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The COVID-19 pandemic has had a devastating effect on 
global health and economy. Since the identification of the 
first SARS-CoV-2 case in December 2019, 262.18 million 

infections have been recorded, and at least 5.22 million people 
have died as a result of the infection (as of December 2021)1. 
The increased mortality and complication rates of SARS-CoV-2  
(ref. 2) compared with the mild diseases caused by seasonal coro-
naviruses (such as HCoV-229E3) have led to unparalleled govern-
mental and individual-level responses to reduce the number of 
SARS-CoV-2 infections.

Since the beginning of the pandemic, it has become clear that 
many of the non-pharmaceutical interventions, such as lock-
downs, are economically and socially unsustainable in the long 
run. Periodical loosening and tightening of social distancing mea-
sures, which present an attempt at balancing economical and sani-
tary considerations, have led to waves of increases and decreases 
in the number of SARS-CoV-2 infections per day1 (Fig. 1a). Much 
hope has therefore been placed on vaccine development, which 
would allow the immunization of a large fraction of the population, 
thereby substantially reducing mortality and potentially achieving 
herd immunity, which could in principle eradicate SARS-CoV-2 
altogether. In many countries and at certain points of the pan-
demic, the reproductive ratio of SARS-CoV-2 has been maintained 
at roughly 1 (Fig. 1d), which means that the number of cases per 
day is on average constant.

Mass vaccination campaigns have been launched in many coun-
tries (Fig. 1b), including Israel, Germany, the United Kingdom (all 
with more than 60% of the population fully vaccinated) and the 
United States (with more than 50% of the population fully vac-
cinated). Currently, four companies are producing vaccines that 
have been approved for emergency use either by the US Food and 
Drug Administration4 or by the European Medicines Agency5: 
Pfizer-BioNTech, Moderna, AstraZeneca and Johnson & Johnson/
Janssen Pharmaceuticals. Several other vaccines are also used 
outside of the European Union and the United States: Gamaleya 

(Sputnik V), Sinopharm Beijing, Sinovac, Sinopharm-Wuhan and 
Bharat Biotech (Covaxin)6.

However, the identification of new SARS-CoV-2 variants has 
cast a shadow over the expectation of a swift end of the pan-
demic7,8. The Alpha variant (B.1.1.7) and Beta variant (501.V2) 
have been shown to be neutralized to a lesser extent by convales-
cent and vaccinee sera9, although experiments on non-human pri-
mates have shown that this decrease might not necessarily cause 
a decrease in immunity10. Structural studies have mapped and 
predicted mutations that lead to antibody escape11–13. Currently, 
there is a discussion of whether the Omicron variant (B.1.1.529) is 
already such an escape mutant14. As vaccination around the world 
progresses, the continued evolution of SARS-CoV-2 could even-
tually give rise to a fully vaccine-resistant variant. Such a vari-
ant could quickly spread due to its ability to infect vaccinated and 
recovered people in addition to fully susceptible individuals. The 
question of emergence of vaccine resistance has already been the 
subject of many research papers15–18.

What policy would minimize the chance of emergence of 
vaccine-resistant strains? On one hand, policymakers can vary 
the extent of social distancing imposed and the regimes of vaccine 
administration. The critical biological parameters, on the other 
hand, include the infectivity of the various strains and the rate of 
mutation of the virus that may ultimately lead to the emergence of 
a resistant strain. Here we introduce a mathematical approach that 
examines various combinations of these parameters. Our frame-
work helps design optimal policies that would minimize the chance 
of emergence of resistant strains or maximize the time until their 
occurrence.

Our paper is an addition to the extensive body of work that has 
been performed in the past year to understand the spread and evo-
lution of SARS-CoV-2 (refs. 19–25). SARS-CoV-2 research has drawn 
on a very long history of epidemiological research26–38. Due to the 
global and urgent nature of the pandemic, many studies that could 
inform policymaking have been conducted25,39–48.
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The probability of emergence of vaccine resistance has been 
studied in particular in the context of dose-sparing strategies17,18,49,50 
and spatial inequalities in vaccine distribution16,51. Detailed, 
data-driven models for the future evolution of SARS-CoV-2, 
including the evolution of vaccine resistance, also exist in the lit-
erature42,52–57. However, due to their complexity, these models can 
be explored only by numerical simulation. In this paper, we present 
a simplified susceptible–infected–removed (SIR)-like model that 
includes dynamically adjusted social distancing measures. This fea-
ture makes the number of cases per day roughly constant on aver-
age, which allows us to derive simple formulas for the probability of 
emergence of vaccine resistance given the number of cases per day 
and the rate of vaccination.

To understand the evolutionary potential of the virus in response 
to a vaccination programme, we study a stochastic model for infec-
tion dynamics and virus evolution in the presence of varying degrees 
of social distancing and different vaccination rates. We distinguish 
between a wild-type virus (WT) and a vaccine-resistant mutant 
virus (MT). The vaccine is effective against the WT strain, while the 
MT strain evades immunity induced by the vaccine either partially 
or completely. We build on the mathematical framework of the SIR 
model from epidemiology35,58, albeit with considerable adjustments 

necessitated by the specific problem at hand. Our model keeps track 
of people who are susceptible, infected by WT or MT, recovered 
from WT or MT, and vaccinated or unvaccinated (Fig. 2).

Crucially, we assume that there is a dynamic social distancing 
guided by the number of new infections per day. As that number 
exceeds a threshold, governmental rules and individual responses 
reduce social activity. If the number of new infections falls below 
this threshold, social distancing is somewhat relaxed, and some peo-
ple stop following the rules, thereby allowing higher transmission of 
the virus. We simulate these dynamics as a stochastic process. In 
consequence, we obtain fluctuating numbers of new infections per 
day. We introduce mass vaccination at alternative fixed rates. We 
then compute the probability and timing of the wave of infection 
caused by the spontaneous emergence of a vaccine-resistant virus.

In our approach, the mutation rate μ denotes the probability 
that a WT-infected individual will infect a susceptible individual 
with the MT strain. The exact value of this probability is currently 
unknown and is complex to obtain empirically. We therefore con-
sider a wide range of mutation rates/probabilities for the simula-
tions and calculations reported in this paper. From our model, we 
also derive an upper bound for the mutation rate using the fact that 
no wave of a vaccine-resistant variant has occurred up to now. Note 
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Fig. 1 | Vaccination, infection and basic reproductive ratio of SArS-CoV-2 in Brazil, France, Germany, Israel, the united Kingdom and the united States. 
a, Large-scale vaccination programmes commenced in December 2020. At the peak, Israel vaccinated more than 20,000 people per million (2%) per 
day. The vaccination rate decreased in April 2021 after most eligible individuals had been vaccinated. b, In an attempt to balance economic and sanitary 
considerations, these six countries have gone through several cycles of loosening and tightening government-imposed restrictions, resulting in periodical 
increases and decreases in the number of new infections per day. The Alpha variant, identified in November 2020, is most probably responsible for the 
increase in the number of infections in the United Kingdom and Israel at that time. The fourth wave in Israel (starting in July 2021) has been attributed to 
a combination of the emergence of the Delta variant and waning of immunity after vaccination. c, Vaccination in most countries follows a logistic-shaped 
curve. At first, priority groups are vaccinated. Then, most of the population is vaccinated in a short time frame (exponential growth). Lastly, the total 
number of vaccinated individuals plateaus due to vaccine hesitancy and ineligibility of the remaining non-vaccinated individuals. d, The reproductive ratio of 
SARS-CoV-2 infections has hovered around 1 in the six considered countries due to the imposition of non-pharmaceutical interventions to curb the infection 
rates. Hence, the number of infections per day has fluctuated around an average for the duration of the pandemic.
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that this rate can be very different from the per-base mutation rate 
of SARS-CoV-2, which is about 10–6.

Our model keeps track of eight different variable states: individ-
uals who are susceptible (x), infected with WT (y1), non-vaccinated 
and infected with MT (y2A), vaccinated and infected with MT (y2B), 
recovered from WT (z1), recovered from MT (z2), vaccinated but 
susceptible to MT (w1), and vaccinated and recovered from MT (w2) 
(Fig. 2).

