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Abstract

The mutation rate plays an important role in adaptive evolution. It can be modified by mutator and anti-mutator alleles. Recent empirical 
evidence hints that the mutation rate may vary among genetically identical individuals: evidence from bacteria suggests that the muta
tion rate can be affected by expression noise of a DNA repair protein and potentially also by translation errors in various proteins. 
Importantly, this non-genetic variation may be heritable via a transgenerational epigenetic mode of inheritance, giving rise to a mutator 
phenotype that is independent from mutator alleles. Here, we investigate mathematically how the rate of adaptive evolution is affected 
by the rate of mutation rate phenotype switching. We model an asexual population with two mutation rate phenotypes, non-mutator and 
mutator. An offspring may switch from its parental phenotype to the other phenotype. We find that switching rates that correspond to so- 
far empirically described non-genetic systems of inheritance of the mutation rate lead to higher rates of adaptation on both artificial and 
natural fitness landscapes. These switching rates can maintain within the same individuals both a mutator phenotype and intermediary 
mutations, a combination that facilitates adaptation. Moreover, non-genetic inheritance increases the proportion of mutators in the 
population, which in turn increases the probability of hitchhiking of the mutator phenotype with adaptive mutations. This in turns facil
itates the acquisition of additional adaptive mutations. Our results rationalize recently observed noise in the expression of proteins that 
affect the mutation rate and suggest that non-genetic inheritance of this phenotype may facilitate evolutionary adaptive processes.
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Introduction
Non-genetic inheritance of a mutator phenotype
Mutators—individuals in a population with an above-average mu
tation rate—often arise spontaneously during evolution (Wielgoss 
et al. 2013). Mutators may facilitate adaptation as they allow a fas
ter exploration of the space of mutations. Yet, because there are 
more deleterious than beneficial mutations (Gordo et al. 2012), 
mutators become associated with a higher mutational load com
pared to non-mutators (Kimura 1967; Kimura and Maruyama 
1966). The mutator state is commonly thought to be stably genet
ically inherited over generations, as a result of, for example, in
activating mutations in DNA mismatch repair genes (Le Bars 
et al. 2013; Matic 1997; Wielgoss et al. 2013) or in DNA polymerase 
genes (Ramiro et al. 2020).

In contrast, the possibility of non-genetic inheritance of the 
mutation rate has received little attention. It has been suggested 

that transient mutators could arise, for example, as a result of a 

translation error in DNA repair proteins that could lead to a very 

strong mutator phenotype (Ninio 1991). This mutator phenotype 

could be inherited for a few generations via cytoplasmic inherit

ance of faulty proteins, despite not being encoded in the genotype. 

In this scenario, an individual’s mutation rate can increase for a 

few generations, generating beneficial mutations without a long- 

term genetic commitment to an elevated mutation rate and the 
accumulation of deleterious mutations it entails. Indeed a quan
titative analysis has suggested that most adaptive mutations 
that appear in evolving populations could be due to transient, ra
ther than genetically inherited mutators (Rosenberg et al. 1998).

Accumulating empirical evidence suggests that the mutator 
phenotype can be non-genetically inherited. Translation errors 
occur in genes involved in DNA repair and replication (Mordret 
et al. 2019), potentially realizing the scenario proposed by (Ninio 
1991). Moreover, a mechanism for epigenetic inheritance of the 
mutation rate in Escherichia coli has been described by (Uphoff 
et al. 2016). This mechanism relies on cytoplasmic inheritance of 
Ada, a DNA repair protein induced under high pH. Each cell car
ries, on average, a single Ada molecule (Uphoff et al. 2016). 
Therefore, during cell division a substantial proportion of daugh
ter cells inherit zero Ada molecule, and thus experience an ele
vated mutation rate. Hence, stochastic fluctuations in Ada copy 
number can affect the mutation rate. Furthermore, Ada is posi
tively auto-regulated through a mechanism that can intensify 
the difference in its active copy number, and hence mutation 
rate, among genetically identical cells.

A recent study focused on the extreme case where the inherit
ance of mutation rates between parents and offspring is com
pletely severed. In this context, there exists no discernible 
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relationship between the mutation rates of the parent generation 
and those of their offspring (Bonhoeffer et al. 2016). These authors 
found that fluctuations in the mutation rate increase the 
population mean fitness by producing a subpopulation with 
below-average mutation rate when the population is well- 
adapted, and a subpopulation with above-average mutation rate 
when there is a potential for further adaptation. In a subsequent 
work, it has been suggested that this variation in mutation rate 
could increase population evolvability (Vincent and Uphoff 2021).

The inheritance mode of the mutation rate
We suggest that the mode of inheritance of the mutation rate lies 
on a spectrum: at one end, mutator alleles that arise as rare mu
tations in genes involved in DNA repair or replication are inherited 
with very high fidelity, with little to no stochastic effects; on the 
other end of the spectrum, frequent and stochastic fluctuations 
in concentrations of proteins that affect the mutation rate may 
be of such magnitude that there is effectively no correlation be
tween parent and offspring mutation rates; and in the middle of 
the spectrum, is a range that we define here to be “non-genetic 
modes of inheritance”, e.g. of the type that can be attained 
through cytoplasmic inheritance of proteins, or transgenerational 
epigenetic inheritance of fluctuations in protein concentrations. 
Such phenomena may produce a partially heritable mutator 
phenotype that is transmitted across several cellular generations 
at an intermediate fidelity. Another potential state is aneuploidy, 
which arises at rates much higher than genetic mutations, and 
may produce a significant mutator phenotype (Sheltzer et al. 
2011). This spectrum of inheritance of the mutation rate is a spe
cial case of the adaptation spectrum of inheritance (Yona et al. 
2015), which ranks modes of inheritance from high fidelity, such 
as genetic inheritance, to very transient, such as physiological 
changes.

Overview
Here, we investigate multi-step adaptive evolution with different 
modes of inheritance of the mutation rate. We have developed a 
Wright–Fisher model with explicit inheritance of two mutation 
rate phenotypes: non-mutator and mutator. The main para
meters of our model are the switching rate from the non-mutator 
to the mutator phenotype and the, potentially different, 
reverse-switching rate from the mutator to the non-mutator 
phenotype. We also examine several values of the non-mutator 
mutation rate and the fold-increase in the mutator’s mutation 
rate and explore several fitness landscapes.

We estimate the switching rates for three empirically described 
systems for non-genetic inheritance of the mutation rate: aneu
ploidy, the Ada protein in E. coli, and cytoplasmic inheritance of 
mistranslated proteins, and find that these estimates correspond 
to high adaptation rates on various landscapes.

We suggest that the combinations of switching rates that lead 
to high adaptation rates fulfil two conditions. First, both switching 
rates, and especially the switching rate from non-mutator to mu
tator need to be high enough to ensure a high frequency of muta
tors at mutation-selection balance, and second, low enough so 
that the association within the same individuals between the mu
tator and the mutations it generates is maintained. In this case, 
individuals that already acquired a portion of the mutations 
needed towards a high fitness genotype are more likely to keep 
the mutator phenotype that is needed for the acquisition of the 
additional missing mutations. Moreover, additional combinations 
of values for the two switching rates lead to high adaptation rates 
on smooth landscapes (i.e. without “valleys” and only a single 

“peak”). These combinations increase the probability of hitchhik
ing of the mutator phenotype with beneficial mutations, thus fa
cilitating the acquisition of additional beneficial mutations.

Models and methods
We consider an asexual haploid population with non-overlapping 
generations and constant population size. We model the effects of 
mutation, phenotypic switching, natural selection, and genetic 
drift using a Wright–Fisher (WF) model (Otto and Day 2019). An 
introduction to the Wright–Fisher model can be found in 
Supplementary Section a.

In our models, individuals are fully characterized by their mu
tation rate phenotype, either non-mutator (m) or mutator (M), and 
their genotype, which determines their fitness. The genotype is 
specified differently in each fitness landscape (see below). The 
combination of these two characteristics is termed pheno- 
genotype (Feldman and Cavalli-Sforza 1977) to emphasize that it 
is defined through a combination of a non-genetic and a genetic 
component, namely the mutator phenotype and genotypic muta
tions. The frequency of individuals with mutator phenotype z and 
genotype g is denoted by fzg. In all cases we assume no recombin
ation and, therefore, complete linkage.

Our model is similar to existing models for the study of genetic 
mutators, which are modifier loci that determine the mutation 
rate (Ram and Hadany 2012, 2014; Loh et al. 2010). However, it is 
different from other models in that our switching rates can be or
ders of magnitude higher compared to the mutation rate that gen
erates genetic mutators (Ninio 1991). Moreover, studies on the 
evolution of genetic mutators often neglect back-mutations 
from mutators to non-mutators (Desai and Fisher 2011; Ram 
and Hadany 2012; Ram et al. 2018). However, in our model, we con
sider non-genetic mechanisms for the inheritance of the mutation 
rate that may exhibit high rates of reversibility.

Phenotype switching
In every generation, an individual may switch its mutation rate 
phenotype from non-mutator to mutator with probability γ1 or 
from mutator to non-mutator with probability γ2. We call these 
parameters “switching rates”. Thus, the pheno-genotype frequen
cies after phenotype switching are given by

f ′mg = (1 − γ1) · fmg + γ2 · fMg

f ′Mg = γ1 · fmg + (1 − γ2) · fMg.
(1) 

In this equation, fzg is the frequency of a given genotype g before 

switching of the mutator phenotype and m or M are for non- 
mutator and mutator phenotypes, respectively. The frequency 

after switching is f ′zg. A schematic representation of the switching 

is shown in Fig. 1a. Later, we also extend our model to include a 
third transition pheno-genotype with a mutation rate that is inter
mediate between the non-mutator and the mutator mutation 
rates (see Supplementary Fig. 1).

