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The COVID-19 pandemic has led to an unprecedented global response in terms of social 12 

lockdown in order to slow the spread of the virus 1,2. Currently the greatest hope is 13 

based on world-wide vaccination3,4. The expectation is that social and 14 

economic activities can gradually resume as more and more people become vaccinated. 15 

Yet, a relaxation of social distancing that allows increased transmissibility, coupled with 16 

selection pressure due to vaccination, will likely lead to the emergence of vaccine 17 

resistance 5. Here we analyze the evolutionary dynamics of COVID-19 in the presence of 18 

dynamic lockdown and in response to vaccination. We use infection  and vaccination 19 

data of 6 different countries (Israel, US, UK, Brazil, France and Germany) to assess the 20 

probability and timing for the wave of vaccine resistant mutant2. For slow vaccination 21 

rates, resistant mutants will appear inevitably even if strict lockdown is maintained. For 22 

fast vaccination rates (such as those used in Israel) the emergence of the mutant can be 23 

prevented if strict lockdown is maintained during vaccination. Our mathematical results 24 

provide quantitative guidelines for a combined vaccination and lockdown policy that 25 

minimizes the probability of emergence of vaccine resistance variants for current and 26 

future vaccination programs. 27 

 28 



The COVID-19 pandemic has had a devastating effect on global health and economy. Since 29 

the identification of the first SARS-COV-2 case in December 2019, 178.71 million 30 

infections have been recorded and at least 3.86 million people have died as a result of the 31 

infection (as of June 2021)2. The increased mortality and complication rates of SARS-COV-32 

21 compared to the mild diseases caused by seasonal coronaviruses, such as HCoV-229E6, 33 

have led to unparalleled governmental and individual-level responses in order to reduce 34 

the number of SARS-COV-2 infections. 35 

Since the beginning of the pandemic, it has become clear that non-pharmaceutical 36 

interventions (NPI), such as lockdowns, are economically and socially unsustainable in the 37 

long run. Periodical loosening and tightening of social distancing measures, which present 38 

an attempt at balancing economical and sanitary considerations, have led to waves of 39 

increase and decrease in the number of SARS-COV-2 infections per day2 (see Figure 1A). 40 

Therefore, much hope has been placed on vaccine development, which would allow the 41 

immunization of a large fraction of the population, thereby substantially reducing 42 

mortality and potentially achieving herd immunity, which could in principle eradicate 43 

SARS-COV-2 altogether.  44 

Mass vaccination campaigns have been launched in many countries (see Figure 1B), most 45 

notably Israel and the UK (both more than 60% of vaccinated population) and the US and 46 

Germany (both more than 50% of vaccinated population). Currently, four companies are 47 

producing vaccines that have been approved for emergency use either by the Food and 48 

Drug Administration (FDA)3 or by the European Medicines Agency (EMA)4: Pfizer-49 

Biontech, Moderna, AstraZeneca and Johnson & Johnson/Janssen Pharmaceuticals. 50 

Several other vaccines are also used outside of the European Union and the USA: 51 

Gamaleya (Sputnik V), Sinopharm Beijing, Sinovac, Sinopharm-Wuhan and Bharat-Biotech 52 

(Covaxin)7.  53 

 54 

 55 

 56 



 57 

Figure 1: New SARS-CoV2 cases per day per million and number of vaccinations against SARS-CoV2 per 58 

day per million in France, Germany, USA, Israel, Brazil and UK. (A) In an attempt to balance economic and 59 

sanitary considerations, these six countries have gone through several cycles of loosening and tightening 60 

government-imposed restrictions, resulting in periodical increases and decreases in the number of SARS-61 

CoV2 infections per day. The so-called “British variant”, identified in November 2020, is most probably 62 

responsible for the increase in the number of infections in the UK and Israel at that time. (B) Large scale 63 

vaccination programs commenced in December 2020. At the peak, Israel vaccinated more than 20,000 64 

people per million (2%) per day. The vaccination rate then decreased in April 2021 as most eligible 65 

individuals had been vaccinated. 66 



However, the identification of new SARS-COV-2 variants has cast a shadow over the 67 

expectation of a swift end of the pandemic8,9. The so-called “British” variant (B.1.1.7), 68 

now termed 𝛼, and “South African” variant (501.V2), now termed 𝛽, have been shown to 69 

be neutralized to a lesser extent by convalescent and vaccinee sera10, although 70 

experiments on non-human primates have shown that this decrease might not 71 

necessarily cause a decrease in immunity11. Structural studies have mapped and 72 

predicted mutations that lead to antibody escape12–14. As vaccination around the world 73 

progresses, the continued evolution of SARS-COV-2 could eventually give rise to a fully 74 

vaccine resistant variant. Such a variant could quickly spread due to its ability to infect 75 

vaccinated and recovered in addition to fully susceptible individuals. The question of 76 

emergence of vaccine resistance has already been the subject of many research papers15–77 

18.  78 

What policy could be exercised that would minimize the chance of emergence of vaccine 79 

resistant strains? Policymakers can vary the extent of social distancing imposed and 80 

regimes of vaccine administration. The critical biological parameters on the other hand 81 

include the infectivity of the various strains and the rate of mutation of the virus that may 82 

ultimately lead to emergence of a resistant strain. Here we introduce a mathematical 83 

model that examines various combinations of these parameters. Our model helps to 84 

design optimal policies that would minimize the chance of emergence of resistant strains 85 

or maximize the time until their occurrence.  86 

Our paper is an addition to the extensive body of work that has been performed in the 87 

past year in order to understand the spread and evolution of SARS-COV-219–25. SARS-COV-88 

2 research has drawn on a very long history of epidemiological research26,27,36–38,28–35. Due 89 

to the global and urgent nature of the pandemic, many studies that could inform policy-90 

making have been conducted5,39,48,40–47.  91 

In order to understand the evolutionary potential of the virus in response to a vaccination 92 

program we study a stochastic model for infection dynamics and virus evolution in the 93 

presence of varying degrees of social lockdown and different vaccination rates. We 94 



distinguish between a wild-type virus (WT) and a vaccine resistant mutant virus (MT). The 95 

vaccine is effective against the WT strain, while the MT strain evades immunity induced 96 

by the vaccine either partially or completely. We build upon the mathematical framework 97 

of the Susceptible-Infected-Removed (SIR) model from epidemiology 32,49, albeit with 98 

considerable adjustments necessitated by the specific problem at hand . Our model keeps 99 

track of people who are susceptible, infected by WT or MT, recovered from WT or MT, 100 

vaccinated or unvaccinated (Figure 2).  101 

 102 

Figure 2: Infection dynamics, vaccination and resistance.  Susceptible individuals (𝑥) can be infected by 103 

wildtype (WT) or mutant (MT) virus. Infected people (𝑦1, 𝑦2𝐴, 𝑦2𝐵) can die (with rate 𝑑) or recover (with 104 

rate 𝑎). People recovered from WT or vaccinated against WT can be infected by MT. People recovered from 105 

MT cannot be infected by WT. We assume equal infectivity, recovery and death rates for both WT and MT. 106 

Vaccination occurs at rate 𝑐  per day for all unvaccinated individuals (excluding those that are currently in 107 

active infection). Mutation happens (at rate 𝜇) when exposure to a WT infected individual  (𝑦1) results in 108 

the generation of a MT infected individual. Since 𝜇 is small, we neglect the term 1 − 𝜇. The rates of these 109 

events are indicated on the arrows and are used in the Gillespie algorithm implementing the stochastic 110 

dynamics.  111 



Crucially, we assume there is a dynamic lockdown guided by the number of new infections 112 

per day.  As that number exceeds a threshold, governmental rules and individual 113 

responses reduce social activity.  If the number of new infections falls below this 114 

threshold, the lockdown is somewhat relaxed and some people stop following the rules, 115 

thereby allowing higher transmission of the virus. We simulate these dynamics as a 116 

stochastic process. In consequence, we obtain fluctuating numbers of new infections per 117 

day. We introduce mass vaccination at alternative fixed rates. Then we compute the 118 

probability and timing of the wave of infection caused by the spontaneous emergence of 119 

a vaccine resistant virus.   120 

In our approach, the mutation rate µ denotes the probability that a WT-infected individual 121 

will infect a susceptible individual with the MT strain. The exact value of this probability 122 

is currently unknown and complex to obtain empirically. For the simulations and 123 

calculations reported in this paper we therefore consider a wide range of mutation rates. 124 