The WT strain can infect susceptible individuals (x), convert-
ing them to individuals infected with WT (y1) at rate β1. A mutation 
can occur with probability μ. In this case, a WT-infected individual 
infects a susceptible individual (x) with a mutated version of the 
virus (with a mutation that has taken place in the infecting individ-
ual), thus converting the susceptible individual to an MT-infected 
individual (y2A). WT-infected individuals either recover with rate a 
and become immune to future WT infection (z1) or die at rate d. 
Susceptible individuals (x) and individuals recovered from WT (z1) 
can become vaccinated individuals (w1). The parameter c denotes the 
number of individuals vaccinated per day. Hence, the rates of vacci-
nation of x, z1 and z2 are respectively cx/(x + z1 + z2), cz1/(x + z1 + z2) 
and cz2/(x + z1 + z2). For simplicity, we assume single-dose vacci-
nation. For a double-dose vaccine, our model would describe the 
application of the second dose ignoring partial immunity caused by 
the first dose. The extension of our model to a full two-dose vaccina-
tion protocol is straightforward. Although several countries display 
a logistic-shaped vaccine distribution curve, we show that the above 
linear assumption does not significantly affect the probability of 
emergence of vaccine resistance during the initial phase of the vac-
cination campaign (Supplementary Fig. 1 and Extended Data Fig. 1).

At rate β2, the MT strain infects susceptible individuals (x), 
WT-recovered individuals (z1) and vaccinated individuals who are 
not immune to MT (w1). MT-infected individuals either recover 
with rate a and become immune to future MT and WT infection 
(z2) or die at same death rate d as with the WT strain. We assume no 
difference in lethality between the two strains. While we consider 
death due to infection, the focus of this paper is not to analyse the 
number of deaths or public health metrics such as ICU usage or 
available respirators. We assume one-way cross-immunity induced 
by the viral strains: the MT strain can infect individuals who have 
recovered from WT or who have been vaccinated against WT, but 
the WT strain cannot infect individuals who have recovered from 
MT. This assumption is reasonable because MT evolves in the pres-
ence of WT, but not vice versa. We note that our MT strain escapes 
both the immunity induced by natural infection with WT and the 
immunity induced by vaccination against WT. We assume that the 
partial immunity to the vaccine-resistant variant induced by infec-
tion with WT is equal to that induced by vaccination. A recent study 
suggests that individuals who are both recovered and vaccinated 
benefit from higher immunity than only vaccinated individuals59. 
In Supplementary Figs. 2 and 3, we study this effect.

We need to distinguish between MT-infected individuals who 
are and are not vaccinated: y2B and y2A, respectively. Upon recov-
ery, the former will not be vaccinated (again), while the latter will  
be vaccinated.

We also study partial immunity to the MT strain, which can be 
acquired by recovery from WT infection or by vaccination. For par-
tial immunity, the corresponding infection rates are multiplied by a 
parameter q, which is between 0 and 1. If q = 1, then WT infection 
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Fig. 2 | Infection dynamics, vaccination and resistance. Susceptible individuals (x) can be infected by WT or MT virus. Infected people (y1, y2A and y2B) 
die (at rate d) or recover (at rate a). People recovered from WT or vaccinated against WT can be infected by MT. People recovered from MT cannot be 
infected by WT. In our simplest model, we assume equal infectivity, recovery and death rates for both WT and MT. Vaccination occurs at rate c per day 
for all unvaccinated individuals (excluding those that are currently in active infection). Mutation happens (at rate μ) when exposure to a WT-infected 
individual (y1) results in the generation of an MT-infected individual. Note that when exposure to a WT-infected individual (y1) results in the generation of 
a WT-infected individual, the rate of infection should be multiplied by 1 − μ to conserve the sum of mutation probabilities at 1. However, since μ is small, we 
neglect the term 1 − μ. The rates of these events are indicated near the arrows and are used in the Gillespie algorithm implementing stochastic dynamics.

NATurE HuMAN BEHAVIOur | VOL 6 | FEBRUARy 2022 | 193–206 | www.nature.com/nathumbehav 195

http://www.nature.com/nathumbehav


Articles NaTUrE HUmaN BEHaVIOUr

or vaccination confers no immunity to MT at all; MT escapes com-
pletely. For 0 < q < 1, MT is a partial escape mutant. For q = 0, MT 
does not escape at all.

Social distancing measures are implemented by multiplying the 
infectivity coefficients of each strain by a social activity parameter 
s, which ranges in [0, 1]. Unconstrained social interaction means 
s = 1, while s = 0 would be complete lockdown. The population tol-
erates a certain number of new infections, L, per day. Each day, 
if the number of new infections exceeds L, then s is decreased by 
a random, uniformly distributed number between 0 and s0. If the 
number of new infections is less than L, then s is increased by a 
random, uniformly distributed number between 0 and s0. In any 
case, s cannot decrease below 0.05 or increase above 1. In our sim-
ulations, we adjust the parameter s every day. We then obtain a 
near-constant number of cases per day. In Supplementary Fig. 4 
and Extended Data Fig. 2, we explore less frequent adjustments of 
the parameter (such as every week) and conclude that our results 
are robust. Our social activity parameter s can be interpreted to 
include other factors that could affect transmissibility, such as sea-
sonality. In Supplementary Fig. 5 and Extended Data Fig. 2, we 
explore the effect of seasonality.

As an example, the rate of infection of the recovered-from-WT 
individuals z1 by the MT-strain-infected individuals y2 is multiplied 
both by the social distancing coefficient s and the partial immunity 
coefficient q—hence, this rate is given by qβ2sw1y2.

All model parameters are summarized in Table 1.
A Gillespie algorithm is commonly used to simulate stochastic 

systems with high variation in waiting times between consecutive 
events60–63. In our model, the population is represented as a vector of 
length eight, corresponding to the eight categories. The rates of all 
possible events (infection, recovery, death, mutation and vaccina-
tion) are calculated. The time of the next event in the model is drawn 
from an exponential distribution with a parameter dependent on 
the sum of all event rates, and an event is chosen with a probability 
proportional to its rate. The population is updated according to the 
event that occurred. The simulation is stopped when there are no 
more infected individuals in the population.

To achieve feasible computation time and resources, we simulated 
populations of sizes up to N = 106. The results of those simulations 
can be scaled to larger population sizes by considering a popula-
tion of, for example, N = 107 as m = 10 ‘batches’ of 106 individuals, 
and computing the results for N = 107 as 1 − (1 − p)m, where p is the 
proportion of runs where the MT strain took over. Extended Data  
Fig. 3 shows the strong agreement between the simulated results and 
the results scaled from simulations with smaller population sizes.

For all our simulations, we have endeavoured to use real-world 
data for all model parameters. In particular, infection and vaccina-
tion data have been obtained from the database Our World in Data1 
(OWID) and downloaded on 29 November 2021.

In our simulation, since the number of new infections each day 
is constant, the number of susceptible individuals decreases lin-
early with slope −L/a. Vaccination of both susceptible and recov-
ered individuals proceeds at rate c. The social activity parameter, s, 
increases as more and more individuals become immunized either 
by infection or by vaccination. The WT reproductive ratio, RWT, is 
maintained at 1 as long as MT has not appeared. The MT reproduc-
tive ratio, RMT, increases with the social activity parameter s until 
the MT strain takes over. After MT takeover, RMT is buffered at 1 by 
the dynamic social distancing (Extended Data Fig. 4 and Methods).

We performed 1,000 runs of the stochastic simulation for each 
combination of parameters reflecting realistic values of the two 
model parameters determined by governmental policy: L and c. 
Each square of the colour maps shown in Fig. 3 reflects the average 
value of these 1,000 runs, which were performed for a population of 
N = 106 and then scaled to N = 107 and N = 108. At each combination 
of L and c, the colour maps denote the predicted probability of an 

MT takeover. We perform computations using q = 1 and q = 0.4 for 
complete and partial immune evasion by the mutant.

Allowing a large amount of infection cases and slow vaccination 
results in almost certain takeover of the MT strain. In contrast, very 
fast vaccination coupled with a low number of tolerated new infec-
tions per day can prevent the emergence of MT. Partial immune 
evasion (q = 0.4) of the mutant slightly reduces the probability of 
its takeover. Note that the shape of the parameter space where we 
observe takeover is similar for q = 1 and q = 0.4. Although estimat-
ing COVID-19 mortality is not the focus of this paper, we have also 
recorded the number of deaths in the first 365 days of the simula-
tion (Supplementary Fig. 6).

results
Reproductive ratio of the mutant and probability of takeover. 
In Fig. 4, we show detailed data from six countries together with 
the estimated reproductive ratio, RMT, of a vaccine-resistant mutant 
and the probability of generating a wave of resistant virus. Data for 
the number of susceptible individuals x(t), vaccinated individu-
als w(t), recovered individuals z(t) and newly infected individuals 
L(t), as well as an estimate of RWT, can be obtained from OWID1. 

