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Impact of dietary interventions on
pre-diabetic oral and gut microbiome,
metabolites and cytokines

Saar Shoer 1,2, Smadar Shilo 1,2,3, Anastasia Godneva1,2, Orly Ben-Yacov1,2,
Michal Rein1,2, Bat Chen Wolf1,2, Maya Lotan-Pompan1,2, Noam Bar1,2,
Ervin I. Weiss 4,5, Yael Houri-Haddad5, Yitzhak Pilpel6, Adina Weinberger 1,2 &
Eran Segal 1,2

Diabetes and associated comorbidities are a global health threat on the rise.
We conducted a six-month dietary intervention in pre-diabetic individuals
(NCT03222791), to mitigate the hyperglycemia and enhancemetabolic health.
The current work explores early diabetes markers in the 200 individuals who
completed the trial.Wefind 166of 2,803measured features, includingoral and
gut microbial species and pathways, serum metabolites and cytokines, show
significant change in response to a personalized postprandial glucose-
targeting diet or the standard of care Mediterranean diet. These changes
include establishedmarkers of hyperglycemia aswell as novel features that can
now be investigated as potential therapeutic targets. Our results indicate the
microbiome mediates the effect of diet on glycemic, metabolic and immune
measurements, with gut microbiome compositional change explaining 12.25%
of serummetabolites variance. Although the gut microbiome displays greater
compositional changes compared to the oral microbiome, the oral micro-
biomedemonstratesmore changes at the genetic level, with trends dependent
on environmental richness and species prevalence in the population. In con-
clusion, our study shows dietary interventions can affect the microbiome,
cardiometabolic profile and immune response of the host, and that these
factors are well associated with each other, and can be harnessed for new
therapeutic modalities.

Pre-diabetes, a condition characterized by elevated blood glucose
levels but below diabetes thresholds, is a significant risk factor for the
development of type 2 diabetes, as well as other comorbidities
including cardiovascular and kidney diseases1. The prevalence of pre-
diabetes has risen dramatically in recent decades, affecting approxi-
mately 7.5% of the world’s population, corresponding to ~374 million

individuals, themajority of whom live in low-income countries and are
unaware of their condition2.

Diet plays a critical role in the development of hyperglycemia and
the onset of pre-diabetes. Poor nutrition high in processed meat, low-
quality carbohydrates and sugary drinks, and low in plant-based foods,
can lead to an inflammatory immune response that damages
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pancreatic beta cells and causes insulin insufficiency3,4. Glycemic dys-
regulation is linked with various metabolic pathways and processes,
includingproteolysis,mitochondrial function, denovo lipogenesis and
fatty acid oxidation5. Increasing evidence suggests there is high
interpersonal variability in postprandial glycemic response and that
universal recommendations have limited utility6. Zeevi et al. devised a
machine-learning algorithm that integrates dietary habits, blood
parameters, anthropometrics, physical activity and gut micro-
biome features, to accurately predict personalized postprandial gly-
cemic response to real-life meals7.

The gut microbiome is believed to play a mediating role in the
relationship between diet, metabolism and immunity, by extracting
energy from foods otherwise indigestible by the host and producing
metabolites and cytokines8–10. The oral microbiome has been linked
with hyperglycemia because high glucose levels provide a favorable
environment for bacterial growth and can lead to chronic inflam-
mation in periodontal tissues11,12. Local inflammation can facilitate
the passive transfer of bacterial-mediators to the circulation and
induce systemic inflammation which in-turn exacerbates insulin
insufficiency11,13.

To date, the majority of microbiome studies have focused on
the level of species composition, however this approach has lim-
itations. For example, it can create a false dependency between
measured features such that one species’ abundance is dependent
on another species’ measured level, even if this is not biologically
true. Moreover, bacteria are genetically heterogeneous, and even
two strains of the same species can differ by up to 5% in their genetic
makeup, resulting in different bacterial phenotypes and effects on
the host that compositional analyses may miss14. By analyzing the
microbiome from both species-composition and strain-genetic
perspectives we get a more comprehensive look at the complex
layers of the microbiome.

In this work we assess the impact of a personalized postprandial
glucose-targeting diet (PPT), as well as the standard of care Medi-
terranean diet (MED), on the oral and gut microbiome, metabolites
and cytokines in 200 pre-diabetic individuals. Our previous work has
demonstrated the superiority of the PPT diet in improving glycemic
status compared to the standard of care15. Here, we analyze molecular
data collected in this clinical trial to further understand thepotential of
dietary interventions in pre-diabetes management and the role the
microbiome takes in it.

Results
Dietary interventions in pre-diabetes
Adults with pre-diabetes went through a dietary intervention for a
duration of six months. 225 participants were randomly assigned to
either a personalized postprandial glucose-targeting diet (PPT)
(n = 113) or aMediterranean diet (MED) (n = 112). 200 participants—100
from each arm completed the study. Participants were monitored
throughout the intervention period and two follow-up periods of two
weeks each. Data was collected using a variety of methods, including
self-reported food consumption logs using a smartphone application,
continuous glucose monitoring device (CGM), anthropometric mea-
surements, and frequent provision of subgingival plaque, stool and
serum samples. (Fig. 1, “Methods”).

The PPT diet was based on a machine learning algorithm that
integrates meal’s nutrient composition, blood tests, anthropo-
metrics, lifestyle and gut microbiome features to predict an indivi-
dual’s postprandial glycemic response7. The MED diet, which is
commonly recommended in national guidelines as the standard of
care for pre-diabetes due to its well-established positive health effects,
was used as control16–18. The recommended foods on the MED diet
included whole-wheat bread and grains, legumes, fruits and vege-
tables, olive oil, fish, poultry and low-fat dairy products, while dis-
couraged foods included commercial bakery goods, sweets and
pastries, fried foods, fatty and processed meat and high-fat dairy
products (“Methods”)15.

Compared to the profiling period, participants assigned to the PPT
diet significantly increased their diet lipid intake by 14.75% ±6.21
(mean ± standard deviation, Bonferroni corrected p<0.05, Wilcoxon
paired signed-rank test) and reduced carbohydrate consumption by
17.76%±6.22, while participants assigned to the MED diet significantly
reduced their lipid intake by 4.49%±4.38 and increased carbohydrate
consumption by 2.05%± 3.96. (Fig. 2, Supplementary Fig. 1a, b, Source
Data and Supplementary Data 1, “Methods”). Both diets resulted in
significantly increased protein consumption, in the PPT diet by
3.21% ± 2.98 and in theMEDdiet by 1.90%± 2.35. In total, 28 and 13 other
dietary features significantly changed in the PPT and MED diet groups,
respectively. (Fig. 3a, Supplementary Fig. 1a, b, Source Data and Sup-
plementary Data 1, “Methods”). In terms of these three macronutrients,
both diets are significantly different from the pre-intervention diet of
the participants, and have the same amount of variance between par-
ticipants on the same diet (overlapping standard deviation 95%
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Fig. 1 | Study scheme. The study included three periods—profiling, intervention and
follow-up illustrated as a timeline (x-axis). Each row is a type of measurement pro-
cessed from a specific time point (circles) or continuously (rectangles). Study defined
primary outcomes aremeasures of glycemic response, secondaryoutcomes are blood

tests and anthropometrics, and exploratory outcomes include oral and gut micro-
biome, serummetabolites and cytokines. Time above 140 daily time of blood glucose
levels above 140mg/dL, HbA1c glycated hemoglobin, OGTT oral glucose tolerance
test. Figure adjusted with permission from Ben-Yacov et al.15.
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confidence interval). However, the PPT diet constitutes a bigger change
frombaseline than theMEDdiet in all threemacronutrient components
(Bonferroni corrected p <0.01, Mann–Whitney U test).