From our model, we also derive an upper bound for the mutation rate using the fact that 125 

no wave of a vaccine-resistant variant has occurred up until now. Note that this rate can 126 

be very different from the per-base mutation rate of SARS-COV-2, which is about 10−5.  127 

 128 

DYNAMICS OF VIRAL INFECTION AND EVOLUTION 129 

Our model keeps track of eight different variable states: individuals who are susceptible 130 

(𝑥), infected with WT (𝑦1), non-vaccinated and infected with MT (𝑦2𝐴), vaccinated and 131 

infected with MT (𝑦2𝐵), recovered from WT (𝑧1), recovered from MT (𝑧2), vaccinated but 132 

susceptible to MT (𝑤1), vaccinated and recovered from MT (𝑤2); see Figure 2.  133 

The WT strain can infect susceptible individuals (𝑥), converting them to individuals 134 

infected with WT (𝑦1) at rate 𝛽1. A mutation can occur with probability µ. In this case, a 135 

WT infected individual infects a susceptible individual (𝑥) with a mutated version of the 136 

virus, in a mutation that have taken place in the infecting individual, thus converting the 137 

susceptible to a MT infected individual (𝑦2𝐴). WT infected individuals either recover with 138 



rate 𝑎 and become immune to future WT infection (𝑧1) or die at rate 𝑑. Susceptible 139 

individuals (𝑥) and individuals recovered from WT (𝑧1) can become vaccinated individuals 140 

(𝑤1). The parameter 𝑐 denotes the number of individuals vaccinated per day. Hence, the 141 

rates of vaccination of 𝑥, 𝑧1 and 𝑧2 are respectively 𝑐𝑥/(𝑥 + 𝑧1 + 𝑧2), 𝑐𝑧1/(𝑥 + 𝑧1 + 𝑧2) 142 

and 𝑐𝑧2/(𝑥 + 𝑧1 + 𝑧2). For simplicity we assume single-dose vaccination; for a double 143 

dose vaccine our model would describe the application of the second dose ignoring partial 144 

immunity caused by the first dose; extension of our model to a full two dose vaccination 145 

protocol is straightforward. 146 

At rate 𝛽2, the MT strain infects susceptible individuals (𝑥), WT recovered individuals (𝑧1) 147 

and vaccinated individuals who are not immune to MT (𝑤1). MT infected individuals either 148 

recover with rate 𝑎 and become immune to future MT and WT infection (𝑧2) or die at 149 

same death rate 𝑑 as with the WT strain, i.e. assuming no difference in lethality between 150 

the two strains. We assume one-way cross-immunity induced by the viral strains: the MT 151 

strain can infect individuals that have recovered from WT or that have been vaccinated 152 

against WT, but the WT strain cannot infect individuals that have recovered from the MT. 153 

In practice, the WT strain becomes extinct soon after the appearance of the MT strain, 154 

meaning that the number of individuals recovered from MT that could become infected 155 

with WT is negligible. We note that our MT strain escapes both from the immunity that is 156 

induced by natural infection with WT and the immunity induced by vaccination against 157 

WT. 158 

We need to distinguish between MT infected individuals that are or are not vaccinated: 159 𝑦2𝐵 and 𝑦2𝐴, respectively. Upon recovery the former will not be vaccinated (again), while 160 

the latter will be vaccinated. 161 

We also study partial immunity to the MT strain which can be acquired by recovery from 162 

WT infection or by vaccination.  For partial immunity, the corresponding infection rates 163 

are multiplied by a parameter 𝑞, which is between 0 and 1. If 𝑞 = 1 then WT infection or 164 

vaccination confers no immunity to MT at all; the mutant escapes completely. For  0 <165 𝑞 < 1, the MT is a partial escape mutant. For 𝑞 = 0, the MT does not escape at all. 166 



Lockdown measures are implemented by multiplying the infectivity coefficients of each 167 

strain by a social activity parameter 𝑠 which ranges in [0,1].  Unconstrained social 168 

interaction means 𝑠 = 1, while 𝑠 = 0 would be complete lockdown. The population 169 

tolerates a certain number of new infections, 𝐿, per day. Each day, if the number of new 170 

infections exceeds 𝐿, then 𝑠 is decreased by a random, uniformly distributed number 171 

between 0 and 0.1. If the number of new infections is less than 𝐿, then 𝑠 is increased by 172 

a random, uniformly distributed number between 0 and 0.1. In any case, 𝑠 cannot 173 

decrease below 0.05 or increase above 1.  174 

As an example, the rate of infection of the recovered from WT 𝑧1 by the MT strain infected 175 

individuals 𝑦2 is multiplied both by the lockdown coefficient 𝑠 and the partial immunity 176 

coefficient 𝑞 – hence this rate is given by 𝑞𝛽2𝑠𝑤1𝑦2. 177 

COMPUTATIONAL IMPLEMENTATION AND DATA 178 

A Gillespie algorithm is commonly used to simulate stochastic systems with high variation 179 

in waiting times between consecutive events50–53. In our model the population is 180 

represented as a vector of length eight, corresponding to the eight categories. The rates 181 

of all possible events (infection, recovery, death, mutation and vaccination) are 182 

calculated. The time of the next event in the model is drawn from an exponential 183 

distribution, with parameter dependent on the sum of all event rates and an event is 184 

chosen, with probability proportional to its rate. The population is updated according to 185 

the event that occurred. The simulation is stopped when there are no more infected 186 

individuals in the population. The algorithm is presented in pseudocode in the Appendix, 187 

along with a table of the possible events of the model and their default rates.  188 

In order to achieve feasible computation time and resources, we simulated populations 189 

of size up to 𝑁 = 106. The results of those simulations can be scaled to larger population 190 

sizes by considering a population of for example 𝑁 = 107 as 𝑚 = 10 “batches” of 106 191 

individuals, and computing the results for 𝑁 = 107 as 1 − (1 − 𝑝)𝑚, where 𝑝 is the 192 

proportion of runs where the MT strain took over. Figure S1 shows the strong agreement 193 



between simulated results and the results scaled from simulations with smaller 194 

population sizes.  195 

For all our simulations, we have endeavored to use real world data for all model 196 

parameters. In particular, infection and vaccination data has been obtained from the 197 

database Our World in Data 2 (OWID) and downloaded on June 19th, 2021. 198 

In our simulation, since the number of new infections each day is constant, the number 199 

of susceptible individuals decreases linearly with slope −𝐿/𝑎. Vaccination of both 200 

susceptible and recovered individuals proceeds at rate 𝑐. The social activity parameter, 𝑠, 201 

increases as more and more individuals become immunized either by infection or by 202 

vaccination. The WT reproductive rate, 𝑅𝑊𝑇 , is maintained at 1 as long as the MT has not 203 

appeared. The MT reproductive rate, 𝑅𝑀𝑇 , increases with the social activity parameter 𝑠 204 

until the MT strain takes over. After MT takeover, the MT reproductive rate 𝑅𝑀𝑇 is 205 

buffered at 1 by the dynamic lockdown (see Figure 3 and Methods). 206 



 207 

Figure 3: Evolution of resistance in presence of vaccination. (A) Before MT takeover, the decline in 208 

susceptible individuals (𝑥) can be approximated by a linear function with slope equal to the vaccination rate 209 𝑐. Since vaccination is fast, individuals recovered from WT and non-vaccinated individuals recovered from 210 

MT are few. The equation of line (a) is  𝑥(𝑡) = 𝑥(0) − 𝑐𝑡 for 𝑡 < 𝑡∗ where 𝑡∗  is the time of takeover of the 211 

MT. (B) The reproductive rate 𝑅𝑊𝑇 is maintained at around 1 by dynamic lockdown. After mutant takeover, 212 𝑅𝑊𝑇 is less than 1, since the lockdown is now adjusted to the population susceptible to the MT strain. (C) 213 