Mutation
The pheno-genotype frequencies after mutation, f ′′zg, are given by

f ′′mg =
􏽘

j

u j→g f ′mj

f ′′Mg =
􏽘

j

ũ j→g f ′Mj,
(2) 
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where f ′zj is the frequency before mutation, j is an index over all 

possible genotypes, m or M are for non-mutator and mutator phe
notypes, respectively. For non-mutators, u j→g is the mutation 

transition probability from genotype j to genotype g. For mutators, 
ũ j→g is the mutation transition probability from genome j to geno

type g. The specific transition probabilities u j→g and ũ j→g in each 

fitness landscape are given below.

Selection
In accordance with previous work on the evolution of modifiers, 
we assume that the mutator phenotype is neutral (James and 

Jain 2016; Desai and Fisher 2011; Liberman and Feldman 1986), 
that is, it does not directly affect fitness. In contrast to most previ
ous work, we do not assume it is a gene, i.e. we do not assume gen
etic inheritance. Hence, we can focus on the fitness wg of genotype 
g, rather than the fitness of pheno-genotypes. The specific fitness 
values are determined by the fitness landscape, see below. The 
pheno-genotype frequencies after selection are given by

f ′′′zg =
wg

w̅
· f ′′zg, (3) 

where w̅ is the population mean fitness, w̅ =
􏽐

g
wg( f ′′mg + f ′′Mg).

(a)

(b)

Valley Flat Monotonic ascent

Switching of the muta�on rate phenotype

Fitness landscape mo�fs

(c)

Ini�aliza�on Reaching 
muta�on-selec�on 

balance

Environmental 
change

Adapta�on on 
landscape with 

addi�onal fitness peak

(c) E

Fig. 1. a) Switching between the non-mutator and the mutator phenotypes. The switching rate from non-mutator to the mutator phenotype γ1 is the 
probability of an individual having a mutator phenotype given that its parent was a non-mutator. The switching rate from mutator to non-mutator γ2 is 
the probability of an individual having a non-mutator phenotype given that its parent was a mutator. b) Fitness landscape motif examples. A fitness 
landscape motif is a succession of genotypes that are one mutation away from each other. The first genotype is considered the wild-type, and has a 
relative fitness of 1. The genotype with the highest number of mutations always has the highest fitness and is the adaptive genotype. Depending on the 
fitness of the intermediate genotypes, a fitness motif can be classified as valley, flat, or monotonic ascent. c) Analysis workflow. The population is 
initialized at the wild-type genotype. The population is then allowed to reach mutation-selection balance on a fitness landscape where the wild-type 
genotype has the highest fitness. Next, an environmental change occurs. A genotype that is different from the wild-type genotype now has the highest 
fitness.
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The fitness landscapes determining the fitness assigned to each 
genotype are detailed in the next section. In a first phase, the 
population first reaches mutation-selection balance on a fitness 
landscape where the wild-type genotype has the highest fitness. 
Then, in a second phase, the fitness landscape, and therefore 
the fitness wg change, modelling an environmental change. We 
analyse the effect of non-genetic mutation rate inheritance on 
the rate of adaptation to the second phase, as populations depart 
from mutation-selection balance in the first phase.

Genetic drift
We model the effect of random genetic drift by drawing the num
ber of individuals of each pheno-genotype from a multinomial dis
tribution parameterized by the population size N and the 
pheno-genotype frequencies after mutation, phenotype switch
ing, and selection, f ′′′zg.

Analysis
We study the adaptation of a population following an environ
mental change. In the first phase, the population is situated in 
an environment to which it is well-adapted. The wild-type geno
type has the highest fitness. All other genotypes are maladapted, 
and hence the population converges to a mutation-selection bal
ance around the wild-type genotype. We initialize this phase by 
considering a population composed of only non-mutators with 
an initial genotype. We neglect the effects of drift. Hence, pheno- 
genotype frequencies are only affected by mutation, phenotype 
switching, and selection. We iterate Eqs. (1–3) until the population 
reaches an equilibrium (that is, the frequencies of the pheno- 
genotypes do not change from generation to generation, 
f ′′′zg = fzg). The equilibrium frequencies can also be obtained by nu
merically solving for the eigenvalues of the mutation-selection 
transition matrix, and normalizing the eigenvector corresponding 
to the leading eigenvalue (Otto and Day 2019). We observed that 
the values obtained by solving the eigenvalue problem corre
sponded closely to the values obtained from a numerical iteration 
of the model. We thus obtain a vector of frequencies of each 
pheno-genotype at mutation-selection balance.

In the second phase, the population has been subject to an en
vironmental change. The initial population corresponds to the 
mutation-selection balance frequencies obtained in the first 
phase. A different genotype now has the highest fitness. We no 
longer neglect the effects of drift. The model is now simulated 
by iteration of Eqs. (1–3) and random sampling at each generation 
using a multinomial distribution.

The flow of our analysis is presented in Fig. 1c. The definitions 
of all genotypes’ fitness before the environmental change (first 
phase) and after the environmental change (second phase) are 
specified in the following section.

Fitness landscapes
Simple fitness landscape
To simplify our analysis before moving into biologically realistic 
fitness landscapes, we first study the rate of adaptation for a range 
of switching rates for a simple fitness landscape with a single 
adaptive peak.

Genotype
We consider a genome composed of two or three environment- 
specific loci that affect fitness differently depending on the 
environment, and a large number of background loci, in which 
all mutations are deleterious. Thus, the genotype is denoted by 

the number of mutations in the environment-specific loci and 
by the number of deleterious mutations accumulated in the back
ground genomic loci. For example, the wild type genotype is 0\0: it 
carries zero mutation in the major environment-specific loci and 
zero mutation in the background loci, while a genotype 2\3 has 
two mutations in the major environment-specific loci and three 
mutations in the background loci. The frequency of the genotype 
0\0 is noted fm,0\0 for non-mutators and fM,0\0 for mutators (see 
above).

Fitness before the environmental change
During this phase, the wild-type genotype has the highest fitness: 
w0\0 = 1. We assume that all mutant alleles in both the major and 
the background loci are deleterious with a selection coefficient s 
per mutation, such that the multiplicative fitness effect of k mu
tant alleles is (1 − s)k. For example, the fitness of the genotype 2 
\3 with two mutant alleles in the major loci and three mutant al
leles in the background loci is w2\3 = (1 − s)5.

Fitness after the environmental change
The double mutant in the environment-specific loci (when consid
ering two environment-specific loci) or the triple mutant in the 
major loci (when considering three environment-specific loci) 
has the highest fitness. We still have w0\0 = 1. We define the vector 
(w1\0, w2\0) that describes the fitness values of individuals with 
one and two mutant alleles in the environment-specific loci and 
zero mutant allele in the background loci; when considering three 
environment-specific loci, we use the vector (w1\0, w2\0, w3\0). 
Mutations in background loci still have a deleterious multiplica
tive effect. Thus, for example, the fitness of a genotype with two 
mutant alleles in the major loci and three in the background loci 
is w2\3 = w2\0 · (1 − s)3. The adaptive genotype is always the geno
type with the largest number of mutant alleles in the 
environment-specific loci. Hence, w2\0 > w1\0 when considering 
two environment-specific loci and w3\0 > max(w2\0, w1\0) when 
considering three environment-specific loci.

Fitness landscape motifs
The fitness vectors (w1\0, w2\0) and (w1\0, w2\0, w3\0) allow us to 
introduce “fitness landscape motifs”. Note that in the notation 
wa\b, only a relates to fitness landscape motifs, since only a relates 
to environment-specific loci. Fitness landscape motifs are a suc
cession of mutant genotypes and their fitness. The wild-type fit
ness is w0\0. For example, if w1\0 < w0\0 < w2\0 when considering 
two major loci, the fitness motif will feature a fitness valley. If 
w0\0 < w1\0 < w2\0, the fitness motif is a monotonic ascent (see 
Fig. 1b). Biological landscapes are composed of many such fitness 
landscape motifs, similarly to biological networks that feature 
network motifs (Shoval and Alon 2010). We explore below how dif
ferent combinations of switching rates influence adaptation over 
various fitness landscape motifs (see Fig. 1b). For a discussion of 
the relationship between models of fitness landscapes and bio
logical fitness landscapes: Supplementary Section b.

Mutation
The number of mutations per generation that occur at the back
ground loci is Poisson distributed with expected value U or τU in 
individuals with non-mutator or mutator phenotype, respective
ly. Therefore, a genotype with k deleterious mutations will mutate 
to have k + l deleterious mutations with probability e−UUl/l! or 
e−τU(τU)l/l! in individuals with non-mutator or mutator phenotype, 
respectively (l is assumed to be positive as we assume no back mu
tations). Mutations occur at the major loci with probability μ = U/n 
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or μ = τU/n, according to the phenotype, where n is the total num
ber of loci in the genome and μ is the per-locus mutation rate. Note 
that U represents the mutation rate only at the genomic loci; since 
we consider few environment-specific loci, this background muta
tion rate is approximately equal to the total mutation rate.

