to both antibiotics, survived, while parental strains - resistant to either Hyg (mating type A) or 

Nat (mating type alpha) - were eliminated. The antibiotic concentrations used for this step were 

300 µg/mL Hyg, prepared from a stock solution of 500 mg/mL, and 200 µg/mL Nat, prepared 

from a stock solution of 100 mg/mL. The selection process for diploids under double antibiotic 

conditions was repeated twice, with a 24-hour interval between each step, to ensure complete 

elimination of haploid parental cells and to strengthen the selection of diploid offspring. After 

completing the selection process, all plates containing the 3,024 offspring were stored in a 30% 

glycerol stock at -80°C for future use. 

6.5.2. Verifying Offspring Identity 

To ensure the integrity of the offspring and confirm that no contamination or errors occurred 

during the mating process, a verification test was performed on 56 randomly selected offspring. 

Sanger sequencing was used to analyze the fused barcodes, enabling identification of the 

parental strains. A sample was taken from the plate prior to FACS, and a starter culture was 

prepared in YPD. DNA was extracted by boiling the cells for 20 minutes in a 50 µL solution of 

20 mM NaOH. The samples were then centrifuged for 1.5 minutes, and the supernatant was 

transferred to a new tube for downstream analysis. The verification process involved two 

separate PCR reactions: To identify the A parent (See primers 1-2 and PCR 2) and (See primers 

3-4 and PCR 2) to identify the alpha parent.  

6.5.3. FACS Screening 

A FACS machine was used to screen all offspring for GFP and RFP fluorescence levels. Starters 

were prepared from frozen stock and grown for 48 hours in YPD media supplemented with 

double antibiotics to prevent contamination and eliminate any remaining haploids. The 

antibiotic concentrations used were 300 µg/mL Hyg, prepared from a stock solution of 500 

mg/mL, and 200 µg/mL Nat, prepared from a stock solution of 100 mg/mL. 
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After reaching stationary phase (~10⁸ cells/mL), confirmed by cell counting under a 

microscope, the cells were diluted 1:10 into SD Comp media supplemented with the 

corresponding antibiotics and allowed to grow for ~4.5 hours to reach mid-log phase. 

For FACS analysis, the cells were further diluted 1:10 with a 1:10 EDTA solution prepared in 

PBS to minimize cell clumping. The plate was gently shaken for 2 minutes to ensure proper 

mixing being loaded into the FACS plate reader for analysis of GFP and RFP fluorescence 

levels, using the same parameters and gating system described in the section "FACS 

Measurements of Fluorescent Protein Levels in Parental Strains". 

6.6. Measuring Antibiotic Resistance levels in engineered strains  

Starters were prepared from frozen stock and grown for 24 hours in YPD media in three 96-

well plates: two plates for mating type A (77 strains in total) and one plate for mating type alpha 

(42 strains in total), with each well containing a specific strain. Basal concentrations of 

antibiotics were added to prevent contamination. For mating type A, 50 µg/mL zeocin (Zeo) 

was added, prepared from a stock solution of 100 mg/mL. For mating type alpha, 200 µg/mL 

Geneticin (G418) was added, prepared from a stock solution of 200 mg/mL. 

The cells were incubated at 30°C with shaking. After reaching the stationary phase (108 cell/ml), 

the cells were diluted 1:100 into SD comp media and grown under different antibiotic 

conditions for 24 hours to reach stationary phase. Two concentrations of each antibiotic were 

tested for each mating type, along with a no-antibiotic control. Each plate setup was conducted 

in three biological replicates to ensure the reliability and reproducibility of the results. The 

specific experimental setups are outlined below: 

Mating Type A: 

Plate 1: SD comp (no antibiotic) 

Plate 2: SD comp + Hyg 0.3 mg/mL 

Plate 3: SD comp + Hyg 3 mg/mL 

Plate 4: SD comp + Zeo 0.05 mg/mL 

Plate 5: SD comp + Zeo 0.35 mg/mL 

Mating Type alpha: 

Plate 1: SD comp (no antibiotic) 

Plate 2: SD comp + NAT 0.1 mg/mL 

Plate 3: SD comp + NAT 0.8 mg/mL 

Plate 4: SD comp + G418 0.2 mg/mL 

Plate 5: SD comp + G418 1.5 mg/mL 

To confirm that the cells have reached the stationary phase (108 cell/ml), we measured OD 

levels for representative plates, making sure all strains were around 1. Then the plates were 

diluted 1:10 into the same media and antibiotic conditions and allowed to grow for 
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approximately 4 hours to reach mid-log phase (107 cell/ml). Subsequently, OD measurements 

were performed on all plates (600 wavelength using Tecan Spark plate reader) to determine 

growth levels for each strain under the specified conditions. 

6.6.1. Measuring Antibiotic Resistance in Un-Engineered Strains 

To investigate the potential for innate resistance mechanisms, eight un-engineered (i.e. without 

inserted antibiotics resistance gene) natural isolates in their diploid form (lacking resistance 

gene constructs) were tested for growth under varying concentrations of each of the antibiotics. 

Four strains (ANE, BQG, AIK, and BBA) were grown in media containing Hyg and Zeo, while 

four other strains (AIM, BKR, BRB, and BTH) were grown in media containing Nat and G418. 

Strains were first grown for 24 hours in YPD media to reach the stationary phase. Once 

stationary phase was reached (108 cell/ml), the cultures were diluted 1:100 into SD Comp media 

supplemented with specific concentrations of antibiotics. Since these strains lacked antibiotic 

resistance genes, lower antibiotic concentrations were used in this experiment to assess their 

innate resistance. The antibiotic concentrations tested are summarized as follows: 

1. For strains grown in Hyg and Zeo: 

- Hyg concentrations: 0.0015 mg/mL, 0.03 mg/mL, 0.09 mg/mL, 0.2 mg/mL, and 0.3 

mg/mL. 

- Zeo concentrations: 0.0075 mg/mL, 0.015 mg/mL, 0.03 mg/mL, 0.07 mg/mL, and 0.15 

mg/mL. 

2. For strains grown in Nat and G418: 

- Nat concentrations: 0.005 mg/mL, 0.01 mg/mL, 0.03 mg/mL, 0.06 mg/mL, and 0.1 mg/mL. 

- G418 concentrations: 0.01 mg/mL, 0.03 mg/mL, 0.07 mg/mL, 0.13 mg/mL, and 0.2 

mg/mL. 

 

OD values of all strains grown in the presence of antibiotics were compared to OD values of a 

control plate containing SD Comp media without antibiotics. Each condition was done in 3 

technical replicates. To monitor growth, a robotic system was employed to maintain optimal 

growth conditions. The robot kept the plates shaking at 30°C and measured the OD levels of 

the cells every 1.5 hours for 10-time points, allowing for detailed tracking of growth kinetics 

under the various antibiotic conditions. This setup ensured precise and consistent monitoring 

of growth patterns, providing reliable data for growth rate analysis. 

6.7. Comparative Analysis of Protein Production in Yeast Strains 

6.7.1. Transformation of Foreign Protein Constructs into Yeast Strains 

To explore the industrial application of this project, four yeast strains were utilized: two wild 

strains from the “natural strain collection”, BMB (MATa ho::construct Hyg, Zeo, GFP, 

∆ura3::Z3TF-G418) and AKP (MATa ho::construct Hyg, Zeo, GFP, ∆ura3::Z3TF-G418); the 
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lab strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ∆ura3::Z3TF-G418); and the industrial 

strain CEN.PK (MATa trp1-289 leu2-3,112 his3Δ1 MAL2-8c SUC2 ∆ura3::Z3TF-G418). The 

term "construct" refers to the engineered genetic sequence integrated into the ho locus of the 

BMB and AKP strains, as depicted in (Figure 1, Appendix). All four strains were subsequently 

transformed with an additional genetic cassette carrying an estrogen-inducible transcription 

factor (Z3TF) (18) kindly provided by Maya Schuldiner’s lab. Next, these strains were 

transformed with a construct designed by Noa Hefetz-Aharon that includes an α-factor signal 

peptide (MFα1-sp) and a FLAG tag and encodes either Albumin or FGF2 under the control of 

an estrogen-inducible promoter. Both proteins are of significant industrial relevance. 

Starter cultures were prepared by plating frozen stocks on YPD agar and incubating for 48 

hours. Single colonies were then inoculated into approximately 1 mL of YPD medium 

supplemented with strain-specific antibiotics, as follows: 

• BY4741 – YPD + 0.1 mg/ml G418 

• CEN.PK.1C – YPD + 0.1 mg/ml G418 

• BMB – YPD + 0.1 mg/ml G418 + 0.3 mg/ml HYG  

• AKP – YPD + 0.1 mg/ml NAT + 0.3 mg/ml HYG 

To transform the plasmid containing the construct into the cells, we started with 10⁸ cells, from 

culture of 1-2*107 cells/ml. Transformation solutions were freshly prepared to ensure optimal 

conditions. The TE+LiAc solution consisted of 0.1 M Lithium Acetate and 1X TE buffer, while 

the PEG+LiAc solution contained 40% (w/v) Polyethylene Glycol (PEG), 0.1 M Lithium 

Acetate, and 1X TE buffer. Salmon sperm DNA (7.5 mg/mL) was boiled for 5 minutes at 100C∘ 

and cooled on ice for 3 minutes prior to use. Cells were counted to ensure a concentration of 

1*107 and processed through two rounds of centrifugation (3000g, 3 minutes) and resuspension 

in TE+LiAc. For the first and second round, cells were resuspended in 3 mL and 1 mL of 

TE+LiAc, respectively.  For each transformation reaction, 50 μL of cells containing 108 cells 

were mixed with 1 mg DNA (or 45 μL PCR product), 5 μL boiled salmon sperm DNA, and 

350 μL PEG+LiAc. The mixture was vortexed to ensure homogeneity and incubated at 30∘C 

for 30 minutes. Followed by heat shock at 42 ∘C for 40 minutes. Following transformation, 

cells were centrifuged at 11,000 rpm for 1 minute, and the toxic PEG-containing supernatant 

was aspirated. The pellet was resuspended in 150-200 μL DDW and plated on SD-URA 

selective media for growth. To ensure transformation success we performed PCR on Amp gene 

present in the construct (See primers 8-9 and PCR 3). 

6.7.2. Western Blot Analysis of Protein Production Efficiency 

To assess protein production efficiency, we performed Western blot analysis on four engineered 

strains: BY4741, 1C, and two strains from our collection, AKP and BMB. These strains were 

engineered with a construct containing the FGF2 and Albumin genes. The strains were cultured 
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in SD-URA media, and protein production was induced when the cultures reached a density of 

3 × 10⁶ cells/mL. Induction was initiated by adding 100 nM estrogen to the media, followed by 

incubation for 12 hours at 30°C with shaking. After incubation, a volume of cells corresponding 

to 10 OD was transferred to a new tube and centrifuged at 3000 × g for 5 minutes to pellet the 

cells. The medium was removed, and the pellet was washed with 1 mL of TEx1 buffer. The 

cells were centrifuged again, the medium was discarded, and the pellet was resuspended in 300 

µL of lysis buffer containing 8 M urea, 40 mM Tris-HCl (pH 6.8) and o.1 nM DTT. Glass beads 

were added to the lysate until almost all the liquid was surrounded by beads, and the samples 

were vigorously shaken at 4°C for 10 minutes. The supernatant was separated from the glass 

beads using centrifugation at 750 × g for 3 minutes in a cold centrifuge. The supernatant was 

vortexed briefly, and 150 µL was transferred to a new tube to ensure the inclusion of all protein 

content. To this , 30 µL of a 6X SDS+DTT solution containing 1X β-mercaptoethanol was 

added to the sample, resulting in a final volume of 180 µL and a 1:6 dilution of the original 

supernatant. The SDS+DTT solution was prepared by warming SDS X6 and adding 60 mM 

DTT (final concentration 10 mM). The samples were vortexed briefly, heated at 95°C for 5 

minutes, and stored at 4°C until loading. The protein samples were loaded into a 10% gel 

prepared with two phases: a lower resolving phase to separate proteins based on molecular 

weight and an upper stacking phase to align proteins before entry into the resolving phase. The 

lower phase (10% gel) was prepared with 4 mL H₂O, 3.3 mL 30% acrylamide mix, 2.5 mL 1.5 

M Tris (pH 8.8), 0.1 mL 10% SDS, 0.1 mL 10% ammonium persulfate, and 4 µL TEMED, for 

a total volume of 10 mL. This solution was pipetted into the gel plates, and 400 µL of 

isopropanol was layered on top to prevent air exposure and ensure even polymerization. After 

20 minutes, the isopropanol was removed. The stacking phase (3 mL gel) was prepared with 

2.1 mL H₂O, 0.5 mL 30% acrylamide mix, 0.38 mL 1.0 M Tris (pH 6.8), 0.03 mL 10% SDS, 

0.03 mL 10% ammonium persulfate, and 3 µL TEMED. This solution was layered on top of 

the resolving phase, and a comb was inserted to form wells, ensuring no air bubbles were 

trapped. After polymerization, the prepared protein samples were loaded into the gel, and 

electrophoresis was performed to separate the proteins. The gel chamber was filled with 10% 

TG-SDS running buffer, and the gel was placed in a plastic box to ensure a tight seal. A 3 µL 

protein marker and 35 µL of each sample were loaded into the wells. The gel was run at 80 V 

for 20 minutes until the samples reached the boundary between the stacking and resolving 

phases. The voltage was then increased to 200 V, and the gel was run for an additional 30 

minutes. Following electrophoresis, the gel was removed from the chamber and placed in 

DDW. Proteins were transferred onto nitrocellulose membrane using a semi-dry (BioRad) 

protocol. The membrane was then blocked for 1hr while shaking at room temperature in 

Odyssey Blocking Buffer diluted 1:2.5 in PBS. then incubated with an Anti-FLAG antibody 

diluted 1:1000 in Blocking Buffer (diluted 1:5 in PBS) for 1 hour at room temperature with 
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shaking. Following incubation, the membrane was washed three times with 1X TBST, shaking 

for 5 minutes at room temperature, and the wash solution was discarded after each wash. Next, 

the membrane was incubated with the secondary antibody (Sigma Goat anti-Mouse antibody) 

diluted 1:10,000 in Blocking Buffer (1:5 in PBS) for 1 hour at room temperature with shaking. 