The number of active WT infections before takeover and of active MT infections after takeover, is 214 

fluctuating around 𝐿/𝑎 until herd immunity to the MT is reached. (D) Before MT takeover, the reproductive 215 

rate of the MT grows as (b) 𝑅𝑀𝑇 = 𝛽2(𝑥(𝑡) + 𝑧1(𝑡) + 𝑤1(𝑡))/𝑎. After takeover, 𝑅𝑀𝑇 is maintained around 216 

1. (E) The number of vaccinated individuals (𝑤1) first increases linearly with slope equal to the vaccination 217 

rate. After MT takeover, the number of individuals vaccinated to the WT and recovered from MT (𝑤2) 218 



increased linearly with slope 𝐿. The equations of the lines are given by (c) 𝑤1(𝑡) = 𝑐𝑡 for 𝑡 < 𝑡∗  (d) 𝑤1(𝑡) =219 𝑤1(𝑡∗ ) − 𝐿(𝑡 − 𝑡∗ ) for 𝑡 > 𝑡∗  (e) 𝑤2(𝑡) = 𝐿(𝑡 − 𝑡∗ ) for > 𝑡∗ . (F) Before MT takeover, the dynamic 220 

lockdown is adjusted to the WT. As the number of individuals immune to WT grows, social activity increases. 221 

When the MT emerges, lockdown measures are reinstated. Subsequently, social activity increases as the 222 

population immune to the MT grows. The equations for the lines given by (f) 𝑠(𝑡) = 𝑎/𝛽1𝑥(𝑡)   for  𝑡 < 𝑡∗ 223 

; (g) 𝑠(𝑡) = 𝑎/𝛽2(𝑥(𝑡) + 𝑧1(𝑡) + 𝑤1(𝑡))  for > 𝑡∗ . 224 

We performed 1000 runs of the stochastic simulation for each combination of parameters 225 

reflecting realistic values of the two model parameters determined by governmental 226 

policy: the tolerated number of infections per day, 𝐿, and the vaccination rate per day, 𝑐. 227 

Each square of the color map shown in Figure 4 reflects the average value of these 1000 228 

runs, which were performed for a population of 𝑁 =  106 and then scaled to 𝑁 =  107 229 

and 𝑁 =  108. At each combination of 𝐿 and 𝑐 the color maps denote the predicted 230 

probability of a mutant take over. We perform computations using 𝑞 = 1 and 𝑞 = 0.4 for 231 

complete and partial immune evasion by the mutant.   232 



 233 

Figure 4: Probability of emergence of resistance. For each square of the color maps, the proportion of runs 234 

(out of 1000 runs) where the number of individuals infected with the MT strain exceeded the number of 235 

individuals infected with the WT strain is recorded. All simulations are run for a population size of 𝑁 = 106, 236 

then scaled to obtain the results shown for  𝑁 = 107. Results for color maps (B) and (D) were scaled 237 

according to (1 − (1 − 𝑝)10), where p is the proportion of runs where the MT strain took over. We observe 238 

a triangular shape of (𝐿, 𝑐) parameter sets for which the MT strain takes over, indicating that high 239 

vaccination rates can be safely associated with more lenient social distancing measures.  On the other hand, 240 

very slow vaccination cannot be compensated by any strength of lockdown. Partial immunity to the WT 241 

strain (panels (A) and (C)) does not affect the shape of the parameter space where we observe MT takeover, 242 

but reduces its probability.  243 

 244 



Allowing a large amount of infection cases and slow vaccination results is almost certain 245 

takeover of the MT strain. On the other hand, very fast vaccination coupled with a low 246 

number of tolerated new infections per day can prevent emergence of the MT. Partial 247 

immune evasion (𝑞 = 0.4) of the mutant slightly reduces the probability of its takeover. 248 

Note that the shape of the parameter space where we observe takeover is similar for 𝑞 =249 1 and 𝑞 = 0.4. 250 

REPRODUCTIVE RATIO OF THE MUTANT AND PROBABILITY OF TAKEOVER 251 

In Figure 5 we show detailed data from 6 countries together with the estimated 252 

reproductive ratio, 𝑅𝑀𝑇, of a vaccine resistant mutant and the probability of generating a 253 

wave of resistant virus. Data for the number of susceptible individuals 𝑥(𝑡), vaccinated 254 

individuals 𝑤(𝑡), recovered individuals 𝑧(𝑡), newly infected individuals 𝐿(𝑡), and an 255 

estimate for the reproductive rate 𝑅𝑊𝑇 of the WT can be obtained from OWID 2. The 256 

reproductive rate 𝑅𝑀𝑇 of the escape mutant can be calculated according to:  257 

 𝑅𝑀𝑇(𝑡) = 𝑅𝑊𝑇(𝑡)[𝑥(𝑡) + 𝑞𝑤(𝑡) + 𝑞𝑧(𝑡)]/𝑥(𝑡) (1) 

The probability of not producing an escape mutant in a given day is (1 − 𝜇)𝐿(𝑡). The 258 

probability of not producing a surviving escape mutant is (1 − 𝜌(𝑡)𝜇)𝐿(𝑡), where 𝜌(𝑡) is 259 

the survival probability of a mutant generated on that day. If 𝑅𝑀𝑇(𝑡) < 1 then 𝜌(𝑡) = 0. 260 

If 𝑅𝑀𝑇(𝑡) > 1 we assume 𝜌(𝑡) = 1 − 1/𝑅𝑀𝑇(𝑡). The probability that no surviving mutant 261 

is generated between time 0 and time 𝑡 is given by 262 

 𝑃(𝑡) = ∏[1 − 𝜇𝜌(𝜏)]𝐿(𝜏)𝑡
𝜏=0  (2) 

In Figure 5 we show the reproductive rate of the mutant 𝑅𝑀𝑇(𝑡) and the probability 𝑃(𝑡) 263 

of generating a surviving escape mutant as a function of time. Prior to vaccination the 264 

reproductive rate of a potential escape mutant tracks closely that of the WT. As people 265 

become vaccinated in large numbers, 𝑅𝑀𝑇  starts to increase significantly above 𝑅𝑊𝑇. 266 

Nevertheless, it is possible to keep 𝑅𝑀𝑇 below one by maintaining some measures of 267 

lockdown. (This is the case for Israel and UK). Overall, the probability that Israel generated 268 

a vaccine escape mutant (before June 2021) is of order of 1-2 percent (assuming 𝜇 =269 



10−7). For the same mutation rate the corresponding probability for the United States is 270 

32 percent; the United States have a much larger total population size but also many more 271 

infections per million people. The corresponding probabilities for Brazil, France, Germany, 272 

and UK are 17, 8, 4 and 6 percent (see Table 1).  273 

 274 

 275 

 276 

 277 

 278 



 279 

Figure 5: Infection, vaccination data and estimates for reproductive ratios and probability of resistance 280 

for Brazil, France, Germany, Israel, the United Kingdom, and the United States. The total number of new 281 

cases per day (leftmost column), number of susceptible,, recovered, and vaccinated individuals (second 282 

column from left) was downloaded from the OWID (Our World In Data) database. We used the OWID 283 

estimate for the WT reproductive coefficient 𝑅𝑊𝑇 to calculate the potential MT reproductive coefficient 284 𝑅𝑀𝑇 for a full escape mutant (𝑞 = 1) and a partial escape mutant (𝑞 = 0.4), (third column). We use Eq. 2 285 

to estimate the probability that an escape mutant would have emerged until a certain date assuming 𝜇 =286 10−7 (fourth column).  287 

 288 

 289 



Country 

Population 

size 

(× 106) 

Average 

rate of 

infection 

per day per 

person 

before 

vaccination 

(× 10−6) 

Average rate 

of infection 

per day per 

person after 

vaccination 

(× 10−6) 

Average rate 

of 

vaccination 

per day per 

person 

(× 10−6) 

Probability of 

resistance 

(𝜇 = 10−7) 