The number of mutations in the major loci is binomially dis
tributed. The parameters of the binomial distribution are the 
number of major loci and the per locus mutation rate. We neglect 
the effects of back mutations, both in the numerical model and 
the stochastic model. This is because of the probability of a back- 
mutation following a mutation is negligible, as both of these 
events are rare. See Supplementary Section c for a formal descrip
tion of the mutation transition probabilities.

Complex and empirical fitness landscapes
We explore several fitness landscapes: NK landscapes with vari
ous ruggedness, commonly used to model biological fitness land
scapes (Kauffman and Weinberger 1989; Obolski et al. 2018), and 
an empirical landscape derived from the fungus Aspergillus niger, 
established by (de Visser et al. 2009; de Visser and Krug 2014). A de
scription of these landscapes and the choice of wild-type geno
types can be found in the Supplementary Section d.

Values for model parameters
Mutation rates
The size of the Saccharomyces cerevisiae genome is 1.2 · 107 bp 
(“Saccharomyces Cerevisiae (ID 15)—Genome—NCBI” n.d.), while 
the size of the Escherichia coli genome is about 5 · 106 bp 
(“Escherichia Coli (ID 167)—Genome—NCBI” n.d.). The proportion 
of deleterious mutations, out of all mutations, is about 40% (Gordo 
et al. 2012; Eyre-Walker and Keightley 2007). The mutation rate per 
bp for S. cerevisiae is about 10−10 per bp (Lang and Murray 2008); for 
E. coli, it is of the order of 10−9 − 10−10 per bp (Lee et al. 2012; Jee et al. 
2016). Hence, we explore deleterious mutation rates from 4 · 10−5 

to 10−3 per genome per cell cycle.

Mutation rate phenotype switching rates
The two main parameters of our model are the switching rate 
from non-mutator to mutator γ1 and the reverse switching rate 
from mutator to non-mutator γ2. As a special case the two rates 
may be identical. At least three potential systems for non-genetic 
inheritance of the mutation rate have been described in the litera
ture: the Ada protein in E. coli; the cytoplasmic inheritance of mis
translated faulty proteins that affect mutation rate; and 
aneuploidy. For each of these, we estimate an approximate value 
for γ1 and γ2. Depending on the considered system, the two switch
ing rates are not independent of each other. We therefore intro
duce a variable α such that γ1 = α γ2.

Ada protein in E. coli
The Ada protein is involved in DNA repair under high pH. The 
number of Ada molecules per cell is Poisson-distributed with an 
average of ∼1 (Uphoff et al. 2016). Cells with zero Ada molecule 
cannot efficiently trigger DNA repair under high pH and hence 
function as potential mutators.

On average, cells with zero Ada molecule produce one Ada mol
ecule per cell cycle or generation (Uphoff et al. 2016). We assume 
that the production of Ada molecule in a population of cells 
with zero Ada molecule follows a Poisson process with a rate of 
one molecule per generation. Thus, the probability of transition
ing from mutator to non-mutator phenotype is 1-e∼0.63. We as
sume that stationary frequency of cells with zero Ada molecule 

is 25% (reported 20–30% in [Uphoff et al. 2016]). Solving for the 
probability of transition from cells with non-zero Ada molecule 
to cells with zero Ada molecule, we estimate this probability to 
be 0.21 (see Supplementary Section e). Hence, for the Ada system 
of inheritance of the mutation rate, we have γ1 = 0.21 and γ2 = 0.63. 
For this system, we have α ∼ 1/3.

Aneuploidy
The state of aneuploidy—an abnormal number of chromosomes 
in the cell—has been shown to be associated with higher mutation 
rate (Sheltzer et al. 2011). Aneuploidy also comes with a fitness dis
advantage, although in specific environments, some aneuploidies 
have a large fitness advantage (Yang et al. 2021; Yona et al. 2012). In 
this paper, and for simplicity, we consider aneuploidy to be 
neutral.

The rate of aneuploidy in yeast has been estimated at 10−4 for 
whole-chromosome duplication and at 10−5 for whole- 
chromosome loss (Zhu et al. 2014; Gilchrist and Stelkens 2019). 
Other estimates are 6.7 · 10−6 chromosome duplication events 
per generation and 3 · 10−5 chromosome loss events per gener
ation (Kumaran et al. 2013). Whole-chromosome loss in aneu
ploids is potentially faster than in euploids (Sheltzer et al. 2011; 
Ippolito et al. 2021). Hence, we estimate γ1 = 10−4 and γ2 = 10−5. 
For this system, we have α ∼ 10.

Cytoplasmic inheritance of mistranslated proteins
We consider a hypothetical protein involved in DNA repair. We as
sume that this protein has the average length of a protein, is pre
sent in a single molecule in each cell, and is synthetized only when 
diluted out. In this section, we will compute the rate of transge
nerational loss-of-function of that protein due to mistranslation 
and cytoplasmic inheritance. The assumption of a single molecule 
in each cell is made for simplicity, as it avoids the arbitrary deci
sion of determining how many functional protein copies are 
needed for a non-mutator phenotype.

In S. cerevisiae, the rate of mistranslation is 10−3 per codon 
(Kramer et al. 2010) and the average length of a eukaryotic protein 
is about 500 aminoacids (Tiessen et al. 2012). Following estimations 
from an empirical fitness landscape (Sarkisyan et al. 2016), we as
sume that about 10% of point mutations abolish the function of 
the protein. Hence, assuming a mistranslation rate of 10−4 per co
don, we have γ1 = 1 − (1 − 10−3)50 = 0.05. The switching rate from 
mutator to non-mutator is γ2 = 0.5 · (1 − 10−3)50 = 0.476 ∼ 0.5.

The rate of amino acid substitution in E. coli is about 10−4 to 10−3 

per codon (Kramer and Farabaugh 2007; Mordret et al. 2019). The 
average length of a protein in bacteria is about 300 aminoacids 
(Tiessen et al. 2012). Hence, the switching rate from non-mutator 
to mutator, assuming a mistranslation rate of 5 · 10−4 (Kramer and 
Farabaugh 2007; Mordret et al. 2019), is γ1 = 1 − (1 − 5 · 10−4)30  =  
0.0149. The switching rate from mutator to non-mutator would 
be the dilution rate, that is 0.5, multiplied by the probability 
that the new cell will synthetize a functional protein. Hence, 
γ2 ∼ 0.5. For this system, we have α ∼ 1/36.

A summary of the estimates for the two switching rates and 
other model parameters is in Table 1 and Table 2. In this study, 
we use 10−6 as a low bound on genetic inheritance of the mutation 
rate. Because we consider two mutation rate phenotypes, a 
switching rate of 0.5 indicates that the mutation phenotype of 
the offspring is independent from the mutation rate phenotype 
of its parent. Switching rates higher than 0.5 signify that the off
spring is more likely to have the mutation rate phenotype opposite 
of that of its parent than to have the same mutation rate 
phenotype.
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Fold-increase in the mutation rate in mutators
Most deletion mutants for genes involved in DNA repair in S. cere
visiae exhibit increase in mutation rate from 2- to 200-fold (Serero 
et al. 2014). Mutator strains in E. coli exhibit a 50- to 1000-fold in
crease in mutation rate (Kang et al. 2019). In this paper, we explore 
a fold increase in mutation rate for a mutator, τ = 10 and τ = 100, 
which is in the range of empirically observed values for the two 
microbes. We also estimate the fold-increase in mutator mutation 
rate for each of the three empirically described systems of non- 
genetic inheritance of the mutation rate.

Ada protein in E. coli
The fold-increase in a cell with no Ada molecule can be approxi
mated by the fold-increase in the mismatch rate in Δada cells 
with regards to cells with intact Ada. According to (Uphoff 2018), 
we have τ ≈ 3.

Aneuploidy
The fold-increase in mutation in a S. cerevisiae cell with additional 
chromosomes ranges from 0.7 (for ChrXVI) to 4.1 (for ChrXIV) 
(Sheltzer et al. 2011). We consider τ ≈ 2.

Mistranslation
The fold-increase in the mutation rate due to the synthesis of de
fective DNA polymerases can be approximated by the fold-increase 
in the mutation rate of mutants in the DNA polymerase gene. 
According to (Loh et al. 2010), this fold-increase can reach up to a 
1000-fold. However, most mutants exhibit increases in the range 
of 10–100-fold. We consider τ ≈ 100.

Results
The adaptation rate is mostly determined by the 
frequency of the mutator mutant at 
mutation-selection balance
We first consider a population at mutation-selection balance 
around the wild-type genotype. That is, at mutation-selection bal
ance the population is well-adapted to its environment and the 
frequencies of the pheno-genotypes do not change from gener
ation to generation ( f ′′′zg = fzg) due to a balance between mutation 
and phenotype switching, which generate genetic and phenotypic 
variation, and selection and drift, which eliminate variation.