Table 1 | Summary of the model’s parameters and their 
biologically significant ranges

Parameter Symbol Biologically 
significant range

references/notes

Basic 
reproductive ratio 
of WT

RWT [1.8, 3.6] 68

Basic 
reproductive ratio 
of MT

RMT [1.8, 3.6]
[3.6, 8] (more 
infectious 
variants)

68,69

Recovery rate a [0.08, 0.38] 70

Social distancing 
parameter

s [0.05, 1] –

Probability of 
death upon 
infection

d [0.005, 0.02] 1

Population size N >106 –

Partial immunity 
coefficient

q [0, 1] –

Probability 
of resistance 
mutation

μ <10−6 The probability is the 
composite probability 
of mutation from a 
vaccine-sensitive 
phenotype to a 
vaccine-resistant 
phenotype. See 
‘Estimating the 
mutation probability, µ’ 
for the estimate.

Number of 
vaccinated

c [0, 10,000] 1

Number of 
infected

L [10, 1,000] 1

The mutation rate refers to the probability that someone infected with the WT strain gives rise to 
someone infected with a vaccine-resistant strain. Hence, its value is different from the SARS-CoV-2 
molecular mutation rate that occurs during one replication cycle. The number of vaccinated c and 
the number of infected L are given in per day per million. The population size is given in people 
count. The recovery rate is given per day. All other parameters are dimensionless.
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The reproductive ratio RMT of the escape mutant can be calculated 
according to:

RMT (t) = RWT (t) [x (t) + qw (t) + qz (t)] /x(t) (1)

The probability of not producing an escape mutant in a given 
day is (1 − μ)L(t). The probability of not producing a surviving 
escape mutant is [1 − ρ(t)μ]L(t), where ρ(t) is the survival probabil-
ity of a mutant generated on that day. If RMT(t) < 1, then ρ(t) = 0. 
If RMT(t) > 1, we assume that ρ(t) = 1 − 1/RMT(t). The probability 
that no surviving mutant is generated between time 0 and time t is  
given by

P(t) =
t∏

τ=0
[1− μρ(τ)]L(τ) (2)

In Fig. 4, we show the reproductive ratio of the mutant RMT(t) 
and the probability P(t) of generating a surviving escape mutant as 
functions of time. Prior to vaccination, the reproductive ratio of a 
potential escape mutant tracks closely that of WT. As people become 
vaccinated in large numbers, RMT starts to increase significantly 
above RWT. Nevertheless, it is possible to keep RMT below one by 
maintaining some measures of social distancing (as was the case for 
Israel and the United Kingdom). Overall, the probability that Israel 
generated a vaccine escape mutant (before December 2021) is on 

the order of 1% (assuming μ = 10−7). For the same mutation rate, the 
corresponding probability for the United States is 75%. The United 
States has a much larger total population size but also allowed many 
more infections per million people. The corresponding probabili-
ties for Brazil, France, Germany and the United Kingdom are 26%, 
19%, 15% and 36% (Table 2).

Estimating the mutation probability, µ. We suggest a method to 
estimate an upper bound of the mutation rate μ from WT to MT 
on the basis of the observation that despite a large number of infec-
tions since the beginning of the pandemic and including recent vac-
cination campaigns, no immune-evasive mutant has yet taken over. 
Our method for calculating an upper bound of the mutation rate 
is potentially applicable for estimating any mutation rate between 
two phenotypes in an evolving population. The upper bound is 
computed at any given time point and can be updated and become 
tighter if an evasive strain still does not appear in the future.

Let us assume that the real value of the mutation probability 
equals μ*. For each country, we have an estimate of the reproduc-
tive ratio of the MT strain and the number of new infection cases 
for each day (Fig. 4) from the beginning of the pandemic until 29 
November 2021. Hence, we can calculate the probability that the 
MT strain would have emerged by 29 November 2021 assum-
ing a mutation rate μ*. If this probability is higher than 0.5, then 
the probability that the MT strain would have been observed on 
29 November 2021 is higher than not, given that the mutation rate 
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equals μ*. Since as of 29 November 2021, an MT strain has not been 
observed, our estimate of the mutation rate must be lower than μ*. 
We define the upper bound of the mutation rate on a given day as 
the value μ for which the probability that the MT strain would have 
taken over by that day is 0.5.

Hence, for each day, we compute the probability that the MT 
strain would have taken over by that day given a mutation rate using 
equation (2). We assume q = 1, which means that the MT strain is 
fully immune evasive. The resulting function for the probability of 
MT takeover (for a given time point) versus mutation rate has a sig-
moidal shape, with its midpoint corresponding to the mutation rate 

for which it is equally probable that the MT strain would have taken 
over or not (that is, our definition for the upper bound of the muta-
tion rate). In Fig. 5a, we show the probability of emergence of the 
MT strain on 30 July 2020 given data from the six considered coun-
tries. The upper bound estimate for the United States is the x-axis 
value for the point indicated by the red arrow—that is, the mid-
point of the sigmoidal function. The probability of emergence of the 
MT strain by 29 November 2021 for a given mutation rate is higher 
than it was on 30 July 2020, because many infections have occurred 
since then. The upper bound estimate for the United States has thus 
decreased—that is, shifted to the left on the x axis (see the position 
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Fig. 4 | Infection and vaccination data, reproductive ratios and probability of resistance for Brazil, France, Germany, Israel, the united Kingdom and the 
united States. The total number of new cases per day and the numbers of susceptible, recovered and vaccinated individuals were downloaded from the 
OWID database. We used the OWID estimate of RWT to calculate the potential RMT for a full escape mutant, q = 1, and a partial escape mutant, q = 0.4 (third 
column). We used equation (2) to estimate the probability that an escape mutant would have emerged by time t assuming μ = 10−7 (fourth column).
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of the red arrow in Fig. 5b). Therefore, the estimated upper bound 
on the mutation rate decreases over time as long as more infections 
do not give rise to a MT strain (Fig. 5c).

Since the probability of MT takeover (equation (2)) is strongly 
dependent on the number of infections, significant decreases in the 
estimated values correspond to periods with high infection rates in 
which a mutant nonetheless did not appear. The estimate for the 
upper bound of the mutation rate is expected to plateau as vaccina-
tion campaigns lead to a decrease in the number of infection cases. 
The estimate of 10−6 will decrease further if and when large coun-
tries such as the United States advance in the vaccination campaign 
with no MT takeover. Using the world infection and vaccination 
data, we obtain μ = 10−7 as the order of magnitude for the upper 
bound of the rate at which immune-evasive mutants appear. But 
estimates based on individual countries may be more informative, 
since the world data reflect the average over an extremely heteroge-
neous population subject to very different policies.

Can we estimate a lower bound for the mutation rate? Our 
method could be applicable for estimating the lower mutation 
rate, assuming that a vaccine-resistant strain has emerged. We 
could then compute the value of μ given the date of emergence 
and assuming that the probability of emergence on that day has 
become higher than 0.5. Let us assume that an MT strain did take 
over on 29 November 2021. Then, numerically solving equation (2)  
by plugging in data from the United States yields μ = 2.2 × 10−7 
(which is also the upper bound, assuming that the MT strain has 
not taken over).

A simple formula for the escape probability. The dynamic social 
distancing captured by the social activity parameter s(t) maintains 
the number of new infections per day fluctuating around a fixed 
value and thereby buffers RWT around 1. The number of active infec-
tions is roughly constant and is given by L/a, where a is the recovery 
rate (Extended Data Fig. 4). If vaccination is slow, c ≪ L, then the 
change in the number of susceptible individuals, x(t), and recovered 
individuals, z1(t), over time can be described by linear functions 
with slopes proportional to L (Methods and Supplementary Fig. 7a).

Alternatively, for fast vaccination, c ≫ L, the change in the num-
ber of susceptible individuals, x(t), and vaccinated individuals, 
w1(t), can be described by linear functions with slopes proportional 
to c before MT takeover, and with slopes proportional to L after MT 
takeover (Methods and Extended Data Fig. 4e). Neglecting vaccina-
tion of recovered individuals (which is a reasonable approximation 
for c ≫ L), we can write x(t) = N − Lt − ct, z(t) = Lt and w(t) = ct. The 
time when herd immunity against WT is reached is given by

TH =
N

c+ L

(
1− 1

R0

)
. (3)

During vaccination, the reproductive ratio of MT increases as 
(Methods):

RMT (t) =
N

N− (L+ c)t . (4)

The reproductive ratio of MT is initially 1 and increases to R0 
as people recover from WT infection or are vaccinated (Extended 
Data Fig. 4d). Once a mutant has been generated, the probability of 
its survival depends on the value of RMT(t). The probability that no 
surviving mutant has appeared before time t, where t ≤ TH, can be 
calculated as (Methods):

P (t) = exp
[
−

(
μN
2

)(
L
N

)(
c+ L
N

)
t2
]
. (5)

The probability that no surviving mutant has appeared before 
herd immunity is

P (TH) = exp
[
−

(
μN
2

)(
L

c+ L

)(
1− 1

R0

)2
]
. (6)

Here R0 = βN/a is the basic reproductive ratio of WT. The cor-
responding formulas for partial immune escape mutants are given 
in the Methods. Equation (6) is in good agreement with the results 
of exact stochastic simulations (Extended Data Fig. 5). In addi-
tion, we derive P(TH) for more infectious mutants, β2 > β1 (Methods 
and Supplementary Fig. 8). We also explore simulation results for 
mutants that are less infectious than WT (Supplementary Fig. 9). 
We notice that P(TH) does not (strongly) depend on the parameters 
β, a, sthres and d (sthres is the maximal step by which the social dis-
tancing factor can be adjusted after one day). To confirm that the 
values of these parameters do not significantly affect the probability 
of emergence of a vaccine-resistant variant, we have included a sen-
sitivity analysis in Supplementary Fig. 10.