After incubation, the same washing protocol was applied three times with 1X TBST to remove 

unbound secondary antibodies. Finally, the membrane was imaged to detect the target protein 

using the LI-COR Odyssey Imaging System. 

6.8. Data Analysis 

All data analyses in this study were conducted using Python programming language. The 

analyses encompassed data preprocessing, visualization, and statistical testing to ensure the 

reliability and reproducibility of results. Raw data from sequencing, FACS, and growth assays 

were preprocessed and organized using libraries such as pandas for data manipulation and 

numpy for numerical operations. Statistical analyses, including correlation tests, regression 

models, and enrichment index calculations, were performed using scipy and statsmodels. 

Principal Component Analysis (PCA) was conducted using scikit-learn to explore variations in 

transcriptomic data and their relationship to fluorescent protein expression. 

At times, ChatGPT Large Language Model (LLM) was used to draft Python scripts. Typical 

prompts included a general description of the computational task, followed by iterations of 

running suggested scripts, modifying them as needed, and debugging. 

6.8.1. Machine Learning models and Analysis  

To investigate the relationship between fluorescent gene expression and transcriptomic profiles, 

we used data from a study analyzing the pan-transcriptome of approximately 1,000 natural yeast 

isolates, encompassing 4,977 core genes and 1,468 accessory genes (14). Focusing on about 

120 strains, we aimed to uncover potential links between natural genes’ expression and 

fluorescent protein production, and to develop models predicting both GFP and RFP expression 

levels in offspring and their noise residual. We considered several predictive features for this 

model: for each offspring we considered expression level of all natural genes in each of its two 

parents (about 2*6,000 features), along with parental GFP and RFP expression levels, genetic 

distance between parental strains (8), fitness of both parents and offspring (15), and forward 

scatter measurements (used as a proxy for cell size), which were obtained via fluorescence-

activated cell sorting (FACS) alongside fluorescent protein intensity. To predict our target 

features, we applied multiple machine learning models; LightGBM (LGB) (19), XGBoost (20), 

GradientBoostingRegressor (21) and DoubleLearning CatBoostRegressor (22). We chose to 

use the DoubleLearning CatBoostRegressor model based on its high R-squared score, 

indicating that it provided strong predictive accuracy for our target features. To evaluate the 

model’s performance, we used a customized cross-validation approach. In this approach, we 
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repeatedly partitioned the data into training and test sets by randomly selecting a subset of 

parents along with all their offspring for the training set. After training, we identified the 20 

most predictive features based on their feature importance using SHAP (SHapley Additive 

exPlanations). SHAP is a method that helps explain the output of machine learning models. It 

works by fairly attributing the contribution of each feature (or group of features) to the model’s 

predictions. SHAP values provide insights into how individual features impact the model’s 

prediction for each instance, allowing us to understand the relative importance of different 

features, such as gene expression levels, genetic distance, and fitness. 
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7. Results 

 

To investigate the inheritance of quantitative traits, we focused on five distinct phenotypic 

categories: antibiotic resistance, gene expression of fluorescent genes, noise in gene expression 

and cell size. These traits were chosen due to their measurable and potentially heritable 

properties, making them ideal for studying the mechanisms underlying quantitative trait 

inheritance in Saccharomyces cerevisiae. 

 

7.1. FACS Screen for Parents to Determine Fluorescent Protein 

Levels 

In this study, the expression of fluorescent genes was used as a quantitative trait. Using a FACS 

machine, we screened all engineered strains containing the foreign fluorescent genes GFP (in 

mating type A) and RFP (in mating type alpha). A wide variation in fluorescent protein 

expression levels was observed across the different strains (Figure 1), supporting our hypothesis 

that fluorescent gene expression behaves as a quantitative trait that may span a range between 

natural isolates of the species. To evaluate the statistical significance of differences in gene 

expression between the highest- and lowest-expressing strains, we performed a rank-sum test. 

This analysis was conducted using data from a single replicate, focusing on all cells measured 

for each strain. The results demonstrated a significant difference in gene expression (p-value = 

1.544e-91) between BMB (the highest GFP-expressing strain) and BLS (p-value < 5e-324) (the 

lowest GFP-expressing strain). Similarly, in mating type alpha, BNI was identified as the 

highest-expressing strain, and AKB as the lowest-expressing strain, with a statistically 

significant difference observed (p-value < 0.001) (Figure 2). To further explore the distribution 

of fluorescence intensities, we analyzed the GFP and RFP expression levels for each strain, 

including the lab strain (BY4741/2) and industrial strain (CEN.PK.1C/1D). Both linear and log-

transformed distributions revealed that the fluorescence intensities did not conform to a normal 

distribution (Figure 5, Appendix), Next, we tested the correlation between fluorescent gene 

expression in mating types A (GFP) and alpha (RFP) within the same strain. We note though 

that only a limited number of strains had both mating type a and mating type alpha partners, 

thus correlation could only be measured on a small subset of 32 strains. No significant 

correlation was observed (R = 0.02, p-value = 0.2674, Figure 3A).  

However, when strains were color-coded according to their zygosity index as defined in (8), 

distinct patterns emerged. For homozygous strains, a positive but non-significant correlation 

was observed (R = 0.34, p-value = 0.1558, Figure 3B). In contrast, heterozygous strains 

exhibited no correlation (R = -0.02, p-value = 0.9578, Figure 3C), highlighting the variability 

in gene expression across different zygosity levels. To ensure accurate comparisons between 
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GFP and RFP levels, which are not on the same scale due to differences in fluorescence 

intensity captured using FACS, fluorescence values were normalized to the median of each 

experiment. This normalization was consistently applied across all experiments, facilitating 

both easier visualization and more accurate analyses. The graphs presented in Figure 5 reflect 

these normalized values. 

7.1.1. Sonication test to eliminate clumps  

Many of the strains exhibited significant clumping, as observed under the microscope (Figure 

6, Appendix), with most strains forming clumps of varying sizes. To ensure that the FACS 

machine accurately measured fluorescent intensity of viable single cells, we conducted a test 

using 18 strains from the collection, representing both extremes of the fluorescence intensity 

spectrum, with two different treatments: sonicated and non-sonicated.  

The results showed that sonication had a minimal impact on the fluorescence intensity ranking 

of strains. In mating type A, the highest-expressing strains consistently remained the highest, 

and the lowest-expressing strains remained the lowest both with and without sonication. For 

mating type alpha, the highest and lowest strains generally maintained their positions; however, 

there was some shuffling among the intermediate strains within the highest- and lowest-

expressing groups (Figure 4). Additionally, we compared the fluorescence intensity of the 

sonicated strains to the engineered lab strain (BY4741/2) and industrial strain (CEN.PK.1C/1D) 

containing the GFP/RFP constructs. These strains, which are not clumpy, were consistently 

positioned at the bottom of the fluorescence intensity spectrum in both mating type A and 

mating type alpha under the sonicated treatment, as illustrated in Figure 4 (B) and (D). This 

result could be taken to indicate that clumping of some of the natural strains results in inflated 

expression estimation. 
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Figure 1 | GFP and RFP levels in parent strains. This figure presents GFP and RFP fluorescence 

intensity levels across 96 mating type A strains (A) and 48 mating type alpha strains (B), measured in 

three technical replicates. For each strain, black markers indicate the mean fluorescence intensity, with 

black error bars representing the standard error of the mean (SEM) across replicates. The green lines (A) 

and red lines (B) represent the standard deviation (SD) of the first replicate, calculated from a population 

of cells. The FACS machine measured fluorescence intensity for 50,000 cells per strain, with a rigorous 

three-step gating system applied to exclude clumped cells and debris, ensuring the analyzed population 

consisted of single, viable cells ending up with an average of 25000 cells per strain. SD values across 

replicates showed strong and statistically significant correlations for both mating types. For mating type 

A strains: (rep1 vs. rep2) r = 0.793, p < 0.001; (rep1 vs. rep3) r = 0.657, p < 0.001; and (rep2 vs. rep3) r 

= 0. 916, p < 0.001. For mating type alpha strains: (rep1 vs. rep2) r = 0.996, p < 0.001; (rep1 vs. rep3) r 

= 0.995, p < 0.001; and (rep2 vs. rep3) r = 0.992, p < 0.001. 

 



25 

 

 

Figure 2 | Box plot of GFP and RFP intensities (log scale) for strains representing the extremes of 

the fluorescence spectrum. (A) GFP intensity of cells from mating type A, comparing BMB (the 

highest-expressing strain) to BLS (the lowest-expressing strain). A Ranksum test confirmed a significant 

difference in expression between the strains (p-value < 0.001). (B) RFP intensity of cells from mating 

type α, comparing BIN (the highest-expressing strain) to AKB (the lowest-expressing strain). A Ranksum 

test also showed a significant difference in expression between these strains (p-value < 0.001). 

 

 

Figure 3 | Correlation analysis of GFP and RFP fluorescence intensities across mating types of the 

same strain and zygosity levels, normalized to the median. (A) Scatter plot showing the correlation 

between GFP (mating type A) and RFP (mating type alpha) fluorescence intensities across 32 strains. 

Each point represents a single strain and is color-coded by zygosity (orange for homozygous strains and 

blue for heterozygous strains). No significant correlation was observed (R = 0.02, p-value = 0.2674). (B) 

Scatter plot of GFP and RFP fluorescence intensities for homozygous strains. A positive but non-

significant correlation was observed (R = 0.34, p-value = 0.1558). (C) Scatter plot of GFP and RFP 

fluorescence intensities for heterozygous strains. No correlation was observed (R = -0.02, p-value = 

0.9578) 
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Figure 4 | GFP and RFP intensity in 18 strains from the collection under sonicated and unsonicated 

treatments. (A) and (B) display GFP intensity for 8 mating type A strains under unsonicated and 

sonicated conditions, respectively. (C) and (D) show RFP intensity for 10 mating type alpha strains under 

unsonicated and sonicated conditions, respectively. In both fluorescence channels (GFP and RFP) and 

treatments, the lab strain (BY4741) and the industrial strain (CEN.PK.1C) consistently appear at the 

lower end of the intensity spectrum. 