We focus on four pheno-genotypes (their frequencies appear in 
parentheses): non-mutators with wild type genotype (m0); non- 
mutators mutants (m1); mutators with wild type genotypes (M0) 
and mutators mutants (M1). Note that fm,0\0 = m0, fm,1\0 = m1, 
fM,0\0 = M0, and fM,1\0 = M1. Note that we consider the genotype 
2\0 to be adaptive. Hence, the mutants m, 1\0 and M, 1\0 corres
pond to mutants that already have one out of the two mutations 
needed to become well-adapted. These four frequencies are plot
ted for s = 0.1, U = 4 · 10−5 and τ = 100 in Supplementary Fig. 2. 
Note that since the population is well-adapted to its environment, 
all mutants are deleterious. It is sufficient to focus on the four ma
jor genotypes due to our assumption on the population size (see 
Supplementary Section f), and following (Dawson 1998). In short, 
we assume that the population is large enough to contain single 
mutant, but small enough so it does not contain the double, or tri
ple mutant genotype that will become adaptive to the new envir
onment. We also define pM as the frequency of mutators (as a sum 
of mutators with and without the mutation) in the population and 
pS the frequency of mutants (sum of mutator and non mutator 
single mutants in the environment-specific loci) in the population.

Adaptation is the appearance and subsequent fixation of the 
2\0 genotype. We denote by q the probability of appearance and 
by π the probability of fixation conditional on appearance.

The probability that in the next generation no 2\0 mutant ap
pears and is destined for future fixation in a population of size N 
is (1 − qπ)N. Assuming the number of generations until the appear
ance of a double mutant that goes to fixation is geometrically dis
tributed, the adaptation rate ν is defined as the probability that a 
single double mutant appears and escapes extinction by genetic 
drift,

ν = 1 − (1 − qπ)N ≈ Nqπ (4) 

where the approximation holds when Nqπ is small. Note that the 
switching rates γ1 and γ2 affect the adaptation rate only indirectly 
due to their role in the mutation-selection balance (also referred 
to as: MSB) frequencies m0, m1, M0, and M1. We show in 
Supplementary Section g, that the probability of fixation of the 
double mutant given that it appeared, π, does not depend on the 
switching rate (see Supplementary Fig. 3). Indeed, it is only de
pendent on its fitness, equal to 1 + sH, where H is the adaptation 
coefficient. Also, the time to fixation does not depend on the 

Table 2. Estimates of switching rates γ1 and γ2 for three considered 
mechanisms for non-genetic inheritance of the mutation rate.

Switching rate Estimate References

Ada protein
Non-mutator to 

mutator γ1

0.21 Uphoff et al. (2016)

Mutator to 
non-mutator γ2

0.63

Aneuploidy
Non-mutator to 

mutator γ1

10−4 Sheltzer et al. (2011), Zhu et al. 
(2014), Gilchrist and Stelkens 
(2019), Kumaran, Yang, and Leu 
(2013), Ippolito et al. (2021)

Mutator to 
non-mutator γ2

10−5

Cytoplasmic inheritance of mistranslated proteins
Non-mutator to 

mutator γ1

0.014 Kramer and Farabaugh (2007), 
Mordret et al. (2019), Tiessen et al. 
(2012), Sarkisyan et al. (2016), 
Kramer et al. (2010)

Mutator to 
non-mutator γ2

0.5

Table 1. Summary of model parameters.

Symbol Name Estimate References

N Population size 105–108 Berg (1996)
U Genome-wide 

mutation rate
0.0004– 

0.003
Wielgoss et al. (2011)

n Number of loci 4,000– 
5,000

Serres et al. (2001)

μ Per-locus mutation 
rate

U/n

τ Fold-Increase in 
mutator 
mutation rate

10–1,000 Hall and 
Henderson-Begg 
(2006), Tenaillon et al. 
(1999), Desai and 
Fisher (2011)

s Selection coefficient 
against 
deleterious 
mutations

0.001– 
0.03

Gordo et al. (2012)

γ Mutator phenotype 
switching rate

10−6−0.5 Ninio (1991), Desai and 
Fisher (2011)

δ Switching rate from 
transition 
mutation rate 
phenotype

0–1

Adapted from (Ram and Hadany 2014).
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switching rate (see Supplementary Fig. 4). Hence, in order to 
understand how the switching rates affect the rate of adaptation, 
we can focus on the probability of appearance of the double mu
tant. Indeed, given that the mutation rates are low, one does not 
expect fixation probabilities and times to be significantly affected 
by recurrent mutation.

The probability of appearance of the adaptive double mutant is 
derived from the frequencies m0, m1, M0, and M1. We neglect the 
frequency of a double mutant at the MSB (i.e. we disregard terms 
of order μ2) due to our assumption on the population size and the 

mutation rate (that is, s
μ eU/s < N < s

τμ

􏼐 􏼑2
e

τU
s , see Supplementary 

Section f). The probability q of appearance of double mutants as 
a result of a mutation in an existing single mutant in a population 
that currently does not have any double mutants is the sum of the 
probabilities of its appearance either from a mutator or a non- 
mutator

q = μ m1 exp (−U) + τμ M1 exp(−τU). (5) 

Here, q is dominated by the term τμ M1, i.e. appearance from a mu
tator and therefore maximization of M1 will also lead to maxi
mization of the adaptation rate. Hence, the frequency M1 of the 
mutator mutant is of crucial importance to the rate of adaptation.

In this section, we have shown that there exists a linear rela
tionship between the probability of appearance of the adaptive 
genotype and the rate of adaptation. Therefore, the switching 
rates that maximize the probability of appearance of the adaptive 
genotype also maximize the rate of adaptation, and hence the 
probability of appearance of the adaptive genotype can be used 
as a proxy for the rate of adaptation. Moreover, the probability 
of appearance of the adaptive genotype is dominated by the fre
quency of mutators with pre-existing variation at the 
environment-specific loci.

The adaptation rate is maximized for 
intermediate switching rates
What are the switching rates that maximize the probability of ap
pearance of the adaptive genotype, and hence the rate of adapta
tion? The three major parameters of our model are the genomic 
mutation rate U, the fold-increase in the mutator mutation rate 
τ and the selection coefficient s. We define the adaptation-optimal 
switching rate, denoted by γ∗1, as the switching rate from non- 
mutator to mutator that maximises the rate of appearance of 
the adaptive genotype. For each of the three parameters, we com
puted numerically the adaptation-optimal switching rate for a 
range of values for each parameter while the other two were 
held constant. We iterated our model until reaching mutation- 
selection balance, then used the frequency of non-mutator mu
tant m1 and the frequency of mutator mutant M1 to compute 
the probability of appearance of the adaptive genotype according 
to Eq. 5 for a range of switching rates. The switching rate that 
maximizes the probability of appearance of the adaptive genotype 
is the adaptation-optimal switching rate. The switching rate from 
mutator to non-mutator γ2 was set such that γ1 = α γ2, and values 
of α ranging from 0.1 to 10 were explored. The results are shown in 
Fig. 2.

We found that the adaptation-optimal switching rate increases 
with the genomic mutation rate and the fold-increase in the muta
tor mutation rate. It also increases with the value of α. Increasing α 
means that the switching rate from non-mutator to mutator be
comes higher compared to the switching rate from mutator to non- 
mutator. The selection coefficient s has a minor effect on the 

adaptation-optimal switching rate. For all considered parameters, 
the adaptation-optimal switching rates are higher than 5 · 10−4. 
For high values of τU, the adaptation-optimal switching rates could 
exceed γ1 = 0.5, which corresponds to no inheritance of the muta
tion rate phenotype, that is equal probability of inheriting or not 
the parental phenotype. Note that γ1 > 0.5, corresponds to a theor
etical situation where offspring are less likely to follow their paren
tal phenotype than to follow it. We term this situation “contrarian 
inheritance”. We see on Fig. 2 that contrarian inheritance maxi
mizes the probability of appearance for τ > 500.

We then sought to determine what properties of the population 
at mutation-selection balance result in high probability of appear
ance of the adaptive genotype. As mentioned in the previous sec
tion, the frequency of M1 dominates the expression for q. Hence, 
maximizing the frequency of mutator mutants at mutation- 
selection balance will also maximize the probability of appear
ance q, and therefore the rate of adaptation.

Fig. 2. Adaptation-optimal switching rate γ∗1 for varying values of U, τ, s. 
For each combination of parameters, we calculate the probability of 
appearance of the adaptive mutant for γ1 ranging from γ1 = 10−6 to 
γ1 = 0.5, and the value resulting in the higher rate of adaptation is 
recorded. Other parameters: n = 5000; γ2 = α γ1.
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The advantage of intermediate switching rates 
stems from high frequency of mutators and high 
association between the mutator and mutant
We plotted the probability of appearance of the adaptive mutant 
q along the switching rate from non-mutator to mutator γ1 in 
Fig. 3. We also indicated, with coloured stars, the location in 
the parameter space of the three empirically described systems 
for non-genetic inheritance of the mutation rate. For each of 
the three systems for non-genetic inheritance of the mutation 
rate, we also plotted the individual curves along γ1 in 
Supplementary Fig. 5. We notice that the switching rate from 
non-mutator to mutator that we estimated for each system is 

also the switching rate that leads to high probability of appear
ance of the adaptive mutant.

We postulated two factors that can increase the frequency of 
M1 at mutation-selection balance, and therefore the adaptation 
rate: (1) because mutators are more likely than non-mutators to 
generate mutations, any effect that will increase the proportion 
of mutators pM at mutation-selection balance will increase the 
frequency of mutant mutators M1; and (2) maintaining the associ
ation between mutators and the mutants it generates, after they 
are generated. Below we explore each of these two effects.