In Table 3, we show how the probability and timing of resistance 
depends on the vaccination rate and the number of new infections 
per day. We first consider a large country of N = 108 inhabitants and 
a mutation probability of μ = 10−7. If 10,000 new infections occur 
per day and one million people are vaccinated per day, then herd 
immunity is reached in 66 days, and the probability of generating 
a vaccine-resistant mutant is about 2%. For the same vaccination 
rate, if 50,000 new infections are tolerated each day, then the prob-
ability of generating an escape mutant increases to 10%. If 10,000 
new infections occur per day but only 100,000 people are vaccinated 
every day, then the probability of generating vaccine resistance 
increases to 18%.

Table 2 | Calculated probability of emergence of vaccine resistance using real-world data from six countries: Brazil, France, Germany, 
Israel, the united Kingdom and the united States

Country Population size 
(×106)

Average rate of infection 
per day per person before 
vaccine rollout started 
(×106)

Average rate of infection per 
day per person after vaccine 
rollout started (×106)

Average rate of 
vaccination per day per 
person (×106)

Probability of 
resistance (×106)

Brazil 212.6 126 201 4,822 0.262

France 68.1 140 236 4,582 0.186

Germany 83.8 59 153 4,336 0.151

Israel 8.7 157 323 5,391 0.052

United Kingdom 67.9 104 352 5,146 0.364

United States 331.0 191 275 3,964 0.745

The probability of vaccine resistance was calculated using the product formula in equation (2) and the data presented in Fig. 5 assuming μ = 10−7.
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As the proportion of vaccinated individuals grows, social dis-
tancing measures relax, and the probability of emergence of resis-
tance increases. Hence, higher vaccination rates are associated with 
higher probabilities of resistance after 50, 100 and 200 days (Table 3).  
However, faster vaccination leads to earlier herd immunity. When 
herd immunity is reached, there are no more new infections, and 
the cumulative probability of resistance plateaus. We therefore 
observe an interesting counterintuitive effect: the probability of 
resistance until a fixed time t increases with the vaccination rate c, 
but the probability of resistance before time TH when herd immu-
nity is achieved decreases with c (Table 3 and Extended Data Fig. 6).

We can derive estimates for the emergence of vaccine-resistant 
strains using current vaccination and infection rates from around 
the world. If the whole world (N = 8 × 109) vaccinated as fast as the 
United States (c = 5,000 per day per million) and had slightly lower 
infection rates than Germany (L = 100 per day per million), then 
herd immunity would be achieved in TH = 131 days; the probabil-
ity that a resistant virus was generated and survived by that time 
would be 0.97 (for μ = 10−7) and 0.29 (for μ = 10−8). If the whole 
world vaccinated as fast as Brazil (c = 3,000 per day per million) 
and had infection rates like the United States (L = 250 per day per 
million), then herd immunity would be achieved in TH = 205 days; 
the probability that a resistant virus was generated and survived by 
that time would be 0.999 (for μ = 10−7) and 0.75 (for μ = 10−8). Our 
results underline the importance of maintaining social distancing 
measures while herd immunity has not been achieved and of timely 
distribution of vaccines around the world.

Preventing the emergence of vaccine resistance. Improved vaccine 
design. The probability of emergence of vaccine resistance can be 
reduced by increasing the number of vaccinated people per day (c) 
and reducing the number of allowed infections per day (L) until herd 
immunity is reached. However, policymakers could also affect the 
mutation rate µ by determining what type of vaccine is used. We have 
extended our basic model to consider vaccine resistance achieved 
when two independent mutations are present (Supplementary Figs. 
11 and 12). Each mutation is neutral by itself. We find that for real-
istic mutation rates (that is, mutation rates below our estimated 
upper bound), vaccine resistance never emerges when two-gene 
vaccines are distributed (Extended Data Fig. 7). This extension can 
also be interpreted as the case where two independent mutations are 
needed to confer resistance to a vaccine based on a single gene. But 
using two mRNAs in a single vaccine could double the number of 
mutations needed to achieve immune escape.

Reducing vaccine hesitancy. In most developed countries, vaccine 
hesitancy has caused the number of vaccinated individuals to pla-
teau. Vaccine hesitancy can also be reduced by policy decisions64. 
In Supplementary Fig. 13 and Extended Data Fig. 8, we extend our 
model to account for the proportion of the population that will not 
be vaccinated. We find that although high vaccine hesitancy sub-
stantially increases the probability of emergence of vaccine resis-
tance, low vaccine hesitancy can actually have a negligible effect. 
For R0 = 3, the levels of vaccine hesitancy necessary to significantly 
increase the probability of emergence of vaccine resistance are much 
higher than the vaccination hesitancy rates in many of the consid-
ered countries except for Brazil and the United States65,66. However, 
more infectious mutants have emerged in the past few months.
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Fig. 5 | Estimating the mutation rate given that no vaccine-resistant 
mutant has taken over. a, Using equation (2), we calculate the probability 
that an MT strain would have taken over by 30 July 2020. To this aim, we 
used the numbers of new infections and immunized individuals (needed to 
calculate RMT at each time point) from OWID1. The probability of MT strain 
takeover follows a sigmoidal function, where the midpoint is reached for 
the value of µ at which MT strain takeover becomes more probable than 
not. We consider this value of µ the upper bound of the mutation rate. 
For the United States, the estimated upper bound of the mutation rate on 
30 July 2020 would be about 10−6 (red arrow). b, Using equation (2), we 
calculate the probability that an MT strain would have taken over by 29 
November 2021. We observe that the curves describing the probability of 
takeover of the MT strain along the mutation rate have shifted left. This is 
because since 30 July 2020, additional cases have occurred without an MT 
strain takeover. The upper bound of the mutation rate therefore decreases. 
For the United States, the upper bound would now be estimated at 2 × 10−7 
(red arrow). c, The midpoint of the function (the red arrows shown in a and 
b) describing the probability of MT strain takeover decreases in value as 
more time passes without takeover of an MT strain. We use this value as 
an upper bound of the mutation rate for our model.
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To achieve herd immunity, a certain fraction of the population 
must become immunized to the infecting agent. Immunization 
can occur either by recovery from infection or by vaccina-
tion. The minimum fraction of immunized people required for 
herd immunity increases with the reproductive ratio R. If a cer-
tain proportion of the population will not be vaccinated, then 
an excess of infections will occur to achieve the proportion of 
immunized people required for herd immunity. This excess of 
infections increases the probability of emergence of vaccine resis-
tance. For R0 = 3, the fraction of immunized people required for 
herd immunity is 2/3. Hence, 1/3 of the population can remain 
susceptible without affecting the probability of emergence of a 
vaccine-resistant variant. However, with more infectious vari-
ants, this tolerated proportion of non-vaccinated people is lower. 
For example, for R = 5, the proportion of non-vaccinated people 
such that the probability of vaccine emergence is unchanged is 
only 20%. As vaccination is expected to be extended to more age 
groups, the proportion of unvaccinated individuals could further 
decrease until vaccine hesitancy ceases to be a concern for the 
emergence of vaccine resistance.

In most countries, vaccine hesitancy seems to be a function 
of age. We can therefore estimate the expected vaccine hesitancy 
given the age structure of each of the six countries. In Israel, 89% 
of 60- to 69-year-olds are fully vaccinated, versus 75% of 20- to 
29-year-olds65,66. In France, 83% of 60- to 69-year-olds are fully 
vaccinated, versus 76% of 25- to 49-year-olds. In some countries, 
vaccination of the younger population has not reached a plateau, 
such as in Bulgaria, Peru and Romania65,66. In these countries, we 
expect that many people are still being vaccinated and hence the 
total amount of vaccinated individuals will increase.

