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Abstract 
Translation errors, a type of phenotypic mutation, affect all domains of life at any given time, yet little 

is known on their contribution to the evolution of early life, and specifically to the evolution of the 

Standard Genetic Code (SGC). In this work we evaluate the cost both genetic and translation errors 

have on a genetic code. We use computational analyses to compare the SGC to hypothetical genetic 

codes and - by means of their error costs - to explore the fitness landscape of genetic codes. 

Affected by the outbreak of the COVID-19 pandemic, our work turns to explore the correlation 

between emerging viral variants and their clinical properties. We suggest a method to detect the 

effects of individual Single-Nucleotide Polymorphisms in the viral genome on the phenotypes 

exhibited by the infected host, akin to methods from the field of Genome Wide Association Studies. 

Lastly, our work brings these seemingly unrelated fields together by proposing a new methodology 

for vaccine design. This approach relies on translation errors to deliver a multiple variant vaccine, 

based on a single mRNA molecule. We suggest designing the mRNA template according to the 

SNPs with the highest potential to damage the host. 

 

On the Potential of Evolutionary Effects of Translation 
Fidelity on the Genetic Code 

Introduction 

All throughout life, survival and reproduction of an organism are dependent on its ability to carry out 

evolutionarily developed plans and responses with temporal, spatial and structural precision. At an 

almost contradictory trajectory, the potential for improvement and adaptation to new or changing 

environments depend on the organism’s “failures”. Errors made by the molecular machinery of the 

central dogma are essential for flexibility, adaptation and evolution. These errors - specifically 

transient ones - are at the focus of this work. 

 

Errors in the DNA, colloquially known as mutations, have long-lasting effects on the organism and 

its offspring. They affect all copies of the proteins or functions encoded by the mutated locus in the 

organism, and are consequently inherited to any offspring that may inherit that mutation. In contrast 
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to genetic mutations, errors in downstream steps of the central dogma of molecular genetics, tend to 

be more transient. For example, a mistranslated protein has a limited impact in space and in time. If 

the protein has a small number of interactions or is quickly degraded its impact will be small. A prion 

or a protein transferred to a daughter cell during mitosis will have a longer effect, yet still limited in 

comparison to DNA mutations.  

 

A key component of the central dogma, and hence in the prevention or contribution to errors in it, is 

the genetic code. While scientists conveniently described it as a compact 4x4x4 table, the genetic 

code consists at the molecular level of a complex network of dozens of molecules. All of these work 

in unison to ensure the faithful transition of information from the genetic to the protein level. The 

number of known genetic codes utilized by different forms of life is exceedingly low and all are very 

similar (Watanabe and Suzuki 2008), especially considering the vast number of possible codon - 

amino-acid combinations conceivable by combinatorics. The Standard Genetic Code (SGC) is used 

in all domains of life, with the most notable divergence of the SGC appearing in mitochondria 

(Watanabe and Suzuki 2008). The complexity of the molecular network and the uniqueness of the 

genetic code suggest that it has either been under tremendous evolutionary pressure, was subject 

to a founder’s effect at the early stages of life on earth, or both. 

 

One way to quantitatively assess how well the genetic code has adapted through evolution is to 

computationally compare it to other hypothetical genetic codes, by giving each one a score. It has 

been previously shown that the genetic code is robust to genetic mutations by using a similar strategy 

(Freeland and Hurst 1998). More recently the genetic code was assessed and was shown to be 

optimally robust to the effect of mutation on the nitrogen consumption of the encoded amino acid 

(Shenhav and Zeevi 2020). The genetic code could have also been optimized with respect to 

“phenotypic mutations”, namely the errors that the transcription and translation machineries are 

prone to make (Mordret et al. 2019). A hypothetical genetic code could be considered robust to 

phenotypic mutations if amino acids, correctly and incorrectly translated by that genetic code, would 

tend to be chemically similar. 

 

In our attempt to evaluate the robustness of the genetic code to phenotypic mutations we rely on 

previous work done in our lab. Namely, a systematic mapping of translation errors (Mordret et al. 
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2019). In brief, in this work our lab unbiasedly extracted proteins from bacteria and yeast, degraded 

them to short peptides and determined their amino-acid sequence, using Mass Spectrometry. The 

identified peptides were aligned to the appropriate genomes and sorted into two groups – sequences 

that could be perfectly aligned to a genome encoded peptide, and sequences that could be aligned 

perfectly, except for one mis-aligned amino-acid. Peptides that did not fall into either category were 

excluded. A careful comparison of these two groups revealed the identity (genomic location and type) 

and frequency of translation errors in each of the model species. This provided the comprehensive 

and unbiased data required to conduct the evaluation of the role these errors played in the evolution 

of the genetic code. 

In this chapter we employ this data to explore by computational analysis the fitness landscape of the 

genetic code, with respect to mutation and translation error costs, and the possible forces behind its 

evolution. Our data suggest that the SGC is more optimized for robustness to genetic mutations than 

to translation errors, but give strong indications of evolutionary pressure exerted on the SGC towards 

avoidance of translation errors as well. 

 

Results and Discussion 

Before exploring possible alternatives of the Standard Genetic Code (SGC, Fig 1A left table) we 

considered some of its key features. As a conversion mechanism, the genetic code adheres to three 

basic conditions: (1) all amino-acids and the STOP codon must be assigned to at least one codon, 

(2) no codon can encode more than one amino-acid, (3) no codon remains unused. Conditions (2) 

and (3) may be eased at the expense of ambiguity and restriction of the genomic codon usage, 

respectively. Therefore, in order for genetic codes to be useful as accurate conversion mechanisms 

at a similar degree to the SGC, they must fully comply with these conditions. 

One of the most noticeable features of the SGC is its ”box structure”. It is degenerate in an organized 

fashion, such that most codons that encode for the same amino acid are grouped into “boxes” and 

share similarity in nucleotide sequence, often in the first two codon positions. Utilizing the wobble 

capability, which allows a mismatch between a codon’s 3rd position and the anti-codon’s 1st position, 

this feature is a prominent one in making the genetic code robust to errors. Any hypothetical genetic 

code that would not feature this mode of organization will likely be significantly less robust than the 

SGC. A higher level of organization acquires the SGC further robustness to mutations since 
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chemically similar amino acids tend to be encoded by codons with similar nucleotide sequence. The 

implication of these two properties (“boxiness” and chemical proximity) is that relative to a totally 

random code, that would still fulfill the above three requirements, the SGC often ensures that when 

mutations occur, they have a higher chance to still encode the same, or at most a chemically similar, 

amino acid.  

Hence, to conduct a proper assessment of the robustness of the SGC to mutations, that is done in 

comparison to a null model of alternative - e.g., randomly generated GCs – we needed nonetheless 

to consider only GCs that preserve additional properties of the SGC, i.e., its organized degeneracy. 

Such genetic codes are easily generated by randomly relabeling the codon boxes (see Methods). 

With this method, the number of possible genetic codes is the number of all possible unique re-

assignments between blank codon boxes (Fig 1A, right table) and amino-acids. Since 20 amino-

acids exist, and none are repeated, we get 20! (factorial) possible such combinations, amounting to 

~1018 hypothetical genetic codes. 

 

Having established the boundaries for hypothetical genetic code alternatives, we then turned to focus 

on the method for comparing them to one another. We required a method that would give a single 

score to an entire genetic code, based on its robustness to errors.  

Regardless of their origin, being phenotypic or (non-silent) genetic, errors to coding regions have 

consequences at the protein level. Be it structure integrity or reactivity, the incorporation of a wrong 

amino-acid can harm the functionality of a protein. Based on this property, we used the 

misincorporation of an amino-acid as our basic unit of error. Summing up all possible amino-acid 

misincorporations per genetic code would yield a single score of its robustness to error. 

The comparison between any two amino-acids can be done by a variety of quantitative measures. 