Frequency of mutators at mutation-selection 
balance
We approximate the frequency of mutators at mutation-selection 
balance (MSB). We denote by p−

M the frequency of mutators at MSB 
when γ2 is low and by p+

M the frequency of mutators at MSB when γ2 

is high.
Here, we follow (Desai and Fisher 2011), which studies the fre

quency of genetic mutators at mutation-selection balance. 
Therefore, they assumed low γ1 and neglected γ2 altogether. 
They found that

p−
M=

γ1

(τ − 1)U
≈

γ1

τ U
. (6) 

Equation 4 provides a good approximation of the frequency of mu
tators pM at mutation-selection balance when γ2 is low. When γ2 

increases, the approximation becomes worse (Supplementary 
Fig. 6). Above γ2 > τU/2, the balance between the two mutation 
rate phenotypes is no longer expressed by Eq. 4.

When both switching rates are high, γ1, γ2 > τU/2, the indirect 
selection against the mutator phenotype becomes inefficient. 
Thus, the mutation-selection balance between the non-mutator 
and the mutator phenotypes can be approximated by the station
ary distribution of a Markov chain, such that p+

M, the frequency of 
mutators with high switching, is

p+
M=

γ1

γ1 + γ2
. (7) 

From Fig. 3, we observe a correlation between the proportion of 
mutators pM and the rate of adaptation. This suggests that the 

rate of adaptation will be always higher for γ1 > 5 · 10−4. This is 
also in agreement with our results from Fig. 2. The frequency of 
mutators at MSB explains why low switching rates, corresponding 
to genetic inheritance of the mutation rate, result in low rates of 
adaptation.

Therefore, in the first regime (Eq. 6), the frequency of mutators 
at MSB depends on both mutation and selection. The numerator 
of Eq. 6 is the rate at which mutators are generated, whereas the 
denominator is the fitness disadvantage, i.e. the increase in load 
caused by the mutator. In the second regime (Eq. 7), the switching 
rates are stronger than selection against mutators, and selection 
can be neglected.

Association between mutator and mutant 
phenotypes
Maximising the frequency of mutators is not sufficient to maxi
mise the frequency of mutator mutants. The frequency of the mu
tator phenotype is not independent from the mutations it 
generates: a large fraction of mutations are generated by muta
tors (Desai and Fisher 2011; Ninio 1991), and inheritance of the 

Fig. 3. The probability of appearance of the adaptive genotype is 
maximized for intermediate switching rates. The frequency of mutators 
pM increases with the switching rate, while the association between 
mutants and the mutator phenotype is maximized for intermediate 
switching rates. The probability of appearance of the adaptive genotype q 
is computed with Eq. 5 and MSB frequencies obtained numerically for 
each value of γ1 and other parameters. The frequency of mutators pM is 
obtained directly from the MSB frequencies. The association A is 
computed from the MSB frequencies using Eq. 8. Parameters: n = 5000, 
γ2 = α γ1.
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mutator phenotype preserves the association between mutators 
with mutants.

The association between the mutator and the mutant pheno
types can be quantified by

A = M1 − pM · pS, (8) 

which is defined as the association between the mutator pheno
type and the single mutant genotypes minus their expected fre
quency that would be expected if they were independent, that is 
given by their frequency product. Thus, if the mutator and mutant 

state were independent then A = 0. When γ1 > 5 · 10−2, the prob
ability of appearance decreases from its maximum value, propor
tionately to the decrease in association (see Fig. 3c). The 
decreasing association between mutator and mutant for higher 
switching γ1 explains the corresponding decrease in the probabil
ity of appearance of the adaptive genotype. The association be
tween mutator and mutant is crucially dependent on the 
switching rate from mutator to non-mutator γ2, which increases 
with γ1 for a fixed α.

Therefore, we conclude that two properties of the MSB popula
tion lead to high probability of appearance of the adaptive geno
type, and therefore to a high rate of adaptation. The first is a 
high frequency of mutators, which is achieved for γ1 > τU/2 (see 
above). This is an intuitive result: a higher frequency of mutators 
increases the probability of appearance of the adaptive genotype, 
and it is achieved when the switching rate from non-mutator to 
mutator is high. However, this property is not sufficient to 

maximize the probability of adaptation. The second property of 
the population at MSB to maximize the probability of adaptation 
is a high association between the mutator and mutant, which de
creases when γ1 > 5 · 10−2.

Lastly, we wanted to explore the probability of appearance of 
the adaptive genotype for extreme values of our major para

meters: the genomic mutation rate U ranging from 4 · 10−5 to 

3 · 10−3; the fold-increase in mutator mutation rate τ ranging 

from 2 to 1,000; and the selection coefficient s ranging from 

0.001 to 0.1. In Supplementary Fig. 7, we observe that the probabil

ity of appearance of the adaptive genotype was always very low 

for γ1 < 5 · 10−4, which confirmed our conclusions from Fig. 2. For 

high τ and low s, as well as high U, high τ and high s, switching 

rates that are higher than 0.5 result in a much lower probability 

of appearance of the adaptive genotype than the maximum. For 

all other parameter combinations, the maximum probability of 

appearance of the adaptive genotype q is roughly to its value at 

γ1 = 0.95. A sensitivity analysis revealed that the ratio of the muta

tion rate in the environment-specific to the mutation rate in the 

background loci has little influence on the rate of adaptation 
(see Supplementary Fig. 8). Next, we examined the influence of 
the deleterious mutation rate on the adaptation-optimal switch
ing rate. We vary the deleterious mutation rate without changing 
the mutation rate at environment-specific loci. We explore scen
arios where the deleterious mutation rate is 50-fold lower or 
50-fold higher than in the main model. We found that the 
adaptation-optimal switching rate increases with the deleterious 

Fig. 4. Adaptation rate for several fitness motifs. For each parameter set, 1,000 runs of the stochastic simulation were performed. The proportion of runs 
that converged to the adaptive genotype were recorded after 1,000 generations. Parameters: U = 4 · 10−5, τ = 100, s = 0.1, N = 107.
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mutation rate, but drops sharply beyond a critical threshold for 
very high switching rates (see Supplementary Fig. 9).

Adaptation rate for different fitness landscape 
motifs
In the previous section, we computed the rate of adaptation as
suming two environment-specific loci, and the fitness of each of 
the two single mutants in an environment-specific locus is lower 
than that of the double mutant and wild-type. However, other fit
ness landscape motifs are possible. In this section, we use simula
tions to estimate the rate of adaptation for several other motifs 
with two or three environment-specific loci.

We consider three main categories of fitness landscape motifs: 
(1) the “fitness valley”, where one of the intermediate genotypes 
has lower fitness than both wild-type and the adaptive genotype; 
(2) the “flat” landscape where all intermediate genotypes have the 
same fitness as the wild-type; and (3) the “monotonic ascent” 
where each additional mutation results in an increase in fitness. 
Within each category, the relative values of the fitness of the inter
mediate genotypes are possible. The motifs considered in this pa
per are shown in Fig. 1b, along with their names.

For each fitness landscape, we ran 1,000 simulations of the sto
chastic model for 2,000 generations. The frequencies of each 
pheno-genotype at generation 0 are the frequencies correspond
ing to the mutation-selection balance frequencies. In Fig. 4, we 
plot the proportion of simulations in which the adaptive genotype 
has reached >99% in frequency after a given number of genera
tions. We use this quantity as a proxy for the rate of adaptation. 
We also plot additional results for additional fitness motifs in 
Supplementary Fig. 10.

The rate of adaptation along the switching rate γ1 is correlated 
with the predicted probability of appearance from MSB, even 
when considering three environment-specific loci. However, we 
do observe that the rate of adaptation does not decrease for high 
values of γ1 for the “monotonic ascent” fitness landscape motif 
plotted in Fig. 4a. For landscapes featuring an increase in fitness 
with each subsequent mutation, high rates of adaptation were 
also observed when both γ1 < τU/2 and γ2 < τU/2. This cannot be 
explained by a high frequency of mutator mutants (see Fig. 3). 
Rather, the high adaptation rate must have been due to the dy
namics of the mutator frequency during evolution from the wild- 
type to the adaptive double or triple mutant.

We hypothesized the following mechanism: the mutator, being 
more likely to generate the genotypes that are intermediate be
tween the wild-type and the adaptive genotype, could hitchhike 
with one of the intermediate genotypes (either single mutants 
when considering two environment-specific loci, or double mu
tants when considering three environment-specific loci) that 
have higher fitness compared to the wild-type and increase in fre
quency. This increase in the frequency of intermediate genotypes 
with a mutator phenotype facilitates the appearance of genotypes 
with additional mutations, leading to a high rate of adaptation 
even when both γ1 < τU/2 and γ2 < τU/2.

To test this hypothesis, we measured the mutator frequency 
during adaptive evolution (Fig. 5). In the “monotonic ascent” fit
ness landscape motif, the three mutations tend to occur and fix 
very closely together in time, and each fixation leads to an in
crease in mutator frequency (see bottom line, panel B with 
γ1 = γ2 = 10−4). The mutator frequency does not return to its 
mutation-selection balance frequency before the appearance of 
another adaptive mutant, hence the mutator frequency remains 
high, facilitating the generation of additional mutations. For 
γ1, γ2 > 10−3, we observed that the frequency of mutators pM was 

barely disturbed, if at all, by the appearance of beneficial muta
tions. In Fig. 5, we can also appreciate that the higher the switch
ing rates, the faster the population returns to mutation-selection 
balance after the increase in mutator frequency that occurs due to 
hitchhiking. When either γ1 > 10−2 or γ2 > 10−2, the mutator fre
quency at mutation-selection balance is undisturbed. However, 
when γ2 = 10−6, the mutator frequency returns to mutation- 
selection balance after more than 6,000 generations (defined as 
being within less than 10−3 of the mutation-selection frequency). 
The rate of adaptation decreases with the ratio α between the 
switching rate from non-mutator to mutator γ1 to the switching 
rate from mutator to non-mutator γ2.