 

7.1.2. Computational Analysis of Transcriptomic Data 

To investigate the relationship between fluorescent gene expression and transcriptomic profiles, 

we used data from a recently published study analyzing the pan-transcriptome of most 

(approximately 1,000) of the yeast natural isolates, covering 4,977 core and 1,468 accessory 

genes (14) . For this study, we focused on our ~120 strains from the dataset to identify potential 

links between gene expression and fluorescent protein production. We reasoned that certain 

genes from the natural genome of yeast could affect the expression level of the fluorescent 

protein and we wished to identify these genes. Principal Component Analysis (PCA) was 

performed on the transcriptomic data to identify differences in the transcriptome of the various 

strains Figure 5 illustrates the distribution of strains based on PC1 and PC2. The wide range of 

PC1 values indicates wide differences in gene expression profiles across the strains, with 

extreme strains highlighted. To explore the functional contributions of genes to PC1, we 

identified the top 10% of genes contributing to either end of the PC1 axis and performed Gene 

Ontology (GO) analysis to categorize these genes into functional groups. On the negative side 

of PC1, genes associated with translation, glycolytic processes, and metabolic processes 

were highly represented. These findings suggest that strains at this end of the spectrum exhibit 

enhanced metabolic and biosynthetic activity. In contrast, on the positive side of PC1, genes 

involved in respiratory electron transport and response to abiotic stimulus were more 
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prevalent, suggesting that strains with higher and positive PC1 values focus on stress responses 

and respiratory activity. Additionally, no significant correlation was found between PC1 values 

and GFP or RFP expression levels (Figure 5C). These results reveal distinct transcriptomic 

profiles associated with the extreme ends of PC1, reflecting possible biological differences in 

metabolic and stress-related gene expression. 

 

Figure 5 | PCA analysis of transcriptomic data and correlation with parental fluorescence levels. 

This figure presents an analysis of transcriptomic data using Principal Component Analysis (PCA) and 

scatter plots examining the relationship between PC1 and parental GFP and RFP expression levels. (A) 

The PCA plot illustrates the variance in the transcriptomic dataset, with the first principal component 

(PC1) explaining 32% of the variance and the second principal component (PC2) explaining 20%. Strains 

with extreme PC1 values are highlighted in green. (B) GO analysis of the genes contributing to the 

extremes of PC1 reveals functional differences. On the negative side of PC1, genes associated with 

translation, glycolytic processes, and metabolic processes (p-value < 0.001) are highly expressed. On the 

positive side of PC1, genes involved in the respiratory electron transport chain and response to abiotic 

stimulus (p-value < 0.001) are more prevalent. (C) The scatter plot shows normalized parental GFP 

expression levels plotted against PC1, and (D) displays normalized parental RFP expression levels 

against PC1. No significant correlation is observed. 

 

7.2. Offspring Screen to Study Fluorescent Protein Inheritance 

Mechanisms 

To investigate the inheritance mechanisms of fluorescent proteins, we generated and screened 

offspring combinations of the parental strains using two distinct approaches, called “all against 

all” and “one-against one.”  

7.2.1. “All-Against-All” Mating and FACS Sorting 

In this experiment, all parental strains were combined, allowing for free mating among them. 

After mating, offspring were isolated using FACS based on the fluorescence intensity of both 

parental markers, GFP and RFP. The top and bottom 10th percentiles of offspring, representing 

the highest and lowest fluorescence intensities, were sorted. Following mating barcode 
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recombination is induced to generate fused barcodes whose sequence reveals the identity of the 

two parents of each offspring. To determine the parental origins of the sorted offspring, Next-

Generation Sequencing (NGS) was performed on strain-specific genomic barcodes. 

Sequencing results provided read-per-million (RPM) values for each offspring in the sorted 

fractions. An enrichment index score was calculated by comparing the presence of each 

offspring in the high and low fluorescence fractions, reflecting their association with either 

extreme of the fluorescence intensity distribution (Figure 3, Appendix). We defined the 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 =  
𝑆𝑜𝑟𝑡𝑒𝑑 𝐻𝑖𝑔ℎ (𝑅𝑃𝑀)

𝑆𝑜𝑟𝑡𝑒𝑑 𝐿𝑜𝑤 (𝑅𝑃𝑀)
. By plotting the standard deviation between repeats 

against the enrichment index for each offspring, we identified strains with both low standard 

deviation and high enrichment index values. The cutoff for low standard deviation was defined 

by identifying strains with an enrichment index greater than 20,000 and a standard deviation 

more than 100 units below the mean. Notably, certain parental strains appeared multiple times 

in the highlighted offspring. For example, SACE-YBW (mating type A) and BHB (mating type 

A) each appeared in three of the 12 highlighted offspring, and AKP (mating type alpha) 

appeared four times, suggesting a high positive contribution of these parental strains to 

offspring with high fluorescence intensity on both GFP and RFP channels (Figure 6). To 

visualize the strains with low enrichment index, we plotted a scatter plot with a log scale and 

identified strains that were located close to zero. These strains expressed GFP and RFP very 

poorly. Interestingly, the strain CQD (mating type alpha) appeared five times with five different 

partners, suggesting a negative contribution of this strain to the offspring's fluorescent 

expression (figure 7). 

                   

                                                     

Figure 6 | Identification of strains with high enrichment index and low standard deviation. This 

figure highlights strains with high enrichment index and low standard deviation across three biological 

repeats. (A) Scatter plot displaying enrichment index versus standard deviation for various offspring. 

The area highlighted by the ellipse indicates a cluster of strains with both high enrichment index and 

relatively low standard deviation, suggesting a consistent presence in the high fluorescence fraction 

across repeats. (B) Close-up of the highlighted region. Notably, AKP (alpha) appeared 4 times, BHB (A) 

and SACE-YBW (A) appeared 3 times. 
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Figure 7 | Identification of strains with low enrichment index. This figure highlights strains with low 

enrichment index. (A) Scatter plot (log scale) displaying enrichment index versus standard deviation for 

various offspring. The area highlighted by a square indicates a cluster of strains with low enrichment 

index. (B) Close-up of the highlighted region. Notably, CQD (alpha) appeared five times, each with a 

different partner. 

 

7.2.2. “One-Against-One” 

In the previous method, some offspring combinations were missing due to variations in fitness 

and mating affinity among strains, as well as the loss of offspring before reaching the final 

sorting stage. To overcome this limitation, we generated a complementary method to measure 

GFP and RFP, culminating in a comprehensive library of 3,002 offspring, encompassing all 

possible successful mating combinations. These were arranged in 32 96-well plates. Using a 

FACS plate reader, we screened these offspring for GFP and RFP expression levels, revealing 

significant variability in fluorescence intensity across the library. To ensure the integrity of the 

high-throughput analysis and confirm minimal contamination, we randomly selected 68 

offspring from the library for Sanger sequencing of the barcodes to verify parental identities. 

Of these, 63 offspring (92.6%) were confirmed to have the expected parental combinations, 

demonstrating the reliability of the mating and selection process (Table 4, Appendix). Notably, 

barcode recombination was performed, and the fused barcode underwent sequencing to confirm 

parental identity. Additionally, to rule out batch effects, we plotted a heatmap showing GFP 

and RFP levels for the offspring, organized by plate. The analysis revealed no evidence of batch 

effects or plate “geographical” effect in any of the plates (Figure 7, Appendix). Offspring from 

AKP (alpha) and BBI (alpha) consistently showed high expression levels of the parental trait 

RFP, highlighted in red and yellow, reflecting parental inheritance as these strains are among 

the top two RFP producers among the parents (Figure 8). Furthermore, microscope analysis of 

multiple offspring revealed that most, if not all, do not form aggregates like their haploid 

parents. Instead, they exhibit behavior more similar to the lab strain BY4741/2, which does not 

display aggregate formation (Figure 8, Appendix).  
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A comparative analysis was performed to evaluate the results of both approaches, and the 

findings are presented in chapter 7.4.  

 

Figure 8 | Scatter plot of GFP and RFP expression levels in offspring. This scatterplot visualizes data 

from 3002 offspring derived from 100 different natural isolates. Showing GFP and RFP expression 

levels, normalized to the median. The offspring of the top two alpha strains in RFP production, BBI and 

AKP, are highlighted in yellow and red, respectively, indicating their offspring’s elevated RFP 

expression levels compared to other strains. For comparison, the offspring of the top two A strain GFP 

producers, BHC and CFR, are highlighted in green and blue, respectively. 

7.3. Comparing Offspring and Parental Fluorescence Expression 

Levels 

An initial comparative analysis between GFP and RFP expression levels in parents and 

offspring revealed a surprising trend: parental expression levels were almost two-fold higher 

than those observed in the offspring. Specifically, a 2.27-fold difference was noted on average 

in GFP levels between mating type A parents and their offspring, and a 2.1-fold difference in 

RFP levels between mating type alpha parents and their offspring. This difference in expression 

levels contradicted our initial expectations, as diploid cells typically exhibit higher protein 

expression levels due to their larger size. Instead, the opposite pattern was observed, suggesting 

an unexpected mechanism influencing fluorescent protein expression in the offspring (Figure 

9). 
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Figure 9 | Relationship between noise and mean expression levels of GFP and RFP in offspring (log 

scale). (A) Scatter plot showing the negative correlation between noise (𝜎2/𝜇2) and mean GFP expression 

levels. Each point represents an offspring strain. (B) illustrates the negative correlation between noise 

(𝜎2/𝜇2) and mean RFP expression levels. While most offspring follow the expected trend of higher noise 

at lower mean expression levels, some strains diverge from the overall pattern. 

 

7.3.1. Investigating Inheritance Patterns Based on Parental Expression 

Properties  

To explore inheritance patterns, we investigated various approaches to model parental 

contributions to offspring fluorescence traits. Specifically, we calculated three parental metrics 

for GFP and RFP expression levels: the average, the minimum, and the maximum of parental 

values. These parental metrics were then compared to the offspring's GFP and RFP expression 

levels to assess which approach showed the strongest correlation between each pair of parents 

and their offspring. Our analysis revealed that all three parental metrics (average, minimum, 

and maximum) exhibited significant but weak positive Pearson correlations with offspring 

expression levels (Figure 9, Appendix). Focusing on the average parental values, the correlation 

between parental average expression and offspring GFP expression across all offspring was R 

= 0.04, with a p-value of 4.44e-02. Similarly, the correlation between parental average 

expression and offspring RFP expression was R = 0.65, with a p-value of 5.26e-308. After 

excluding outliers, specifically offspring of alpha mating type AKP and BBI, the correlation 

between average parental expression and offspring GFP expression increased slightly to R = 

0.11, with a p-value of 3.374e-08. In contrast, the correlation between average parental 

expression and offspring RFP expression decreased to R = 0.12, with a p-value of 2.318e-09 

(Figure 10). These results suggest that inheritance patterns for fluorescent protein expression 

are more complex than a simple averaging of parental traits. Multiple additional factors likely 

contribute to the observed patterns of fluorescent protein expression in offspring, indicating 

that the inheritance of these traits involves intricate mechanisms beyond straightforward 

parental. The correlation between the minimum parental value and offspring GFP expression 

was R = 0.12 (p-value = 4.37e-10). Similarly, for offspring RFP expression, the correlation was 

R = 0.21 (p-value = 2.85e-26) before outlier removal and R = 0.12 (p-value = 1.17e-08) after 

removal. For the maximum parental value, the correlation with offspring GFP expression was 
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R = 0.01 (p-value = 7.56e-01) before outlier removal and R = 0.06 (p-value < 5e-342) after 

removal. Likewise, for offspring RFP expression, the correlation was R = 0.68 (p-value < 5e-

342) before outlier removal and R = 0.08 (p-value < 5e-342) after removal.  

 

Figure 10 | Correlation between parental fluorescent averages and offspring expression levels. This 

figure illustrates the relationship between the average parental GFP and RFP expression levels and the 

offspring’s corresponding expression values. (A) a weak positive correlation is observed between the 

offspring's GFP levels and the parental average (R = 0.11, p-value <0.001). (B) a similar weak positive 

correlation is seen for RFP levels (R = 0.12, p-value < 0.001). Both graphs display these correlations 

after excluding the outlier offspring of the alpha strains AKP and BBI.  

7.3.2. Patterns of Parental and Non-Parental Inheritance 

During our analysis, we identified an intriguing phenomenon that we termed parental and non-

parental inheritance. Non-parental inheritance occurs when a parent influences the expression 

levels of the other parent’s fluorescent color in the offspring. For instance, a mating type A 

parent, which contributes the GFP gene, consistently produced offspring with high expression 

levels of RFP, the fluorescent protein associated with the alpha mating type. In contrast, 

parental inheritance refers to cases where the parent directly influences the expression levels of 

its own fluorescent marker. For example, siblings from a mating type alpha parent exhibited 

similar levels of RFP expression, reflecting the parent’s contribution. This observation 

highlights an intriguing inheritance pattern, where parental influence extends beyond its direct 

genetic contribution, suggesting the involvement of additional regulatory mechanisms.  