Brazil 212.6 132 294 2946 0.166 

France 68.1 120 319 4440 0.082 

Germany 83.8 67 135 4878 0.037 

Israel 8.7 120 412 9181 0.018 

United 

Kingdom 
67.9 109 187 6358 0.060 

United 

States 
331.0 173 246 5533 0.320 

 290 

Table 1: Calculated probability of emergence of vaccine resistance using real-world data from six 291 

countries: Brazil, France, Germany, Israel, the United Kingdom and the United States. The probability of 292 

vaccine resistance was calculated using the product formula in Eq. 2 and the data presented in Figure 5 293 

assuming 𝜇 = 10−7. 294 

 295 



ESTIMATING THE MUTATION RATE µ 296 

We suggest a method to estimate an upper bound of the mutation rate 𝜇 from WT to MT 297 

based on the observation that despite a large number of infections since the beginning of 298 

the pandemic and including recent vaccination campaigns, no immune evasive mutant 299 

has yet taken over. Our method for calculating an upper bound of the mutation rate is 300 

potentially applicable for estimating any mutation rate between two phenotypes in an 301 

evolving population. The upper bound is computed at any given time point, and can be 302 

updated and become tighter if in future evasive strain still does not appear. 303 

For each country, we use Eq. (2) to compute the probability of takeover using data from 304 

the beginning of the pandemic up until June 19th 2021 for a wide range of mutation rates. 305 

We assume 𝑞 = 1, which means the MT strain is fully immune evasive.   306 

The resulting function for probability of mutant take over (for a given time point) versus 307 

mutation rate has a sigmoidal shape, with its midpoint corresponding to the mutation 308 

rate for which it is equally probable that the MT strain would have taken over or not. 309 

Plugging in data on number of infections in several countries gives an upper bound on the 310 

probability of mutant take over and a corresponding estimation of mutation rate per 311 

transmission that will result in the emergence of such a mutant. This estimated upper 312 

bound on the mutation rate decreases over time as long as more infections do not give 313 

rise to a MT strain (see Figure 6).  314 



 315 

Figure 6: Estimation of mutation rate given that no vaccine resistant mutant has yet taken over. (A,B) 316 

Using Eq. 2, we calculate the probability of MT strain takeover for a range of mutation rate values. The 317 

probability of MT strain takeover follows a sigmoidal function, where the midpoint is reached for the value 318 

of µ where MT strain takeover becomes more probable than not.  (C) The midpoint of the function 319 

(indicated by a red arrow) describing the probability of MT strain takeover will decrease in value as more 320 

and more time passes without the takeover of an MT strain. We can use this value as an upper bound of 321 

the mutation rate for our model.   322 



 323 

Since the probability of MT takeover (Eq. (2)) is strongly dependent on the number of 324 

infections, significant decreases in the estimated values correspond to periods with high 325 

infection rates in which, nonetheless, a mutant did not appear. The estimate for the upper 326 

bound of the mutation rate is expected to plateau as vaccination campaigns lead to a 327 

decrease in the number of infection cases. The estimate of 10−6 will decrease further if 328 

and when large countries such as the US will advance in the vaccination campaign with 329 

no mutant takeover. Using the world infection and vaccination data, we obtain 𝜇 = 10−7 330 

as the order of magnitude for the upper bound for the rate at which immune evasive 331 

mutants appear. But estimates based on individual countries may be more informative 332 

since the world data reflects the average over an extremely heterogeneous population 333 

subject to very different policies. 334 

A SIMPLE FORMULA FOR THE ESCAPE PROBABILITY 335 

The dynamic lockdown captured by the social activity parameter 𝑠(𝑡) maintains the 336 

number of new infections per day fluctuating around a fixed value and thereby buffers 337 

the reproductive ratio of the wildtype 𝑅𝑊𝑇 around 1. The number of active infections is 338 

roughly constant and given by 𝐿/𝑎, where 𝑎 is the recovery rate (see Figure 3). If 339 

vaccination is slow,  𝑐 ≪ 𝐿, then the change in the number of susceptible, 𝑥(𝑡), and 340 

recovered individuals, 𝑧1(𝑡), over time can be described by linear functions with slopes 341 

proportional to 𝐿 (see Methods and Figure S2A).  342 

Alternatively, for fast vaccination, 𝑐 ≫ 𝐿, the change in the number of susceptible 𝑥(𝑡) 343 

and vaccinated individuals 𝑤1(𝑡) can be described by linear functions with slopes 344 

proportional to 𝑐 before MT takeover, and with slopes proportional to 𝐿 after MT 345 

takeover (see Methods and Figure 3E). Neglecting vaccination of recovered individuals 346 

(which is a reasonable approximation for  𝑐 ≫ 𝐿 ) we can write (𝑡) = 𝑁 − 𝐿𝑡 − 𝑐𝑡 , 𝑧(𝑡) =347 𝐿𝑡 and 𝑤(𝑡) = 𝑐𝑡. The time when herd immunity against the WT is reached is given by  348 



 𝑇𝐻 = 𝑁𝑐 + 𝐿 (1 − 1𝑅0) 
(3) 

During vaccination the reproductive rate of the mutant increases as (see Methods) 349 

 𝑅𝑀𝑇(𝑡) = 𝑁𝑁 − (𝐿 + 𝑐)𝑡 (4) 

The reproductive rate of the MT is initially 1 and increases to 𝑅0 as people recover from 350 

WT infection or are vaccinated (see Figure 3D). Once a mutant has been generated, the 351 

probability of its survival depends on the value of the reproductive rate, 𝑅𝑀𝑇(𝑡). The 352 

probability that no surviving mutant has appeared before time 𝑡, where 𝑡 ≤ 𝑇𝐻, can be 353 

calculated to be (see Methods): 354 

 𝑃(𝑡) =  exp [− (𝜇𝑁2 ) (𝐿𝑁) (𝑐 + 𝐿𝑁 ) 𝑡²] 
(5) 

The probability that no surviving mutant has appeared until herd immunity is 355 

 𝑃(𝑇𝐻) = exp [− (𝜇𝑁2 ) ( 𝐿𝑐 + 𝐿) (1 − 1𝑅0)2] 
(6) 

Here 𝑅0 = 𝛽𝑁/𝑎 is the basic reproductive ratio of the WT. The corresponding formulas 356 

for partial immune escape mutants are given in the Methods.  Eq. (6) is in good agreement 357 

with the results of exact stochastic simulations (Figure S3).  358 

In Table 2, we show how the probability and timing of resistance depends on the 359 

vaccination rate and the number of new infections per day. We first consider a large 360 

country of 𝑁 = 108 inhabitants and a mutation rate of 𝜇 = 10−7. If 10,000 new infections 361 

occur per day and 1 million people are vaccinated per day, then herd immunity is reached 362 

in 66 days and the probability of generating a vaccine resistant mutant is about 2 percent. 363 

For the same vaccination rate, if 50,000 new infections are tolerated each day, then the 364 

probability of generating an escape mutant increases to 10 percent. If 10,000 new 365 

infections occur per day but only 100,000 people are vaccinated every day, then the 366 

probability of generating vaccine resistance increases to 18 percent. 367 

 368 



 369 

Table 2: Calculated probability of vaccine resistance for a range of vaccination rates and infection rates. 370 

We observe of counterintuitive effect of higher probability of resistance along time for higher vaccination 371 

rates, but lower probability of resistance overall. See also Figure S4.  372 

 373 



 374 

As the proportion of vaccinated individuals grows, social distancing measures relax, and 375 

the probability of emergence of resistance increases. Hence, higher vaccination rates are 376 

associated with higher probabilities of resistance after 50, 100 and 200 days (see Table 377 