The primary and secondary outcomes of this clinical trial derived
from blood tests and anthropometric measurements were previously
reported, highlighting that the PPT diet had a greater impact on gly-
cemic control, as evident by the daily time of blood glucose levels
above 140mg/dL (“time above 140”) and by glycated hemoglobin (%
HbA1c). However, an oral glucose tolerance test (OGTT) showed no
significant difference between the two diets15.

In thiswork, the focus ison the effect eachdiet hadon605gut and
336 oral microbial species, 380 gut and 311 oral microbial pathways,
1095 serum metabolite and 76 cytokine features produced from
samples taken before and after the intervention period of the 200
participants who completed the study, 100 from each diet group.
There was no significant difference in the baseline characteristics of
the participants between the two diet groups (Table 1), nor in any of
the 2803 molecular features tested (Bonferroni corrected p >0.05,
Mann–Whitney U test).

The PPT diet had bigger effect on the microbiome and
metabolites than the MED diet
Microbiome. Gut and oral microbial features were estimated from
metagenomic stool and subgingival plaque samples that underwent
short-read sequencing. We performed statistical tests to compare

microbial features at baseline versus the end of the intervention,
separately for each diet. Participants in the PPT group showed sig-
nificant increase in gut microbiome richness (11.31 ± 33.43 species,
p <0.01, Wilcoxon paired signed-rank test) and diversity (0.28 ±0.79,
Shannon’s alpha diversity index, p <0.01), and a significant decrease in
human cell shedding (−0.11% ± 5.31 human reads in a microbiome
sample, p < 0.05). These are all considered measures of good
health19–22. Participants in the MED group only showed a significant
increase in gut microbiome diversity (3.09 ± 34.15 richness, p >0.05,
0.12 ± 1.06 diversity, p <0.05 and −0.04% ±0.50 shedding, p >0.05).

Other than these broad measurements, we also performed sta-
tistical tests to compare species relative abundance at baseline versus
the end of the intervention, separately for each diet. Participants in the
PPT group showed significant increase in the relative abundance of 19
gut microbiome species (Bonferroni corrected p <0.05, Wilcoxon
paired signed-rank test), including seven species of the Ruminococca-
ceae family, fourClostridiales, three Firmicutes, two Eubacteriaceae, one
Clostridiaceae, Lachnospiraceae and a species of an unclassified family.

Participants in the MED group showed significant increase in the
relative abundance of four gut species, two from the Ruminococcaceae
family and two from the Clostridiaceae family, and a significant
decrease in the relative abundance of Eubacterium ventriosum
(Eubacteriaceae family), consistent with literature on Mediterranean
diet23,24. None of these genomically defined species (>5% genetic dif-
ference) significantly changed in both diet groups. (Fig. 3b, Supple-
mentary Fig. 1c, d, SourceData and SupplementaryData 1, “Methods”).

The results are reported at the family level because many of the
species were only recently discovered and are not taxonomically
classified at the species and genus levels yet. Their discovery was
enabled by recent sequencing and computational advancements that
allow the curation of many genomes of uncluttered species from
metagenomic samples. The microbes who are classified at the species
level in the PPT group are Flavonifractor plautii, Roseburia hominis,
Ruthenibacterium lactatiformans and three sub-types of the species
Faecalibacterium prausnitzii. All of these species significantly
increased their relative abundance. F. plautii is associated with lower
insulin sensitivity25, R. hominis is higher in diabetic individuals26–28 and
R. lactatiformans is associated with poor cardiometabolic health29,30.
The MED group showed a significant decrease in the species E. ven-
triosum which is associated with reduced adiposity and better cardi-
ometabolic health31–35, and a significant increase in two sub-types of the
species F. prausnitzii. (Fig. 3b, Supplementary Fig. 1c, d, Source Data
and Supplementary Data 1, “Methods”).

Fig. 2 | Dietary interventions in pre-diabetes. a Pre-intervention and (b) during
the intervention, percentage of carbohydrates consumed (x-axis) and percentage
of lipids consumed (y-axis) in diet per participant (dot). Stratified by the dietary

intervention, “PPT diet” in orange (n = 100) and “MEDdiet” in blue (n = 100). Source
data are provided as a Source Data file.

Table 1 | Baseline characteristic of study participants

Participants PPT diet MED diet

Started the intervention [n] 113 112

Completed the interven-
tion [n]

100 100

Age [years] 50.37 ± 7.86 50.92 ± 8.03

Sex [%males] 41% 46%

BMI [kg/m2] 30.68 ± 5.23 30.86 ± 6.01

Time above 140 [h/day] 2.17 ± 1.76 1.84 ± 1.67

HbA1c [%] 5.93% ±0.26 5.89%±0.23

OGTT [mg/dL*h] 99.97 ± 32.50 93.27 ± 33.89

There is no significant difference between the diet groups in any of the baseline characteristics
(p > 0.1, two-sided Mann–Whitney U test).
BMI body mass index, Time above 140 daily time of blood glucose levels above 140 mg/dL,
HbA1c glycated hemoglobin, OGTT oral glucose tolerance test.
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Fig. 3 | The PPT diet had bigger effect on themicrobiome andmetabolites than
the MED diet. a Dietary features, (b) gut microbial species, (c) gut microbial
pathways and (d). serum metabolites that significantly changed in the “PPT diet”
(outer ring, orange) or in the “MED diet” (middle ring, blue) (Bonferroni corrected
p <0.05, two-sided Wilcoxon paired signed-rank test). Color indicates the mean
change of the feature, red—increased, blue—decreased and white—not statistically

significant. The inner ring is the type of dietary feature in (a), the family of the
species in (b), the super class of the pathway in (c), and the super pathway of the
metabolite in (d). There was no significant difference between the two diet groups
at baseline in any of the 2803 molecular features tested (Bonferroni corrected
p >0.05, two-sided Mann–Whitney U test). Source data are provided as a Source
Data file.
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F. prausnitzii, which increased in both diets, is negatively asso-
ciated with insulin resistance and is transplanted to treat
inflammation36,37. It is a highly abundant butyrate-producing bacterium
in the human gut that secretes anti-inflammatory metabolites and is
characterized by great intra-species diversity, hence the many sub-
types38–40. F. prausnitzii is the only classified species that changed in a
favorable direction, and interestingly, the three sub-types of the spe-
cies that increased in the PPT group differ from the two sub-types of
the species that increased in the MED group, indicating a strain-level
effect (a total of nine sub-types of the species were tested in the ana-
lysis). Many of F. prausnitzii characteristics and the different effects of
the species sub-types will be later confirmed by mediation analyses.