The question we are addressing requires a measure that does not depend on mutual tendency to 

mutate into one another, as these already reflect the existing genetic code. The simplest measures, 

and those that necessarily predated the genetic code - and biology in general - are physical and 

chemical ones. Hence, we chose to use an amino-acid similarity matrix that is based on their physico-

chemical properties. In particular, we used the Miyata distance matrix that focuses on the volume 

and polarity of the amino-acids as a genetic code free measure of similarity between amino acid 

pairs (Miyata, Miyazawa, and Yasunaga 1979).  
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The next step in our calculation was to find the weight each possible amino-acid replacement will 

have on the overall robustness score of a genetic code. This could easily be done by calculating the 

probability of that error to occur. The probability for each amino-acid replacement to occur consists 

of three error components - the codon, the reading frame, and the specific nucleotide replacement. 

The values these components take differ based on the molecular level at which the error occurs – 

the genetic or the ribosomal: At the genetic level, since the DNA Pol I is oblivious to both codons and 

reading frames, the probability for a codon to have an error is the probability that the codon was used 

in the genome, and hence it is given by the codon usage bias; the frame probability is equal to 1/3 

in all frames; the probability of the nucleotide in that frame to be misread as another one is given by 

the error propensities of DNA Pol I (Fig 1B). At the ribosomal level, the codon probability can be 

obtained from the error spectrum (Fig 1D and Methods); both the probability that an error will occur 

at a certain frame, and the probability of a specific error type are given by the ribosome error 

propensity, as it appears in the ribosome confusion matrix (Fig 1C). 

To illustrate this point, let us consider the probability that the ACT codon will be misread as the CCT 

codon. This probability is computed by the multiplication of three terms (see Eq. 1): the probability 

that the ACT codon had an error, the probability that this error occurred at the first position of the 

codon, and the probability that A was misread as C in that position. An error of this type can occur in 

both molecular levels. At the proteomic level, this error can occur due to the ribosome misreading 

the codon and erroneously incorporating a GGA t-RNA at an ACT codon. Multiplying these three 

terms we can obtain the probability of this phenotypic error. Separately, we can also calculate the 

probability of the equivalent genetic mutation - in which the A would be erroneously copied as C by 

the DNA Pol I, creating a codon change that will result in the incorporation of the wrong amino-acid.  

 

Eq.1 

𝑃(𝐴𝐶𝑇 → 𝐶𝐶𝑇) = 𝑃(𝐴𝐶𝑇) ∗ 𝑃(𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 1) ∗ 𝑃(𝐴 → 𝐶 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 1) 

 

To calculate a single score for the robustness to errors of a whole genetic code, the real one or a 

hypothetical one, we used the above probability computation, together with the amino-acid similarity 

metric. Firstly, we calculated the probability for each codon-to-codon error. Different genetic codes, 

computationally generated or the real one, map these codon-to-codon errors to different amino-acid 

to amino-acid errors. Hence, the codon-to-codon errors are translated to different amino-acid to 
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amino-acid errors by each GC. Following the same example we used above, an ACT->CCT codon 

error is mapped by the SGC to a Threonine->Proline amino acid replacement error. In a different, 

hypothetical, GC it may be an Alanine->Arginine error, or any other pair. 

 

The Miyata matrix allowed us to assign a similarity score to every error in amino-acid space. The 

Miyata distances between amino-acids increase for pairs that are farther apart in their volume and 

polarity. Hence, it is useful to think of this scoring method as the overall error cost for a GC. The 

farther apart the distance between erring amino-acids, the bigger the cost of the error. Multiplying 

one error’s probability by its individual similarity cost gives the partial contribution of that error type 

to the overall cost of errors in a particular GC (see Eq. 2). Summing all possible errors together yields 

a weighted average of all errors and their effect in a single cost value (see Eq. 3). This procedure is 

blind to the origin of the codon-to-codon error (be it genetic or proteomic), and therefore we could 

effortlessly repeat it in both levels, with the only difference between the two being the error 

probabilities. 

 

Eq. 2 

𝐶𝑜𝑠𝑡(𝐴𝐶𝑇 → 𝐶𝐶𝑇) ⇒ 

Translation by SGC: 

⇒ 𝑃(𝐴𝐶𝑇 → 𝐶𝐶𝑇) ∗ 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑇ℎ𝑟𝑒𝑜𝑛𝑖𝑛𝑒 → 𝑃𝑟𝑜𝑙𝑖𝑛𝑒) 

 

Eq. 3 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  ෍ ෍ 𝑐𝑜𝑠𝑡 (𝑐𝑜𝑑𝑜𝑛௜ → 𝑐𝑜𝑑𝑜𝑛௝)

௖௢ௗ௢௡ି௟௜௦௧

௝

௖௢ௗ௢௡ି௟௜௦௧

௜

 

(where ‘codon-list’ consists of all 61 non-STOP codons) 

 

Applying this scoring system to the SGC, or any hypothetical GC, can be seen as an exploration of 

the “fitness” landscape of genetic codes. Instead of genes or proteins, the genetic codes that are 

assessed here differ by their codon to amino-acid assignments. In this exploration of the landscape, 

we assess the fitness of an organism by its ability to accurately produce all proteins, based on the 

entire genetic code. We obtained these scores twice for every GC - with regard to genetic mutations 

and translation errors. 
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As with fitness landscapes of genes, there are two useful approaches to mapping them. The first, by 

randomly sampling the domain - in our case, genetic codes - and calculating their score. For the 

randomized sampling of the landscape, we used random GCs, following the previously discussed 

“organized degeneracy” scheme.  

The second, by making small perturbations to a point of interest. In our case of the SGC, the small 

perturbations were single (1st order neighbours) or double (2nd order neighbour) amino-acid 

assignment swaps. An example for such a GC is a code in which the two codons for Phe (UUU and 

UUC) and two codons for Leu (UUG and UUC) are swapped such that in the minimally swapped GC 

UUU and UUC encode for Leu, and UUG and UUC encode for Phe. Since in our terminology this is 

a single swap, similarly swapped GCs were named 1st order neighbours, or 1-neighbours. We also 

explore the broader vicinity of the SGC by applying two such swaps in a single GC, relative to the 

SGC. following the same convention, these are named 2nd order neighbours, or 2-neighbours of the 

SGC. 

 

When comparing the SGC to random codes we could clearly see it is robust to genetic mutation (Fig 

2A), as expected. It was placed second out of 10,000 randomized codes in robustness to mutations. 

This observation resonates very well with literature of the SGC that indeed have shown in the past 

that it is optimal in minimizing the effect of genetic mutations on amino acid properties (Freeland and 

Hurst 1998). However, in its robustness to translation errors, while still above average, the SGC 

didn’t fare as well, compared to randomly generated hypothetical genetic codes. It was placed within 

the top 1st percentile of the 10,000 hypothetical GCs (Fig 2A). So, while the SGC is “one in a 100” 

in robustness to translation errors, it is “one in 10,000” in robustness to genetic mutations. Note that 

the robustness of the randomly generated codes to genetic mutations and translation errors are 

highly correlated (Fig 2A-C), namely that codes that are robust to genetic mutations tend to be robust 

also to translation errors, and codes that are not robust to genetic mutations would typically not be 

robust to translation errors. This correlation likely stems from the nature of errors in question. Both 

DNA mutations and translation errors that are considered in this analysis manifest as a single 

nucleotide change in every codon. Hence, the types of errors possible within each GC table are 

limited. Specifically, errors could cause a misincorporation of amino-acids on the same row or column 

as the original acid, but not one that is in a diagonal direction (since these are two or three nucleotide 

changes away). Being an inherent, global attribute of a GC, this restriction at the level of amino-acid 
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errors is identical for our mutation and translation error cost calculations and therefore a likely a 

substantial contributor to the observed correlation. Another possible contributor to the observed 

correlation is a correlation at the codon error probability level. Genomic codon bias determines which 

codons are more translated, and are therefore more likely to also encounter a translation error event. 

Thus, the genetic codon bias propagates into the translation error spectrum. Given this correlation, 

the mere fact that the SGC is robust to genetic mutations guarantees a certain level of robustness to 

translation errors, which is not necessarily above its observed robustness to translation errors. 