(Figure 11) illustrates this phenomenon. To visualize this effect, we used two complementary 

approaches. In the first approach, we created heatmaps of GFP and of RFP expression levels in 

the offspring, organized by sibling groups, with A type parents arranged vertically and alpha 

type parents arranged horizontally. This layout allowed for direct comparison of siblings and 
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facilitated the identification of distinct inheritance patterns. Certain strains consistently 

produced offspring with high expression levels, either for the parental or non-parental color. 

These patterns are highlighted by black rectangles (Figure 12). In the second approach, we 

calculated the mean expression level of the parental color for all offspring derived from the 

same parent and plotted these values in a box plot, comparing them to the parent’s own 

expression level. For mating type A parents and their offspring's GFP mean levels, we observed 

that some parents consistently produced high-expressing offspring, despite having average GFP 

levels themselves. This pattern, highlighted by a black circle, suggests a pattern of non-parental 

inheritance (Figure 13 (A-B)). For alpha type parents, we conducted a similar analysis using 

the parental color RFP. Here, distinct patterns of parental inheritance emerged, particularly in 

strains like AKP and BBI. These strains were both high-expressing parents and consistently 

produced high-expressing offspring, indicating a strong parental inheritance (Figure 13 (C-D)). 

Further analysis of the box plot revealed that certain parental strains consistently appeared at 

the extremes of the distribution, producing offspring with either low or high expression levels 

of the non-parental color. For example, alpha type strains BHB and BRB were frequently 

observed at the lower and upper ends of the distribution of GFP expression levels, respectively. 

Similarly, A type strains AKI and BMA exerted a similar influence on RFP expression levels 

of the offspring (Figure 14). Additionally, by plotting the average expression level of the 

parental color in offspring from the same parent against the parent's own expression level, we 

found that in mating type A, no significant correlation was observed (R = 0.09, p-value = 

9.813e-06), although some strains showed an improvement in GFP expression levels as 

diploids. In contrast, in mating type alpha there is a stronger positive correlation (R = 0.37, p-

value = 6.675e-77), after outlier removal and (R = 0.80, p-value < 5e-324) after removal, with 

certain strains exhibiting similar improvement as diploids (Figure 15).  

 

Figure 11 | Illustration of parental and non-parental inheritance. This figure illustrates examples of 

parental and non-parental inheritance patterns. (A) Parental inheritance: The offspring (diploid) 

resulting from the mating of a random A strain and a random alpha strain inherits a variation from the A 

parent, which specifically influences the expression levels of the parental color, GFP. (B) Non-parental  

inheritance: The offspring inherits a variation from the alpha parent that unexpectedly impacts the 

expression levels of the non-parental color, GFP, highlighting the influence of the alpha parent on a trait 

it does not directly contribute. 
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Figure 12 | Heatmap of GFP and RFP expression in offspring. These clustered heatmaps show GFP 

and RFP expression levels in the offspring, organized by comparison to siblings of the same mating type 

A (vertically) and alpha (horizontally). In (A) The color scale represents GFP expression levels, and in 

(B) RFP levels, with darker colors indicating higher intensities. Black rectangles highlight specific strains 

that consistently produce offspring with similar expression levels, either high or low, of the parental trait 

or the non-parental trait, as indicated on the map. 
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Figure 13 | Comparison of offspring and parental expression levels. This figure presents box plots 

comparing the expression levels of offspring with their parents. In (A) box plots of GFP expression levels 

of offspring derived from each A mating type parent, with the average expression for each sibling group 

shown within each box. (B) GFP expression levels of the A mating type parents for comparison. 

Similarly, in (C), the box plots illustrate the RFP expression levels of offspring from each alpha mating 

type parent, with the average RFP level for each sibling group shown in each box. (D) RFP expression 

levels of the alpha mating type parents. 
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Figure 14 | Identification of parents with non-parental color influence. This figure presents box plots 

showing GFP and RFP expression levels in offspring, organized by parents in descending order of 

intensity. Each box displays the distribution of offspring expression levels for each parent, with the 

average level marked within the box. Blue and red dots indicate specific parents whose offspring appear 

at the extremes of the distribution, influencing the expression levels of the non-parental color. (A), BHB 

and BRB alpha parents that affect their offspring’s GFP levels, while in (B), A mating type parents AKI 

and BMA influence their offspring’s RFP levels. 

 

Figure 15 | Scatter plot showing the parental effect. Scatter plots comparing the average fluorescence 

levels of offspring to their respective parent’s expression level. In (A), the scatter plot shows the average 

GFP expression of all offspring (siblings) derived from a specific A parent plotted against the GFP level 

of that A parent. No correlation is observed (R = 0.09, p-value < 0.001), although some strains exhibit, 

on average, higher GFP levels as diploids, highlighted with a black circle. (B) a similar plot is shown for 

RFP expression, comparing the average RFP levels of offspring to the RFP level of the alpha parent. A 

stronger positive correlation is observed (R = 0.37, p-value < 0.001) after removing outliers.  
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7.4. Comparing the Results of Both Approaches 

We then turned to compare the results of the two approaches: “All-against-all” and “One-

against-one”. Certain strains exhibited consistent patterns across both methods, reinforcing 

their significance in offspring inheritance. AKP (alpha) was a standout strain in both 

approaches in conferring high expression even upon its offspring with multiple partners. In the 

“All-against-all” method, it was identified as a parent to four different offspring out of 12 with 

a high enrichment index and low standard deviation (Figure 6B). Also, in the parental vs non-

parental analysis these strains stood out as a strong contributor of parental contribution to 

expression of RFP (Figure 12B). 

Another notable strain, SACE-YBW (A), displayed similar consistency across both methods. 

In the “All-against-all” approach, it appeared as a parent to three different offspring out of 12 

with a high enrichment index and low standard deviation (Figure 6B). In the “One-against-one” 

approach, SACE-YBW (A) exhibited strong parental effects, consistently producing offspring 

with high GFP expression levels (Figure 12A). Finally, BHB (alpha) emerged as an interesting 

strain with unique behavior. In the “All-against-all” approach, it appeared three times paired 

with different mating type A strains out of 12, positioned below the line in the standard deviation 

vs enrichment index graph (Figure 6B). In parental vs. non-parental analysis, these strains stood 

out as strong contributors to both parental and non-parental inheritance of GFP and RFP 

expression, respectively (Figure 12). When examining low-expressing offspring, CQD (alpha) 

consistently produced offspring with low GFP and RFP expression levels. In “All-against-all” 

it appeared five times paired with different mating type A strains with very low enrichment 

index (Figure 7B). And in “One-against-one” method, it repeatedly produced offspring with 

low RFP expression, as shown in the siblings' box plot (Figure 13), which appears at the far 

right, indicating low expression levels (Figure 13B). 

To better visualize the comparison, strains that stood out in the “All-against-All” approach were 

highlighted in the "One-against-One" GFP vs. RFP density plot. Strains with a high enrichment 

index are represented by circles, while those with a low enrichment index are marked 

with triangles. Nine out of the 12 high-enrichment strains, highlighted with dashed circles, are 

located at the higher end of the graph, exhibiting high expression levels of either GFP or RFP 

(Figure 16). These strains are positioned outside the dense regions where the majority of 

offspring are clustered, further emphasizing their unique and distinct expression patterns. 

In contrast, strains with a low enrichment index do not exhibit high levels of GFP or RFP and 

are instead concentrated within the dense central region of the plot, exhibiting low expression 

levels of both GFP and RFP. 
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Figure 16 | Density plot of GFP vs. RFP intensities of offspring from the "one-against-one" 

approach. This plot illustrates the distribution of GFP and RFP intensities across offspring strains, 

visualized as a density plot. Highlighted are strains identified as interesting in the "All-against-All" 

approach, categorized into two groups based on their enrichment index values: High Enrichment Index 

Strains (circles): These strains exhibit high expression of either GFP or RFP and are mostly located 

outside the regions with the highest density of offspring. Notably, 9 out of the 12 strains highlighted with 

black dashed circle, exhibit high expression of either GFP or RFP. Low Enrichment Index 

Strains (triangles): These strains are associated with low expression levels of both GFP and RFP and are 

concentrated within the white dashed circle, aligning with the regions of highest offspring density. 

 

7.5. Noise in Fluorescent Protein Expression Across Strains and 

Generations: Scaling with Mean Expression and Inheritance Patterns 

To investigate variability in protein expression, we calculated the noise (σ2/μ2) in GFP and RFP 

production across different S. cerevisiae strains. Noise was measured for mating type A strains 

(GFP expression) and mating type alpha strains (RFP expression). Consistent with findings 

reported by (10), which demonstrated that low-abundance proteins exhibit higher noise, while 

high-abundance proteins show lower noise, following a predictable scaling law, a negative 

correlation between noise and mean fluorescence was observed across strains in both mating 

types and their offspring (Figure 17). To determine the general scaling relationship, we 

calculated the fitted line for the parents after excluding outliers using the interquartile range 

(IQR) method, a systematic approach ensuring unbiased outlier removal based on statistical 

thresholds. This resulted in slopes of -0.93 for GFP and -0.82 for RFP. Notably, certain parent 

strains diverged from this trend, including SACE-YBW and CFR (A), which exhibited higher 

noise relative to GFP expression, and AKP and BBI (alpha), which displayed similar 

divergences in RFP noise (Figures 17A and 17B). For the offspring, based on observations in 
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the parents, the offspring of SACE-YBW and CFR (A), as well as AKP and BBI (alpha), were 

manually excluded from the general population to assess whether they displayed similar 

behavior. A fitted line on the remaining general population revealed slopes of -0.22 for GFP 

and -0.52 for RFP, highlighting the negative correlation between noise and mean fluorescence. 

Notably, the excluded offspring (SACE-YBW and CFR from A, and AKP and BBI from alpha) 

exhibited elevated noise levels relative to their mean expression, mirroring the distinctive 

patterns observed in their parents (Figures 17C and 17D).  

7.5.1. Residual noise calculation  

To evaluate the noise properties of yeast strains independent of expression levels, we performed 

a “noise residual” analysis, defined as the vertical distance between observed noise values and 

the fitted line in log-log space (corresponding to the difference between observed noise level 

and the expected level given the mean expression and the fitted line). We analyzed both parent 

strains and their offspring, focusing on noise residuals for GFP and RFP fluorescence markers. 

Specifically, we averaged the noise residuals of offspring from mating type A parents and 

plotted these against corresponding parent noise residuals. For mating type A strains, we 

observed a significant positive correlation in GFP noise residuals (R = 0.55, p-value = 1.990e-

07). A similar analysis of mating type alpha strains revealed a non-significant positive 

correlation in RFP noise residuals (R = 0.41, p-value = 1.568e-02). These results suggest that 

intrinsic noise characteristics can be transmitted across generations in these yeast strains, with 

varying degrees of statistical significance between mating types and fluorescence markers 

(Figure 18). To further investigate the relationship between parental noise residuals and 

offspring. First, we calculated the average noise residuals of both parents and plotted these 

against the GFP and RFP noise residuals of the offspring. For GFP, we observed a significant 

positive correlation (R = 0.22, p-value = 1.81e-29). For RFP, we also observed a significant 

positive correlation (R = 0.16, p-value = 2.264e-16) (Figure 19A and 19B).  

Furthermore, we plotted the offspring GFP and RFP noise residuals against the maximum and 

minimum parental noise residuals. For the maximum parental noise residuals, we observed a 

significant positive correlation with offspring GFP noise residuals (R = 0.38, p-value = 3.29e-

86), while no correlation was found for RFP (R = 0.06, p-value = 2.17e-03) (Figure 19C and 

19D). As for the minimum parental noise residuals, we observed no correlation with offspring 

GFP noise residuals (R = 0.02, p-value = 2.86e-01) and a weak positive correlation for RFP (R 

= 0.16, p-value = 3.93e-16) (Figure 19E and 19F). 
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Figure 17 | Relationship between noise and mean expression levels of gfp and rfp in parents and 

offspring (log scale). (A) Scatter plot of GFP noise versus mean GFP expression in parent strains of 

mating type A of 3 biological repeats. A fitted line calculated after excluding outliers using the 

interquartile range (IQR) method shows a negative slope (-0.93). (B) Scatter plot of RFP noise versus 

mean RFP expression in parent strains of mating type alpha. of 3 biological repeats. The fitted line 

calculated after excluding outliers using the IQR method has a slope of -0.82. (C) Scatter plot of GFP 

noise versus mean GFP expression in offspring of mating type A. Data points are color-coded based on 

parental identity, with outlier strains SACE-YBW (black) and CFR (yellow) excluded from the fitted 

line calculation (slope = -0.22). The remaining data reveal a weak negative correlation. (D) Scatter plot 

of RFP noise versus mean RFP expression in offspring of mating type alpha. Data points are color-coded 

based on parental identity, with outlier strains AKP (red) and BBI (pink) excluded from the fitted line 

calculation (slope = -0.52). The general population shows a negative correlation, while the excluded 

strains maintain elevated noise levels relative to their mean expression. 