2). However, faster vaccination leads to earlier herd immunity. When herd immunity is 378 

reached, there are no more new infections and the cumulative probability of resistance 379 

plateaus. Therefore, we observe an interesting counterintuitive effect: the probability of 380 

resistance until a fixed time 𝑡 increases with the vaccination rate 𝑐, but the probability of 381 

resistance until time 𝑇𝐻 when herd immunity is achieved decreases with the vaccination 382 

rate 𝑐. (see Table 2 and Figure S4). 383 

We can derive estimates for the emergence of vaccine resistant strains using current 384 

vaccination and infection rates from around the world. If the whole world (𝑁 = 8 ∙ 109) 385 

vaccinated as fast as the US (𝑐 = 5000 per day per million) and had slightly lower 386 

infection rates than Germany (𝐿 =  100 per day per million) then herd immunity would 387 

be achieved in 𝑇𝐻 = 131 days; the probability that a resistant virus was generated and 388 

survived by that time would be 0.97 (for 𝜇 = 10−7) and 0.29 (for 𝜇 = 10−8). If the whole 389 

world vaccinated as fast as Brazil (𝑐 = 3000 per day per million) and had infection rates 390 

like the US (𝐿 =  250 per day per million) then herd immunity would be achieved in 𝑇𝐻 =391 205 days; the probability that a resistant virus was generated and survived by that time 392 

would be 0.999 (for 𝜇 = 10−7) and 0.75 (for 𝜇 = 10−8). Our results underline the 393 

importance of maintaining lockdown measures while herd immunity is not achieved and 394 

timely distribution of vaccines around the world.  395 

SUMMARY  396 

We have studied evolution of resistance to COVID-19 vaccination in the presence of 397 

dynamic lockdown. We use real world data to simulate the spread of the SARS-COV-2 398 

virus. We have performed stochastic simulations and obtained analytical results. In 399 

particular, we have derived a simple intuitive formula for the probability of emergence of 400 

a vaccine resistant strain over time (Eqs. (5) and (6)).  401 



Our model most closely corresponds to the assumption that immune evasion could be 402 

due to a single point mutation. Nevertheless, our estimates of the mutation rate between 403 

the wild-type and immune evasive strains could signify that a combination of mutations 404 

is needed to achieve immune evasion. Therefore, we have explored lower effective 405 

mutation rates than the current estimation for the per-base mutation rate of the SARS-406 

COV-2 virus.  407 

The probability of takeover of an immune evasive strain is mostly dependent on the 408 

number of total infection cases that occur during the pandemic. Social distancing 409 

measures, such as lockdowns, can delay or event prevent the emergence of the MT strain. 410 

Each natural infection is an opportunity for the MT strain to appear and possibly take 411 

over. Hence, the main policy goal should be to maximize the proportion of the population 412 

which will be immunized to the virus through vaccination as opposed to natural infection.  413 

In terms of policy implications, our result supports the maintenance of social distancing 414 

measures until the daily number of infections decreases substantially. Allowing a large 415 

number of infections can only be counterbalanced by very high vaccination rates, which 416 

ensure that herd immunity is reached before the MT strain can appear and takeover. 417 

Furthermore, our result underlines the importance of a worldwide effort to quickly 418 

vaccinate as many individuals as possible, especially in highly populated countries with 419 

low access to vaccines. Slow, or no vaccination, results in a large number of total cases in 420 

these areas and hence the emergence of an MT strain which could then spread over the 421 

whole world.  422 
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 577 

METHODS 578 

Derivation of mathematical results 579 

1. No Vaccination 580 

First we consider the case without vaccination. We denote by 𝑥 the number of susceptible 581 

individuals; by 𝑦 the number of individuals infected with wildtype (WT); by z the number 582 

of individuals recovered from WT. The infection rate is 𝛽; the recovery rate 𝑎 ; the 583 

mutation rate  𝜇; the population size 𝑁. The social activity parameter 𝑠(𝑡) captures the 584 



extent of imposed lockdown that varies over time. For simplicity, we neglect the number 585 

of individuals who die, hence the population size 𝑁 is assumed to be constant.  586 

Deterministic WT infection dynamics are given by the system of differential equations: 587 

 

𝑥̇ = −𝛽𝑠𝑥𝑦 𝑦̇ = 𝛽𝑠𝑥𝑦 − 𝑎𝑦 𝑧̇ = 𝑎𝑦 

(7) 

Initially, all of the population is susceptible to the WT strain, and no individuals are 588 

infected with or recovered from the WT strain. Therefore, we have: 𝑥(0) = 𝑁, 𝑦(0) = 0 589 

and 𝑧(0) = 0. Social activity,  𝑠(𝑡), is adjusted such that 𝑦(𝑡)  =  𝐿/𝑎 is constant (see 590 

Figure S2C). 𝐿 is the number of new infections per day. 591 

Without lockdown, 𝑠 = 1, the basic reproductive ratio of the WT is given by 𝑅0 = 𝛽𝑁/𝑎. 592 

If 𝑅0 > 1, the number of infected individuals grows initially.  With lockdown, 𝑠 < 1, the 593 

reproductive ratio is 𝑅𝑊𝑇 = 𝛽𝑁𝑠/𝑎. Since the social distancing measures maintain 594 𝑦(𝑡) =  𝐿/𝑎 at a constant value, we have 𝑅𝑊𝑇 = 1 and 𝛽𝑠(𝑡)𝑥(𝑡) = 𝑎 (see Figure S2). 595 

The parameter 𝑠 can vary between 0 and 1. 596 

Each day, 𝐿 individuals become infected and 𝐿 individuals recover. Therefore, we have: 597 

 

𝑥̇ = −𝐿 𝑦̇ = 0 𝑧̇ = 𝐿 

(8) 

The solution to this system of differential equations is  598 

 

𝑥(𝑡) = 𝑁 − 𝐿𝑡 𝑧(𝑡) = 𝐿𝑡 

(9) 

Hence, the number of susceptible individuals decreases linearly with slope 𝐿 while the 599 

number of recovered individuals increases linearly with slope 𝐿. (See Figure S2 for 600 

agreement with the stochastic simulation). 601 



When 𝑥(𝑡) has declined such that 𝑅𝑊𝑇 < 1 and  𝑠 = 1, there are not enough susceptible 602 

individuals to sustain the infection. This herd immunity is achieved when 𝑥(𝑡) < 𝑎/𝛽. 603 

Thus, the time 𝑇𝐻 until herd immunity is given by 𝛽(𝑁 − 𝐿𝑡) = 𝑎. We obtain: 604 

 

𝑇𝐻  = 𝑁𝐿 (1 − 1𝑅0) 

 

(10) 

1.1 Rate of generating mutants 605 

Each day, 𝐿 new individuals become infected. Each of these infections has probability 𝜇 606 

to be a vaccine-resistant MT. Hence, the rate of producing a mutant is 𝐿𝜇 per day. Let 607 𝑃(𝑡) denote the probability that no mutant has been produced until time 𝑡. We have 608 𝑃(𝑡)̇ =  −𝐿𝜇𝑃(𝑡), which leads to 𝑃(𝑡) =  𝑒−𝐿𝜇𝑡.  609 

The MT strain can be generated only during infection. Hence, if the MT strain has not 610 

been generated until the time when there are no more WT infections – that is, 611 

approximately when herd immunity is reached – it will never be generated. We neglect 612 

here the time of exponential decrease in the number of WT infections between time 𝑇𝐻 613 

(when herd immunity is reached) and the time when the number of WT infections has 614 

reached zero. The probability that no mutant will appear before time 𝑇𝐻  is 𝑃(𝑇𝐻) =615  𝑒−𝐿𝜇𝑇𝐻 . Inserting from eq (4) we obtain 616 

 𝑃(𝑇𝐻) =  exp (−𝑁𝜇(1 − 1/𝑅0) (11) 

1.1 Rate of generating surviving mutants 617 

In order to calculate the probability that the MT strain will be generated and survive, we 618 

need to multiply the rate of generation of the MT strain with the probability that it will 619 

not become extinct by random drift. If 𝜌(𝑡) is the survival probability of the MT, then the 620 

rate of producing a surviving mutant is 𝐿𝜇𝜌(𝑡) per day. We approximate 𝜌(𝑡) = 1 −621 1/𝑅𝑀𝑇(𝑡), where 𝑅𝑀𝑇(𝑡) is the reproductive ratio of the mutant at time 𝑇. 622 

We have 623 



 𝑅𝑀𝑇(𝑡) = 𝛽𝑠(𝑡)𝑁/𝑎 (12) 

Since 𝑠(𝑡) =  𝑎/𝛽𝑥(𝑡) and using Eq. (9) we obtain 624 

 𝑅𝑀𝑇(𝑡) = 𝑁𝑁 − 𝐿𝑡 (13) 