In addition to microbial species composition we investigated
whether microbial functions significantly changed in response to the
dietary interventions, by quantifying pathways’ relative abundance at
baseline and comparing them to the endof the intervention, separately
for each diet. We observed seven gut pathways that changed solely in
the PPT diet, including a significant increase in β-(1,4)-mannan poly-
saccharide degradation, two sugar degradation pathways (D-fructur-
onate and β-D-glucuronosides), gluconeogenesis, fermentation
(anaerobic energy metabolism), nitrate reduction (an alternative to
producing nitric oxide from arginine), and putrescine biosynthesis
(generated from ornithine) (Bonferroni corrected p <0.05, Wilcoxon
paired signed-rank test). Notably, nitrate reduction has a positive effect
on diabetes, while putrescine contributes to its pathogenesis41–44.

We observed eleven gut pathways that changed solely in theMED
diet, including a significant increase in polysaccharide glycogen
degradation, sugar degradation (Bifidobacterium shunt), sucrose
biosynthesis, as well as purine ribonucleosides degradation, molyb-
dopterin biosynthesis, L-glutamine biosynthesis, and all three types of
C4 photosynthetic carbon assimilation cycle (NADP-ME, NAD-ME and
PEPCK). preQ0 biosynthesis and 6-hydroxymethyl-dihydropterin
diphosphate biosynthesis significantly decreased. Other than the
sugar-related pathways, we did not find known connections between
these pathways and diabetes.

On top of these results, we observed seven gut pathways that
significantly increased in both diets. Four of the pathways have to do
with amino acid biosynthesis (two L-arginine, L-cysteine and L-orni-
thine), two were related to sugar degradation (D-galacturonate, 4-
deoxy-L-threo-hex-4-enopyranuronate) and one has to dowith vitamin
B1, aka thiamin, biosynthesis. Supplementation of L-arginine,
L-cysteine and thiamin shows therapeutic effects45–48. Of note, thiamin
deficiency is associated with diabetes due to its direct impact on car-
bohydrate metabolism and its amplified renal clearance in diabetic
patients49. (Fig. 3c, Supplementary Fig. 1e, f, Source Data and Supple-
mentary Data 1, “Methods”).

Mediation analysis shows all three amino acids biosynthesis and
the nitrate reduction microbial pathways are mediating the effect of
the PPT dietary intervention on glycemic measurements (p < 0.05)
(Supplementary Figs. 2e, 3a, Supplementary Data 2, “Methods”). And
that 25 and 9 trajectories between the diet and metabolites or cyto-
kines are mediated by the significantly changedmicrobial pathways in
the PPT and MED groups, respectively (p <0.05). For example, trajec-
tories in the MED group include microbial preQ0 biosynthesis that
mediates the effect of dietary fibers on the cytokine ST1A1, and
microbial thiamin’s biosynthesis that mediates the effect of eating
snacks on 2-hydroxyphenylacetate and guanidino-succinate (Supple-
mentary Figs. 2f, 2g, 3b, c, Supplementary Data 2, “Methods”).

In the oral microbiome, of the broad measurements of richness,
diversity and human cell shedding, only diversity had a significant
increase in the PPT group and no significant changes were observed in
the MED group (PPT 6.18 ± 32.76 richness, p >0.05, 0.11 ± 0.50 diver-
sity, p < 0.05 and −2.78% ± 23.13 shedding, p >0.05, MED 1.15 ± 37.35
richness, p >0.05, 0.05 ±0.56 diversity, p > 0.05 and
−1.71% ± 23.63 shedding, p >0.05). In terms of oral species’ relative

abundance, no significant changes were found in the PPT group, while
a single species, Alistipes putredinis (Rikenellaceae family), had a sig-
nificant increase in the MED group. This species is negatively corre-
lated with OGTT in women with gestational diabetes mellitus (GDM)50.
(Supplementary Fig. 1g, Source Data and Supplementary Data 1,
“Methods”). In terms of oral microbial functions, a pathway of sucrose
degradation significantly decreased in the PPT group, and no sig-
nificant changeswere found in theMEDgroup. (Supplementary Fig. 1h,
Source Data and Supplementary Data 1, “Methods”). Even though the
oral microbiome is highly associated with hyperglycemia, at the
compositional levelwedidnotfindmajor changes in it as a result of the
dietary interventions, although there was a significant change in par-
ticipants’ glycemic status.

Metabolites
Metabolites concentration were measured in serum samples by
Metabolon using an untargeted liquid chromatography coupled with
mass spectrometry (LC–MS)51. In addition to the gut microbiome we
found the two diets had a big effect on participants’ serum metabo-
lites, by quantifyingmetabolites levels at baseline and comparing them
to the end of the intervention, separately for each diet. In participants
following the PPT diet, 84 metabolites significantly increased and two
significantly decreased (palmitoyl-linoleoyl-glycerol (16:0/18:2) [1]*
and palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]*) (Bonferroni corrected
p <0.05, Wilcoxon paired signed-rank test). Out of these 86 metabo-
lites, 45 are lipids, including 13 sphingomyelins, nine fatty acids, seven
fatty acid metabolism-related biochemicals, six steroids, five plasma-
logens and five denoted as “others”. In addition to the lipids, 11 amino
acids, four xenobiotics, and one carbohydrate (mannose), nucleotide
(3-aminoisobutyrate) and peptide (gamma-glutamyl-2-aminobutyrate)
were among the changedmetabolites. The 23 remaining biochemicals
are currently uncharacterized. Interestingly, nine of the increased
compounds contained butyrate, a short-chain fatty acid produced by
microbial fermentation of dietary fibers by species such as F. praus-
nitzii, the only species that increased in both diet groups. Butyrate has
positive effects on glucose homeostasis, thus increasing butyrate
levels directly or indirectly by enhancing butyrate-producing bacteria
such as F. prausnitzii is evaluated as a treatment strategy52–55.

In participants following the MED diet, 27 metabolites sig-
nificantly increased and nometabolites significantly decreased, a large
portion of these metabolites are known to associate with the Medi-
terranean diet56–58. These 27 metabolites include ten uncharacterized
biochemicals, seven lipids and six amino acids, alongwith a xenobiotic
(3-bromo-5-chloro-2,6-dihydroxybenzoic acid), peptide (HWESASXX),
nucleotide (dihydroorotate) and bilirubin. Bilirubin and five of its
degradation products significantly increased. Bilirubin is a breakdown
product of normal heme catabolism with antioxidant effects that is
negatively associated with diabetes and its complications. Hence,
attempts are made to utilize it for therapeutic purposes59–62.