If the speed of return of the mutator frequency to the mutation- 
selection balance is low, the increased frequency of the mutator 
phenotype associated with genotypes that are intermediate be
tween the wild-type and the adaptive mutant increases the rate 
of adaptation.

In summary, stochastic simulations of adaptive evolution have 
confirmed the analytic results based on mutation-selection bal
ance: the highest adaptation rates are observed for τU2 < γ1 < 10−2.

Moreover, our stochastic simulations have demonstrated an 
additional mechanism through which non-genetic systems of 
mutation-rate inheritance can lead to higher rates of adaptation: 
hitchhiking of the mutator phenotype with the beneficial muta
tions it generates causes a transient increase in the population- 
wide mutation rate, facilitating the accumulation of additional 
beneficial mutations. This phenomenon is observed when the 
switching rate from mutator to non-mutator is low enough 
(γ2 < τU/2) and leads to higher rates of adaptation than would be 
expected from the mutation-selection balance analysis, see Fig. 3.

We have thus studied which combinations of the switching 
rates from the non-mutator to mutator and vice-versa result in 
high rates of adaptation. We have identified two mechanisms. 
The first is a “association between mutators and mutants” mech
anism: some combinations of the parameter space lead to high 
frequencies of mutator mutants at mutation-selection balance. 
This situation occurs due to a high frequency of mutators, while 
maintaining a non-negligible degree of mutator phenotype inher
itance that conserves the association between the mutator pheno
type and the mutations it generated. We identified this 
mechanism through the study of mutation–selection balance fre
quencies of non-mutator and mutator mutants. The second is a 
“hitchhiking” mechanism. The hitchhiking of the mutator with 
the intermediate adaptive mutations facilitates the acquisition 
of further adaptive mutations. We observed this mechanism 
through the iteration of our model over what we define as fitness 
landscape motifs, some of which featured ascending fitness with 
each subsequent mutation.

Adaptation on realistic landscapes
In this section, we will determine the relevance of the “association 
between mutators and mutants” and “hitchhiking” mechanisms 
to adaptation on biologically realistic fitness landscapes.

We explore several fitness landscapes: NK landscapes of vari
ous ruggedness, which can be used to model adaptive evolution 
(Kauffman 1969), and an empirical landscape derived from the 
fungus A. niger (de Visser et al. 2009; de Visser and Krug 2014). A 
description of these landscapes and the choice of the wild-type 
genotype can be found in the Supplementary section d (see also 
Supplementary Fig. 11).

We first estimated the mutation-selection balance frequencies 
of the non-mutator with the initial genotype (m0), the non-mutator 
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with mutations (m1), the mutator with the initial genotype (M0), 
and the mutator with mutations (M1) for the NK landscapes and 
for the A. niger landscape (Supplementary Fig. 12).

In this section, m0 is the frequency of non-mutators with the 
predominant genotype (the “wild-type”), m1 is the frequency of 
non-mutators with genotypes other than the predominant geno
type (“mutants” of the “wild-type”), M0 is the frequency of 

mutators with the predominant genotype (the “wild-type”) and 
M1 is the frequency of non-mutators with genotypes other than 
the predominant genotype (“mutants” of the “wild-type”). We 
have pS = M1 + m1 and pM = M0 + M1.

We observe similar patterns to those observed with the simple 
landscapes (see Supplementary Fig. 2): the frequency of M1 is 
highest for τU/2 < γ1 < 10−2. We also estimate the frequency of 

Fig. 5. Dynamics of mutator frequency during an adaptive evolution. The frequency of mutators was recorded over 10,000 simulations during adaptation 
(that is, the appearance and fixation of a fitter genotype). When either of the switching rates is higher than 10−3, the mutator frequency barely changes 
from its mutation-selection balance value. However, when switching rates are lower, the mutator hitchhikes with the adaptive genotype, leading to a 
transient increase in mutator frequency. For a monotone ascent fitness motifs (right column), each appearance and increase in frequency of an adaptive 
mutation results in an increase of the mutator frequency, thus facilitating the appearance of the next mutation. We suggest that this phenomenon is 
responsible for the high adaptation rates observed for γ1 < τU/2 and γ2 < τU/2. Parameters: U = 4 · 10−5, τ = 100, s = 0.03, n = 5000, N = 109. Values of α in 
each panel: a) α = 2000; b) α = 1; c) α = 1; d) α = 2.5 · 10−4; e) α = 0.1; and (F) α = 0.02.
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pM for several parameters sets and the association between muta
tor and mutant phenotypes in Supplementary Fig. 13. As for the 
simple landscape, the frequency of pM increases monotonously 
with the switching rate from non-mutator to mutator γ1. The asso
ciation increases to an optimum, before dropping sharply for 
γ1 > 10−2.

We then performed stochastic simulations, initializing the 
population at MSB frequencies. We observed similar patterns to 
the stochastic simulations for the simple landscape (see Fig. 6): 
high rates of adaptation for γ1 > τU/2, with sometimes a decrease 
in the rate of adaptation when γ1 become large. These observa
tions indicated to us that the “association between mutators 
and mutants” mechanism, that is, the combination of a high fre
quency of mutators with a high association between the mutator 
and mutant phenotypes, could be at work also in the case of com
plex adaptation.

We found that the highest rates of adaptation correspond to 
the region expected from the frequencies of mutator mutants at 
mutation-selection balance (Supplementary Fig. 12). We also 
found an additional region with high adaptation rate for γ1 < τU 
and γ2 < τU for NK landscapes with k = 1 (that is, low ruggedness, 
see Supplementary section d, Description of realistic landscapes) 
and k = 3 (that is, intermediate ruggedness, see Supplementary 
section d), analogous to the region observed for these parameters 
for populations adapting over smooth landscapes in Fig. 4. This is 
a manifestation of the “association between mutators and mu
tants” mechanism. We observe that γ1 < τU and γ2 < τU/2 corres
pond to high rates of adaptation for NK landscapes with low 
ruggedness, but not in NK landscapes with high ruggedness. The 
“hitchhiking” mechanism explains why the rate of adaptation is 
higher for these combinations of γ1 and γ2 on smoother land
scapes. Hence, we find examples of both of the “association be
tween mutators and mutants” and “hitchhiking” mechanisms at 
play in complex adaptation over biologically realistic landscapes.

Next, we determined the relative contribution of the “associ
ation between mutators and mutants” and “hitchhiking” mechan
isms to the rate of adaptation. We simulated the stochastic model 
while artificially modifying the frequency of the mutator pheno
type to eliminate the influence of one of the three conditions 
that lead to a high adaptation rate: (1) high association between 
the mutator and mutant frequency—we set the association (see 
Eq. 6) to equal 0 by redistributing mutant genotypes among muta
tor and non-mutators; (2) for the hitchhiking mechanism of the 
mutator phenotype with an adaptive mutant—we set the mutator 
frequency to always be the mutator frequency at mutation- 
selection balance; and (3) a high mutator frequency—we set the 
mutator frequency to be half the mutator frequency at mutation- 
selection balance.

Breaking the association between the mutator 
and the mutant
High association between mutator and mutant translates into a 
high frequency of mutator mutants, and in turn increases the 
rate of adaptation. Hence, we decided to artificially decrease the 
association between the mutator and the mutant, while keeping 
the frequency of mutator and the frequency of mutants, thus 
eliminating this effect from the evolutionary dynamics. At each 
generation, we artificially break the association (A = 0) by setting 
m0 = (1 − pS) · (1 − pM), m1 = pS · (1 − pM), M0 = (1 − pS) · pM, and M1 = 
pS · pM (see Supplementary Section h). The relative frequencies of 
each mutant within m1 and M1 is not modified. Note that when as
sociation between the mutator and mutant is broken, hitchhiking 

is also abolished since the mutator cannot hitchhike on a mutant 
to increase in frequency.

We observe that the rate of adaptation is mostly unaffected ex
cept for the regions of the parameter space that correspond to 
hitchhiking, that is γ1 < τU and γ2 < τU/2. Hence, the association 
between mutator and mutant has less influence for complex 
adaptation (see Fig. 6 and Supplementary Figs. 14–17).

Eliminating hitchhiking
To eliminate hitchhiking, we reset the proportion of mutators pM 

at each generation to correspond to the value of pM at mutation- 
selection balance. Note that in this case, the association between 
mutator and mutant is also at its mutation-selection balance, that 
is, it can be different than 0. The relative frequencies of wild-type 
and mutant genotypes were not modified (see Supplementary 
Section i).