And therefore we have 𝜌(𝑡) = 𝐿𝑡/𝑁. 625 

Let 𝑃(𝑡) denote the probability that not surviving mutant has been produced until time 626 𝑡. We have 𝑃(𝑡)̇ =  −𝐿𝜇𝜌(𝑡)𝑃(𝑡) = −𝐿2𝜇𝑡𝑃(𝑡)/𝑁. We can solve this differential 627 

equation to obtain 𝑃(𝑡) =  exp (−𝜇𝐿2𝑡2/2𝑁). The probability that no surviving mutant 628 

has been produced until herd immunity, which is reached at time 𝑇𝐻, is given by 629 

 𝑃(𝑇𝐻) =  exp (− 𝜇𝑁2 (1 − 1𝑅0)2) (14) 

2. With Vaccination 630 

Let us now add vaccination. Denote by 𝑤 the number of vaccinated people.  If both 631 

recovered and susceptible individuals are vaccinated at a total rate of 𝑐 per day then 632 

deterministic infection and vaccination dynamics are given by 633 

 

𝑥̇ = −𝛽𝑠𝑥𝑦 − 𝑐𝑥𝑥 + 𝑧 

𝑦̇ = 𝛽𝑠𝑥𝑦 − 𝑎𝑦 

𝑧̇ = 𝑎𝑦 − 𝑐𝑧𝑥 + 𝑧 

𝑤̇ = 𝑐 

(15) 

The initial condition is 𝑥(0) = 𝑁, 𝑦(0) = 0, 𝑧(0) = 0,  𝑤(0) = 0, 𝑠(0) = 1 and 𝑅0 =634 𝛽𝑁/𝑎. As before, we adjust 𝑠(𝑡) such that 𝑦(𝑡) = 𝐿/𝑎 is constant (see Figure 3). 635 

Each day, 𝐿 susceptible individuals become infected and 𝑐𝑥(𝑥 + 𝑧) susceptible individuals 636 

become vaccinated. Also, 𝐿 infected individuals recover, and 𝑐𝑥(𝑥 + 𝑧) of recovered 637 

individuals become vaccinated. We have: 638 



 

𝑥̇ = −𝐿 − 𝑐𝑥𝑥 + 𝑧 

𝑦̇ = 0 

𝑧̇ = 𝐿 − 𝑐𝑧𝑥 + 𝑧 

𝑤̇ = 𝑐 

(16) 

For simplicity let us assume that we only vaccinate susceptible people. This assumption 639 

is a reasonable approximation if 𝑐 ≫  𝐿. In this case, we can write  640 

 

𝑥̇ = −𝐿 − 𝑐 𝑦̇ = 0 𝑧̇ = 𝐿 𝑤̇ = 𝑐 

(17) 

 641 

The solution to this system of differential equations is 642 

 

𝑥(𝑡) = 𝑁 − 𝐿𝑡 − 𝑐𝑡 𝑧(𝑡) = 𝐿𝑡 𝑤(𝑡) = 𝑐𝑡 

(18) 

Hence, the number of susceptible individuals decreases linearly with slope 𝐿 + 𝑐, while 643 

the number of recovered individuals increases linearly with slope 𝐿, and the number of 644 

vaccinated individuals increases linearly with slope 𝑐.  645 

The time 𝑇𝐻  until herd immunity is given by 646 

 

𝑇𝐻  = 𝑁𝑐 + 𝐿 (1 − 1/𝑅0) 

 

(19) 



2.1 Rate of generating mutants 647 

The rate of producing a mutant is 𝐿𝜇 per day. Let 𝑃(𝑡) denote the probability that no 648 

mutant has been produced until time 𝑡. We have 𝑃(𝑡)̇ =  −𝐿𝜇𝑃(𝑡), which gives 𝑃(𝑡) =649  exp (−𝐿𝜇𝑡).  650 

The MT strain can be generated only during infection. Hence, if the MT strain has not 651 

been generated until the time when there are no more WT infections – that is, when herd 652 

immunity is reached – it will never be generated. Again we neglect here the time of 653 

exponential decrease in the number of WT infections between the time 𝑇𝐻  when herd 654 

immunity is reached and the time where the number of WT infections reaches 0. Hence, 655 

the probability that no mutant will appear is 𝑃(𝑇𝐻) =  exp (−𝐿𝜇𝑇𝐻). Using  Eq. (19), the 656 

probability that no mutant has appeared until herd immunity is: 657 

 

𝑃(𝑇𝐻) = exp (−𝑁𝜇 ( 𝐿𝑐 + 𝐿) (1 − 1𝑅0)) 

 

(20) 

2.2 Rate of generating surviving mutants 658 

In order to calculate the probability that surviving mutants are generated, we again 659 

consider the survival probability 𝜌(𝑡) = 1 − 1/𝑅𝑀𝑇(𝑡), where 𝑅𝑀𝑇(𝑡) is the reproductive 660 

ratio of the mutant at time 𝑡. The rate of producing a surviving mutant is then 𝐿𝜇𝜌(𝑡) per 661 

day. We have: 662 

 𝑅𝑀𝑇(𝑡) = 𝛽𝑠(𝑡)𝑁𝑎  (21) 

As explained above, 𝑠(𝑡) =  𝑎/𝛽𝑥(𝑡). Using Eq. (18) we obtain 663 

 𝑅𝑀𝑇(𝑡) = 𝑁𝑁 − (𝐿 + 𝑐)𝑡 (22) 

And therefore 𝜌(𝑡) = (𝐿 + 𝑐)𝑡/𝑁. 664 



Let 𝑃(𝑡) denote the probability that not surviving mutant has been produced until time 665 𝑡. We have 𝑃(𝑡)̇ =  −𝐿𝜇𝜌(𝑡)𝑃(𝑡) = −𝐿𝜇(𝑐 + 𝐿)𝑡𝑃(𝑡)/𝑁. Let 𝑣 = 𝑐/𝑁 and 𝑙 = 𝐿/𝑁. 666 

We can solve this differential equation to obtain: 667 

 𝑃(𝑡) =  exp (− 𝜇𝑁2 𝑙(𝑣 + 𝑙)𝑡2) (23) 

The probability that no surviving mutant has been produced until herd immunity, which 668 

is reached at time 𝑇𝐻, is: 669 

 𝑃(𝑇𝐻) =  exp (− 𝜇𝑁2 ( 𝑙𝑣 + 𝑙) (1 − 1𝑅0)2) (24) 

 670 

2.3 Rate of generating surviving mutants with partial immune escape 671 

We can also study the case where the infectivity of the mutants is reduced by a factor 672 𝑞 𝜖 [0,1] when infecting recovered or vaccinated people. For 𝑞 = 1 we obtain full 673 

escape, while 𝑞 = 0 means that the mutant does not escape at all.  674 

A similar derivation to the one above leads to the following result. The probability that 675 

no surviving mutant with partial escape 𝑞 has appeared until herd immunity is given by: 676 

 

𝑃(𝑇𝐻) =  exp (− 𝜇𝑁2 ( 𝑙𝑣 + 𝑙)𝐴) 

                      with                𝐴 =  2𝑞1−𝑞 (− 𝑅0−1𝑅0 + 11−𝑞 log 𝑅01+𝑞(𝑅0−1)) 

 

(25) 

For 𝑞 = 1 we obtain 𝐴 = (1 − (1/𝑅0))2  leading to Eq. (23) above. 677 

 678 



Relationship between the product formula and the exponential formula 679 

   680 

Each day, 𝐿 new WT infections occur. Each new infection has a probability of 𝜇 to be the 681 

MT strain. The survival probability of the mutant is approximately 1 − 1/𝑅𝑚(𝑡) where 682 𝑅𝑚(𝑡) is the basic reproductive ratio of the MT appearing at time 𝑡.  683 

Hence, the probability that none of the 𝐿 new WT infections in a day will generate a 684 

surviving mutant is (1 − 𝜇(1 − 1/𝑅𝑚(𝑡)))𝐿 . Then, we can write the probability 𝑃 that no 685 

surviving mutant will be produced between time 𝑡 = 0 and the time 𝑇𝐻 when herd 686 

immunity is reached as the product  687 

 𝑃 = ∏[1 − 𝜇 (1 − 1𝑅𝑀𝑇(𝜏))]𝐿𝑇𝐻
𝜏=0  (26) 