Out of all the changed metabolites, three of the amino acids
(guanidino-succinate, 2-hydroxyphenylacetate and cysteine-
glutathione disulfide), two of the uncharacterized biochemicals (X −
12798 and X − 23665) and one xenobiotic (3-bromo-5-chloro-2,6-
dihydroxybenzoic acid) significantly increased in both diet groups.
(Fig. 3d, Supplementary Fig. 1i, j, Source Data and Supplementary
Data 1, “Methods”).

Cytokines
Cytokine levels were produced by Olink using qPCR proximity exten-
sion assay (PEA). We evaluated the effect of the diets on the immune
systembyquantifying cytokines levels atbaseline and comparing them
to the end of the intervention, separately for each diet. Among parti-
cipants on the PPT diet, one cytokine, stem cell factor (SCF), sig-
nificantly increased (Bonferroni corrected p <0.05, Wilcoxon paired
signed-rank test). Among participants on the MED diet, two cytokines,
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Axin 1 (AXIN1) and Sirtuin 2 (SIRT2) significantly increased. Notably,
SIRT2 was shown to inhibit gluconeogenesis63,64.

It should be noted that the cytokine data had the smallest sample
size, affecting the statistical power of the analysis. Therefore, we also
applied a more lenient multiple hypothesis correction method—false
discovery rate (FDR) with the same 0.05 alpha threshold. The FDR
method showed in the PPT group there was also significant increase in
chemokines CCL11 and CX3CL1 that are positively associated with
diabetes65,66, as well as in tumor necrosis factor (TNF) related
apoptosis-inducing ligand (TRAIL) that protects against the disease by
modulating the immune system67 (FDR corrected p <0.05, Wilcoxon
paired signed-rank test). In theMEDdiet, therewas significant increase
in STAM binding protein (STAMBP) and Sulfotransferase 1A1 (ST1A1).
To the best of our knowledge, these cytokines have not been previous
associated with glucose-homeostasis or diabetes. (Supplementary
Fig. 1k, l, Source Data and Supplementary Data 1, “Methods”).

In the context of the Mediterranean diet, AXIN1 is known to
increase tumor necrosis factor β1 (TGF-β1) which is associated with
protective effects of the diet68,69. STAMBP is part of the JAK-STAT
cascade that includes the phenol sulfotransferase ST1A1. And, the diet
is rich in polyphenols that activate SIRT270–72.

In summary, our analysis showsboth diets subsequently affect the
microbiome, metabolites and cytokines, and while some changes are
in the favorable direction, others indicate anunderlying progression of
the disease. The PPT diet resulted in greater change compared to the
MED diet, as expected for a diet that constitutes a bigger difference
from baseline. Some of the changes observed were previously asso-
ciated with hyperglycemia, while others represent novel findings, such
as the change in many unclassified species and uncharacterized bio-
chemicals. These novel findings can be used as early markers and
therapeutic targets for diabetes.

The microbiome mediates the diet’s effect
We conducted mediation analyses to determine whether the micro-
biome mediated the dietary interventions effect on glycemic, meta-
bolic and immune measurements. To this end, we took all of the
significantly changed features in each group and conducted a media-
tion analysis between the change in diet (predictor), the microbial
species (mediator) and theoutcome, adjusted for baseline age, sex and
body mass index (BMI).

In the PPT group, four gut species mediated the effect of the diet
(proteins,fibers, vitaminC, cholesterol, potassium and calcium)on the
glycemic measurements of time above 140 and %HbA1c (p <0.05).
Notably three of these four species are unclassified, of which one
unclassified species (species-level genome bin - SGB_4957) mediated
the effect of three dietary features (cholesterol, potassium and cal-
cium) on %HbA1c, and another unclassified species (SGB_15054)
mediated the effect of a single dietary feature (vitamin C) on both
glycemic measurements. F. prausnitzii (sub-type SGB_15342), the only
classified species, mediated the effect of dietary proteins on time
above 140. In the MED group, the effect of dietary vitamin B6 on time
above 140 was mediated by a different gut F. prausnitzii (sub-
type SGB_15333). (Fig. 4a, b, Supplementary Fig. 2a, b, Supplementary
Data 2, “Methods”).More on themediatory role of the gutmicrobiome
over the effect of diet on other clinical measurements can be found in
Ben-Yacov et al.73.

We also investigated whether microbial species mediated the
effects of diet on serum metabolites. In the PPT group, seven gut spe-
cies, two F. prausnitzii sub-types (SGB_15316 and SGB_15342), and five
unclassified species, mediated the effect of ten dietary features (%daily
caloric target, lipids, proteins, mono un-saturated fatty acids, poly un-
saturated fatty acids, potassium, folate, vitamin B12, C and E) on 20
metabolites (25 trajectories in total). For example, an unclassified spe-
cies (SGB_4964) mediated the effect of dietary vitamin B12 on three
sphingomyelins and twouncharacterizedbiochemicals, while twoother

unclassified species (SGB_15346 and SGB_15254) mediated the effect of
dietary poly un-saturated fatty acids and proteins on two butyrate-
containing compounds, respectively (p <0.05). In the MED group, only
one unclassified gut species (SGB_4714) mediated the effect of dietary
thiamin on three bilirubin degradation products. (Fig. 4c, d, Supple-
mentary Fig. 2c, d, Supplementary Data 2, “Methods”).

Finally, we examined whether microbial species mediated the
effects of diet on cytokines. In the PPT group, F. prausnitzii (sub-type
SGB_15342) mediated the effect of dietary lipids and “nuts and seeds”
on CX3CL1 and CCL11, respectively, and F. plautii mediated the effect
of dietary whole grains on SCF. One unclassified species (SGB_15267)
mediated the effect of dietary fibers and vitamin E on TRAIL, while
another unclassified species (SGB_4957) mediated the effect of dietary
thiamin on TRAIL (p < 0.05). In the MED group, we did not find any
suchmediating effects on cytokines. Notably, the mediatory effects of
themicrobiomewere observed in all tested cytokines in the PPT group
(n = 4) but in none of the tested cytokines (n = 4) in the MED group.
(Fig. 4c, Supplementary Fig. 2c, Supplementary Data 2, “Methods”).

Overall, the results indicate that the microbiome plays a mediat-
ing role in the effect of the dietary interventions on glycemic, meta-
bolic and immune measurements, and that taxonomically-similar
species can have different mediatory roles.