Using boosters to counteract waning of immunity. Waning of immu-
nity has become a concern. We have extended our model to con-
sider waning of immunity beginning 180 days after vaccination or 
recovery (Supplementary Figs. 14 and 15). When no booster vac-
cination is administered, the probability of emergence of vaccine 
resistance increases substantially, especially for high vaccination 
rates. However, a booster vaccination campaign conducted after 180 
days can reduce the probability of emergence of vaccine resistance 
back to basic model levels (Extended Data Fig. 9).

Discussion
We have studied the evolution of resistance to COVID-19 vaccina-
tion in the presence of dynamic social distancing. We use real-world 
data to simulate the spread of the SARS-CoV-2 virus. We have per-
formed stochastic simulations and obtained analytical results. In 
particular, we have derived a simple, intuitive formula for the prob-
ability of emergence of a vaccine-resistant strain over time (equa-
tions (5) and (6)).

Our basic model makes a series of simplifying assumptions: (1) 
no seasonality of the infection patterns, (2) vaccination of the whole 
population, (3) no waning of immunity, (4) linear distribution of 
vaccine doses and (5) rapid social response to rising infection num-
bers. We have studied model extensions that remove these simpli-
fications (Supplementary Figs. 1–5, 8, 9 and 11–15 and Extended 
Data Figs. 1, 2 and 7–9). We have assumed a stochastic model 
because the appearance of a vaccine-resistant strain, and in particu-
lar its non-extinction due to random drift, is by nature stochastic.

Some of the simplifying assumptions made in our approach 
should be revisited in future work. We have described the transition 
from a sensitive variant to a resistant (or partially resistant) mutant 

Table 3 | Calculated probability of vaccine resistance for a range of vaccination rates and infection rates

rate of 
infection, L, per 
day per person 
(×10−6)

rate of vaccination, 
c, per day per person 
(×10−6)

Time to herd 
immunity, TH 
(days)

Probability of resistance

t = 50 days t = 100 days t = 200 days t = TH

Parameters: N = 108; μ = 10−7

100 1000 606 0.001 0.005 0.022 0.183

100 5000 131 0.006 0.025 – 0.043

100 10,000 66 0.013 – – 0.022

200 1000 556 0.003 0.012 0.047 0.310

200 5000 128 0.013 0.051 – 0.082

200 10,000 65 0.025 – – 0.043

500 1000 444 0.009 0.037 0.139 0.532

500 5000 121 0.034 0.128 – 0.183

500 10,000 63 0.064 – – 0.100

Parameters: N = 109; μ = 10−7

100 1000 606 0.014 0.054 0.197 0.867

100 5000 131 0.062 0.225 – 0.353

100 10,000 66 0.119 – – 0.197

200 1000 556 0.030 0.113 0.381 0.975

200 5000 128 0.122 0.405 – 0.575

200 10,000 65 0.225 – – 0.353

500 1000 444 0.089 0.313 0.777 0.999

500 5000 121 0.291 0.747 – 0.867

500 10,000 63 0.481 – – 0.652

We observe the counterintuitive effect of a higher probability of resistance over time for higher vaccination rates, but a lower probability of resistance overall. See also Supplementary Fig. 4.
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as a single probabilistic step. It would be desirable to study viral evo-
lution of vaccine resistance as a gradual process including multiple 
intermediate variants, some of which could be neutral, while others 
modify infectivity or enable partial escape. Using an SIR-like model, 
we did not consider spatial or network effects of viral transmission 
or vaccination. We did not distinguish between symptomatic and 
asymptomatic individuals. Symptomatic infection might give rise 
to different infectivity and recovery rates because of self-isolation.

The probability of takeover of an immune-evasive strain is mostly 
dependent on the number of total infection cases that occur during 
the pandemic. Social distancing measures, such as lockdowns, can 
delay or even prevent the emergence of the MT strain. Each natural 
infection is an opportunity for the MT strain to appear and possibly 
take over. Hence, the main policy goal should be to maximize the 
proportion of the population that will be immunized to the virus 
through vaccination as opposed to natural infection.

In terms of policy implications, our results support the main-
tenance of social distancing (or contact reducing) measures, such 
as lockdowns, restrictions on building capacity and guidance on 
homeworking, until the daily number of infections decreases sub-
stantially. Allowing a large number of infections can be counterbal-
anced only by very high vaccination rates, which ensure that herd 
immunity is reached before the MT strain can appear and take over. 
Furthermore, our results underline the importance of a worldwide 
effort to quickly vaccinate as many individuals as possible, especially 
in highly populated countries with low access to vaccines. Slow or 
no vaccination in those areas results in a large number of total cases 
and hence the emergence of an MT strain, which could then spread 
over the whole world.

Methods
Data accession. Data for vaccination rates, infection rates and mortality rates were 
downloaded from https://ourworldindata.org/explorers/coronavirus-data-explorer 
using the ‘Download’ button under the chart and selecting the option ‘Full Data 
(CSV)’. Subsequent analysis was performed with Python v.367; our code is available 
at https://github.com/gabriela3001/covid_resistance_2021.

Vaccination data on specific age groups were downloaded from https://
ourworldindata.org/covid-vaccinations under the tab ‘Vaccination by age’.

Derivation of mathematical results. All of the stochastic simulations presented in 
Fig. 3 and Extended Data Fig. 4 were run with the full model presented in Fig. 2. 
In the following derivations, however, we make certain approximations to obtain 
analytical results. Among others, we neglect death, and in some cases we neglect 
vaccination of recovered individuals.

No vaccination. First, we consider the case without vaccination. We denote by x the 
number of susceptible individuals, by y the number of individuals infected with 
WT and by z the number of individuals recovered from WT. The infection rate is 
β, the recovery rate a, the mutation rate μ and the population size N. The social 
activity parameter s(t) captures the extent of imposed social distancing that varies 
over time. For simplicity, we neglect the number of individuals who die; hence, N is 
assumed to be constant.

Deterministic WT infection dynamics are given by the following system of 
differential equations:

ẋ = −βsxy

ẏ = βsxy − ay

ż = ay

(7)

Initially, all of the population is susceptible to the WT strain, and no 
individuals are infected with or recovered from the WT strain. We therefore have 
x(0) = N, y(0) = 0 and z(0) = 0. Social activity, s(t), is adjusted such that y(t) = L/a is 
constant (Extended Data Fig. 4c). L is the number of new infections per day.

Without social distancing, s = 1, the basic reproductive ratio of WT is given 
by R0 = βN/a. If R0 > 1, the number of infected individuals grows initially. With 
social distancing, s < 1, the reproductive ratio is RWT = βNs/a. Since the social 
distancing measures maintain y(t) = L/a at a constant value, we have RWT = 1 
and βs(t)x(t) = a (Supplementary Fig. 7). The parameter s can vary between 0 
and 1. Note that the maintenance of the number of infection cases at a constant 
value, which follows directly from social distancing measures maintaining the 
viral reproductive ratio at 1, allows us to obtain an analytical expression for 
the number of immunized individuals over time. This expression will then be 

instrumental in deriving the probability of emergence of a vaccine-resistant 
mutant over time, and finally the probability of emergence of a vaccine-resistant 
mutant before herd immunity is reached.

Although RWT and RMT are initially equal, they do not remain equal at any 
later time point. This is because the reproductive ratios of the WT strain and MT 
strain are dependent on the number of individuals that can be infected by WT 
and the number of individuals that can be infected by MT. Initially, both strains 
can infect the whole population. As the simulation progresses, the WT strain can 
infect fewer individuals due to the recovery of WT-infected individuals and due 
to vaccination. However, the MT strain can still potentially infect every individual 
in the population, since WT-recovered individuals and vaccinated individuals are 
susceptible to MT.

Each day, L individuals become infected, and L individuals recover. Because of 
dynamic social distancing, the following equation is equivalent to equation (7):

ẋ = −L

ẏ = 0

ż = L

(8)

The solution to this system of differential equations is

x (t) = N − Lt

z (t) = Lt
(9)

Hence, the number of susceptible individuals decreases linearly with slope 
L, while the number of recovered individuals increases linearly with slope L (see 
Supplementary Fig. 7 for agreement with the stochastic simulation).

When x(t) has declined such that RWT < 1 and s = 1, there are not enough 
susceptible individuals to sustain the infection. Herd immunity is achieved when 
x(t) < a/β. The time TH until herd immunity is given by β(N − Lt) = a. We obtain

TH =
N
L

(

1 −

1
R0

)

(10)

Rate of generating mutants in the absence of vaccination. Each day, L new 
individuals become infected. Each of these infections has a probability μ of being a 
vaccine-resistant mutant. Hence, the rate of producing a mutant is Lμ per day. Let 
P(t) denote the probability that no mutant has been produced until time t. We have 
Ṗ(t) = −LμP(t), which leads to P(t) = e−Lμt.