 

 

Figure 18 | Relationship between noise residuals of parents and their offspring. Scatter plots 

illustrate the relationship between the noise residuals of parents and their respective offspring. In (A), 

the average GFP noise residual of all offspring (siblings) derived from a specific mating type A parent is 

plotted against the GFP noise residual of that parent. A significant positive correlation is observed (R = 

0.55, p-value < 0.001). In (B), the average RFP noise residual of offspring is plotted against the RFP 

noise residual of the corresponding mating type alpha parent. A non-significant positive correlation is 

observed (R = 0.41, p-value = 1.568e-02). 
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Figure 19 | Correlation between parental noise residuals and offspring noise residuals across 

different measures. (A)-(B) Scatter plots showing the relationship between the average parental noise 

residual and offspring GFP and RFP noise residual, respectively. A significant positive correlation is 

observed in both markers (R = 0.22, p-value = 1.81e-29) and (R = 0.16, p-value = 2.26e-16). (C)-(D) 

Scatter plots showing the relationship between the maximum parental noise residual and offspring GFP 

and RFP noise residual, respectively. A strong positive correlation is observed for GFP (R = 0.38, p-

value = 2.32e-86), while no significant correlation is observed for RFP (R = 0.06, p-value = 2.17e-03). 

(E)-(F) Scatter plots showing the relationship between the minimum parental noise residual and offspring 

GFP and RFP noise residual, respectively. No correlation is observed for GFP (R = 0.02, p-value = 2.86e-

01), while a weak positive correlation is observed for RFP (R = 0.16, p-value = 3.39e-16). 

 

7.6. Cell Size in Parents and Offspring and Its Inheritance  

Cell size was another quantitative trait used to study inheritance patterns. Alongside screening 

for fluorescent protein levels, we used the FACS machine to collect forward scatter area (FSC-

A) measurements, a parameter serving as a proxy for cell size. Since larger cells scatter more 

light, FSC-A values provide an estimate of cell size, enabling us to analyze its inheritance 

patterns. By measuring FS in both parents and offspring, we were able to compare offspring 

values to their respective parents, investigating potential inheritance patterns for this trait. 



42 

 

Additionally, we compared cell sizes among siblings to assess variation within offspring 

groups, providing further insight into cell size inheritance. The initial analysis to visualize this 

data was through a heatmap similar to the one used for fluorescent protein levels; all offspring 

from a single A parent are arranged vertically, and offspring from a single alpha parent are 

arranged horizontally, and the color scale reflects cell size. This visualization reveals that 

certain strains consistently produce offspring with similar cell sizes, suggesting the possibility 

of an underlying mechanism of inheritance for cell size (Figure 20). Following the analysis of 

sibling groups, we proceeded to examine the correlation between offspring and parental cell 

sizes. To do this, we averaged the cell size for each sibling group and plotted this average 

against the cell size of their respective parents. A positive correlation was observed between 

the cell sizes of siblings and their alpha parents (R = 0.41, p-value = 7.304e-100) and between 

siblings and their A parents (R = 0.25, p-value = 7.047e-38), suggesting that parental cell size 

influences offspring cell size to some extent (Figure 21). To further evaluate whether averaging 

the cell sizes of both parents could serve as a reliable predictor for offspring cell size, we plotted 

the average parental cell size against the offspring cell size. This analysis revealed a weak but 

significant positive correlation (R = 0.23, p-value = 1.421e-32) (Figure 22). Additionally, we 

explored the minimum and maximum parental cell sizes as predictors, but these measures 

showed even weaker correlations with offspring cell size (Figure 10, Appendix).  

 

 
Figure 20 | Heatmap of offspring cell size. This heatmap displays FS values representing cell sizes of 

offspring, allowing comparison among siblings from the same parent. Offspring from A mating type 

parents are arranged vertically, while offspring from alpha mating type parents are arranged horizontally. 

The color scale reflects FSC values, with darker colors indicating larger cells. Black rectangles highlight 

a few strains that consistently produce offspring with similar size. 



43 

 

 

 

Figure 21 | scatter plot of average offspring cell size against parental cell size. This figure presents 

scatter plots showing the relationship between the average cell size of all offspring from a specific parent 

and the parent’s cell size. In (A) the scatter plot shows the correlation between cell sizes of offspring and 

their A parents, displaying a positive correlation (R = 0.25, p-value < 0.001). In (B) the scatter plot shows 

the correlation between cell sizes of offspring and their alpha parents, displaying an even stronger 

positive correlation (R = 0.42, p-value < 0.001). 

 

 

Figure 22 | Relationship between parental average cell size and offspring cell size. This scatter plot 

illustrates the relationship between the average cell size of both parents (FS values) and the measured 

cell size of the offspring. A weak but significant positive correlation is observed (R = 0.24, p-value < 

0.001). 

 

7.7. Correlation Between Cell Size and Fluorescent Protein 

Production 

In this section of the study, I explored the relationship between cell size and fluorescent protein 

production among the offspring. To identify the best model, I applied polynomial regression of 

degrees 1 (linear), 2 (quadratic), and 3 (cubic) and compared their fits. 

The second-degree polynomial provided the best fit, as determined by equation inspection 

RMSD values. A quadratic regression was applied, revealing a positive correlation between 

cell size and both GFP and RFP production, with RMSD values of 5852.17 (p-value = 9.14e-

83) and 1257.69 (p-value = 1.39e-95), respectively. These results indicate that larger cells 

generally produced more fluorescent protein, suggesting that cell size serves as a predictive 
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factor for protein production across most strains. However, an exception was observed in the 

offspring of AKP alpha type. This strain produced offspring with high levels of RFP that were 

not proportional to their cell size, thus diverging from the general trend observed in other 

offspring. Instead, their fluorescent protein production followed a unique trend, which was 

better described by a first-degree polynomial fit (RMSD = 1516.43, p-value = 1.78e-05) (Figure 

23). Of note, this strain also featured strong RFP expression as a parent and exhibited strong 

parental inheritance effect. These findings highlight a general relationship between cell size and 

fluorescent protein production, while also emphasizing the existence of strain-specific 

deviations, such as those observed in the AKP alpha strain. 

 

 

Figure 23 | Correlation between cell size and fluorescent protein production. This scatterplot 

visualizes the relationship between cell size and fluorescent protein production in offspring. The x-axis 

represents cell size, while the y-axis shows fluorescent protein production intensity. In (A), a significant 

second-degree polynomial fit is observed between GFP production and cell size (RMSD = 5852.17, p-

value < 0.001). In (B), a similar second-degree polynomial fit is evident for RFP production and cell size 

(RMSD = 1257.69, p-value < 0.001). Blue dots represent all progeny of the AKP alpha strain, which 

deviate from the general trend. These progenies exhibit a unique relationship, forming a first-degree 

polynomial fit distinct from other offspring (RMSD = 1516.43, p-value < 0.001). 
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7.8. Machine Learning Analysis for Predicting Inherited Features  

Using the DoubleLearningCatBoostRegressor model and SHAP (SHapley Additive 

exPlanations), we aimed to identify the key features that most influence the prediction of GFP 

and RFP expression levels in our offspring, as well as their noise residuals. The model's 

performance was evaluated using Pearson correlation and R-squared values. For offspring's 

GFP prediction, the model achieved a Pearson correlation of 0.9980 and an R² value of 0.9956 

on the training set. On the test set, the Pearson correlation was 0.8453, with an R² value of 

0.7083. For offspring's RFP prediction, the training set showed a Pearson correlation of 0.9990 

and an R² value of 0.9980. On the test set, the Pearson correlation was 0.9575, and the R² value 

was 0.9094. For offspring's GFP noise residual prediction, the model achieved a Pearson 

correlation of 0.9988 and an R² value of 0.9974 on the training set. On the test set, the Pearson 

correlation was 0.9422, and the R² value was 0.8791. Finally, for offspring's RFP noise residual 

prediction, the training set showed a Pearson correlation of 0.9804 and an R² value of 0.9569. 

On the test set, the Pearson correlation dropped to 0.6195, with an R² value of 0.3787. Plots for 

predicted vs actual values for each target are presented in Appendix, Figure 11. To visualize 

the results, SHAP values provided a comprehensive understanding of how each feature 

contributes to the model's predictions. Our analysis revealed that specific genes and genetic 

factors, such as cell size, play significant roles in determining fluorescent protein production. 

7.8.1. Predicting Offspring’s Fluorescent Intensity  

When running the model to predict the offspring’s GFP and RFP mean expression, we observed 

a strong parental effect. 11 out of the 12 genes selected as the most important predictors of GFP 

expression levels came from the mating type A parent, the same mating type contributing to the 

GFP marker. A similar result was observed for RFP, where 12 out of the 15 genes selected were 

from the alpha mating type parent. Interestingly, cell size (forward scatter) of the offspring 

emerged as the top feature predicting the fluorescent markers in both GFP and RFP.  

For offspring’s GFP level, the gene with the highest prediction importance was YAR023C 

(DFP1), a gene of uncharacterized function from the A parent. Additionally, the offspring’s 

RFP mean intensity and standard deviation, along with the A parent’s GFP noise residual, were 

also important features predicting the offspring’s GFP expression (Figure 24A). 

For offspring’s RFP level, the top predictor gene was YKL155C (RSM22), which encodes a 

mitochondrial ribosomal protein of the small subunit. This gene is also predicted to function as 

an S-adenosylmethionine-dependent RNA methyltransferase and CoA synthetase. Similar to 

the GFP prediction, the offspring’s GFP expression levels, as well as the parent's RFP, were 

key features influencing RFP expression (Figure 24B). 
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7.8.2. Predicting Offspring’s Noise Residual 

When predicting noise residuals for both GFP and RFP, we observed an intriguing result: the 

noise and noise residual of one marker was an important feature to predict the noise residual of 

the other marker. Specifically, the offspring’s GFP noise and noise residual were important 

features to predict offspring RFP noise residual, and vice versa. Cell size (forward scatter) 

appeared as an important feature for predicting noise residuals. For GFP noise residual, the 

mating type A parent’s GFP noise residual was a significant predictor, highlighting a strong 

parental effect. In terms of genes, we observed a strong parental effect for GFP noise residual, 

with 11 out of 14 genes coming from the mating type A parent. However, for RFP noise 

residual, 9 out of 14 genes coming from the A parent, which did not contribute to the RFP 

marker (Figure 25). 

7.8.3. Identifying Connections Between Genes with High Predictive Importance 

and Their Target Outcomes 

When comparing the genes predicting each target and looking for connections, we observed 

some interesting results. Hem13 (YDR044W) appeared as a predictive feature for both 

offspring’s RFP mean expression levels (Figure 24B) and RFP noise residuals (Figure 25B), 

Hem13 encodes coproporphyrinogen III oxidase, an oxygen-requiring enzyme that catalyzes 

the sixth step in the heme biosynthetic pathway.  

SPP1 (YPL138C), SPP2 (YOR148C), and SAS4 (YDR181C) were identified as predictive 

features for both offspring’s mean GFP expression (Figure 24A) and GFP noise residuals 

(Figure 25A). SPP2 is required for telomeric transcriptional silencing and promoting meiotic 

double-strand break formation, while SPP1 is an essential protein that facilitates the first step 

of splicing and is required for final spliceosome maturation and activation. SAS4 acetylates 

free histones and nucleosomes, playing a role in regulating transcriptional silencing. These 

three genes are involved in chromatin modification and silencing, an interesting finding since 

they play a role in transcription regulation.  

FAA2 (YER015W) appeared as a predictive feature for both offspring’s mean RFP and RFP 

noise residuals (Figure 24B and Figure 25B). It encodes a medium-chain fatty acyl-CoA 

synthetase, involved in activating imported fatty acids. Surprisingly, SOR1 (YDL246C) and 

SOR2 (YJR159W), which encode sorbitol dehydrogenases, were identified as genes predicting 

offspring’s GFP expression (Figure 24A). According to SHAP values, low expression levels of 

these genes lead to more accurate predictions of offspring’s GFP. Additionally, two genes, 

HOT13 (YKL084W), a member of the zinc cluster family of proteins, and RDS2 (YPL133C), 

a zinc-binding mitochondrial intermembrane space (IMS) protein, were present as features 

predicting offspring’s GFP noise residual and RFP noise residual, respectively (Figure 25). All 

the information about gene functions was obtained from the Saccharomyces Genome Database 

(SGD) (23). 
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Note: Offspring plate appeared as features in the prediction of offspring’s GFP expression, but 

was placed at the very bottom of the feature importance graph. In another instance, the another 

plate appeared as predictive features for offspring’s RFP noise residual. The cause of this result 

is unclear, but it could be due to a batch effect, with specific strains from that plate affecting 

the results. This issue needs further investigation. 