The change in microbiome composition is associated with the
change in metabolites
We next asked whether the changes observed in the gut microbiome
and serummetabolites are associated with each other, independent of
their significant level of change, nor their found mediatory role. Since
we did not have enough samples to train our ownmodel, we utilized a
model previously trained to predict serum metabolites from gut
microbiome species composition in a single time point observational
cohort of healthy adults, to predict the change in metabolites in our
interventionary cohort7,74. Model’s serum metabolites predictions
were produced from the pre- and post- intervention gut microbiome
species relative abundance, and then reduced from each other to
quantify change. The model obtained good results (Pearson r = 0.35
p < 10−8 between the observed and predicted change of participants
from both diet groups, on metabolites with R2 >0.05 in the training
set), with predictions being better for the PPT diet (r = 0.41 p < 10−5)
compared to the MED diet (r = 0.18 p <0.05), despite the latter being
more similar to the diet of the observational cohort (the training set).
Our results indicate that the change in gut microbiome composition
explains a significant portion—12.25% of the variance of change in 127
metabolites that were previously found to be associated with the gut
microbiome, including 40 uncharacterized biochemicals that can now
potentially be better identified by the microbes associated with their
change. For metabolites the model could not predict well in the
training set (R2 < 0.05), meaning they were not found to be associated
with the gut microbiome, associations in this interventionary cohort
still exist but to a much lower extent—2.99% explained variance (par-
ticipants from both diet groups r = 0.17 p < 10−10, PPT r = 0.22 p < 10−9,
MED r =0.07 p >0.05). These findings suggest a strong association
between changes in the gut microbiome composition and serum
metabolites. (Fig. 5, Supplementary Data 3, “Methods”).

The oral microbiome is genetically more dynamic than the gut
microbiome
Our study is unique in having both oral and gut microbiome samples
before and after dietary interventions. Our results show that the gut
microbiome experienced greater change at the compositional level
compared to the oral microbiome. To further investigate the differ-
ence between the environments, we assessed the genetic level of
microbial strains, as two strains of the same species can differ in their
genetic makeup by up to 5%14, leading to distinct phenotypes and
effects on the host that can be missed by compositional analyses.
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We defined a strain replacement event for each species based
on the genetic similarity between the pre- and post- intervention
samples. This measurement could be aggregated at the participant
level, indicating the percentage of species replaced in each indivi-
dual, or at the species level, indicating the percentage of individuals
who had a particular species replaced (out of those who had it). We
did not find a statistically significant difference between the diets in
the gut nor the oral environments (p > 0.05, Mann–Whitney U test).
Accordingly, we aggregated the two diets together and found that
the oral microbiome was significantly more genetically dynamic

than the gut microbiome, both at the participant and species levels
(p < 10−23, Mann–Whitney U test). Since the gut environment is
richer than the oral environment (for example, before the inter-
vention participants had 200.47 ± 57.95 species in the gut and
167.65 ± 34.27 species in the oral cavity p < 10−9, Wilcoxon paired
signed-rank test) this result could stem from different quantities
available for comparison. However, the findings held even when
controlling for the differences in quantity between the environ-
ments (p < 0.05 in all bins, Mann-Whitney U test). (Fig. 6, Supple-
mentary Data 4, “Methods”).

Fig. 4 | Themicrobiomemediates the diet’s effect. Each alluvial plot shows paths
from diet to outcomes that are mediated by oral and gut microbial species (two-
sidedbootstrap p <0.05). The outcomes in (a) and (b) are glycemicmeasurements,

and in (c) and (d) the outcomes are metabolites and cytokines. (a) and (c) Show
paths of the “PPT diet”, while (b) and (d) show paths of the “MED diet”. Source data
are provided as a Source Data file.
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Additionally, we observed that the richness of the oral environ-
ment correlated with increased stability of oral strains (Pearson
r = −0.49 between the percentage of strains replaced and environ-
ment’s richness, p < 10−10) and that as the prevalence of an oral species
increased, its strains tended to bemore replaced (r = 0.43 between the
percentage of strains replaced and species prevalence in the popula-
tion, p < 10−11). In the gut environment, only the first trend was
observed and to a lesser extent (r = −0.22, p < 0.005 and r = 0.05,
p >0.05, respectively). These results suggest that richer environments
are more stable both by the correlation to the number of species in
each environment and by comparing the trend’s magnitude in the oral
environment to that of the richer gut environment (r = −0.49 versus
r = −0.22). The higher strain dynamics of prevalent oral species can be
explainedby their increased exposure to competing strains fromother
people, and the lack of trend seen in the gut by our constant exposure
toother people’s saliva but almost no exposure toother people’s feces.
In addition, even if there is exposure to gut-colonizing species, they do
not necessarily survive the acidic environment in the stomach on
their way to the intestine.

Of the species present in at least 50 participants, the three most
replaced species in the gut environment were Roseburia intestinalis,
Roseburia inulinivorans and an unclassified clostridium species
(SGB_4910), with replacement rates of 30.85–20.45% of participants. In
the oral environment the most replaced species were Actinomyces
naeslundii, Fusobacterium nucleatum and Leptotrichia buccalis, with
much higher replacement rates of 58.59–52.25% of participants. R.
intestinalis and R. inulinivorans are known to metabolize human diet
components and produce short-chain fatty acids, especially butyrate,
part of nine compounds that significantly increased in the PPT group,
influencing colonic immunity, inflammation and energy homeostasis.
Modifications of these two species are linked with diabetes, and R.
intestinalis potential therapeutic role was demonstrated in various
studies75–79. A. naeslundii is known for its various strains differing in
their capabilities and its ability to modulate glucose and lactate meta-
bolism according to its surroundings. For example, it does so accord-
ing to the carbohydrate concentration, which significantly changed in
this study. In certain conditions in the gingival sulcus (space between a
tooth and the surrounding gingival tissue) one of its metabolic end-
products, succinate, disturbs the host immune system80. Guanidino-
succinate is one of the few metabolites that increased in both diet
groups. A. naeslundii is negatively associated with pre-diabetes81 while
F. nucleatum is positively associated with diabetes. F. nucleatum is a
main perio-pathogenic bacteria that induces chronic inflammation of

periodontal tissue around the teeth and alveolar bone loss. This bac-
teria induces peptide secretion that modulates the immune response
and certain strains of this species inflict periodontal diseases such as
gingivitis andperiodontitis, common indiabetes. Inmice, F. nucleatum-
induced periodontitis enhances insulin resistance82–85.

We checked whether the microbiome also has a mediatory role at
the level of strains. To this end we pulled both diets’ significantly
changed features and tested whether the diet’s effect on glycemic
measurements was mediated by the gut microbiome genetic differ-
ence, or separately by the oral microbiome genetic difference. We
found oral A. naeslundiimediated the effect of “drinks” on time above
140 (p <0.05). (Supplementary Figs. 2h, 4a, Supplementary Data 2,
“Methods”).