We have  𝑇𝐻 = [𝑁/(𝑐 + 𝐿)](1 − 1/𝑅0) and 𝑅𝑀𝑇(𝑡) = 𝑁/[𝑁 − (𝑐 + 𝐿)𝑡]. 688 

Since 𝜌(𝑡) = 1 − 1/𝑅𝑚(𝑡) = (𝑐 + 𝐿)𝑡/𝑁 we can write: 689 

𝑃 =  ∏(1 − 𝜇(𝑐 + 𝐿)𝜏𝑁 )𝐿𝑇𝐻
𝜏=0  690 

Let us use the abbreviation 𝑢 =  𝜇(𝑐 + 𝐿)/𝑁. Then 691 

𝑃 =  ∏(1 − 𝑢𝜏)𝐿𝑇𝐻
𝜏=0  692 

=  exp [𝑙𝑜𝑔 ∏(1 − 𝑢𝜏)𝐿𝑇𝐻
𝜏=0 ] 693 

=  exp [𝐿 𝑙𝑜𝑔 ∏(1 − 𝑢𝜏)𝑇𝐻
𝜏=0 ] 694 

 = exp [𝐿 ∑ log (1 − 𝑢𝜏)𝑇𝐻
𝜏=0 ] (27) 

Note that Eq. (26) is exactly equivalent to Eq. (23). Assuming 𝑢𝑇𝐻 ≪ 1 which is the same 695 

as 𝜇(1 − (1/𝑅0)) ≪ 1 we obtain   696 



𝑃 = exp [−𝑢𝐿 ∑ 𝜏𝑇𝐻
𝜏=0 ] 697 

= exp [− 𝑢𝐿𝑇𝐻(𝑇𝐻 + 1)2 ] 698 

Assuming 𝑇𝐻 ≫ 1 which is 𝑁 (1 − 1𝑅0) ≫ 𝑐 + 𝐿, we obtain 699 

𝑃 = exp [− 𝑢𝐿𝑇𝐻22 ] 700 

= exp [− (𝜇(𝑐 + 𝐿)/𝑁)𝐿𝑇𝐻²2 ] 701 

Finally, inserting 𝑇𝐻 = (𝑁/(𝑐 + 𝐿))(1 − 1/𝑅0) we get: 702 

 𝑃(𝑇𝐻) =  exp (− 𝜇𝑁2 ( 𝑙𝑣 + 𝑙) (1 − 1𝑅0)2) (28) 

Which is equivalent to Eq.(24) (see above).  703 

 704 

Dynamics after appearance of the MT strain 705 

1. No Vaccination 706 

After the MT strain has taken over, social distancing measures will continue maintaining 707 

the number of daily infections at 𝐿, which implies that  (𝑦1 + 𝑦2) = 𝐿/𝑎 (see Figure S2). 708 

In practice, the WT strain rapidly goes extinct upon emergence of the MT strain; so we 709 

can consider 𝑦2 = 𝐿/𝑎 .The mutant strain can infect susceptible individuals 𝑥, and 710 

recovered individuals, 𝑧1. The mutant strain infects those individuals with probabilities 711 

proportional to their frequencies at the time 𝑡∗of mutant takeover. Hence, for times 𝑡 >712  𝑡∗ we have: 713 

 

𝑥(𝑡) = 𝑥(𝑡∗) − 𝑥(𝑡∗)𝑧1(𝑡∗) + 𝑥(𝑡∗) 𝐿(𝑡∗ − 𝑡) 

𝑧1(𝑡) =  𝑧1(𝑡∗) − 𝑧1(𝑡∗)𝑧1(𝑡∗) + 𝑥(𝑡∗) 𝐿(𝑡∗ − 𝑡) 

(29) 



After mutant takeover, the social distancing measures need to be readjusted to the 714 

mutant strain. Since more individuals are susceptible to it, 𝑠(𝑡) has to decrease (see 715 

Figure S2F): 716 

 

𝑠(𝑡) =  𝑎𝑁𝛽(𝑥(𝑡) + 𝑞𝑧1(𝑡)) 

 

(30) 

Which implies that  𝑅𝑀𝑇 = 1.  717 

 718 

2. With vaccination 719 

As for the case without vaccination, if the mutant strain survives, it will quickly replace 720 

the wild-type strain such that 𝑦2 = 𝐿/𝑎 (see Figure 3C). The number of susceptible 721 

individuals 𝑥(𝑡∗) at time of mutant takeover can be neglected for large enough 722 

vaccination rates. The number of vaccinated individuals, susceptible to the mutant strain 723 𝑤1 will hence decrease linearly with the number of tolerated cases per day 𝐿, and the 724 

number of vaccinated individuals, recovered from the mutant strain 𝑤2 will increase 725 

complementarily linearly with 𝐿. If the mutant takes over at time 𝑡∗, we have for all times 726 𝑡 >  𝑡∗:  727 

 

𝑤1(𝑡) = 𝑤1(𝑡∗) − 𝐿(𝑡∗ − 𝑡) 𝑤2(𝑡) = 𝐿(𝑡∗ − 𝑡) 

(31) 

The social activity parameter 𝑠 needs readjustment to consider the additional groups of 728 

individuals that are now susceptible to the infecting strain. We have:  729 

 𝑠(𝑡) = 𝑎𝛽  𝑥(𝑡) + 𝑞(𝑧1(𝑡) + 𝑤1(𝑡)𝑥(𝑡) + 𝑞(𝑧1(𝑡) + 𝑤1(𝑡)) − 𝑤2(𝑡) (32) 

Which ensures that  𝑅𝑀𝑇 = 1. Here the parameter q in [0,1] denotes the extent of escape. 730 

 731 



Estimating the evolutionary potential of the virus 732 

If µ is the mutation rate as described above and 𝐿(𝑡) is the time series giving the 733 

number of new infections on day 𝑡, then the probability that no mutant has been 734 

produced between time 0 and time 𝑇𝐻 is given by: 735 

 𝑃(𝑇𝐻) =  ∏[1 − 𝜇]𝐿(𝜏)𝑇𝐻
𝜏=0  (33) 

This probability will overestimate the evolutionary potential of the virus to escape from 736 

vaccination because many mutants do not survive the initial random drift. The probability 737 

that no surviving mutant has been produced between time 0 and time 𝑇𝐻 can be written 738 

as: 739 

 𝑃(𝑇𝐻) =  ∏[1 − 𝜇𝜌(𝜏)]𝐿(𝜏)𝑇𝐻
𝜏=0  (34) 

Here 𝜌(𝑡) is the survival probability of an escape mutant produced at time 𝑡. This 740 

probability depends on the basic reproductive ratio of the mutant on the day it is being 741 

produced (and the next few days until random drift is negligible). Approximately we can 742 

write: 743 

 𝜌(𝑡) = min{0,1 − 1𝑅𝑀(𝑡)} (35) 

For the potential of the virus to generate mutants (irrespective of whether they survive) 744 

what matters most is the total number of infections, ∑ 𝐿(𝜏)𝜏 . But for the potential of the 745 

virus to generate surviving mutants one must also consider the time periods when 746 