 

 

Figure 24 | SHAP plot visualizing the 20 most important features for predicting GFP and RFP 

values in the offspring. The x-axis represents the feature value, which is the actual value of each feature 

for a specific observation. This could be the raw value of the gene expression or a measured feature. The 

SHAP value on the horizontal axis represents how much each feature value contributes to the model’s 

predicted outcome. (A) The top 20 features for predicting offspring's GFP levels, with offspring's cell 

size and YAR023C_A gene at the top of the list. 11 out of the 12 important genes come from the mating 

type A parent, highlighting a parental effect. The model successfully explained 70.83% of the variance 

in GFP prediction (Pearson = 0.8453, R² = 0.7083). (B) The top 20 features predicting offspring's RFP 

levels, we again observe a parental effect, with 12 out of the 15 genes coming from the alpha parent. The 

model successfully explained 90.94% of the variance in RFP prediction (Pearson = 0.9575, R² = 0.9094). 

Offspring's cell size emerged as an important feature in predicting both markers. 

Note: Genes ending with _A indicate they come from the A parent, while those ending with _alpha are 

from the alpha parent. The transcriptomic data regarding gene X1033.augustus_masked was predicted 

using the AUGUSTUS program. 
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Figure 25 | SHAP plot visualizing the 20 most important features for predicting the noise residuals 

of GFP and RFP in the offspring. The x-axis represents the feature value, which is the actual value of 

each feature for a specific observation. This could be the raw value of the gene expression or a measured 

feature. The SHAP value on the horizontal axis represents how much each feature value contributes to 

the model’s predicted outcome. (A) The top 20 features for predicting offspring's GFP noise residual. 

(B) The top 20 features for predicting offspring's RFP noise residual. For both targets, the noise residual 

of one marker was an important feature for predicting the noise residual of the other marker, as well as 

cell size (forward scatter). Noise residual of mating type A parent was a strong predictor for offspring’s 

GFP noise residual, highlighting a strong parental effect. In terms of genes, we observed a strong parental 

effect for GFP noise residual, with 11 out of 14 genes coming from the mating type A parent. However, 

for RFP noise residual, 9 out of 14 genes came from the A parent, which did not contribute to the RFP 

marker. The model successfully explained 87.91% of the variance in offspring’s GFP noise residual 

prediction (Pearson = 0.9422, R² = 0.8791), and 37.87% of the variance in offspring’s RFP noise residual 

prediction (Pearson = 0.6195, R² = 0.3787).  

Note: Genes ending with _A indicate they come from the A parent, while those ending with _alpha are 

from the alpha parent. The transcriptomic data regarding gene X1536.maker.BDM was predicted using 

the MAKER program. 
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7.9. Measuring Antibiotic Resistance levels  

The major aim of my thesis was to quantify inheritance of gene expression level as a 

quantitative trait. Beyond the fluorescent proteins used here we wanted to take advantage of the 

fact that our strains were also engineered to carry antibiotics resistance genes, two for each 

mating type. We hypothesized that if various strains have a different general capacity to encode 

such foreign genes, then perhaps such variation in expression level will also manifest in 

corresponding variation in resistance to these drugs, namely strains with a general high capacity 

for heterologous gene expression will resist the two drugs better. For that I began by measuring 

for parental strains their resistance to the drugs.  

To test this, I first measured the resistance levels of the parental strains by assessing their growth 

rates under different antibiotic concentrations using optical density (OD) measurements. 

Growth rates were then compared to control conditions without antibiotics to determine the 

degree of resistance. Mating type A strains were tested for resistance to Hygromycin (Hyg) and 

Zeocin (Zeo), while mating type alpha strains were tested for resistance to Nourseothricin (Nat) 

and Kanamycin (G418). A significant positive correlation was observed between the growth 

levels of the strains under both antibiotic conditions, indicating that some strains consistently 

exhibit higher resistance for more than one drug (Figure 26). Additionally, we examined the 

relationship between resistance levels and growth rate, and fitness as measured in (15). Since 

different antibiotics affect cellular processes in distinct ways (as detailed in Table 4, Appendix), 

we hypothesized that fitness could influence resistance. However, no significant correlation 

was observed between antibiotic resistance and fitness levels across the strains (Figure 4, 

Appendix). One possibility to explain the high correlation between the resistance to the two 

different drugs in each strain is that certain strains express better the two resistance genes (but 

potentially also other heterologous genes too), while others produce such genes less efficiently. 

An alternative to this is that certain strains have a better general antibiotic resistance capacity 

than others, which is independent of their ability to express and utilize the antibiotic resistance 

genes that they were engineered to encode in their genome. We wished to distinguish between 

these two possibilities. In particular, to explore the possibility of “innate resistance,” e.g., due 

to factors beyond the introduced resistance genes influencing antibiotic resistance, we tested 

eight randomly selected strains in their un-engineered versions, lacking the resistance gene 

construct. Four strains were selected to represent each mating type (A and alpha). These un-

engineered strains, when exposed to baseline antibiotic concentrations, exhibited growth rates 

similar to those observed in the no-antibiotic condition. These concentrations were equivalent 

to the baseline levels used for strains containing the resistance gene and are detailed in the 

Methods section. This observation suggests the possibility of an innate resistance mechanism 

(Figure 27). From these experiments, we hypothesize that unquantifiable factors, such as the 

presence of a multidrug resistance (MDR) system, could contribute to antibiotic resistance. 
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MDR systems, such as efflux pumps in the cell wall, could actively expel antibiotic molecules, 

explaining the correlation in resistance to two different antibiotics. Indeed, MDR has been 

documented in the yeast S. cerevisiae (24) and could hence be manifested to various levels 

between strains in this collection. This finding complicates the reliability of antibiotic resistance 

as a quantitative trait model for studying the capacity to express heterologous genes and their 

modes of inheritance, as these additional mechanisms introduce variability unrelated to the 

genetic constructs used in the strains. 

In conclusion, our analysis of drug resistance revealed a general correlation across strains, 

where certain strains exhibited higher resistance to antibiotics, even in the absence of an 

antibiotic resistance gene. This finding led us to conclude that, unlike the fluorescence assay, 

drug resistance is unlikely to serve as a reliable measure of the capacity to express a foreign 

gene. As a result, we have decided not to pursue this direction further in the current thesis. 

However, the innate ability of certain strains to resist multiple antibiotics remains a noteworthy 

observation and may warrant further investigation into the underlying mechanisms of this 

unexpected resistance. 

 

Figure 26 | Scatter plot of OD levels under antibiotic conditions. This figure displays scatter plots of 

OD levels for strains grown under different antibiotics, averaged across three highly correlated technical 

replicates. (A) OD levels of 42 alpha mating type strains grown under the antibiotics NAT and G418 

also exhibit a strong positive correlation (R = 0.8856, p-value < 0.001). (B) OD levels of 77 A mating 

type strains grown under the antibiotics Hyg and Zeo show a positive correlation (R = 0.4408, p-value < 

0.001). OD levels were measured while yeast cells were in mid-log phase. 
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Figure 27 | Growth rate of un-engineered strains. This figure shows the growth levels of four 

randomly selected strains from the “natural strain collection,” measured across three biological 

replicates. OD levels were recorded at 10 time points, each spaced 1.5 hours apart, to capture growth 

patterns over time. The high consistency among replicates is demonstrated by Pearson correlation 

coefficients: (rep 1 vs. rep 2) r = 0.9643, p < 0.001; (rep 3 vs. rep 2) r = 0.9651, p < 0.001; and (rep 1 vs. 

rep 3) r = 0.9215, p < 0.001. (A) and (B) display violin plots of OD levels (averaged across replicates) 

across all time points for different concentrations of antibiotics. (A) OD levels under varying 

concentrations of Hyg and Zeo, (B) illustrates the response to NAT and G418. (C) and (D) provide close-

ups of OD levels at time point 5, highlighting the growth for each of the four strains under each condition. 

 

7.10. Western Blot Analysis of Protein Production Efficiency  

To assess the efficiency of foreign protein expression in yeast, we first transformed the four 

selected strains: BY4741, CEN.PK, AKP (α), and BMB (A) with a construct encoding FGF2 

under an estrogen-inducible promoter. Following successful integration, we performed Western 

blot analysis to compare FGF2 protein expression levels across different strains. Additionally, 

we included two control samples: BY4741 without the construct (negative control) and A 

positive control expressing a FLAG-tagged protein of size 35kDa. The Western blot revealed 

specific bands around ~30kDa in three of the four transformed strains (BY4741, CEN.PK, and 

BMB), while AKP (alpha) showed no detectable expression, suggesting that the estrogen-

inducible system may not be functioning as expected in this strain. However, an unexpected 

finding was that our target protein, FGF2 (~17kDa), appeared to migrate at a higher molecular 
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weight (~30kDa) (Figure 28). At this stage, we cannot conclusively determine whether the 

detected band corresponds to FGF2, and further analysis is required to clarify its identity. 

Additional experiments, such as mass spectrometry, will be necessary to confirm the presence 

of FGF2. 

 

Figure 28 | Western blot analysis of FGF2 expression in yeast strains BY4741, CEN.PK, AKP 

(alpha), and BMB (A) transformed with an estrogen-inducible construct encoding FGF2. A specific 

band around ~30kDa is observed in three of the four transformed strains (BY4741, CEN.PK, and BMB), 

whereas AKP (alpha) shows no detectable expression, suggesting that the estrogen-inducible system 

may not be functioning properly in this strain. The expected molecular weight of FGF2 is ~17 kDa, but 

a higher-than-expected band is detected. A negative control (BY4741 without the construct) and a 

positive control expressing a FLAG-tagged protein 35kDa were included for reference. Molecular weight 

markers (left) indicate protein sizes in kDa. The arrow highlights the area where FGF2 expression is 

expected. And the box highlights the area where we got a specific band. The image was edited using 

PowerPoint to overlay the molecular weight ladder for clarity. 
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8. Discussion  
 

In this study, we investigate the complex mechanisms underlying quantitative trait inheritance 

in Saccharomyces cerevisiae using a comprehensive, high-throughput approach applied to a 

diverse collection of wild yeast strains. Sourced from a wide range of geographical and 

ecological niches, we examined the inheritance patterns of key quantitative traits, including 

fluorescent protein expression, cell size, and protein expression noise. By systematically 

analyzing trait inheritance across over 3000 offspring combinations derived from more than 

100 genetically diverse parent strains we provide insights that connect fundamental research 

with practical applications, particularly in optimizing yeast strains for industrial protein 

production. 

8.1. Insights from Parental Strain Screening 

Starting with the screening of haploid strains “the parents”, we observed significant variation 

in fluorescent protein expression across strains of both mating types. This variation was 

particularly notable when comparing the highest- and lowest-producing strains, which 

exhibited statistically significant differences in fluorescence intensity. Further comparisons of 

these extreme strains with the laboratory strain (BY4741) and the industrial strain (CEN.PK) 

revealed that both the lab and industrial strains showed lower fluorescence intensities for GFP 

and RFP than even the lowest-performing wild strains from the “natural strain collection”. 

Strikingly, the industrial and laboratory strains consistently ranked at the bottom of the 

fluorescence intensity spectrum, indicating a wide room for improvement in their capacity for 

foreign protein production.  

An additional analysis comparing the mating types of the strains highlighted the importance of 

heterozygosity in achieving a correlation between GFP and RFP expression levels across the 

two mating types. Specifically, homozygous strains exhibited a positive correlation between 

GFP and RFP expression, suggesting a more stable relationship in expression levels. In contrast, 

heterozygous strains showed no correlation between the two, reflecting higher variability in 

expression patterns. These results highlight the critical role of heterozygosity in regulating gene 

expression consistency between mating types and provide insights into how genetic diversity 

impacts trait expression. 