Hence, based on this analysis we could conclude by suggesting that the SGC may have evolved to 

minimize costs of genetic mutations, and the extent of its robustness to translation errors was 

obtained as a by-product. 

 

Exploring the SGC’s one- and two-neighbours revealed a similar pattern (Fig 2B, 2C) to the one we 

saw with the random GCs. Even in its local “neighbourhood” the SGC is among the best in terms of 

robustness to genetic mutation (Fig 2D, 2F). In its robustness to translation errors, it attains a score 

similar, or a bit higher, than the majority of the minimally perturbed codes (Fig 2E, 2G). Comparing 

the random GCs with the neighbours as a group, we observed a stark difference between the 

mutation and translation error scores. None of the one-neighbours, and only a small minority of two-

neighbours, had a mutation error cost higher than the average error cost of the random codes (Fig 

2D, 2F). Contrarily, on the translation error axis, a noticeable number of one- and two-neighbours 

had higher error costs than the average of the randomly generated GCs. This would suggest that on 

the robustness to DNA mutations fitness landscape the SGC is located on a broad peak, where 

similar codes are likely to be robust to errors. On the robustness to translation errors fitness 

landscape, the SGC seems to be placed on a steep cliff or a rough landscape, with even small 

perturbations holding the potential for considerable drops in performance. 

 

Perturbing the model to explore the fitness landscape of genetic codes is not limited to the GCs we 

use. One further way to enhance our understanding of the genetic code was to modify in a controlled 

fashion the underlying parameters used by the model. Thus, we were able to examine their 

contribution to the results we observed so far. Scrolling back to Eq. 1, we can see that the immediate 

contenders for such perturbations are the different components that make up the individual codon-

to-codon error probabilities. Firstly, we used uniform codon probabilities to investigate their effect on 
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overall error costs in both error types. Replacing the real codon probabilities by a uniform probability 

as the first term in Eq 1., one at a time (Fig 3B, 3C), or both together (Fig 3D), we repeated the 

procedure described above to calculate the error costs of the real and hypothetical GCs. In this 

approach, we relied on the hypothetical GCs to provide context for the changes we observed in the 

error score of the SGC. For instance, comparing the average and standard deviation of error scores 

on the DNA mutation axis (compare Figs 3A vs. 3C; Figs 3F vs. 3H) we could see that almost none 

of the GCs – random or neighbours of the SGC – were heavily affected by a different codon usage 

bias at the genetic level. This came as no surprise to us, as examples of this phenomenon exist in 

nature - different species have different codon biases, yet preserve the same genetic code. This 

could suggest that the “boxy” structure of the genetic code is a contributing factor to its robustness 

to DNA mutations under varying codon biases. Contrary to that, replacing the codon error occurrence 

by a uniform probability of codons causes a major shift in both the average and standard deviation 

of translation errors costs (compare Figs 3A vs. 3B; Figs 3E vs. 3G). Even amongst the one-

neighbours of the SGC we can see a consolidation of the higher cost tail of one-neighbours towards 

their mean. When comparing the SGC to itself across conditions, its translation error cost seems to 

be less affected by the uniform codon error occurrence, then by the uniform codon usage bias. 

Together, we take these findings to imply that codon error probability has the potential to significantly 

affect translation errors’ cost, even among GCs that are extremely similar to the SGC. Furthermore, 

under the tested parameters, the SGC and a small sub-group of its neighbours remain uniquely 

resilient to translation errors. Additional exploration of GCs, under more codon usage conditions, 

may be required to establish this hypothesis and to elucidate the factors that grant the SGC this 

unique property, if indeed it exists. 

 

Moving on to the next terms of Eq. 1, we repeated the parameter perturbation analysis for the 

nucleotide replacement matrices. This time, replacing each of the ribosome confusion matrix and the 

DNA pol error propensity by a uniform distribution, and once more calculating the error costs of 

hypothetical GCs (Fig 4A-D). At the DNA mutations level, plugging in a uniform DNA-pol error 

propensity matrix caused the costs of all simulated GCs – random or 1- or 2-neighbours – to slightly 

increase (compare Figs 4A vs. 4C; Figs 4F vs. 4H). In contrast, at the translation error level, using a 

uniform confusion matrix produced a dramatic reduction in both average cost per GC and the 

standard deviation among the generated codes (compare Figs 4A vs. 4B; Figs 4E vs. 4G). At first 
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glance, this result seems to suggest that, contrary to evolutionary logic, the SGC (or any GC, for that 

matter) would fare better in a world where errors occur completely at random without preference for 

some replacements. However, it is vital to remember that this is a highly hypothetical condition. In 

reality, the errors of the ribosome are dictated by the physical and chemical properties of the 

molecules involved in the process of translation. Meaning that a completely uniform error pattern 

could not exist, and that the SGC has evolved in light of the true error propensity of the ribosome. 

Hence, we can understand that in real life conditions, most GCs have much higher costs than they 

would have had if the ribosome was to err in a random fashion. Therefore, our analysis illuminates 

the fact that the SGC has such a low overall translation error cost, relative to the many hypothetical 

alternatives. 

This conclusion was further emphasised by a more complex type of perturbation of the ribosome 

confusion matrix. In this analysis, we shuffled the order of frames in the ribosome confusion matrix 

(Fig 5A), to produce 1 real and 5 hypothetical confusion matrices. When comparing the SGC to itself, 

under these shuffled options, the real confusion matrix caused it to result in almost the highest error 

cost of all 6 options (Fig 5B). However, when comparing the SGC to other GCs, under similar 

conditions, it becomes evident that it has an error cost that is at worst better than average, if not 

superior (Fig 5C-H). 

 

Taken together, our results suggest that between DNA mutations and translation errors, robustness 

to mutations was the stronger evolutionary force in the shaping of the genetic code at the early stages 

of life on earth. Nonetheless, we can also observe that translation errors are not a negligible force in 

this respect either. The genetic code, it seems, was shifted by evolution on both fitness landscapes, 

either in parallel or in consecutive order, with mutations setting the primary direction and translation 

errors making the finer adjustments. 
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Methods 

Genetic codes randomization 

Hypothetical genetic codes were created while preserving the “box structure” of the SGC (Fig 1A). 

Amino-acids were severed from their codon boxes and compound groups and re-assigned in a 

random fashion. The total number of combinatorically possible GCs of this structure is 1018, and 

hence cannot be covered in a feasible computational time. 

 

Codon error occurrence  

was calculated by summing up all the errors originating from each codon, and dividing buy the total 

number of errors recorded in the error spectrum, thus producing the probability for errors to appear 

in every codon (see Fig 1D). 
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Figure legends 

Figure 1 - Table permutations 

A: The Standard Genetic Code (SGC) (left), and a blank codon table (right) used to create random 

GCs. The table contains 20 blank, uniquely coloured boxes and compound groups that were 

randomly populated by the 20 AAs for each hypothetical GC such that every colour is populated by 

a different AA. All codons are grouped as they are in the SGC. Stop codons were not randomized or 

reassigned. 

Confusion matrices of the DNA-pol-2 (B) and the ribosome (C). 

D: A table containing all codon to AA translation errors (left) detected by (Mordret et al. 2019). By 

summing the rows, we can attain the probability an error will occur at each codon (right). 

 

Figure 2 - Genetic code landscape exploration 

Scatter plots of error robustness scores of GCs. The scores on the X-axis measure robustness to 

DNA mutations, while the Y-axis denotes robustness scores to translation errors. The curves on the 

axes (top and right of each plot) show the marginal distribution of the scores on the X- and Y-axis, 

respectively. The SGC is marked by a red dot on the scatter plots and by a red line on the marginal 

distribution curves, along with (A) 10K random GCs (Blue, in all plots); (B) 100K random GCs and 

~200 1st order neighbours of the SGC (orange); (C) 100K random GCs and {~12K} 1st and 2nd order 

neighbours of the SGC (orange).  

Distribution plots of error robustness scores – a focus on the marginal distributions in (B) and (C). 