The MT strain can be generated only during infection. Hence, if the MT strain 
has not been generated before the time when there are no more WT infections—
that is, approximately when herd immunity is reached—it will never be generated. 
We neglect here the time of exponential decrease in the number of WT infections 
between time TH (when herd immunity is reached) and the time when the number 
of WT infections has reached zero. The probability that no mutant will appear 
before time TH is P(TH) = e−LμTH. Inserting from equation (4), we obtain

P(TH) = exp
[

−Nμ

(

1 −

1
R0

)]

(11)

Rate of generating surviving mutants in the absence of vaccination. To calculate the 
probability that MT will be generated and survive, we need to multiply the rate of 
generation of MT with the probability that it will not become extinct by random 
drift. If ρ(t) is the survival probability of MT, then the rate of producing a surviving 
mutant is Lμρ(t) per day. We approximate ρ(t) = 1 − 1/RMT(t), where RMT(t) is the 
reproductive ratio of the mutant at time t.

We have

RMT (t) = βs (t)N/a (12)

Since s(t) = a/βx(t) and using equation (9), we obtain

RMT (t) =
N

N − Lt
(13)

We therefore have ρ(t) = Lt/N.
Let P(t) denote the probability that no surviving mutant has been produced 

before time t. We have Ṗ (t) = −Lμρ (t) P (t) = −L2μtP(t)/N . We solve this 
differential equation to obtain P(t) = exp(−μL2t2/2N). The probability that no 
surviving mutant has been produced before herd immunity, which is reached at 
time TH, is given by

P (TH) = exp
[

−

μN
2

(

1 −

1
R0

)2]

(14)

With vaccination. Let us now add vaccination. Denote by w the number of 
vaccinated people. If both recovered and susceptible individuals are vaccinated at 
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a total rate of c per day, then deterministic infection and vaccination dynamics are 
given by

ẋ = −βsxy − cx
x+z

ẏ = βsxy − ay

ż = ay − cz
x+z

ẇ = c

(15)

The initial condition is x(0) = N, y(0) = 0, z(0) = 0, w(0) = 0, s(0) = 1 and 
R0 = βN/a. As before, we adjust s(t) such that y(t) = L/a is constant (Extended Data 
Fig. 4).

Each day, L susceptible individuals become infected, and cx/(x + z) susceptible 
individuals become vaccinated. Also, L infected individuals recover, and cx/(x + z) 
of recovered individuals become vaccinated. We have:

ẋ = −L −

cx
x+z

ẏ = 0

ż = L −

cz
x+z

ẇ = c

(16)

For simplicity, let us assume that we vaccinate only susceptible people. This 
assumption is a reasonable approximation if c ≫ L. In this case, we can write

ẋ = −L − c

ẏ = 0

ż = L

ẇ = c

(17)

The solution to this system of differential equations is

x (t) = N − Lt − ct

z (t) = Lt

w(t) = ct

(18)

Hence, the number of susceptible individuals decreases linearly with slope 
L + c, the number of recovered individuals increases with slope L and the number 
of vaccinated individuals increases with slope c.

The time TH until herd immunity is given by

TH =
N

c + L
(1 − 1/R0) (19)

Rate of generating mutants during vaccination. The rate of producing a mutant 
is Lμ per day. Let P(t) denote the probability that no mutant has been produced 
before time t. We have 

.
P(t) = −LμP(t), which gives P(t) = exp(−Lμt).

The MT strain can be generated only during infection. Hence, if the MT strain 
has not been generated before the time when there are no more WT infections—
that is, when herd immunity is reached—it will never be generated. Again, we 
neglect here the time of exponential decrease in the number of WT infections 
between the time TH when herd immunity is reached and the time when the 
number of WT infections reaches 0. Hence, the probability that no mutant will 
appear is P(TH) = exp(−LμTH). Using equation (19), the probability that no mutant 
has appeared before herd immunity is

P (TH) = exp
[

−Nμ

(

L
c + L

)(

1 −

1
R0

)]

(20)

Rate of generating surviving mutants during vaccination. To calculate the 
probability that surviving mutants are generated, we again consider the  
survival probability ρ(t) = 1 − 1/RMT(t), where RMT(t) is the reproductive ratio  
of the mutant at time t. The rate of producing a surviving mutant is Lμρ(t)  
per day. We have

RMT (t) =
βs (t)N

a
(21)

As explained above, s(t) = a/βx(t). Using equation (18), we obtain

RMT (t) =
N

N − (L + c)t
(22)

And therefore, ρ(t) = (L + c)t/N.

Let P(t) denote the probability that no surviving mutant has been produced 
before time t. We have Ṗ (t) = −Lμρ (t) P(t) = −Lμ(c + L)tP(t)/N . Let v = c/N 
and l = L/N. We solve this differential equation to obtain

P (t) = exp
[

−

μN
2 l(v + l)t2

]

(23)

The probability that no surviving mutant has been produced before herd 
immunity, at time TH, is

P (TH) = exp
[

−

μN
2

(

l
v + l

)(

1 −

1
R0

)2]

(24)

Rate of generating surviving mutants with partial immune escape during 
vaccination. We study the case where the infectivity of the mutant is reduced by a 
factor q with range [0,1] when infecting recovered or vaccinated people. For q = 1, 
we obtain full escape, while q = 0 means that the mutant does not escape at all.

A similar derivation to the one above leads to the following result. The 
probability that no surviving mutant with partial escape q has appeared before herd 
immunity is given by

P (TH) = exp
[

−

μN
2

(

l
v+l

)

A
]

withA =
2q

1−q
[

−

R0−1
R0

+ 1
1−q log

R0
1+q(R0−1)

]

(25)

For q → 1, we obtain A = (1 − (1/R0))2, leading to equation (23) above.

Relationship between the product formula and the exponential formula. Each 
day, L new WT infections occur. Each new infection has a probability of μ of being 
the MT strain. The survival probability of the mutant is approximately 1 − 1/RMT(t), 
where RMT(t) is the basic reproductive ratio of MT appearing at time t.

Hence, the probability that none of the L new WT infections in a day will 
generate a surviving mutant is {1 − μ[1 − 1/RMT(t)]}L. We can then write the 
probability P that no surviving mutant will be produced between time t = 0 and the 
time TH when herd immunity is reached as the product

P =

TH
∏

τ=0

[

1 − μ

(

1 −

1
RMT(τ)

)]L
(26)

We have TH = [N/(c + L)](1 − 1/R0) and RMT(t) = N/[N − (c + L)t]. Since 
ρ(t) = 1 − 1/RMT(t) = (c + L)t/N, we can write

P =

TH
∏

τ=0

[

1 −

μ (c + L) τ

N

]L

Let us use the abbreviation u = μ(c + L)/N. Then

P =
TH
∏

τ=0
(1 − uτ)L

= exp
[

log
TH
∏

τ=0
(1 − uτ)L

]

= exp
[

Llog
TH
∏

τ=0
(1 − uτ)

]

= exp
[

L
TH
∑

τ=0
log(1 − uτ)

]

(27)

Note that equation (26) is exactly equivalent to equation (23). Assuming 
uTH ≪ 1, which is the same as μ(1 − 1/R0) ≪ 1, we obtain

P = exp
(

−uL
TH
∑

τ=0
τ

)

= exp
[

−

uLTH(TH+1)
2

]

Assuming TH ≫ 1, which is N(1 − 1/R0) ≫ c + L, we obtain

P = exp
(

−

uLT2
H

2

)

= exp
[

−

(μ(c+L)/N)LT2
H

2

]

Finally, inserting TH = [N/(c + L)](1 − 1/R0), we get
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P (TH) = exp
[

−

μN
2

(

l
v + l

)(

1 −

1
R0

)2]

(28)

which is equivalent to equation (24) above.

Dynamics after the appearance of the MT strain. No vaccination. After the MT 
strain has taken over, social distancing measures will continue maintaining the 
number of daily infections at L, which implies that y1 + y2 = L/a (Supplementary 
Fig. 7). In practice, the WT strain rapidly goes extinct upon the emergence of 
the MT strain, so we can consider y2 = L/a. The MT strain can infect susceptible 
individuals, x, and recovered individuals, z1. The MT strain infects those 
individuals with probabilities proportional to their frequencies at the time t* of MT 
takeover. Hence, for times t > t*, we have:

x (t) = x (t∗) − x(t∗)
z1(t∗)+x(t∗)

L (t∗ − t)

z1 (t) = z1 (t∗) −
z1(t∗)

z1(t∗)+x(t∗)
L (t∗ − t)

(29)

After MT takeover, the social distancing measures need to be readjusted to 
the MT strain. Since more individuals are susceptible to it, s(t) has to decrease 
(Supplementary Fig. 7f):

s (t) =
aN

β [x (t) + qz1 (t)]
(30)

which implies that RMT = 1.