8.2. High-Throughput Screening of Offspring for Trait Inheritance 

Patterns 

To uncover trait inheritance patterns, we generated over 3,000 offspring combinations using 

two distinct high-throughput approaches: “all-against-all” and “one-against-one.” The results 

of these approaches were complementary, as each provided unique insights into inheritance 
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mechanisms. In the “all-against-all” approach, we utilized FACS sorting to isolate offspring 

with extreme fluorescence intensities. Meanwhile, the “one-against-one” approach employed 

FACS screening to systematically measure fluorescence levels across all possible offspring 

combinations. Together, these approaches highlighted strains such as AKP (alpha) and BHB 

(alpha), which consistently produced offspring with unique and interesting inheritance patterns.  

8.3. Exploring Inheritance Patterns Between Parents and Offspring 

An initial comparison between parents and offspring revealed an unexpected result: instead of 

observing increased expression levels in diploid offspring, as might be expected due to their 

larger size and dual gene copies, we found the opposite. Parental strains in both mating types 

displayed higher expression levels of GFP (mating type A) and RFP (mating type alpha), with 

approximately a two-fold difference compared to their diploid offspring. One possible 

explanation for this phenomenon lies in promoter competition. In the haploid parents, the 

promoters driving GFP and RFP expression operate independently within their respective 

genomes. Upon mating, the diploid inherits both constructs, potentially leading to competition 

for transcriptional resources between the two markers, thereby reducing their overall activity. 

However, since the promoters driving GFP and RFP are not identical, this competition cannot 

simply be attributed to shared transcription factors. Instead, it may involve a broader limitation 

in the availability of transcriptional machinery or other regulatory factors. Furthermore, the 

regulatory environment in the diploid state may introduce crosstalk or epigenetic modifications 

that reset or weaken promoter activity, further contributing to the observed reduction. An 

alternative explanation involves what we term the "distant promoter effect" In the haploid 

parents, GFP and RFP are driven by constitutive promoters; however, these strains also contain 

haploid-specific promoters, for Zeo in mating type A and for G418 in mating type alpha, that 

not only regulate antibiotic resistance genes but may also indirectly enhance the transcription 

of GFP and RFP. In the diploid offspring, these haploid-specific promoters are absent, likely 

leading to reduced transcriptional activity of GFP and RFP. This suggests that the haploid-

specific environment plays a critical role in the observed expression levels, which is lost in the 

diploid state. Despite these potential explanations, we currently lack a definitive understanding 

of this unusual phenomenon. The observed reduction in GFP and RFP expression in diploid 

offspring raises several intriguing hypotheses regarding the interplay between promoter 

activity, transcriptional machinery, and cellular regulatory environments. Further research is 

needed to investigate these mechanisms in greater depth.  

Another analysis was conducted aimed to determine whether the offspring's expression levels 

could be predicted by averaging the expression levels of the parents. This analysis revealed a 

very weak positive correlation, suggesting that the mechanism governing trait inheritance is far 

more complex than simple parental averaging. 
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8.4. Parental and Non-Parental Inheritance Theory 

In this study, we identified an intriguing phenomenon that we term parental and non-parental 

inheritance. In cases of parental inheritance, the parent contributing a specific fluorescent 

marker directly influences its expression level in the offspring. This pattern is observed 

consistently across offspring derived from the same parent. Conversely, non-parental 

inheritance refers to instances where the parent not directly contributing a given fluorescent 

marker influences its expression in the offspring. For example, the mating type alpha parent, 

which contributes RFP, systematically affects the GFP expression levels in its offspring.  

A similar effect has been observed in Drosophila male sterility, where mothers transmit 

cytoplasmic factors that influence male fertility without passing the corresponding nuclear 

genes (25). This results in the maternal inheritance of a male-specific trait, demonstrating how 

a parent's contribution can shape an offspring's phenotype without directly transmitting the 

associated genetic determinant. This parallel suggests that, as in Drosophila, additional 

regulatory mechanisms beyond direct genetic inheritance may be influencing fluorescence 

expression in yeast. 

Interestingly, we also observed cases where offspring exhibited higher gene expression levels 

than their parents. This phenomenon, where sexual mating resulted in offspring surpassing 

parental expression levels, highlights the potential for using sexual mating as a strategy to 

improve strains. Such observations suggest that the regulatory network within the diploid state 

introduces additional layers of complexity, likely involving epistatic interactions or crosstalk 

between genetic elements. Epistasis, defined as the interaction between genes where the effect 

of one gene is modified by one or more other genes (26), provides a potential explanation for 

these findings. Such interactions significantly influence phenotypic expression and complicate 

the relationship between genotype and phenotype. In the context of our study, the observed 

non-parental inheritance patterns, where a parent not directly contributing a specific fluorescent 

marker influences its expression in the offspring, may be attributed to epistatic interactions. In 

Saccharomyces cerevisiae, epistasis has been shown to play a crucial role in various genetic 

pathways (27). The results of this study suggest that we may be observing epistatic interactions 

in action, highlighting the complexity of gene regulation within diploid states. 

8.5. Predicting Expression Levels Using Transcriptomic Data 

To further investigate the mechanisms influencing fluorescent protein inheritance, we initiated 

a machine learning project incorporating gene expression profiles of both parents and offspring, 

along with additional features such as genetic distance, fitness, cell size, and noise. The goal 

was to identify key predictors of GFP and RFP expression levels in offspring, as well as their 

noise residuals. Our results revealed a strong parental effect on both GFP and RFP expression 

levels, with most top predictive genes originating from the mating type contributing the 
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corresponding fluorescent marker. Offspring cell size consistently emerged as a significant 

predictor for both expression levels and noise residuals, reinforcing the observed correlation 

between cell size and fluorescent intensity. Interestingly, many of the highly ranked predictive 

genes had no identified function, highlighting the potential for novel discoveries. Additionally, 

some genes such as sorbitol dehydrogenase genes were found to be predictive without an 

obvious biological connection to fluorescent protein expression. These findings underscore the 

complex interplay between genetic factors, cellular characteristics, and parental contributions 

in shaping fluorescent protein expression and variability in offspring. This analysis provides a 

foundation for further exploration of gene-specific contributions and the regulatory 

mechanisms underlying inherited traits. 

8.6. Heritability of Noise in Protein Expression Upon Sexual Mating 

In our investigation of protein expression noise as a quantitative trait, we observed a negative 

correlation between noise and mean fluorescence across various strains in both mating types 

and their offspring. This aligns with previous findings from our lab, which demonstrated that 

low-abundance proteins exhibit higher noise levels, while high-abundance proteins show lower 

noise, following a predictable scaling law (10). Notably, certain strains deviated from the 

expected noise-to-mean fluorescence relationship. These deviations were consistently inherited 

by their offspring, suggesting a heritable component to expression noise. 

To further explore this, we conducted a noise residual analysis, comparing the residuals of 

parents and their offspring. The analysis revealed a positive correlation between parental and 

offspring noise residuals in both fluorescent markers, indicating that noise is a heritable 

quantitative trait. In addition, our finding that the average parental noise residual could predict 

offspring noise residual strengthens the case that noise is heritable upon sexual mating. This 

suggests that parental contributions to offspring noise are not random but are systematically 

influenced by quantitative genetic factors. Additionally, the observation that the maximum 

parental noise residual is a strong predictor of offspring GFP noise highlights a potential 

dominance effect in noise heritability. Specifically, if one parent exhibits high noise in protein 

expression, this trait is likely to be inherited by the offspring regardless of the partner’s noise 

level. Conversely, if a parent is not noisy, its influence on the offspring's noise levels is 

relatively weak. This suggests an asymmetry in how parental noise traits contribute to offspring 

noise, pointing to a potential dominance mechanism at play. This observation is supported by 

previous research demonstrating that natural sequence variants can influence cell-to-cell 

expression variability. For example, specific genetic loci in yeast have been identified as 

contributors to elevated variability in gene expression (28). Additionally, regulatory 

mechanisms, such as methyltransferase Hmt1, have been shown to play a role in buffering gene 

expression noise (29). These findings underscore the genetic basis of expression noise and 
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highlight how both genetic and regulatory factors can modulate variability. Collectively, these 

studies suggest that noise in protein expression is not merely a stochastic phenomenon but may 

also be inherited across generations upon sexual mating, contributing to phenotypic diversity 

within populations. 

8.7. The Inheritance of Cell Size 

Cell size was examined as a quantitative trait using data extracted from the FACS analysis, 

where forward scatter (FSC) was used as a proxy for cell size. Analyzing sibling groups 

revealed similarities in their forward scatter values, indicating that cell size is a heritable trait 

passed down from the parents. 

To further investigate this, we examined the correlation between the cell size of parents and the 

average cell size of their offspring. A positive correlation was observed in both mating types, 

reinforcing the heritability of cell size. Additionally, we found a positive polynomial correlation 

between cell size and fluorescent protein production. Interestingly, the offspring from one 

specific strain, AKP (alpha), deviated from this trend, forming a distinct polynomial fit. These 

offspring exhibited higher fluorescence levels irrespective of their cell size, in contrast to the 

rest of the population. This observation suggests that while cell size and fluorescence 

production are generally correlated, certain genetic or regulatory factors may affect these traits 

in specific strains. 

8.8. Summary 

To summarize, this study provides an integrated framework for understanding the inheritance 

of quantitative traits in Saccharomyces cerevisiae. By examining fluorescent protein 

expression, cell size, and protein expression noise, we revealed distinct patterns of inheritance 

and regulatory complexity. Each trait highlighted a unique aspect of quantitative inheritance: 

fluorescence demonstrated the influence of parental and non-parental factors; noise revealed 

heritable variability shaped by genetic and regulatory mechanisms; and cell size uncovered 

correlations with other traits, such as protein production. Together, these findings demonstrate 

how diverse traits can be interconnected through shared genetic and regulatory pathways. 

Understanding these relationships not only advances our knowledge of quantitative inheritance 

but also lays the foundation for developing strategies to optimize strains for specific 

applications. Nonetheless, several challenges and limitations remain. Environmental 

variability, including differences in growth conditions and nutrient availability, may have 

influenced trait expression and inheritance patterns, introducing variability into the results. 

Additionally, the regulatory complexity observed in diploid states, such as epistatic interactions 

and crosstalk between genetic elements, requires further investigation to fully elucidate the 

underlying mechanisms. Although we conducted high-throughput analyses, the scalability of 

this approach may be constrained when applied to more complex traits or larger, more diverse 
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datasets. Addressing these challenges in future studies will be critical for refining our 

understanding of quantitative inheritance and unlocking its full potential for practical 

applications. 

8.8. Future Directions 

Building on the insights gained from this analysis, a promising future direction involves 

identifying strains with high expression levels that could be utilized in industrial applications. 

The strains identified through this study can serve as candidates for optimizing foreign protein 

production, either through direct application or further genetic engineering and evolution. 

Additionally, the potential of using sexual mating as a method to improve strains, akin to 

selective breeding, holds great promise. By leveraging the observed inheritance patterns and 

expression variability, we can design mating strategies to enhance desirable traits, such as high 

protein expression. To explore this approach, we selected two candidate strains from the 

“natural strain collection”, AKP (mating type alpha) and BMB (mating type A). These strains 

were engineered to express foreign genes commonly used in industrial applications: FGF2 

(fibroblast growth factor 2) and albumin. We conducted experiments where these genes were 

successfully inserted into the chosen strains. Protein production efficiency was then 

quantitatively analyzed using Western blotting, comparing the expression levels of FGF2 in 

these engineered strains against both the laboratory strain (BY4741) and the industrial strain 

(CEN.PK). At this stage, the results remain preliminary and inconclusive. While we detected 

the expression of a FLAG-tagged protein, its observed molecular weight did not match the 

expected size of FGF2 (~17 kDa). Instead, a higher-than-expected band (~30 kDa) was 

observed, suggesting potential post-translational modifications, dimerization, or unexpected 

interactions that may be altering the apparent molecular weight of FGF2. Further analysis is 

required to confirm the identity of the observed band and determine whether it corresponds to 

properly expressed and secreted FGF2.  

To address this uncertainty, additional experiments will be necessary. Mass spectrometry will 

be used to verify the presence of FGF2 and identify potential modifications affecting its 

molecular weight, including partial cleavage of the α-factor signal peptide. Additionally, 

enzymatic deglycosylation assays could help determine whether glycosylation contributes to 

the observed size discrepancy. Once the identity of the detected band is confirmed, we will 

proceed with quantitative assays to accurately compare expression levels between the different 

strains and assess their potential for industrial applications.  
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11. Appendix  
 

Table 1. List of primers. 

ID# Primer name  Used for  Sequence  

1 BFG_K_matA_Rev Mat A specific 

primer for 

barcode 

identification   

CTTGACTGAGCGACTGAGG 

2 BFG_H_matA_Fw Mat A specific 

primer for 

barcode 

identification   

CCATACGAGCACATTACGGG 

3 BFG_F_alpha_Rev Mat alpha 

specific primer 

for barcode 

identification   

CAGCGGGATAGTGCGATTG 

4 BFG_B_alpha_Fw 1. Mat alpha 

specific primer 

for barcode 

identification.   