Plots (D) and (E) correspond to the X- and Y-axis in plot (B), respectively. Plots (F) and (G) 

correspond to the X- and Y-axis in plot (C), respectively. The curves are normalized such that the 

area under each curve is 1. The mean (mu) and standard deviation (sigma) in each plot describe the 

distribution of the random codes exclusively (SCG neighbouring GCs were excluded). The captioned 

box in each plot denotes the order of magnitude of the ratio between GCs that outperformed and the 

GCs that under-performed, relative to the SGC. 

 

Figure 3 - Uniform codon probabilities  

Scatter plots of error robustness scores, as described in Fig 2B – 100K random GCs and 1st order 

neighbours of the SGC - with (A) no changes made, or by using uniform probabilities as input for (B) 
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codon error occurrence; (C) codon usage bias; or (D) both codon error occurrence and codon usage 

bias. 

Histograms of error robustness scores of GCs on the translation errors or mutations axes, separately. 

An unnormalized count of the data appearing as the marginal distributions in (E) the y-axis in (A); 

(F) the x-axis in (A); (G) the y-axis in (B); (H) the x-axis in (C). 

 

Figure 4 - Uniform NT substitution matrices 

Scatter plots of error robustness scores, as described in Fig 2B – 100K random GCs and 1st order 

neighbours of the SGC - with (A) no changes made, or by using uniform nucleotide replacement 

probabilities as input for (B) the ribosome confusion matrix; (C) DNA-pol error propensity; or (D) both 

the ribosome confusion matrix and the DNA-pol error propensity. 

Histograms of error robustness scores of GCs on the translation errors or mutations axes, separately. 

An unnormalized count of the data appearing as the marginal distributions in (E) the y-axis in (A); 

(F) the x-axis in (A); (G) the y-axis in (B); (H) the x-axis in (C). 

 

Figure 5 - Ribosome confusion matrix shuffling 

A: The index annotation (0,1,2) at the bottom of each frame of the ribosome confusion matrix serve 

to clarify the convention used throughout this figure. B: Robustness to translation errors of the SGC 

under different permutations of the ribosome confusion matrix, as denoted by the order of frames at 

the bottom of each column. 

C-H: Histograms of translation robustness scores under different hypothetical ribosome confusion 

matrices. The order of permutation of the confusion matrix is denoted in the title of the plot, 

corresponding to the order introduced in (A). The SGC is marked by the red line, random GCs are 

coloured blue and 1st order neighbours of the SGC are in orange. The mean (mu) and standard 

deviation (sigma) in each plot describe the distribution of the random codes exclusively (SCG 

neighbouring GCs were excluded). 
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GWAS-like Analysis of SARS-CoV-2 

Note: the data used in the following section was downloaded on 7/3/21. Figures and results refer to 

the data that was available at the time. Some conclusions and references benefit from the elapsed 

time since. 

Introduction 

A few months after the beginning of the COVID-19 pandemic, as clinical reports and data began to 

accumulate, it became possible to start to follow the inevitable evolution of the SARS-CoV-2 virus, 

as it made its way through the global human population. The first variant to get significant attention 

from the scientific community contained the D614G mutation. It emerged early in 2020 and quickly 

became the most prevalent virus strain (Korber et al. 2020). By March 2021, when this analysis was 

underway, the variant that soon became known as the “Alpha” 1 variant was nearing its peak relative 

frequency, in terms of global infections (https://nextstrain.org/ncov/gisaid/global,(Korber et al. 2020; 

Hadfield et al. 2018)). With every new strain and mutation, infecting the then unvaccinated 

population, there was an urgent need to quickly and accurately assess the expected clinical 

prognosis of patients. 

From the onset of the pandemic much of the global sequencing and data collection efforts became 

publicly available through GISAID (https://www.gisaid.org/) - a global consortium originally 

established to share flu sequences amongst the research community (Pearson 2003). As the virus 

spread, sequencing capabilities were ramped up and sequences accumulated exponentially, 

becoming a go to tool for evolutionary and comparative research of the virus. 

The SARS-CoV-2 viral genome is 30Kb long, it consists of ~14 ORFs encoding for ~27 proteins, 

including RNA-transcriptase and Exoribonuclease (Naqvi et al. 2020). The Spike protein (colloquially 

known as the S protein) is the protein that is used by the virus to dock to human cells and enter them 

(Naqvi et al. 2020). So, while the S protein is the usual suspect when it comes to clinical manifestation 

of the infection, an unbiased systematic approach may detect mutations throughout the entire viral 

genome that affect the progression of the disease in patients. 

 
1 For context, the Greek alphabet system for naming COVID-19 variants was introduced at the end of May 2021 
(“Website,” n.d.). 
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One commonly used method for unbiased genome wide studies are, as their name implies, Genome 

Wide Association Studies (GWAS). These tools were developed to find a correlation between gene 

loci, and/or specific SNPs in a group of individuals and the phenotypes or traits they exhibit. While 

most are phenotypes of the individual, such as morphology or disease, some GWAS analyses have 

been also used to show correlation between genetics and mental characteristics, or even 

socioeconomic ones (Marioni et al. 2014). This approach implies that the GWAS concept is 

generalizable outside its “classical” role. Following this line of thought, we show that openly available 

data may be of use to conduct an inter-species GWAS, with the genome taken from a pathogen (e.g., 

SARS-CoV-2) against the phenotype of the host. We introduce the conceptual approach, as well as 

some of its obstacles and ways to overcome them. 

Results and Discussion 

When the project was first considered, in April 2020, a few thousands viral genomic sequences have 

been submitted to GISAID. Relying on public data, it was necessary to filter these raw numbers to 

ensure quality and usefulness of data. By the time we conducted most of our analyses, in early March 

2021, although the number of submitted sequences grew to ~700K, useful sequences amounted to 

18,594. These consisted of 27,549 sequences of quality deemed high enough to be included in our 

Multiple Sequence Alignment (MSA), and 18,594 sequences with rich and useful metadata (see 

Methods). The intersection between these groups built the database upon which our analyses were 

performed. 

 

The available metadata, to a great part consisting of free text annotation and clinical diagnoses, was 

curated into several categorical or numerical parameters: severity (multi-category), condition 

(severity condensed into two categories), symptoms, hospitalization, alive, gender, age, time (date 

sample was collected), continent and country (see Methods). With samples coming from a large 

assortment of sources and no unifying clinical procedure for data collection, metadata was only 

partially available for each sample.  

Most samples have no data regarding each category (Fig 1A). It is also important to note that the 

distribution of some observed parameters is not the one expected from what is known about the 

epidemiology of the pandemic. In the symptoms distribution (Fig 1A, top left plot), a small fraction of 

our samples was marked as asymptomatic (~7%) whereas several studies have found the numbers 
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to be much higher – 20%-75% (18% on the Diamond Princess cruise ship, for example (Mizumoto 

et al. 2020)). Similarly, most samples for which we have information regarding severity came from 

critically ill patients, while most infected with COVID-19 only experience mild symptoms. 

 

As a first inspection of the sequences, we calculated the entropy at each position of the viral genome 

(Fig 1B). This analysis revealed to us that the observed mutations are not restricted to specific parts 

of the genome, and changes relative to the Wuhan WT strain have been observed in all viral genes 

and non-coding regions. 

 

We then proceeded to analyze positions on the genome and individually determine their association 

with one or more of the metadata parameters we had. For each position, we grouped the samples 

by the nucleotide identity in their genome at that position. We then compared these groups by a 

statistical test to find a significant correlation between nucleotide identity and the parameter at hand. 

We tested categorical data with the chi-squared test and numeric data with ANOVA. To account for 

multiple testing, we corrected the calculated p-values using the Benjamini-Hochberg procedure. 

 

Our analysis of all sequences from around the world, showing the significance of correlation between 

genomic positions and the severity of the disease recorded in the patients, is given by a Manhattan 

plot in Fig 2A. As was our observation in the global entropy plot, the 252 positions significantly 

associated with severity we detected were not limited to a specific gene, but rather scattered 

throughout the genome. We sorted the corrected p-values (from here on referred to as q-values) 

from smallest to largest (Fig 2B). The left plot highlights the stark difference between the significant 

positions, at the left bottom corner of the plot, and the rest of the positions, most of which had a q-

value nearing 1. 