lockdown is relaxed such that 𝑅𝑀𝑇 is above 1. 747 

 748 

GILLESPIE PSEUDOCODE 749 

 750 

Time = 0 751 



Day = 0 752 

Initialize population 753 

Initialize reaction rates 754 

while (𝑦1 + 𝑦2𝐴 + 𝑦2𝐵 > 0): 755 

if day passed: 756 

 day = day + 1 757 

 if number infections in previous day > L: 758 

  s = s – random number, uniform 759 

distribution [0, 0.1] 760 

 if number infections in previous day < L: 761 

s = s + random number, uniform 762 

distribution [0, 0.1] 763 

r1 = random number from uniform distribution 764 

between 0 and 1 765 

 r2 = random number from uniform distribution 766 

between 0 and 1 767 

 alpha = sum(reaction_rates) 768 

 tau = 
1𝑎𝑙𝑝ℎ𝑎 ln ( 1𝑟1) 769 

 time = time + tau 770 

 choose reaction, probability proportional to 771 

their rates and r2*alpha 772 

 update population according to chosen reaction 773 

 update reaction rates 774 

 record population 775 



 776 

 777 

TABLE OF REACTIONS AND THEIR RATES 778 

 779 

Infection 

WT Infected Infects 

Susceptible 
𝑦1 + 1; 𝑥 − 1 𝛽1𝑠𝑥𝑦1 

VR (unvaccinated) Infects 

Susceptible 
𝑦2𝐴 + 1; 𝑥 − 1 𝛽2𝑠𝑥𝑦2𝐴 

VR (unvaccinated) Infects 

Recovered from WT 
𝑦2𝐴 + 1; 𝑧1 − 1 𝑞𝛽2𝑠𝑧1𝑦2𝐴 

VR (unvaccinated) Infects 

Vaccinated 
𝑦2𝐵 + 1; 𝑤1 − 1 𝑞𝛽2𝑠𝑤1𝑦2𝐴 

VR (vaccinated) Infects 

Susceptible 
𝑦2𝐴 + 1; 𝑥 − 1 𝛽2𝑠𝑥𝑦2𝐵 

VR (vaccinated) Infects 

Recovered from WT 
𝑦2𝐴 + 1; 𝑧1 − 1 𝑞𝛽2𝑧1𝑠𝑦2𝐵 

VR (vaccinated) Infects 

Vaccinated 
𝑦2𝐵 + 1; 𝑤1 − 1 𝑞𝛽2𝑤1𝑠𝑦2𝐵 

Mutation 



WT Mutates into VR 𝑥 − 1; 𝑦2𝐴 + 1 𝛽1𝑠𝑥𝑦1𝜇 

Recovery 

WT Infected Recovers 𝑦1 − 1; 𝑧1 + 1 𝑎𝑦1 

VR unvaccinated Recovers 𝑦2𝐴 − 1; 𝑧2 + 1 𝑎𝑦2𝐴 

VR vaccinated Recovers 𝑦2𝐵 − 1; 𝑤2 + 1 𝑎𝑦2𝐵 

Death 

WT Infected Dies 𝑦1 − 1 𝑑𝑦1 

VR unvaccinated Dies 𝑦2𝐴 − 1 𝑑𝑦2𝐴 

VR vaccinated Dies 𝑦2𝐵 − 1 𝑑𝑦2𝐵 

Vaccination 

Susceptible Gets 

Vaccinated 
𝑥 − 1; 𝑤1 + 1 

𝑐𝑥(𝑥 + 𝑧1 + 𝑧2) 

WT Recovered Gets 

Vaccinated 
𝑧1 − 1; 𝑤1 + 1 

𝑐𝑧1(𝑥 + 𝑧1 + 𝑧2) 

WT and VR Recovered Gets 

Vaccinated 
𝑧2 − 1; 𝑤2 + 1 

𝑐𝑧2(𝑥 + 𝑧1 + 𝑧2) 

 780 

 781 



 782 

SUPPLEMENTARY FIGURES 783 

 784 

Figure S1: Scaling simulation results to larger population sizes. Results of simulations for a given population 785 

size can be scaled to larger population size according to 1 − (1 − 𝑝)𝑚, where p is the proportion of runs 786 

where the MT strain took over and m the ratio of the scaled population size to the simulated population 787 

size. (A) (B) Each square of the color map is colored according to the proportion of runs (out of 100) where 788 

the MT strain took over for 𝑁 =  105. (C) (D) Each square of the color map is colored according to 789 



1 − (1 − 𝑝)10, where p is the proportion of runs where the MT strain took over in simulations presented in 790 

(A) and (B). (E) (F) Each square of the color map is colored according to the proportion of runs (out of 100) 791 

where the MT strain took over for 𝑁 =  106. We observe a good agreement between the scaled results and 792 

the simulated results.  793 

 794 

Figure S2: Evolution of resistance in absence of vaccination. (A) Before MT takeover, the decline in 795 

susceptible individuals (𝑥) along time can be approximated by a linear function with slope equal to 𝐿. Since 796 

we assume no vaccination, the number of individuals recovered from WT grows linearly with slope equal 797 

to 𝐿. After MT takeover, the number of individuals recovered from MT grows linearly slope equal to 𝐿, while 798 

the number of susceptible individuals (𝑥) and individuals recovered from WT (𝑧1) declines linearly with a 799 

slope proportional to their frequencies at the moment of MT takeover. The equations of the lines (a), (b), 800 



(c), (d) and (e) are given by, with 𝑡∗ the time of takeover by the mutant strain: (a) 𝑧1(𝑡) = 𝑧1(0) + 𝐿𝑡,  𝑡 <801 𝑡∗ (b) 𝑧1(𝑡) =  (𝑧1(𝑡∗) − 𝑧1(𝑡∗)/(𝑧1(𝑡∗) + 𝑥(𝑡∗)))𝐿(𝑡∗ − 𝑡), 𝑡 > 𝑡∗ (c) 𝑥(𝑡) = 𝑥(0) − 𝐿𝑡, 𝑡 < 𝑡∗ (d) 𝑥(𝑡) =802  𝑥(𝑡∗) − (𝑥(𝑡∗)/(𝑧1(𝑡∗) + 𝑥(𝑡∗)))𝐿(𝑡∗ − 𝑡), 𝑡 > 𝑡∗ (e) 𝑧2(𝑡) = 𝐿(𝑡∗ − 𝑡),  𝑡 > 𝑡∗ . (B) The reproduction 803 

coefficient of the wild-type 𝑅𝑊𝑇 is maintained at 1 by the dynamic lockdown. After mutant takeover, 𝑅𝑊𝑇 804 

is less than 1, since the lockdown is now adjusted to the population susceptible to the MT strain. (C) The 805 

number of active cases of WT (𝑦1) and after mutant takeover, MT (𝑦1) is constant at 𝐿/𝑎 until herd immunity 806 

to the MT strain is reached. (D) Before MT takeover, the reproductive rate of the MT grows as (b) 𝑅𝑀𝑇 =807 𝛽2(𝑥(𝑡) + 𝑧1(𝑡))/𝑎. After takeover, 𝑅𝑀𝑇 is maintained around 1. (E) In this run, there was no vaccination 808 

(𝑐 = 0), hence 𝑤1 = 𝑤2 = 0 for each time t. (F) Before MT takeover, the dynamic lockdown is adjusted to 809 

the WT. As the number of individuals immune to WT grows, social activity increases. When the MT emerges, 810 

lockdown measures are reinstated. Subsequently, social activity increases as the population immune to the 811 

MT grows. The equations of the lines are given by (g) 𝑠(𝑡) =  𝑎/(𝛽1𝑥(𝑡)),  𝑡 < 𝑡∗ (h) 𝑠(𝑡) =  𝑎/(𝛽2(𝑥(𝑡) +812 𝑞𝑧1(𝑡))),  𝑡 > 𝑡∗.  813 



 814 

Figure S3: Analytical approximation of the simulation results. The probability of MT takeover before herd 815 

immunity is reached can be calculated according to Eq. 5. We observe a good agreement between our 816 

calculations and the results of the stochastic simulations. (A) (C) Each square of the color map is colored 817 

according to the probability of take over calculated with Eq. (5). (B) (D) Each square of the color map is 818 

colored according to the proportion of runs (out of 1000) where the MT strain took over. The population 819 

size was 𝑁 =  106. 820 
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 822 

 823 



 824 

Figure S4: Counterintuitive effect of the vaccination rate on the probability of resistance. Increasing the 825 

population size 𝑁, the mutation rate µ and the infection rate 𝑙 all increase the probability of generating a 826 

mutant before herd immunity is reached (B and C). We define 𝑣 = 𝑐/𝑁 and 𝑙 = 𝐿/𝑁. Increasing the 827 

vaccination rate 𝑣 leads to a counterintuitive effect: the probability for a fixed time increases with 𝑣 since 828 

it leads to faster relaxation of social distancing measures, but it also leads to faster achievement of herd 829 

immunity (A). Hence the probability of resistance until herd immunity decreases with 𝑣 (F). Parameter 830 

values: 𝜇 = 10−7 (A): 𝑁 = 108, 𝑙 = 200 ∙ 10−6; (B): 𝑙 = 200 ∙ 10−6, 𝑣 = 1000 ∙ 10−6, (C)(E): 𝑁 = 108, 𝑣 =831 1000 ∙ 10−6; (D)(F): 𝑁 = 108,  𝑙 = 200 ∙ 10−6. 832 