With vaccination. As for the case without vaccination, if the MT strain survives, 
it will quickly replace the WT strain such that y2 = L/a (Extended Data Fig. 4c). 
The number of susceptible individuals x(t*) at the time of MT takeover can be 
neglected for large enough vaccination rates. The number of vaccinated individuals 
susceptible to the MT strain, w1, will hence decrease linearly with the number of 
tolerated cases per day, L, and the number of vaccinated individuals recovered 
from the MT strain, w2, will increase complementarily linearly with L. If the mutant 
takes over at time t*, we have for all times t > t*:

w1 (t) = w1 (t∗) − L(t∗ − t)

w2 (t) = L(t∗ − t)
(31)

The social activity parameter s needs readjustment to consider the additional 
groups of individuals that are now susceptible to the infecting strain. We have

s (t) =
a
β

×

x (t) + q[z1(t) + w1(t)]
x (t) + q[z1(t) + w1(t)] − w2 (t)

(32)

which ensures that RMT = 1. Here the parameter q in [0, 1] denotes the extent of escape.

Estimating the evolutionary potential of the virus. If μ is the mutation 
probability as described above and L(t) is the time series giving the number of new 
infections on day t, then the probability that no mutant has been produced between 
time 0 and time TH is given by

P (TH) =

TH
∏

τ=0
(1 − μ)

L(τ) (33)

This probability will overestimate the evolutionary potential of the virus to 
escape from vaccination because many mutants do not survive the initial random 
drift. The probability that no surviving mutant has been produced between time 0 
and time TH can be written as

P (TH) =

TH
∏

τ=0
[1 − μρ(τ)]

L(τ) (34)

Here ρ(t) is the survival probability of an escape mutant produced at time t. 
This probability depends on the basic reproductive ratio of the mutant on the 
day it is being produced (and the next few days until random drift is negligible). 
Approximately, we can write

ρ (t) = min
{

0, 1 −

1
RMT(t)

}

(35)

For the potential of the virus to generate mutants (irrespective of whether they 
survive), what matters most is the total number of infections, ΣτL(τ). But for the 
potential of the virus to generate surviving mutants, one must also consider the 
time periods when social distancing is relaxed such that RMT is above 1.

Analytic approximation for more infectious, vaccine escape mutants. No 
vaccination. Now we calculate the probability that mutants are being generated that 
do become extinct by random drift. We denote f the relative infectiousness of the 

MT versus the WT strain. Hence, for more infectious mutants, we have f > 1. The 
rate of producing a surviving mutant is Lμρ(t) per day. Here ρ(t) is the survival 
probability given by ρ(t) = 1 − 1/RMT(t). The basic reproductive ratio of the mutant 
at time t is RMT(t) = fβs(t)N/a. Since βs(t)N/a = 1/x(t), we have RMT(t) = fN/(N − Lt), 
and therefore:

ρ (t) = 1 −

1
RMT (t)

=
N(f − 1) + Lt

Nf
(36)

Let P(t) denote the probability that no surviving mutant has been produced 
before time t. We have Ṗ (t) = −Lμρ (t) P(t). Thus, Ṗ (t) = (κ + λt) P(t), with 
the solution P (t) = exp

(

κt + λ
2 t

2), which already leads to P(0)=1, as desired. In 
our original notation, the solution becomes:

P (t) = exp
[

−Lμ
N(f − 1)

Nf
t − Lμ

Lt
2Nf t

2
]

(37)

With vaccination. The rate of producing a surviving mutant is Lμρ(t) per day. Here 
ρ(t) is the survival probability given by ρ(t) = 1 − 1/RMT(t). The basic reproductive 
ratio of the mutant at time t is RMT(t) = fβs(t)N/a. Since βs(t)N/a = 1/x(t), we have 
RMT(t) = fN/[N − (c + L)t], and:

ρ(t) = 1 −

1
RMT (t)

=
N(f − 1) + (c + L)t

Nf
(38)

Let P(t) denote the probability that no surviving mutant has been produced 
before time t. We have Ṗ (t) = −Lμρ (t) P(t). Thus:

Ṗ(t) = −Lμ
N(f − 1) + (c + L)t

Nf
P(t) (39)

This solution of this differential equation is given by:

P (t) = exp
(

−Lμ
f − 1
f

t − Lμ
c + L
2Nf t2

)

(40)

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Deviation from linear distribution of vaccine doses can (sometimes) affect evolution of resistance. (A) Shape of the vaccination 
curve in each of the six countries (Brazil, France, Germany, Israel, United Kingdom and United States) and straight line representing constant vaccination 
at rate c. We compare these 7 possibilities in panels B, C and D for 3 different c values. (B,C,D) The increase in the number of vaccinated individuals 
affects the increase of the reproductive ratio of the vaccine resistant mutant RMT, and hence the probability of emergence of a vaccine resistant mutant. 
See Supplementary Fig. 15 for further information how the vaccination rate affects the probability of vaccine resistance at a fixed time t. For each (L, c) 
parameter set and each of the six countries, we report on the probability of emergence of vaccine resistance, calculated as the proportion of runs, out of 
a 1000, where we observed the emergence of the MT strain, in the first 210 days, the approximate number of days since mass vaccination started. We 
observe no significant difference between linear vaccination (in gray in panels B, C and D) and any of the real vaccination curves from the six countries, 
scaled to the same value of c. We observe a significant difference in probability of emergence of vaccine resistance when considering data from Israel 
and when considering data from France, Germany and Brazil. The probability of emergence of vaccine resistance is higher for simulation run with Israeli 
dynamics of vaccine distribution for c = 5000 (see panel C) and lower for c = 10000 (see panel D). As shown in panel A, the number of vaccinated 
increased very sharply in a linear fashion in Israel, then plateaued at a high value. Hence, for high average number of new vaccinations per day c, the 
probability of emergence of vaccine resistance decreases compared to that observed with vaccine distribution dynamics from other countries. Parameters: 
N = 106; a = 0.25; d = 0.01; μ = 10−6; q = 1; s0 = 0.1, β1 = β2 = 7.5 ∙ 10−7. Error bars are calculated as p ± 1.96 ∙ √(p(1 − p)/1000), where p is the proportion 
of runs out of n=1000 where we observed emergence of the vaccine resistant mutant.
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Extended Data Fig. 2 | Comparing the probability of emergence of the vaccine resistant mutant for different model extensions. For each of the 
model extensions presented in Supplementary Fig 4 (social distancing adjusted every week), 5 (seasonality) and 13 (vaccine hesitancy), we ran 1000 
independent runs and reported the calculated probability of emergence of the vaccine resistant mutant. For some parameter sets (for example L = 100, 
c = 10,000), we did not observe any takeover events out of 1000 runs of the simulation for the basic model, social distancing every week extension and 
seasonality with 10% decrease extension. We did not observe any significant differences when incorporating any of the following extensions: (i) social 
distancing every week instead of every day; (ii) low level vaccine hesitancy; (iii) 10% increase in infectivity in winter; (iv) 10% decrease in infectivity in 
winter. Parameters: N = 106; a = 0.25; d = 0.01; μ = 10−6; s0 = 0.1, β1 = β2 = 7.5 ∙ 10−7. Error bars are calculated as in Extended Data Figure 2, and the number 
of runs is n=1000.
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Extended Data Fig. 3 | Scaling simulation results to larger population sizes. Results of simulations for a given population size can be scaled to larger 
population size according to 1 − (1 − p), where p is the proportion of runs where the MT strain took over and m the ratio of the scaled population size to 
the simulated population size. (A) (B) Each square of the color map is colored according to the proportion of runs (out of 1000) where the MT strain took 
over for N = 105. (C) (D) Each square of the color map is colored according to 1 − (1 − p)10, where p is the proportion of runs where the MT strain took over 
in simulations presented in (A) and (B). (E) (F) Each square of the color map is colored according to the proportion of runs (out of 1000) where the MT 
strain took over for N = 106. We observe a good agreement between the scaled results and the simulated results. Parameters: a = 0.25; d = 0.01; μ = 10−6; 
s0 = 0.1, β1 = β2 = 7.5 ∙ 10−7.
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Extended Data Fig. 4 | Evolution of resistance in presence of vaccination. (A) Before MT takeover, the decline in susceptible individuals (x) can be 
approximated by a linear function with slope equal to the vaccination rate c. Since vaccination is fast, individuals recovered from WT and non-vaccinated 
individuals recovered from MT are few. The equation of line (a) is x(t) = x(0) − ct for t < t* where t* is the time of takeover of the MT. (B) The reproductive 
ratio RWT is maintained at around 1 by dynamic social distancing. After mutant takeover, RWT is less than 1, since the degree of social distancing is now 
adjusted to the population susceptible to the MT strain. The number of active WT infections before takeover and of active MT infections after takeover, is 
fluctuating around L/a until herd immunity to the MT is reached. Before MT takeover, the reproductive ratio of the MT grows as (b) RMT = β2(x(t) + z1