For positions we found to be significantly associated with some parameter, we evaluated the direction 

of their effect – whether patients infected by one variant exhibited worse of better symptoms, relative 

to patients infected by the WT strain. This analysis was only carried out for binary parameters. The 

result of such an analysis is depicted in Fig 2C, highlighting the positions that were significantly 

associated with the appearance of symptoms, or lack thereof, in the infected patients. These 140 

significant positions were also assigned a marker to indicate the direction of the detected correlation. 
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The procedure we carried out in these analyses is further illustrated by data in the tables in Fig 2D. 

The tables contain hypothetical counts of sequences for a single genomic position of interest. Rows 

indicate the examined parameter, with one considered to be a “good” condition (e.g., asymptomatic 

/ mild condition / patient alive) and one a “bad” condition (e.g., symptomatic / severe condition / 

patient deceased). Columns indicate if the nucleotide in the corresponding box appeared in the WT 

strain, or in the mutated one. The left-most table examines a theoretical genomic position in which 1 

viral WT sequence came from a patient with a “good condition” and 100 viral WT sequences came 

from patients that exhibited a “bad” condition (‘ref’ column). In the ‘mut’ column, on the other hand, 

1 viral sequence with a mutation in the position of interest came from a patient with a “good” condition 

and 20 viral sequences with the same mutation came from patients who exhibited a “bad” condition. 

This is a situation in which both the WT and the mutated nucleotide at the position of interest cause, 

more often than not, a “bad” condition. However, in the mutant viruses, the “bad” condition appears 

less often, relative to the WT. Hence, in this position the mutation has caused a slightly better 

condition of the patients who contracted the virus harboring that mutation. This is indicated by an 

upwards pointing three-point star marker. Conversely, the middle table shows a situation in which a 

larger fraction of patients who contracted the mutant strain displayed a slightly worse condition than 

the patients who were infected by the WT. Positions that display this type of data distribution were 

marked by a down pointing three-point star marker. Lastly, the right-most table indicates a situation 

in which the WT nucleotide at the position of interest was found in a larger fraction of patients with 

the “bad” condition, but the mutant nucleotide at the same position was found in a larger fraction of 

patients with the “good” condition. Hence, it is marked by an upwards pointing triangle, indicating an 

improved prognosis associated with the mutant virus, relative to the WT strain. 

 

Among the parameters for which we repeated the analysis, was also the gender of the patients (Fig 

3A). The 96 positions in this plot, that were found to be significantly associated with gender, seem to 

suggest a correlation between the genomic content of the virus and the gender of the infected 

individual. Without a known biological mechanism that would explain this result, we suspected this, 

and perhaps previous results, are due to spurious correlations. As a negative control, we randomly 

shuffled the values assigned to each sequence in the following parameters: gender, outcome 

(dead/alive), age, condition, symptoms and continent. When we re-ran our analysis on these shuffled 

parameters, we found 0 positions significantly associated with any of the parameters (data not 
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shown), as expected. We next turned to examine the overlap between significant positions in different 

parameters (Fig 3B). E.g., in the top table we see that 140 positions were found to be significantly 

associated with Symptoms in total. Out of those 140, 53 positions were also found to be significantly 

correlated with the Severity of the disease in patients. Only 18 out of the 140 were uniquely 

associated with Symptoms, and no other parameter. The bottom table lets us understand that 37% 

of the significant positions with regard to Symptoms were shared with Severity, while 12% of the 

positions associated with Symptoms were associated only with Symptoms and no other parameter. 

This approach has proved to be effective, as it clearly shows a considerable overlap between the 

different parameters. Specifically, 100% of the positions associated with gender were also associated 

with the continent the sequences originated from (bottom table), leaving 0 positions uniquely 

associated with gender (top table). This suggested a bias in our data, specifically with regard to 

gender, arising from the geographical distribution of our samples. And indeed, when comparing the 

gender distribution between different continents (Fig 3C) we can clearly see a gender gap – e.g., 

while samples from Africa came mostly from female patients, samples from Asia came mostly from 

male patients. As data from Europe was the most abundant, and lacked the above-mentioned bias, 

we decided to perform the rest of the analysis on European sequences exclusively. 

 

For the 7,717 European sequences, we repeated the analyses for our parameters of interest, their 

overlap and the negative controls. From the overlap tables of the European sequences (Fig 4A) it 

becomes apparent that our approach was successful in eliminating the bias in the data that resulted 

in the genetic association with the gender of the patients. From the previously 96 positions 

significantly associated with gender (Fig 3A,3B), we remained with a single one (Fig 4A, 4B). 

Conversely, in other parameters, such as the condition of the patients (Fig 4C) or the outcome of 

their disease (Fig 4D), the analysis still shows a large number of positions significantly associated 

with each one – 39 and 78 positions, respectively. Nonetheless, the right table in Fig 4A underscores 

some additional concerns about the data. Most parameters have either very little, or no positions at 

all, that are unique only for them, suggesting that the parameters are still strongly intertwined. A new 

possible contributor of bias that emerges from these tables is the date at which the samples were 

taken. Most parameters have either a large or a complete overlap between the positions associated 

with them and the positions associated with time. Following the success of this approach, we could 

theoretically continue to disentangle the parameters, by analysing smaller and cleaner subsets of 
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the data, each time factoring out different parameters. However, given the scarcity of data at the time 

the research was conducted, this strategy would quickly leave us without enough samples to make 

statistically significant and/or generalizable observations. 

 

Bearing the above-mentioned caveats in mind, we were curious as to which of the genomic positions 

would manifest at the proteomic level. Here we assume that genomic mutations are more likely to 

have a biologically functional and clinical effect if they are translated into a different amino-acid (as 

opposed to silent mutations). We performed the same analyses as above, but rather than focusing 

on nucleotides, we looked into the association of amino-acid mutation with our parameters of interest. 

Building on the previous conclusion, this analysis was limited to the European samples within our 

data. Furthermore, since the S protein is known as a very significant protein in the interaction of the 

virus with human tissues (Huang et al. 2020), we wanted to focus on it with the limited deduction 

power that we had. From the global overview on these analyses (Fig 5A), we could see that, 

unsurprisingly, the phenomena we previously observed also appear at the proteomic level. Namely, 

the intertwining of significant positions between parameters, and the seemingly high overall overlap 

of all parameters with the date at which the samples were taken. 

 

Our analysis of amino-acid positions associated with symptoms (Fig 5B) strongly points at mutation 

D614G as significantly associated with a slightly higher chance of showing symptoms, relative to the 

WT variant. While drawing immediate attention from the research community, the contribution of this 

mutation to the presentation of symptoms (or lack thereof) remained undetermined, with mixed 

indications at different time points (Huang et al. 2020; Leung et al. 2021). Of note, the same mutation 

appeared in our analysis as significantly associated (albeit to a lesser degree) with the condition of 

the patient (Fig 5C). This stands in contrast with reports that no such association was detected in 

clinical studies (Huang et al. 2020; Leung et al. 2021; Dao et al. 2021). Other positions, more strongly 

associated with the condition of the patients are del69-70 – both associated with a milder prognosis 

in patients harboring the mutant variant. These two deletions were also significantly associated with 

a lower chance of death (Fig 5D). This again contradicts reports of increased hospitalization, ICU 

admission, and mortality increase in the Alpha variant, which carries these deletions (Lin et al. 2021). 

This contradiction is repeated in two additional mutations - N501Y and P681H, also found in the 

Alpha variant – that are the most strongly associated with the outcome of the disease 
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(death/survival). Our analysis found both to be associated with a slightly lower chance of mortality, 

while clinical data pointed to the contrary (Lin et al. 2021). All the positions mentioned in this 

paragraph were also found by us to be significantly associated with the date of sample collection 

(data not shown). 