As described in the previous section, the hitchhiking mechan
ism only manifests for both γ1 < τU/2 and γ2 < τ. Indeed, we ob
served a significantly reduced rate of adaptation for the 
parameter region γ1 < τU and γ2 < τU (Fig. 6 and Supplementary 
Fig. 18). Without hitchhiking, only the parameter region exhibiting 
high frequencies of mutator mutants at mutation-selection bal
ance showed high rates of adaptation, consistent with the expect
ation that only the “association between mutators and mutants” 
mechanism affects adaptation. On NK landscapes, eliminating 
hitchhiking reduces the adaptation rate for γ1 < τU and γ2 < τU 
for low and intermediate ruggedness, but we observe no effect 
for high ruggedness, further supporting our hypothesis that hitch
hiking only occurs on smooth landscapes where successive adap
tations occur without the population returning to a 
mutation-selection balance (Supplementary Figs. 14–17).

Reducing the mutator frequency
In the previous section, we observed that high adaptation rates 
are associated with high mutator frequency, which in turn is asso
ciated with high mutator mutant frequency. To reduce the muta
tor frequency, we reset the proportion of mutators pM to half of its 
mutation-selection balance value at each generation. The relative 
frequencies of wild-type and mutant genotypes were not modified 
(see Supplementary Section j). Note that in this simulation, hitch
hiking is also abolished since the mutator cannot hitchhike on a 
mutant to increase in frequency. The rate of adaptation is re
duced, mostly for the areas where pM > 0.5 at mutation-selection 
balance (Fig. 6 and Supplementary Fig. 18). However, we still ob
serve relatively high adaptation rates with γ1 = τU when γ2 < τU 
and γ1 = γ2 when γ2 > τU. Results of simulation on NK landscapes 
are similar (Supplementary Figs. 14–17).

In summary, we studied how the “association between muta
tors and mutants” and “hitchhiking” mechanisms affect the evo
lution over realistic landscapes. The “association between 
mutators and mutants” mechanism refers to the advantage in 
adaptation stemming from the frequency of coupled mutator mu
tants at mutation-selection balance. The frequency of mutator 
mutants is high when the frequency of mutators is high. The asso
ciation between mutator and mutants seems to play a smaller role 
on complex landscapes than on the simple landscape. The “hitch
hiking” mechanism manifests on landscapes with low ruggedness 
and γ1, γ2 < τU. When removing the effect of hitchhiking, we ob
serve low adaptation for specifically γ1, γ2 < τU.
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Discussion
The potential advantage of non-genetic 
inheritance of the mutation rate
We have shown that the combination of the switching rates that 
lead to high adaptation rates on simple landscapes also result in 
high adaptation rates on complex, more biologically realistic land
scapes. The result is maintained also when considering gradual 
transition between the non-mutator and mutator phenotypes 
(see Supplementary Fig. 1). The advantageous combination of 
switching rates corresponding to non-genetic inheritance of the 
mutation rate in the rate of adaptation seems to come from two 
mechanisms, a association between mutators and mutants 
mechanism relying on a high frequency of mutator mutants 
that exists even at mutation-selection balance, and a hitchhiking 
mechanism that manifests itself while hill climbing of fitness 
landscape.

The association between mutators and mutants mechanism 
leads to high rates of adaptation for γ1 = τU/2 when γ2 < τU/2 and 
γ1 = γ2 when γ2 > τU/2. For highest rates of adaptation to be 
achieved, the inheritance of the mutation rate phenotype needs 
to be non-negligible, hence γ1 < 10−2 and γ2 < 10−2. For smooth 
landscapes with potential hill climbing, the hitchhiking mechan
ism also leads to high adaptation rates for γ2 < τU/2 and 
10−2 < γ1 < τU/2.

After performing simulations attempting to eliminate each of 
these mechanisms to assess their relative contributions in complex 

adaptation we deduce that the association between mutators and 
mutants mechanism seems to be determining, since reducing the 
proportion of pM reduces the rate of adaptation. The hitchhiking 
mechanism is only important for a subset of the parameter space, 
for γ1 < τU/2 and γ2 < τU/2, and for smooth landscapes.

Evolution of intermediate switching rates
Although some combinations of switching rates maximize the 
adaptation rate, it is not clear that they can be selected for 
when competing against other combinations of switching rates. 
First, the proportion of mutants for the adaptation-optimal pairs 
of switching rates is high, higher than for subpopulations with 
adaptation-suboptimal combinations of switching rates (see 
Fig. 3). Second, the advantage of a subpopulation with an 
adaptation-optimal switching rate depends on the mutation sup
ply. The adaptation rate of a subpopulation of size N1 with a 
switching rate γ1 resulting in an appearance rate q1 will be higher 
than the adaptation rate in a subpopulation of size N2 with a given 
switching rate γ2 resulting in an appearance rate q2 if N2

N1
> q1

q2 
(Eq. 5). 

Therefore, selection for an allele that induces an intermediate 
switching rates will depend on its frequency in the population, 
similar to the case of mutator alleles (Chao and Cox 1983).

The definition of the mutator phenotype in biology
Mutators are traditionally thought of genetically inherited. Most 
theoretical and experimental literature focuses on mutators 

Fig. 6. Complex adaptation on Aspergillus Niger landscape. The proportion of runs out of 1,000 that converged upon the fittest genotype in the landscape 
was recorded after 500 generations. In order to disentangle the different effects of the non-genetic inheritance of the mutation rate on the rate of 
adaptation, we then rerun the simulation while removing the association of mutator and mutant, limiting the frequency of mutators during the 
evolution, and eliminating hitchhiking. Limiting the frequency pM reduces adaptation overall. Parameters: U = 4 · 10−5, τ = 100, N = 1000.
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phenotypes resulting from the loss of function of proteins in
volved in DNA replication and repair. Yet, in our analysis, the 
switching rates corresponding to genetic inheritance consistently 
resulted in very low rates of adaptation compared to switching 
rates corresponding to non-genetic inheritance. This finding re
shapes the picture of mutators in biology. Non-genetic mutators 
are likely to be of higher evolutionary importance than genetic 
mutators.

The potential advantage of contrarian inheritance
For specific parameter sets, the switching rates that maximized 
adaptation were higher than 0.5. Moreover, one of the three systems 
for non-genetic inheritance of the mutation rate, the Ada protein, 
has an estimated γ2 that is higher than 0.5. Hence, for specific par
ameter sets, it is more advantageous to switch to the phenotype 
that is opposite to the parental phenotype rather than inherit it. 
Note that this is different than no inheritance of the parental pheno
type. For contrarian inheritance there must be a memory of the par
ental phenotype. But, instead of being perpetuated, as is usually the 
case of inheritance, the phenotype is inversed.

Mutation rate inheritance and phenotype 
switching
Switching between a mutator and a non-mutator phenotype is a 
type of phenotype switching (Levien et al. 2020). The increased 
adaptability of populations with adaptation-optimal pairs of the 
two switching rates, compared to other pairs, is in part due to the 
high rate of mutator generation, which balances the strength of se
lection against mutators at mutation-selection balance. Generation 
of a phenotype that is disadvantageous in the short term but poten
tially advantageous in the long term is known as bet-hedging 
(Levien et al. 2020) and has been implicated as driving the evolution 
of phenotype switching mechanisms (Carja et al. 2014; Stajic et al. 
2021; Levien et al. 2020; Gómez-Schiavon and Buchler 2019).

We suggest that the mechanisms we identified to be implicated 
in high rates of adaptation for some pairs of switching rates could 
be at play also in other systems in which a specific phenotype has 
a short-term disadvantage but long-term advantage. The mutator 
state could be one such phenotype. High switching rate from wild- 
type to phenotype (in our case, the switching from non-mutator to 
mutator) counters negative selection, and high association be
tween the phenotype allows for the manifestation of the long- 
term advantage. In such cases, the same phenotype may also be 
advantageous if it occurs in consecutive generations of the same 
lineage, and therefore a not too high switching rate (in our model, 
less than 10−2) is beneficial in maintaining a correlation between 
the phenotype of parent and offspring.

Experimental future directions
Our results show theoretically that non-genetic inheritance of the 
mutation rate could result in higher rates of adaptation as a gen
eral rule. Interestingly, current methods for estimating the muta
tion rate, such as mutation accumulation (Lynch et al. 2008) and 
fluctuation assays (Lang and Murray 2008), require multiple gen
erations along which mutation rate is measured. Hence, they im
plicitly assume that the mutation rate is constant across 
generations and individuals. This is why diversity and non-genetic 
inheritance of the mutation rate has not been observed until re
cently (Uphoff et al. 2016; Robert et al. 2018; Woo et al. 2018). Our 
study provides an evolutionary rationale for these observed muta
tion rate dynamics and it calls for a new focus on non-genetic fac
tors influencing the mutation rate, and its potential impact on 
adaptative evolution.
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Appendix to: Phenotype switching of the 
mutation rate facilitates adaptive evolution
A. The Wright-Fisher model
The Wright-Fisher model is commonly used to model evolution
ary biology. In this model, a population is described by a probabil
ity vector that contains the frequency of each genotype that 
appears in the population. This population vector is modified by 
iterating mutation-selection-drift steps. In the mutation step, 
the population vector is multiplied by a transition matrix that 
gives the probability of mutation between each pair of genotypes. 
In the selection step, the frequency of each genotype is multiplied 
by its relative fitness, and then the population vector is normal
ized so that it sums to one by dividing with the population mean 
fitness. In the drift step, stochasticity is introduced by randomly 
sampling the population vector of the next generation from a 
multinomial distribution characterize by the population vector 
of the current generation after the mutation and selection steps. 
One mutation-selection-drift cycle corresponds to a single gener
ation of the population (Otto and Day 2019).