(t) + 
w1

(t))/a. After takeover, RMT is maintained around 1. (E) The number of vaccinated individuals (w1) first increases linearly with slope equal to the vaccination 
rate. After MT takeover, the number of individuals vaccinated to the WT and recovered from MT (w2) increased linearly with slope L. The equations of 
the lines are given by (c) w1

(t) = ct for t < t* (d) w1
(t) = w1

(t*) − L(t − t*) for t > t* (e) w2
(t) = L(t − t*) for > t*. (F) Before MT takeover, the dynamic social 

distancing is adjusted to the WT. As the number of individuals immune to WT grows, social activity increases. When the MT emerges, social distancing 
measures are reinstated. Subsequently, social activity increases as the population immune to the MT grows. The equations for the lines given by (f)  
(t) = a/β1

(t) for t < t* ; (g) s(t) = a/β2(x(t) + z1
(t) + w1

(t)) for > t*. Parameters: N = 106; a = 0.25; d = 0.01; μ = 10−6; s0 = 0.1; β1 = β2 = 7.5 ∙ 10−7; c = 10,000;  
L = 1500; q = 1.
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Extended Data Fig. 5 | Analytical approximation of the simulation results. The probability of MT takeover before herd immunity is reached can be 
calculated according to equation 5. We observe a good agreement between our calculations and the results of the stochastic simulations. (A) (C) Each 
square of the color map is colored according to the probability of take over calculated with equation (5). (B) (D) Each square of the color map is colored 
according to the proportion of runs (out of n=1000) where the MT strain took over. The population size was N = 106. Parameters: a = 0.25; d = 0.01;  
μ = 10−6; s0 = 0.1; β1 = β2 = 7.5 ∙ 10−7.
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Extended Data Fig. 6 | Counterintuitive effect of the vaccination rate on the probability of resistance. Increasing the population size N, the mutation 
rate µ and the infection rate l all increase the probability of generating a mutant before herd immunity is reached (B and C). We define v = c/N and l = 
L/N. Increasing the vaccination rate v leads to a counterintuitive effect: the probability for a fixed time increases with v since it leads to faster relaxation 
of social distancing measures, but it also leads to faster achievement of herd immunity (A). Hence the probability of resistance until herd immunity 
decreases with v (F). Parameter values: μ = 10−7 (A): N = 108, l = 200 ∙ 10−6; (B): l = 200 ∙ 10−6, v = 1000 ∙ 10−6, (C)(E): N = 108, v = 1000 ∙ 10−6; (D)(F): 
N = 108, l = 200 ∙ 10−6.
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Extended Data Fig. 7 | Probability of emergence of resistance against a two-gene vaccine or for a two-step escape mutant. For each combination of L 
(the number of allowed infections per day), c (the number of new vaccinations per day), and µ (the mutation rate), we simulate 1000 runs of the basic 
model (see Fig. 2 of the main text) and of the two-gene model (see Supplementary Fig. 12). We record the probability of emergence of vaccine resistance 
as the proportion of runs where we observed takeover of the vaccine resistant strain. The basic model assumes that the administered vaccine provides 
immunity against one viral antigen. Hence, it most closely corresponds to a “one gene vaccine”, and resistance can be acquired by the emergence of one 
mutation. In the two-gene model, we assume that the vaccine provides immunity to two independent viral antigens. Hence, two mutations are needed to 
give rise to resistance. In the one gene vaccine case, the probability of emergence of vaccine resistance is never negligible except for low mutation rate 
(μ = 10−6), low number of new infections per day (L = 100) and high vaccination rates (c = 10,000). In all cases, for high mutation rates, emergence of 
vaccine resistance is almost certain. For lower mutation rates, emergence of vaccine resistance is probable. However, in the case of a two-gene vaccine, 
we never observe emergence of vaccine resistance except for mutation rates higher than 10−4. Given our estimate of the upper bound of the mutation 
rate from wild type to vaccine resistant mutant, we can conclude that a two-gene vaccine would prevent the emergence of vaccine resistance for all 
combinations of L and c for realistic mutation rates. Parameters: N = 106; a = 0.25; d = 0.01; s0 = 0.1, β1 = β2 = 7.5 ∙ 10−7. Error bars are calculated as in 
Extended Data Figure 1, and the number of runs is n=1000.
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Extended Data Fig. 8 | Vaccine hesitancy increases the probability of emergence of vaccine resistance. Achieving full vaccination coverage is unrealistic 
due to the ineligibility of some individuals and the hesitancy of some eligible individuals. Hence, the proportion of vaccinated population has plateaued 
in many countries despite sufficient dose supply. Herd immunity can only be achieved when a sufficient proportion of the population (for R = 3, this 
proportion is equal to 2/3) becomes immune to infection, either by vaccination or by recovery from infection. The remaining portion of the population 
can remain susceptible without affecting infection and evolution dynamics. Hence, if the proportion of non-vaccinated individuals is less than the number 
of susceptible individuals once herd immunity is reached, then we expect no difference in the probability of emergence of a vaccine resistant mutant. 
We observe that for 30% vaccine hesitancy. On the other hand, when the proportion of non-vaccinated individuals exceeds the number of susceptible 
individuals once herd immunity is reached, then more individuals will become immune by recovery as opposed to by vaccination. Each infection increases 
the probability of emergence of a vaccine resistant mutant. Hence, we observe an exponential increase in the probability of emergence of the vaccine 
resistant mutant with increasing percentage of vaccine hesitancy for all of the considered (L, c) pairs. The most dramatic increase of the probability of 
emergence of vaccine resistant mutant is noted for high rates of new vaccinations per day c. When c is high, the potential reproductive ratio of the mutant 
RMT increases exponentially with c as the social distancing s is quickly released. Then, vaccination stops, and all the remaining infections needed to achieve 
herd immunity occur while RMT is high. In contrast, when c is lower, most infections occur while RMT is comparatively lower, hence the lower increase in the 
probability of emergence of the vaccine resistant mutant with the percentage of vaccinehesitancy in (L, c) pairs where c = 1000. Parameters: N = 106;  
a = 0.25; d = 0.01; μ = 10−6; q = 1; s0 = 0.1, β1 = β2 = 7.5 ∙ 10−7. Error bars are calculated as in Extended Data Figure 2, and the number of runs is n=1000.
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Extended Data Fig. 9 | The probability of a vaccine-resistant mutant increases dramatically when assuming waning of immunity and no booster 
vaccination, but is equivalent to the probability given by the basic model when booster vaccination is administered after 180 days. In recent months, 
the waning of immunity conferred by vaccination or recovery has emerged as a concern as many individuals suffered breakthrough infections even after 
having been fully vaccinated. In response, some countries such as Israel have responded by launching a booster vaccination campaign for individuals that 
had been vaccinated more than five months prior. In this Figure, we show the probability of emergence of a vaccine resistant mutant simulated with the 
basic model, the extended model incorporating the waning of immunity but no booster vaccination (see Supplementary Fig. 14) and the extended model 
incorporating both the waning of immunity and the booster vaccination (see Supplementary Fig. 15). We observe that a booster vaccination campaign 
reduces the probability of emergence of a vaccine resistant mutant to that observed with the basic model. In contrast, if no booster vaccination is 
administered, the probability of emergence of the vaccine resistant mutant increases dramatically. This is especially true for high c values. When c is high, 
all the population is vaccinated within a short time frame. For c = 10,000 and L = 500, herd immunity is achieved within approximately two months. Since 
booster vaccination begins after 180 days, most vaccinated individuals will already be in the waned susceptible category, which means that they can get 
reinfected, thus increasing the probability of emergence of a vaccine resistant mutant. Parameters: N = 106; a = 0.25; d = 0.01; μ = 10−6; q = 1; s0 = 0.1,  
β1 = β2 = 7.5 ∙ 10−7. Error bars are calculated as in Extended Data Figure 2, and the number of runs is n=1000.
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