 

Taken together, our results portray a method for the detection of mutations’ association with clinical 

properties of the disease caused by the studied pathogen. Unfortunately, due to scarcity in data at 

the time we did our analysis, we were unable to eliminate some of the biases we detected. Repeating 

this analysis today, with millions of genomes publicly available, might yield different and more 

actionable results altogether. 

Methods 

Sequences acquisition procedure 

Data was acquired on 2021-03-07 from gisaid.com, using the web app search engine with the 

following filters: 

- "high coverage" checkbox - checked. [Definition: Only entries with <1% Ns and <0.05% unique 

amino acid mutations (not seen in other sequences in database) and no insertion/deletion unless 

verified by submitter] 

- "w/Patient status" checkbox - checked. [Definition: Only entries with Patient status available] 

- Host: Human 

Download is limited to 10K sequences at a time. Hence, data was split and downloaded in batches. 

 

MSA 

Downloaded sequences were scanned for mutations relative to the SARS-CoV-2 reference genome 

using Nextclade alignment tool (https://clades.nextstrain.org, (“Website,” n.d.)). The detected 

nucleotide changes were used to construct a Multiple Sequence Alignment (MSA) from all 

sequences, focused on substitutions and deletions. Insertions were discarded at this stage of the 

analysis. 

Specifically, downloaded batches (see above) were further split to chunks containing ~1500 

sequences each. Each chunk was processed using the “neherlab/nextclade nextclade.js” docker 
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image with ‘--jobs=10’ option and fasta file as input and json file as output. Processed json files of 

chunks were combined to create the full MSA using an in-house written Python script. 

 

Metadata processing 

Metadata corresponding to the downloaded sequences was filtered and curated using an in-house 

written Python script. In brief, the process included: 

- Verification that the data is exclusively from Human hosts. 

- Exclusion of erroneously filled fields. 

- Curation of free text fields into binary / limited categories fields. 

- Standardization of all categories’ entries. 

- Exclusion of metadata poor sequences, defined as sequences that had no age data, no gender 

data, and  only indication regarding the appearance of symptoms. 

- Oceania (17 samples) dropped. 

In total, processing of metadata reduced the number of sequences considered for the analysis from 

an initial 27,550 to the 18,594 mentioned in the main text. 

The categories and their values after curation: severity [mild, moderate, severe, critical, 

asymptomatic], symptoms [yes, no], hospitalization [yes, no], alive [yes, no], gender [male, female], 

age, time (date sample was collected), continent, country. Severity was further condensed into a 

‘condition’ category with two bins: [mild, severe]. The first, consisting of sequences with the ‘mild’ or 

‘asymptomatic’ severity, and the latter consisting of the rest of the severity values. 

 

Consensus filtering 

16,647 positions in the NT analysis showed 100% conservation and were dropped from further 

calculations. 

585 positions in the AA analysis showed 100% conservation and were dropped from further 

calculations. 
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Figure legends 

Figure 1 – Data overview 

A: a quantitative description of available metadata. Plots show the data distribution of various 

categories used throughout the analysis. Note that for many parameters the most abundant value is 

N/A = Not Available. 

B: Entropy per nucleotide position of the SARS-CoV-2 genome. X axis indicates the position of the 

nucleotide along the viral genome. Viral genes are coloured as indicated in the legend to the right. 

Grey dots represent NTs that fall outside any gene, and are marked “non-coding”. 

 

Figure 2 – Results of global analysis 

A: Manhattan plot of viral genomic positions’ significance with regard to their effect on Severity in all 

samples. Y axis values are in negative log(q-value). Positions are colored by their gene association, 

as indicated by the X axis labels. Color scheme follows the palette introduced in figure 1B. 

B: Significance distribution of nucleotide positions in the viral genome, with regard to their effect on 

disease Severity in all samples. 

Left – all q-values (p-values corrected for multiple testing) sorted from smallest to largest. 

Right – only significant q-values, with a logarithmic y axis, similarly sorted from smallest to largest. 

C: Manhattan plot of viral genomic positions’ significance with regard to their effect on Symptoms [in 

global samples]. Non-significant positions are indicated by a dot marker. Significant positions were 

assigned a marker (see legend) indicating the direction the mutated nucleotide had on infected 

patients’ prognosis, relative to WT (see D). 

D: Mock data to illustrate the assignment of marker signs in figure C, and subsequent figures 

throughout this section (See main text). 

 

Figure 3 – Global analysis; summary and issues 

A: Manhattan plot of viral genomic positions’ significance with regard to their association with Gender 

in all samples. 

B: Overlap between positions detected as significant with regard to various parameters in all 

samples.  

Top - The bottom row (marked blue) gives the total number of positions found to be significant with 

regard to the parameters in the columns. Numbers on the main diagonal (marked red) are counts of 
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positions that were uniquely significant with regard to the parameter in the column – i.e., not shared 

with any other parameter. 

Bottom – overlap table (above) normalized to the total number of significant positions associated 

with the parameter in the column. 

Note that the percentages do not sum to 100, as significant positions can be shared between multiple 

parameters. 

C: Number of sequences that came from patients by gender in different continents 

 

Figure 4 – Europe analysis; summary and benefits 

A: Overlap between positions detected as significant with regard to various parameters in European 

samples. See Fig 3B. 

B: Manhattan plot of viral genomic positions’ significance with regard to their association with Gender 

in European samples. 

C: Manhattan plot of viral genomic positions’ significance with regard to their effect on Condition in 

European samples.  

D: Manhattan plot of viral genomic positions’ significance with regard to their effect on Outcome in 

European samples. 

 

Figure 5 – Protein level analysis summary and key results 

Note: the analyses depicted in this figure focus on amino-acid positions, as opposed to nucleotide 

positions in previous figures. 

A: Overlap between proteomic positions detected as significant with regard to various parameters in 

European samples. See Fig 3B. 

B: Manhattan plot of viral proteomic positions’ significance with regard to their effect on Symptoms 

in European samples. 

C: Manhattan plot of viral proteomic positions’ significance with regard to their effect on Condition in 

European samples.  

D: Manhattan plot of viral proteomic positions’ significance with regard to their effect on Outcome in 

European samples. 
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Multi-variant Vaccine Design 

Abstract 

Vaccination of the human population against SARS-Cov2 yields promising results in reducing 

infection, severe disease, mortality and transmission. Yet, emergence of Variants of Concern (VoC), 

viral mutants with enhanced infectivity, or with ability to evade immunity, is a major public-health 

concern. As the number of variants increases rapidly, it may become impractical to design, assay, 

pass through clinical trials, approve, deliver and administer multiple tailored-made vaccines, one 

against each VoC. Thus, we tackle here the challenge of redesigning a single mRNA sequence of 

the vaccine that may collaterally target several VoCs.  

Codon optimization of vaccine sequence is a common practice in which among all the synonymous 

codons of each amino acid along the antigen protein sequence, an optimal codon is chosen. So-far 

codon optimization was mainly used for the enhancement of protein expression level. Here we 

propose to optimize codon choice of vaccines to allow collateral targeting of multiple VoCs. We aim 

to achieve the goal by incorporating our recent knowledge of the codon-level patterns and statistics 

of translation errors made by translating ribosomes.  

Our proposal rests on the recently gained knowledge that evolution appears to have “designed” gene 

sequences to govern also the extent and type of error made upon their translation. Our new 

methodology (Mordret et al. Molecular Cell 2019) has detected and quantified translation errors 

proteome-wide, and it allowed us to discover that: (i) amino acid mis-incorporation events tend to 

recur in multiple proteins, and their prevalence may be as high as 1% or even higher; (ii) errors tend 

to predictably occur depending on choice of synonymous codon used to encode the original amino 

acid, and they often dictate the identity of the amino acid destination of a mis-translation event; (iii) 

our preliminary experiments (Samuels et al., unpublished) indicate that in mammalian cells peptides 

with mistranslation tended to be presented in the MHC - class I in frequencies that appear at time 

comparable to the original correctly-translated peptide, thus revealing substantial potential for 

immunogenic effect of translation error products.  