2. Offspring 

primer for fused 

barcode 

identification.   

CAGCGGGATAGTGCGATTG 

5 BFG_I_matA_Rev Offspring primer 

for fused 

barcode 

identification.   

GTTATCAGAGGTATGCGAGTTAG 

6 Illumina_i5_F Library 

preparation for 

barcode 

sequencing  

AATGATACGGCGACCACCGAGATCTA 

CACTCTTTCCCTACACGACGCTCTTCC 

GATCT 

7 Illumina_i7_R Library 

preparation for 

barcode 

sequencing 

CAAGCAGAAGACGGCATACGAGAT 

[index]GTGACTGGAGTTCAGACGTGTG 

CTCTTCCGATCT 

8 AMP rev Testing 

recombination 

success 

following 

transformation 

CTGAGAATAGTGTATGCGGCGAC 

9 AMP for  Validating 

recombination 

success 

following 

transformation 

CTCACCCAGAAACGCTGGTG 
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Table 2. List of PCR reactions. 

ID# PCR reaction  Primers 

used  

PCR program Used for  

1 Kapa amplification: 

Kapa readyMix x2: 12.5 

ul  

F primer: 0.75 ul  

R primer: 0.75 ul  

DNA: 2ul 

DDW: complete volume 

to 25ul 

4-5 1. 95CO 3 min  

2. 98 CO 20 sec 

3. 60 CO 15 sec 

4. 72 CO 15 sec 

5. Repeat steps 2-4 for 

20 cycles  

72 CO 1 min 

Barcode regions 

amplification  

2 Kapa amplification: 

Kapa readyMix x2: 12.5 

ul  

F primer: 0.75 ul  

R primer: 0.75 ul  

DNA: 2ul 

DDW: complete volume 

to 25ul 

6-7 1. 95CO 3 min  

2. 98 CO 20 sec 

3. 62 CO 15 sec 

4. 72 CO 15 sec 

5. Repeat steps 2-4 for 

20 cycles  

72 CO 1 min 

Inserting Illumina 

indexes 

3 Kapa amplification: 

Kapa readyMix x2: 5 ul  

F primer: 0.3 ul  

R primer: 0.3 ul  

DNA: 2ul 

DDW: complete volume 

to 10ul 

8-9 1. 95CO 5 min  

2. 98 CO 20 sec 

3. 60 CO 15 sec 

4. 72 CO 15 sec 

5. Repeat steps 2-4 for 

35 cycles  

72 CO 1 min 

 

 

 
Table 3. Summary of Antibiotics Used in the Study. This table provides an overview of the antibiotics 

used in this study, including their primary functions and the mechanisms of resistance introduced into 

the yeast strains. 
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Table 4. List of randomly selected strains used for validating parental identities in the 

“one-against-one” mating experiment. This table shows the location of each strain, the 

sequencing results, and whether they matched the expected parental strains. Strains with a green 

highlight indicate true matches to the expected parents, red indicates contamination, and yellow 

indicates inconclusive results where one of the parents could not be confidently identified. 

 

 

 

Sample Number Plate Well Parent A Match (True/False) Parent Alpha Match (True/False)
1 1A 2F SACE-YCM TRUE AKV TRUE
2 1B 2F BHC TRUE Inconclusive
3 1C 2F AKG TRUE Inconclusive
4 1C 6G BRD TRUE APV FALSE
5 1D 2F AKV TRUE AKV TRUE
6 1D 6F BNP TRUE AKV TRUE
7 1D 7G BQR TRUE BBI TRUE
8 1E 2F CFE TRUE AKV TRUE
9 1F 11G BSB FALSE APV FALSE

10 1F 11H Inconclusive APV TRUE
1F 2F BHV TRUE AKV TRUE

11 1F 8H AST TRUE APV TRUE
13 1G 2F CEQ TRUE AKV TRUE
14 1G 1A CPK TRUE AKB TRUE
15 1G 2B CEQ TRUE AKP TRUE
16 1G 3E BTN2 TRUE AIM TRUE
17 1G 4F CCG TRUE AKV TRUE
18 1G 5H BES TRUE APV TRUE
19 2A 2F SACE-YCM TRUE BHB TRUE
20 2A 3C BIM TRUE BLA TRUE
21 2B 2F BHC TRUE BHB TRUE
22 2C 2F AKG TRUE BHB TRUE
23 2D 2F AKV TRUE BHB TRUE
24 2D 4C BHB TRUE BLA TRUE
25 2E 2F CFE TRUE BHB TRUE
26 2F 2F BHV TRUE BHB TRUE
27 2F 6C BRA TRUE BLA TRUE
28 2G 2F CEQ TRUE BHB TRUE
29 3A 2F SACE-YCM TRUE BQG TRUE
30 3B 2F BHC TRUE BQG TRUE
31 3C 2F AKG TRUE BQG TRUE
32 3D 2F AKV TRUE BQG TRUE
33 3E 2F CFE TRUE BQG TRUE
34 3E 9D CAE TRUE BRD FALSE
35 3F 2F Inconclusive BNI FALSE
36 3F 3E CQG TRUE BNI TRUE
37 3F 3G CQG TRUE BNK TRUE
38 3F 7D BTH TRUE BLL TRUE
39 3G 2F CEQ TRUE BQG TRUE
40 4A 2F SACE-YCM TRUE BLP TRUE
41 4B 1B BKE TRUE BRA TRUE
42 4B 2D BHC TRUE BQI TRUE
43 4C 2F AKG TRUE BLP TRUE
44 4D 5E BNK TRUE BRB TRUE
45 4D 6D BQR FALSE BQI TRUE
46 4D 7E BQR TRUE BRB TRUE
47 4E 11F CGL TRUE BLP TRUE
48 4E 11H SACE-YAB FALSE BRB FALSE
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Figure 1 | Construct map that was inserted into the strains. (A)  construct design for creating mating 

type A strains, (B) construct design for creating mating type alpha strains (a) HO homology region that 

was used for homologous recombination to the HO locus after transformation (b) The Barcode Fusion 

Genetics system. Composed of the barcodes and lox sequences and the Tet-ON system. Mating type A 

strains contain the Cre enzyme that is regulated by the rtTA inducer that is found on the mating type 

alpha design. (c) Constitutive markers. Mating type A contains GFP and Hyg resistance cassettes, while 

mating type alpha contains RFP and NAT resistance cassette (d) mating type specific markers. Mating 

type A cells induce the BleoR resistant markers and thus can grow on Zeocin, while mating type Alpha 

strains induce the KanMX resistance marker and thus can grow on Geneticin (G418). (C)-(E) each letter 

corresponds to ~25nt length sequence. Same letter in different panels means that the same sequence is 

present in both regions. (C) mating type Alpha design, (D) mating type A design, (E) the two fragments 

created in the offspring after fusion of the barcodes. Different combinations of sequences can be used to 

amplify specific regions only for NGS. 

 

 

49 4E 9E CAE TRUE BRB TRUE
50 4E 9H CAE TRUE CQD TRUE
51 4F 2F BHV TRUE BLP TRUE
52 4G 2F Inconclusive BLP TRUE
53 5A 2F SACE-YCM TRUE BQQ TRUE
53 5B 2F BHC TRUE BQQ TRUE
54 5C 10A BCB FALSE BLV FALSE
55 5C 2F AKG TRUE BQQ TRUE
56 5C 9A BCB TRUE BRD FALSE
57 5C 9B BIA FALSE BQQ FALSE
58 5D 2F AKV TRUE BQQ TRUE
59 5E 2F Inconclusive BQQ TRUE
60 5E 3F SACE-YBW TRUE BQQ TRUE
61 5F 2F BHV TRUE BQQ TRUE
62 5F 6A BRA TRUE BPT TRUE
63 5F 7B BTH TRUE BRD TRUE
64 5G 2F CEQ TRUE BQQ TRUE
65 plate 10 6B BQC TRUE BLL TRUE
66 plate 7 12D AKI TRUE AHP TRUE
67 plate 7 7G AKI TRUE CCV TRUE
68 plate 9 2D BMA TRUE AKV TRUE
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Figure 2 | FACS gating strategy used to measure GFP and RFP fluorescence levels. Forward scatter 

(FSC) and side scatter (SSC) were used to exclude debris and identify the main cell population. 

Additional gating removed doublets (singleton gates), and fluorescence intensity for GFP and RFP was 

measured in the single-cell population. 

 

 
Figure 3 | FACS Sorting of Double-Positive Offspring. This figure shows the results of FACS sorting, 

where offspring were analyzed based on GFP and RFP fluorescence intensity. Approximately 85% of 

the population was classified as double-positive, exhibiting both GFP and RFP signals. Within this 

double-positive population, three groups were sorted: the top 10% with the highest fluorescence 

intensity, labeled as "High" (green); the bottom 10% with the lowest fluorescence intensity, labeled as 

"Low" (yellow); and fraction of the double-positive population, labeled as "Total" (orange). 
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Figure 4 | Lack of Correlation Between Fitness and Antibiotic Resistance. This figure illustrates the 

absence of significant correlations between fitness and antibiotic resistance across four different 

antibiotics, as measured by optical density (OD) levels. (A) Zeocin (Zeo), (B) Hygromycin (Hyg), (C) 

Nourseothricin (Nat), and (D) Kanamycin (G418).  

 

 
Figure 5 | Linear and log-scale distributions of GFP and RFP expression levels in selected strains. 

(A) and (B) display log-transformed distributions of GFP and RFP expression levels, respectively, for 

selected parental strains and offspring. (C) and (D) show the corresponding distributions on a linear scale. 

These distributions were derived from singleton 3, including only GFP-positive (BL1-A) or RFP-positive 

(mCherry-A) cells. 
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Figure 6 | Microscopic images of selected strains representing different points on the fluorescence 

intensity spectrum. (A) GFP intensity spectrum of mating type A strains: BMB (highest intensity), AIM 

(middle range), and BLS (lowest intensity). All these strains exhibit aggregate formation. (B) RFP 

intensity spectrum mating type alpha strains: BIN (highest intensity), AKP (third highest), BHB (middle 

range), and AKB (lowest intensity). BIN and AKP do not form aggregates, whereas BHB shows smaller 

aggregates, and AKB forms large aggregates. All images were captured using a 40× objective lens with 

2× digital zoom. 

 

  

A. 

B. 
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Figure 7 | Heatmap of GFP and RFP expression levels organized by plates. The figure illustrates the 

plates used for FACS measurements, including both parental strains, to demonstrate that no batch effect 

was observed across the experimental setup. 
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Figure 8 | Microscopic images of randomly selected offspring compared to the lab strain. The left 

panel shows images of the lab strain BY4741/2 for comparison. The right panel displays images of four 

randomly selected offspring strains. Unlike their haploid parents, the offspring do not tend to form 

aggregates and exhibit behavior similar to the lab strain. All images were captured using a 40× objective 

lens with 2× digital zoom. 

 

 
 

Figure 9 | Correlation map of different inheritance Patterns. This figure presents a correlation map 

showing Pearson's correlation coefficients (r values) between various inheritance patterns of fluorescent 

protein expression in parents and their offspring. providing a detailed zoom-in on the average, minimum, 

and maximum expression levels of GFP and RFP. 
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Figure 10 | Correlation map of different inheritance Patterns of both fluorescent proteins and cell 

size. This figure displays a correlation map illustrating Pearson’s correlation coefficients (r values) 

between different inheritance patterns for both fluorescent protein expression (GFP and RFP) and cell 

size in parents and offspring. 
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Figure 11 | Predicted vs. Actual values for the double learning CatBoost model’s 

predictions of GFP and RFP expression levels and noise residuals in offspring. (A) 

Predicted vs. Actual values for offspring’s GFP expression. The points are closely aligned along 

the red dashed line, indicating a strong correlation between the predicted and actual values. (B) 

Predicted vs. Actual values for offspring’s RFP expression. The points follow the red dashed 

line, demonstrating the model's high accuracy in predicting RFP expression levels. (C) 

Predicted vs. Actual values for offspring’s GFP noise residual. The points are generally 

scattered around the red dashed line, indicating that the residuals are well-distributed, with no 

obvious patterns. (D) Predicted vs. Actual values for offspring’s RFP noise residual. Some 

points deviate from the red dashed line, reflecting the lower prediction accuracy for this target 

compared to the others. 