Additionally, we checked whether the microbiome genetic dif-
ference has a mediatory role in the diet’s effect on metabolites and
cytokines. We found 56 trajectories in the gut and 70 in the oral
environment, that were mediated by six gut species, R. intestinalis,
Eubacterium rectale and four unclassified species (SGB_5075,
SGB_4820, SGB_4914 and SGB_15254), and by six oral species, A. nae-
slundii, Two sub-types of F. nucleatum (SGB_6007 and SGB_6014),
Actinomyces oris, Streptococcus oralis and an unclassified species
(SGB_6055), out of the ten most replaced species in each environ-
ment tested. For example, gut R. intestinalis mediated the effect of
caffeine on six sphingomyelins and a butyrate containing compound
(3-aminoisobutyrate), and oral A. naeslundii mediated the effect of
“drinks” on two other butyrate containing compounds (2 S,3R-dihy-
droxybutyrate and gamma-glutamyl-2-aminobutyrate) (p <0.05).
(Supplementary Figs. 2i, 2j, 4b, c, Supplementary Data 2, “Methods”).

In summary, our results show that while the gut microbiome
experienced greater compositional change as a result of the dietary
intervention and disease status, the oral microbiome was more
dynamic at the genetic-strain level. This genetic level has a mediatory
role in the diet’s effect on glycemic, metabolic and immune mea-
surements. The strain dynamics was negatively associated with envir-
onmental richness and positively associatedwith species prevalence in
the population. In both the oral and gut environments, some of the
most genetically dynamic species have been previously associated
withdiabetes, perhaps becauseof increasingdominanceofpathogenic
strains inflicting or inflicted by the hyperglycemia.

Discussion
In this work, we evaluated the impact of two different dietary inter-
ventions on the oral and gutmicrobiome,metabolites and cytokines of

Fig. 5 | The change inmicrobiome composition is associatedwith the change in
metabolites. a Well predicted serum metabolites by the gut micro-
biome composition (R2 > 0.05 in the training set) and (b) poorly predicted serum
metabolites (R2 < 0.05 in the training set)meanobserved change (x-axis) andmean
predicted change (y-axis) over this study participants per metabolite (dot).

Stratified by the dietary intervention, “PPT diet” in orange and “MED diet” in blue,
and sized in (a) by the coefficient of determination (R2) of each metabolite in the
training set. r, p in the legend—Pearson correlationbetween themeanobservedand
mean predicted change in each diet.
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200 pre-diabetic individuals. Both diets, a personalized postprandial
glucose-targeting (PPT) diet and the standard of care Mediterranean
(MED) diet, have previously been shown to positively impact glucose
status15.

Participants assigned to the PPT diet showed significant changes
in 19 gutmicrobial species, 14 gut and one oral microbial pathways, 86
serum metabolites and four cytokines. Participants assigned to the
MEDdiet showed significant changes in five gut and one oralmicrobial
species, 18 gut microbial pathways, 27 serum metabolites and four
cytokines. Some of these changes were previously linked with hyper-
glycemia, such as gut species F. prausnitzii that is negatively associated
with insulin resistance, and five of its sub-types significantly increased
among this study participants36–40. Another example is vitamin B1,
aka thiamin, biosynthesis gut microbial pathway that significantly
increased in both diet groups and has a direct impact on carbohydrate
metabolism49. The PPT group showed an increase in nine butyrate-
containing compounds that have positive effects on glucose-home-
ostasis, and in the cytokine TRAIL that protects against diabetes by
modulating the immune system52–55,67. The MED group showed an
increase in bilirubin and five of its degradation products, which is
negatively associated with diabetes, and in the cytokine SIRT2 that
inhibits gluconeogenesis59–64. Other changes that were not previously

associated with hyperglycemia, especially of unclassified species and
uncharacterized biochemicals, can be used as new early markers for
diabetes.

Mediation analyses showed the gut microbiome composition
both at the level of species and at the level of pathways modulates the
diet’s effect on glycemic, metabolic and immune measurements. For
example at the glycemic level, F. prausnitzii (sub-type SGB_15342)
mediated the effect of dietary proteins on the daily time of blood
glucose levels above 140mg/dL (“time above 140”) in the PPT group,
and in the MED group a different F. prausnitzii (sub-type SGB_15333)
mediated the effect of dietary vitamin B6 on the same glycemic mea-
surement, indicating the possibility of a strain level difference. At the
metabolites level, the effect of dietary vitamin B12 on sphingomyelins
wasmediated by an unclassified species (SGB_4964) in the PPT group,
and the effectof dietary thiaminonbilirubindegradationproductswas
mediated by another unclassified species (SGB_4714) in the MED
group. At the cytokines level, in the PPT group F. prausnitzii (sub-type
SGB_15342) mediated the effect of dietary lipids and “nuts and
seeds” on CX3CL1 and CCL11, respectively. One unclassified species
(SGB_4957) mediated the effect of dietary thiamin on TRAIL, and
another unclassified species (SGB_15267) mediated the effect of diet-
ary fibers and vitamin E on TRAIL. In the MED group we did not find

Fig. 6 | The oral microbiome is genetically more dynamic than the gut micro-
biome. Normalized histograms of the percentage of strains replaced (a) per par-
ticipant and (b) per species. Percentage of strains replaced (c) per participant and
(d) per species (y-axis), binned by the number of species or participants available
for comparison, respectively (x-axis). Boxes show the quartiles of the data (0.25,
0.50, 0.75) while the whiskers extend to 1.5 of the inter quartile range, points
beyond the whiskers are considered to be outliers. All panels are stratified by the

environment, “Oral” in green and “Gut” in pink. p below the legends in the upper
panels and on top of the boxes in the lower panels is between the oral and gut
percentage of strains replaced (two sidedMann–Whitney U test). r, p in the legend
—Pearson correlation between the percentage of strains replaced and the quantity
available for comparison in each environment. n below the boxplot—number of
participants or species in each bin and environment.
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such mediating effects on the immune system. These results can be
utilized for novel therapeutics modalities by future mechanistic
studies.

A predictive model also demonstrated the significant relationship
between changes in gut microbiome composition and changes in
serum metabolites by showing that 12.25% of the variance in 127
metabolites can be explained by changes in species composition.

We find that while the gut microbiome was more dynamic than
the oral microbiome at the compositional level in this study, the
opposite was true at the strain-genetic level. High genetic dynamics of
microbial species was found to be negatively associated with envir-
onmental richness and positively associated with oral species pre-
valence. This may be due to higher exposure to competing strains,
such as pathogenic F. nucleatum strains that induce periodontitis and
enhance insulin resistance85. We show this genetic level also has a
mediatory role in the diet’s effect on various measurements. For
example, the species with the most strain replacements in the gut
environment R. intestinalis mediated the effect of caffeine on sphin-
gomyelins and butyrate, and the corresponding species in the oral
environment A. naeslundiimediated the effect of “drinks” on butyrate
and the glycemia.