We thus examined here bioinformatically if codon re-design of current mRNA vaccines of SARS-

Cov2 could control the rate and patterns of translation errors and if it has a potential to create 

translation errors that will mimic genetic mutations that appear in VoCs. Our preliminary 
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investigations of the Pfizer and Moderna vaccines suggests a potential for codon substitutions that 

through translation errors might collaterally target multiple VoCs.  

 

Introduction 

The predictable and potentially programmable nature of translation errors made in cells 

We have recently developed a new proteomic and informatics methodology to detect and quantify 

most errors made by the translation machinery of cells (Mordret et al. Molecular Cell 2019). We have 

mapped the translation errors made by ribosomes and other translation factors within cells and have 

made several important discoveries: (i) some errors may occur at very high rate (as high as 0.01 - 

0.1 translated peptides have an amino acid mis-incorporation); (ii) errors appear to be predictable 

and even “programmable”, namely for example, some of the synonymous codons for the same amino 

acid may be translated with more errors than others, and in addition, the selection of a codon can 

dictate the amino acid destination of a translation error event. Figure 1 presents the proteome-wide 

amino acid mis-incorporation data matrix in E. coli and yeast. The matrix depicts by a color code the 

number of unique peptides in the proteome in which an amino acid encoded by each of the 61 codons 

that appears on each row was found to be replaced, likely due to a translation error, with each of the 

other 19 amino acids which appear each on each column in the matrix. Most substitutions are 

consistent with mispairing between a codon and the wrong anti-codon (although others are ascribed 

to mischarging of an amino acid on the wrong tRNA). Different codons for the same amino acid show 

different patterns and rates of errors. For example, consider the four bottom rows that correspond to 

the four synonymous codons of the amino acid Gly, which have the form GGN. As can be seen, the 

most common mis-incorporation instead of Gly are Asp, Glu, and Ser. Focusing on Asp and Glu 

reveals that the codons GGU and GGC tend to lead to a Gly->Asp translation error, the codon GGA 

leads to Gly->Glu, while the 4th codon for Gly, GGG is often translated with less errors. Thus, if a 

wild-type antigen has a Gly amino acid, but a VoC has an Asp at that position, a recommended 

codon at that position should be GGU or GGC as these have a higher chance to give rise to a Gly-

Asp translation error and thus generate the alternative antigen too. The converse holds too (in the 

E. coli based data) – from the two codons for Asp, namely GAU, GAC, only the latter has a high 

propensity to be replaced by Gly. The wide spread D614G mutation in SARS-Cov2 (Korber et al. 



38 
 

Cell 2020) presents exactly this said substitution, and it is thus tempting to speculate that a vaccine 

that would encode the Asp with GAC, or the Gly with GGU or GGC might provide better cross 

immunity for both variants. Figure 1B shows an example of a very frequent mispairing event between 

a codon and an anti-codon that occurs in the 2nd position of the codon where G in the codon pairs 

against U (rather than C) in the anti-codon. The two sets of three 4*4 matrices below show the 

prevalence of each such deduced mispairing in the prokaryote and the eukaryote, when mispairing 

was deduced to occur in each of the three codon positions, pairing each possible nucleotide in the 

codon against each of the non- Watson Crick pair in the anticodon. The matrices reveal universality 

across the species, obeying (often known) chemical tendencies, and they provide the basis for our 

design and control of desired translation errors in vaccines. We have recently begun to obtain such 

error propensities data in human cells too (see Figure 1C for preliminary results). 

Further, errors are by definition rare. We thus aimed to examine how often translation errors occur 

in specific peptides in human cells. Not only have we mapped errors in the proteome, we have also 

isolated the MHC Class I from the cell surface (done by Yardena Samuels’s lab) and detected and 

quantified peptides generated with particular amino acid mis-incorporation events. We found multiple 

such peptides and were further impressed by the high intensity - often proportional to high level of 

abundance - of these peptides. In fact, we often observed (Figure 2) that the correctly translated 

peptide, and the error-bearing counterpart, appear in comparable intensities on the MHC Class I. 

This could indicate that although error products are not as prevalent as the correctly translated 

peptides, due to a putative potential to destabilize their protein, they might be presented to the 

immune system at similar amounts.  

Methodology and database 

A compilation of SARS-Cov2 VoCs 

We have constructed a set of potential VoCs for SARS-Cov2. Official VoC are characterized here by 

the mutations that they carry in specific amino acid positions along their genome. Since most current 

vaccines target the Spike protein, we focused on this protein only. Future work can expand the same 

effort to other proteins of the virus, and to other viruses or alternative immunological targets as well. 

Our compilation consists of two subsets of SARS-Cov2 VoCs. The “retrospective” set consists of 
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variants of the virus that already appeared in the human population, while the “prospective” sub-set 

consists of variants that were found by in-vitro molecular screens and due to their properties that are 

predicted to have a potential to invade the population and/or evade immunity. Some overlap does 

exists between the two subsets. 

Note: our current compilation might not correspond precisely to the official definition of VoC, we use 

the term here rather loosely to refer to mutation that may or may not raise to the level of being a 

concern.    

For the retrospective set we downloaded and aligned the Spike protein nucleic acid sequence from 

~366,000 infected human individuals from GISAID (Elbe and Buckland-Merrett 2017). In each 

sequence position along the Spike gene we detect the most frequent amino acid substitutions relative 

to the consensus amino acid at that position. In a further analysis that will not be presented in this 

document we further prioritized these substitutions according to their GWAS-like association with 

severity of symptoms of the infected individuals. Thus future work could in particular aim to target 

existing mutations of especially higher public-health and medical concern. 

The prospective sub-set of VoCs was constructed from experimental molecular screens of mutated 

versions of the Spike protein. In particular the selected mutations were those that were either found 

(i) when yeast cells expressing Spike were evolved to increase affinity to the ACE2 receptor 

(Zahradník et al. 2021); (ii) when a library of Spike mutations derived from deep mutagenesis scan 

(Starr et al. 2020, 2021; Greaney, J., Starr, et al. 2021; Greaney, J., Loes, et al. 2021), of the 

Receptor Binding Domain were measured for increased expression, increased affinity to the ACE2 

receptor or for reduced affinity to neutralizing antibodies. The combined list from this retrospective 

and prospective set contained respectively 1,133 and 5,705 non-unique mutations that might emerge 

as potential VoC (Tables S1 & S2, respectively). Of those, 1,389 mutations were unique - consisting 

of non-repeating origin-position-target triplets - appearing in 169 unique positions in Spike. 

The Pfizer and Moderna vaccine sequences  

We obtained from the public domain the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) 

nucleotide sequence of Spike vaccine sequence (NAalytics n.d.). 



40 
 

Results 

A computational screen for codon changes that could elicit desired translation errors and 

collateral immunity 

Our computational screen consists of three components. The first is the data on translation error 

propensities of codons in the genetic table, the second is and the above lists of SARS-Cov2 VoCs, 

and the third are the nucleotide sequences of the two current SARS-Cov2 mRNA vaccines. 

We developed a simple algorithm that scans the existing nucleotide sequences of the Pfizer and the 

Moderna vaccines, and at each codon position examines (i) if there exists a VoC whose amino acid 

sequence differs from the sequence of the vaccine at that position, and (ii) if there is an alternative 

synonymous codon for the amino acid at that position that, upon prone-to-occur translation error, 

could mis-incorporate the VoC amino acid at the position instead of the original amino acid at that 

position.  

In proposing to replace the original codon for an amino acid in the vaccine by a synonymous one, 

we compute the “mis-incorporation fraction” of each of the synonymous codons of the original amino 

acid at a position. The mis-incorporation fraction is the normalized number of translation error events 

from a particular codon to a desired amino acid destination that can replace the original one by a 

translation error event. We typically propose to use the synonymous codon with a maximal mis-

incorporation fraction as it might maximize the tendency to mis-incorporate the original amino acid 

by that of the VoC at the position. 

To determine whether there exists a synonymous codon of the original amino acid that upon error 

can be replaced by a desired one, we must put a threshold lower-bound on the mis-incorporation 

fraction. If there exists a desired codon with higher than threshold mis-incorporation fraction score 

we declare that the substitution is possible. Figure 3 shows a summary statistics of the number of 

amino acid positions along the vaccine in which we can suggest a potentially useful synonymous 

codon replacement. We gradually increase along the x-axis the minimal cut-off score of the mis-

incorporation fraction, using data derived from each of the three species (Figure 1), on each of the 

two vaccines, done each, on the retrospective and prospective data (Figure 3 A-D). For example, for 

the Pfizer vaccine, in the retrospective compilation, given the human data of translation errors, at a 
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cut mis-incorporation fraction = 0.03, we can propose about 25 potentially useful codon substitution 

events to cover VoCs. In Figure 3E we plot (for Pfizer and below, Moderna vaccine) the number of 

positions (left), or unique mutations within such positions (right), in which we can propose a codon 

mutation as a function of the fraction of the VoC mutation in the human population. A handful of 

mutations can be proposed that would collaterally cover Spike mutations that are currently 

represented in >=1% of the human population.  

As for the prospective compilation of VoCs: the data in Figure 4 shows that we can propose 52 and 

54 codon substitutions for the Pfizer and Moderna vaccines respectively that will allow improved 

collateral targeting of VoCs. 

Comment: Since the completion of my thesis work, the lab, together with the labs of Yardena 

Samuels and Tami Geiger, have joined forces to examine the predictions of this algorithm. They 

have finished the redesign of the Moderna and Pfizer vaccines, have synthesized new versions of 

these vaccines, introduced them into antigen presenting B cells and they are about to perform mass 

spec on the proteome and MHC peptides to reveal whether predicted mutations changed the 

antigens made and presented by the vaccine. 

Methods 

Translation error matrices 

Translation error matrices in the form of 64 codons by 19 amino acids were obtained for E. Coli and 

S. Cerevisiae from previously published data (Mordret et al. 2019). Matching proteomic data for H. 

Sapiens was collected using the protocol described by (Mordret et al. 2019), from A375 and 

SKMEL30 cell lines, by the Samuels lab. Data collected from untreated SKMEL30 was summed with 

both untreated and PUNCH-P treated A375 cells to create a single, joined table for H. Sapiens. All 

tables were normalized by the sum of the table (all error types detected) to obtain the codon to amino 

acid replacement fraction. 

 

Translation error based codon selection 

Amino acid substitutions in the sequence of the SARS-CoV-2 Spike protein were evaluated for 

potential codon replacement. A substitution is defined here as the replacement of one amino acid 
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(denoted the ‘origin’) by another (denoted the ‘destination’). See vaccine design strategies below for 

the process of identifying substitutions of interest. All codons encoding for the origin amino acid were 

compared to one another in terms of their replacement fraction to the target amino acid, using the 

64*19 normalized translation error matrices. The codon with the highest replacement fraction was 

selected. The process was repeated for both vaccines with a publicly available sequence (NAalytics 

n.d.). If equally good codon options existed (identical replacement fractions), one was picked at 

random. However, if one of those equally good options was the original codon, or if no data was 

available for any of the codons, the codon originally used in vaccine design was kept unchanged. 

 

Retrospective VoC compilation 

SARS-CoV-2 genomic sequencing data was downloaded in fasta file format from GISAID 

(https://www.gisaid.org/) via the website’s ‘Downloads’ tab, selecting the ‘unmasked MSA’ option. 

This data included all the sequences available at the time of downloading (2021-02-07). The 

downloaded fasta file was then analysed with the local Nextclade Docker tool 

(https://github.com/nextstrain/nextclade) using the command “neherlab/nextclade nextclade.js --

jobs=10 --input-fasta 'input_file.fasta' --output-json 'results_file.json' ”. The tool was used to filter out 

sequences of low quality, as defined by the default settings of Nextclade, and to map mutations and 

deletions in sequences, relative to the reference genome (NCBI Reference Sequence: 

NC_045512.2). The resulting json files were used as input for an in-house written script to reconstruct 

a multiple sequence alignment of all remaining sequences (post filtering) with only mutations and 

deletions. Insertions were disregarded from further analysis. Two amino acid positions were 

excluded, namely 2 prolines in positions 986, 987 (pre-fusion structure stabilizing Prolines - SARS-

CoV-2 S-2P) (Wrapp et al. 2020).  

 

Prospective VoC compilation 

Experimental RBD evolution and DMS data was obtained from publications and filtered for enhanced 

expression, increased ACE2 binding and immune evasion fraction. In detail: RBD evolution data 

(Zahradník et al. 2021) - all mutations associated with increased affinity to ACE2; DMS expression 

and ACE2 binding mutations (Starr et al. 2020) - filtered such that only mutations that appear to have 

a positive effect in both repeats were selected; Immune evasion data (Starr et al. 2020; Greaney, J., 

Starr, et al. 2021; Greaney, J., Loes, et al. 2021; Starr et al. 2021) was filtered as follows - standard 
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deviation (SD) was calculated for all variants. If the escape fraction was over 0.1 SD above the 

average, the highest 10% mutations were selected. 

For each mutation, if translation error data existed, a codon was selected as previously described. 

The process was repeated for all species with available data. Frequency in real-life sequences was 

assigned to mutations for reference, based on the previously described MSA. 

Figure Legends 

Figure 1 Amino acid mistranslation patterns at codon resolution in E. coli and S. cerevisiae 

and human 

A: the substitutions identification matrices of S. cerevisiae (green channel, left) and E. coli (red 

channel, right) are compared and overlaid (middle). The intensity of the color is proportional to the 

logarithm of the number of independent identifications, with one pseudo-count. Values are 

normalised by the highest entry in the matrix for each of the two organisms. The blue box highlights 

the recently described property of eukaryotic AlaRS to mischarge tRNACys. 

B: Upper panel: an example for a substitution resulting from mis-match between codon and an anti-

codon. Lower panels: NeCE are classified by the mismatch most likely to generate them. The shade 

intensity reflects the ratio of independent substitution to the number of substitution types associated 

with the corresponding mismatch. Gray boxes are either correct base-pairings, or mismatches to 

which no substitutions could be unambiguously mapped. 

C: the substitution matrix in the proteome of human cells (SKMEL30).  

 

Figure 2 Same error-bearing peptides are detected repeatedly on melanoma cancerous  

MHC-I 

Presented are MHC-I presented peptides with translation errors. Each dot represents a pair of correct 

and error-bearing peptide counterparts, detected on MHC-I, marked with original amino acid, 

positions of error, and destination amino acid upon error. Peptides are positioned on x- and y-axis 

according to their mass-spec intensity (naturally, typically higher for the correct peptide). The color 

code for each peptide signifies the number of samples, out of 8 examined, in which the error-bearing 

peptide in the pair has been identified.   
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Figure 3 - Retrospective analysis (all spike positions) & prospective analysis – Pfizer vaccine, 

the Moderna vaccine 

Mutations along the Spike protein for which we could suggest a beneficial codon swap. Number of 

mutations is given for a certain cutoff of replacement fraction or higher. Colored lines represent 

repeated analysis based on replacement fraction derived from the error data derived from the e. coli, 

yeast, or human data. Mutations with 0 frequency were excluded. A and B are for the retrospective 

and C and D are for the prospective compilations. (E, F) Number of proposed codon replacement 

mutations (left), of positions within the sequence (right) as a function of the frequency of the mutation 

in the human population in the retrospective compilation. E - Pfizer vaccine, F -Moderna 

 

Figure 4 – Number of proposed codon replacement mutations relative to the Prospective 

compilation given the Pfizer (A) and the Moderna (B) vaccines 

The Vann diagrams of analyzed mutations, taken from evolutionary and DMS studies on the Spike 

protein RBD, with a legend for the subsets (right). Values indicate the number of mutations/positions 

in the corresponding subset. 

 

Table 1 Sample of selected proposed codon swap mutations in retrospective and prospective VoC 

compilation  
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