In conclusion, our study shows dietary interventions can affect
the microbiome, cardiometabolic profile and immune response of the
host and that these factors are well associated with each other. In the
future, diets such as the personally tailored postprandial glucose-
targeting one in this study, which takes into account microbiome
features, could be designed to affect the microbiome and inflict
desired metabolic outcomes. This can be especially useful for
microbiome-related metabolites such as bilirubin that is beneficial but
is difficult to synthetically synthesize and efficiently deliver62. Dietary
interventions, as effective as they are, require high motivation and
adherence that do not always exist, methods such as probiotics and
fecal microbiota transplants (FMTs) may also be used for the same
purpose. Furthermore, probiotics and FMTs can be superior to dietary
intervention in affecting the microbiome, as they allow the introduc-
tion of specific strains with desired capabilities.

Methods
Study design
The study was a biphasic, randomized, controlled, single-blind dietary
intervention. Phase one included a six month intervention that com-
pared two diets targeting glycemic control, while phase two included a
sixmonth follow-up period. Eligible participants were invited for a visit
at the trial’s site (Weizmann Institute of Science) during which they
were informed in detail of all study procedures and requirements. After
completion of the run-in stage, participants were randomly assigned in
a 1:1 ratio to the PPT or MED diets. Covariate adaptive randomization
with minimization was performed to ensure minimal differences
between the groups in six prognostic baseline characteristics: age, sex
(self-reported), weight, BMI, %HbA1c and fasting plasma glucose
(FPG)86. Participants and measurers were blinded to arm assignment,
while the investigators and dietitians were not. At the end of inter-
vention, dietary assignment was revealed, and participants were asked
to continue following their respective diets for six additional months.
Participants in both diet groups continuously received dietary advice
by certified dietitians. Individual dietary follow-up meetings with a
dietitian occurred monthly on site during the intervention period and
twice during the follow-upperiod. Between the in-person visits, interim
contact with the dietitian (via telephone or e-mail) was available for all
participants. For more information please see Ben-Yacov et al.15

Participants
Participants enrollment and recruitment occurred between January
2017 and January 2019. The date of final follow-up was March 2020.
Participants included in the study met two glycemic criteria for pre-

diabetes as defined by the 2010 American Diabetes Association
guidelines: (1) GPF levels between 100 and 125mg/dL (5.6 and
6.9mmol/L) and (2) HbA1c level between 5.7 and 6.5% (39 and
48mmol/mol). Other inclusion criteria were age of 18–65 years and
capability to work with a smartphone application on a daily basis (for
dietary intake logging). Key exclusion criteria were any use of diabetes
or weight loss medications, use of antibiotics three months before
enrollment, diagnosed chronic diseases, or chronic use ofmedications
that affect glucose/energy metabolism or HbA1c. The recruitment
process relied primarily on self-assignment of volunteers from Israel
who self-reported themselves as having pre-diabetes on the trial
website. Registrants were screened for the above eligibility criteria
basedonaquestionnaire and if qualifiedunderwent a screening visit to
determine final eligibility at the central medical laboratory of the trial
(AMC Medical Center Laboratory, Ltd.). For more information please
see Ben-Yacov et al.15

Diets
Dietary recommendations for both groups were administered as
menus, withmeals selected from ameal bank generated for this study.
The selection of meals for the menus relied on the diet principles in
each group. Menus were designed with a variety of foods and meal
options to allow for diversity, guarantee a balanced diet, and suit the
participant’s personal tastes and preferences. Upon inquiring, parti-
cipants also received recommendations or discouragement to con-
sume any other desired food or meal outside their menus, depending
on the principles of the diet arm towhich theywere assigned. Since the
primary goal of this trial was to test the effect of diet composition on
glycemic control, independent of weight loss, no total calorie restric-
tion was advised, and no additional physical activity was promoted.
Menus were designedwith a daily caloric target thatwas personally set
to match each participant estimated energy expenditure.

Recommendations in the MED diet were 45–65% of energy intake
from carbohydrates, 15–20% from protein and <35% from fat, with
<10% from saturated fat. Meal selection for menus was based on meal
scorings of our meal bank performed by four external dietitians (not
part of the study team), with attention to personal dietary preferences
as reported by participants on a food preferences questionnaire.
Recommendations in the PPT diet were tailored to participants based
on their personal predicted glucose responses7. Meal selection for
menus was based on a scoring system developed for this study and
applied to our meal bank such that meals were personally scored for
each participant based on postprandial glycemic response (PPGR)
prediction rather thanon uniform scoring as done in theMEDarm. For
more information please see Ben-Yacov et al.15

Participants were asked to record their full dietary intake in real
time using a designated smartphone application called “Personalized
Nutrition Project” version 1. Each food item within every meal was
logged along with its weight or portion units by selecting it from a
database of over 7,000 foods with full nutritional values. Food entries
were aggregated to a daily level according to their nutritional values,
food categories were defined by a team of dieticians. Days with unu-
sual reports were excluded according to the following criteria: less
than 60% or over 240% of personal daily caloric target as it is likely the
consequence of under reporting or erroneous reports, respectively, or
if over 20%of the calories reportedwere not accounted for by the food
database. We ended up with 10.26 ± 2.74 days per participant in the
two-week profiling period and 114.35 ± 48.25 in the six month inter-
vention period. Lastely, we used daily values mean in each period for
analysis. Dietary data went through only processing steps 3 and 4
described below, we ended up with 398 samples and 45 features.

Data processing
Oral and gut microbiome compositional species and pathways data,
serum metabolites and cytokines went through the same processing
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steps which included: (1) Log 10 transformation (2) Robust standardi-
zation using median and standard deviation calculated over 90% of the
central distribution (3) Outliers clipping to five standard deviations
from the mean (4) Features filtering out, if they existed in less than
20 samples (5) Missing values imputation with feature’s minimal value
only if there was a value in participant’s complementary sample (pre- or
post- intervention) (6) Batch correction if one of the first five principal
components (PCs) explained at least 5% of the data’s variance and was
significantly associatedwith a batch (p <0.05,Mann–WhitneyU test), in
a positive case it was inversely transformed and reduced from the data.

Serum samples
Blood draws were done at the trial’s site (Weizmann Institute of Sci-
ence) or at the central medical laboratory of the trial (AMC Medical
Center Laboratory, Ltd.).

Metabolite concentrations were measured in serum samples by
Metabolon using an untargeted liquid chromatography coupled with
mass spectrometry (LC–MS) on 20/03/202051. Measurements were
calculated based on normalized values in terms of raw area counts, 2
PCs were reduced and we ended up with 312 samples and 1,095 fea-
tures. As halogenated molecules in humans are very uncommon,
according to a metabolites expert the “3-bromo-5-chloro-2,6-dihy-
droxybenzoic acid” should be taken with caution.

Cytokine levels were produced by Olink using qPCR proximity
extension assay (PEA) on 26/06/2020. Levels were presented as nor-
malized protein expression (NPX) values in Olink Proteomics’ arbitrary
unit before the data processing steps described above, 2 PCs were
reduced and we ended up with 306 samples and 76 features.

Microbiome samples
Participants provided fecal samples using an OMNIgene-Gut stool
collection kit (DNA Genotek), and subgingival plaque samples were
collected by a dentist using the same collection kit. Genomic DNA was
purified using PowerMag Soil DNA isolation kit (MoBio) optimized for
Tecan automated platform, and shotgun sequenced on Illumina
NextSeq 500 as single-end 75 base pairs (bp) reads, or on NovaSeq
6000 platform as single-end 100bp reads. Reads were then processed
with Trimmomatic0.38 to remove adapters and filtered by quality
(parameters: -phred33 ILLUMINACLIP:<adapter file > :2:30:10 SLI-
DINGWINDOW:6:20 CROP:75 MINLEN:65 for 75 bp and CROP:100
MINLEN:90 for 100 bp)87. Human DNA was detected by Bowtie2
mapping to hg19 and removed from downstream analyses88.

Species composition was calculated by two steps. In the first step
non-human reads were mapped to a subset of Pasolli et al. representa-
tive genomes using Bowtie288,89. The subset representative genomes
were of SGBs that had at least five genomes in them. SGBs were tax-
onomically labeled by a majority vote of species label reference gen-
omespresent in thebin,whennoreferencegenomeswerepresent in the
species-level bins, a higher taxonomic level was assigned. For more
information about the genomes and labeling process please see Pasolli
et al.89. In the second step species relative abundance was estimated by
the mean coverage of the 50% most densely covered areas of each
species, consideringonly uniquelymapped reads. Formore information
about this unique relative abundance (URA) technique version 0 please
see Rothschild et al.90 (parameters: [min_mapped_to_retain=1M reads,
num_mapped_to_subsample=8M reads] for 75 bp gut samples, [0.5M
reads, 4M reads] for 75 bp oral samples, [1M reads, 5M reads] for
100bp gut and [0.5M reads, 2.5M reads] for 100bp oral).

No PCswere reduced from the gut compositional data, threewere
reduced from the oral compositional data, we ended up with 378 gut
sampleswith 605 features, and 328 oral sampleswith 336 features. 77%
of gut species and 59% of the oral species could not be classified at the
species level since no reference genome was present in the bin.

Shanon alpha diversity and richness were calculated before the
data processing stages listed above. Human cell shedding was

computed as the percentage of human reads filtered out of all reads
that passed quality control.

Microbial functions were calculated using MetaCyc24 pathways
by HUMAnN3, Bowtie2, DIAMOND2 andMetaPhlAn491–94. No PCs were
reduced from the functional data, we ended up with 378 gut samples
with 380 features, and 328 oral samples with 311 features.

Feature analysis
We performed statistical tests to compare pre- and post- intervention
samples, separately for each diet. Statistical tests were performed only
on features that had at least 20 unique values in the tested group,
unique as to not count the imputed minimal values more than once.

Mediation analysis
We conducted mediation analyses only on significantly changed fea-
tures in each group using pingouin (parameters: seed=42, covar=[ba-
seline age, sex and BMI]). The diet (separately for PPT and MED) was
the predictor, the oral and gutmicrobiome (species or pathways) were
the mediators and glycemic measurements, or metabolites and cyto-
kines were the outcomes. The change in predictor, mediator and
outcome values were used. P-values were obtained using two-sided
bootstrap, and a significant mediating effect was determined if the
predictor had a significant effect on the mediator (M ~ X) and the
mediator had a significant effect on the outcomewhile considering the
predictor (Y ~ X +M).

In the strain mediation analyses the diets (PPT and MED) were
combined and the environments (oral and gut) were separated since
no significant differenceswere foundbetween the diet groups in terms
of genetic dissimilarity. The diet (together for PPT and MED) was the
predictor, the microbial strains (in the oral or gut environment) were
the mediators and glycemic measurements, or metabolites and cyto-
kines were the outcomes. Since the genetic dissimilarity measurement
lacks direction (negative or positive), the absolute change inpredictor,
mediator and outcome values were used. Out of the species that exist
in over 50 participants, the top ten most strain-replaced species were
tested in the analysis.

Model analysis
We used a model published by Bar et al. that was trained to predict
serummetabolites from the gut microbiome species composition in a
single time point observational cohort to predict the change in
metabolites in our interventionary cohort7,74. Model’s metabolite pre-
dictions were produced from the pre- and post- intervention micro-
biome samples, and then reduced from each other to quantify change.

Strain analysis
We used the same mapping described above. Reads were piled up to
obtain per-position variant information for every detected species.
Sub-species genetic dissimilarity was calculated as normalized pair-
wise distance, i.e. the number of positions that had no common alleles
out of the number of comparable positions between two samples for
each species. A comparison of a species between two samples was
conducted if a minimum of 20K overlapping positions with at least
three reads were available. Low dissimilarity values were clipped to 1/
20K which is the method’s detection threshold. A microbial strain
replacement was defined for each species as a case where the intra-
person genetic dissimilarity between the pre- and post- intervention
samples exceeds the lower 5% distribution of the inter-personal
genetic dissimilarity of all the compared samples of a species. Corre-
lations in the results section are between the quantity available for
comparison and the percentage of strains replacements.

Statistics
All measurements were taken from distinct samples. We used non-
parametric rank tests because we could not assume normality, and
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chose theWilcoxon paired signed-rank test overMann–Whitney U test
whenever possible to preserve statistical power. A two-sided alpha
significance level of 0.05 was used in all tests with Bonferroni correc-
tion for multiple hypotheses when required. There was one exception
where we used FDR correction for multiple hypotheses and it was
clearly stated. Tests statistics can be found in Supplementary Data 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. It includes the diet,
microbiome, metabolites and cytokines data generated in this study.
The raw microbiome samples generated in this study have been
deposited in the European Nucleotide Archive (ENA) under accession
code PRJEB64861. External datasets used in this study are human
genome 1988, microbial genomes by Pasolli et al.89, and microbial
pathways by MetaCyc2491.

Code availability
Dietary data was collected using a designated smartphone application
called “Personalized Nutrition Project” (version 1). Microbiome sam-
ples were processed using the following programs: URA0, Trimmo-
matic0.38, Bowtie2, HUMAnN3, DIAMOND2 and MetaPhlAn4.
Computational analysis was performed in python (v3.7) using the fol-
lowing packages: numpy (v1.21.0) and pandas (v1.2.5) for data pro-
cessing, scipy (v1.7.0), mne (v0.23.0), statannot (v0.2.3) and pingouin
(v0.5.3) for statistical analyses, matplotlib (v3.4.3), seaborn (v0.12.0)
andplotly (v4.5.4) for creatingfigures. The code is deposited inhttps://
github.com/saarshoer/Pre-diabetes.git (version 1)95.
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