B. Discussion about fitness landscapes
Biological fitness landscapes are notoriously difficult to investi
gate due to their high dimensionality. Indeed, a DNA sequence 
of length N corresponds to 4N genotypes, and a protein sequence 
of length N corresponds to 20N possible proteins. Considering 
the average length of a gene, or that of a protein, it quickly be
comes obvious that all possible sequences cannot be possibly sur
veyed empirically. Existing experimental studies of fitness 
landscapes have focused either on local landscapes around pro
teins (Sarkisyan et al. 2016; Li et al. 2016) or short DNA sequences 
(Aguilar-Rodríguez, Payne, and Wagner 2017). Traditionally, fit
ness landscapes were described as containing many “valleys”, cor
responding to low fitness genotypes, and “peaks”, corresponding 
to high fitness genotypes. Therefore, a central problem in evolu
tionary biology was to explain how fitness valleys can be crossed 
when natural selection acts to eliminate low-fitness intermediate 
genotypes (Wright 1931). A few examples of fitness valley crossing 
have been suggested (Serrano et al. 1997; Levin, Perrot, and 
Walker 2000), along with strategies for their crossing such as cap
acitance (Trotter et al. 2014; Griswold and Masel 2009), partial ro
bustness (Kim 2007), stress-induced mutagenesis (Ram and 
Hadany 2014), or phenotypic variation (Whitehead et al. 2008). 
Yet, due to the hyper-dimensionality of biological fitness land
scapes, fitness valleys could actually rarely exist, and fitness land
scapes may thus be more highly navigable than often appreciated 
(Forrest 2022). Hence, evolutionary adaptation over rugged land
scapes would be more akin to a diffusion problem in which adap
tation is dependent on the time needed to find a mutational path 
that does not contain a fitness valley (van Nimwegen and 
Crutchfield 2000). The empirical evidence for either an abundance 
or lack of fitness valleys is scarce, as observing fitness valley cross
ings poses technical difficulties due to the very low frequency of 
the low fitness intermediate genotype.

C. Simple landscape
The mutation transition probability is u j→g, where j and g are 
genotypes, determines the effect of mutation on the genotype 
probabilities (Eq. 1). The construction of the mutation transition 
probability is described in the main text. Here, we provide a formal 
description. Note that we assume no back mutations occur. In the 
following we use the mutator phenotype mutation rate τU; for the 
non-mutator, we set τ = 1. The per-locus mutation rate is μ = U/n.

The number of pre-existing background mutations in the 
source genotype is denoted by k. The number of background mu
tations acquired during the mutation step is denoted by l. Hence, 
the probability of transition from genotype 0\1 to genotype 0\3 
corresponds to k = 1 and l = 2.

Thus, the probability to transition from genotype j to genotype 
g for the mutator genotype, u′j→g, is described by Table A1, where 
the source genotype j is given in the row, and the target genotype g 
is given in the column.

D. Description of complex landscapes
NK landscapes
The NK landscape is commonly used in the study of epistatic in
teractions (Obolski, Ram, and Hadany 2018). It has two para
meters: n for the number of bi-allelic loci in the genotype and k 
for the number of loci each locus interacts with. The main advan
tage of the NK landscape is its biological interpretation and its 
tunable ruggedness (S. Kauffman and Levin 1987). Here, the geno
type consists of n = 6 bi-allelic loci, which results in 26 = 64 
genotypes.

We chose n = 6 in order to allow for multidimensionality, while 
maintaining reasonable computation times.

To construct an NK landscape, we first generate all possible 
k-bit strings (bit strings of length k) and assign to each of them a 
random fitness value between 0 and 1, sampled from a continuous 
uniform distribution. Genotype g is a n-bit string, and its fitness wg 

is the sum of the fitness effects of the k-bit strings that g contains. 
A locus thus influences the genotype fitness according to the num
ber of k-bit strings that contain it, which increases with k. Hence, 
the ruggedness of the NK landscape increases with k (De Visser, 
Park, and Krug 2009). We consider three NK landscapes with 
low, intermediate, and high ruggedness corresponding respective
ly to k = 1, k = 3, and k = 5. See Figure S11 for properties of the con
structed landscapes.

Empirical fitness landscape from Aspergillus niger
We examine the insights gained on two-peak and NK landscapes 
with an empirical fitness landscape (Obolski, Ram, and Hadany 
2018) measured with mutants in 8 genes of Aspergillus niger (De 
Visser, Park, and Krug 2009). We chose this landscape because: 
(i) it is complete with fitness measurements of all possible 256 
genotype combinations, so we can avoid the interpolation of fit
ness values of missing genotypes; and (ii) fitness was measured 
as growth rate relative to the wild type, as opposed to other studies 
that quantify some proxy phenotype for fitness such as fluores
cence or DNA binding (Aguilar-Rodríguez, Payne, and Wagner 
2017; Aguilar-Rodríguez et al. 2018; Banerjee et al. 2017).

The genotype consists of eight bi-allelic loci, each with either 
the wild type or the mutant allele. de Visser et al. (De Visser, 
Park, and Krug 2009) engineered 256 genotypes to bear all possible 
combinations of wild type/mutant alleles in these eight loci. The 
loci are: fwnA1 (fawn-colored conidiospores); five auxotrophic 

Table A1. Probabilities to transition from genotype j to genotype g, 
u′j→g.

u′j→g g = 0\(k + l) g = 1\(k + l) g = 2\(k + l)

j = 0\k (1 − τμ)2
·

eτU(τU)l

l! 2τμ(1 − τμ) · e
τU (τU)l

l! (τμ)2
·

eτU(τU)l

l!

j = 1\k 0 (1 − τμ) · e
τU (τU)l

l! τμ · e
τU(τU)l

l!

j = 2\k 0 0 eτU(τU)l

l!
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markers, argH12 (arginine deficiency), pyrA5 (pyrimidine defi
ciency), leuA1 (leucine deficiency), pheA1 (phenyl-alanine defi
ciency), and lysD25 (lysine deficiency); and two resistances, oliC2 
(oligomycin resistance) and crnB12 (chlorate resistance).

de Visser et al. (De Visser, Park, and Krug 2009) estimated fitness 
by measuring the growth rate of each strain relative to the growth 
rate of the wild type strain (i.e., with eight wild type alleles). Out of 
256 genotypes, 70 genotypes were lethal (fitness is zero). The land
scape is rugged: it contains 15 local maxima (including the global 
maximum). See Figure S11 for properties of the landscape.

E. Calculating the switching rate from mutator to 
non-mutator γ2 for the Ada protein
We define a Markov chain with two states: cells with zero Ada 
molecule denoted by x and cells with non-zero Ada molecule de
noted by y.

The transition matrix T is given by

T = px→x px→y

py→x py→y

􏼒 􏼓

where px→x = 1 − px→y and py→y = 1 − py→x. In (Uphoff et al. 2016), 

the probability of transitioning from zero to one (or more) Ada mo
lecules is fitted to a Poisson distribution with average equal to 1. 
Hence, we have px→x = 0.37 and px→y = 1 − px→x = 0.63.

The stationary distribution of this Markov chain is denoted by 
(x∗, y∗) with y∗=1 − x∗. Empirical evidence (Uphoff et al. 2016) sug
gests that (x∗, y∗) ≈ (0.25, 0.75). To estimate py→y, we solve

x∗=px→x x∗+py→x y∗

y∗=px→y x∗+py→y y∗

to obtain

py→y = 1 −
px→y x∗

y∗

Hence, the complete transition matrix is

T = 0.37 0.63
0.21 0.79

􏼒 􏼓

F. Bounds on the population size
We consider N, the population size, to be large enough so that in
dividuals with a single mutation in the major loci are present, but 
small enough so that individuals with two mutations in the major 
loci (hence already adapted to the new environment) are absent.

Let us first consider the first condition. The lowest frequency of 
mutants is achieved when the whole population is non-mutator. 
Therefore, the upper bound for the first condition is set by consid
ering a case where all individuals have the non-mutator pheno
type. According to (Gordo and Dionisio 2005), the frequency of 
wild type individuals at mutation-selection balance is e−U/s. We 
then multiply by the mutation-selection balance of single mu
tants at the major loci, μs. Thus, we find that the expected number 
of single mutant individuals without deleterious mutations in the 
background loci is N μ

s e−U/s. Setting this to be less than one and re
arranging, we obtain sμ eU/s < N.

Now let us consider the second condition. The highest fre
quency of double mutants would be achieved when the whole 
population is mutator. Therefore, the lower bound for the second 
condition is set by considering a case where all individuals have 
the mutator phenotype. By the same argument as for the first con

dition, we find N < s
τμ

􏼐 􏼑2
e

τU
s with e

−τU
s the proportion of wildtype 

individuals in an all-mutator population and τμ
s

( 􏼁2 the frequency 
of double mutants in the major loci, both at a mutation selection 
balance.

Combining these conditions, we have

s
μ

eU/s < N <
s
τμ

􏼒 􏼓2

e
τU
s (A1) 

G. Fixation of an adaptive genotype
We set the fitness of the double mutant to be 1 + sH, where H is the 
adaptation coefficient. According to Eshel (Eshel 1981), in a large 
population with weak selection, the fixation probability ρF of a dou
ble mutant once it appears in a single copy depends only on the se
lection coefficient s and the double mutant advantage H, namely

ρ̃F =
2sH

1 + sH
(A2a) 

≈ 2sH, (A2b) 

where Eq. A2b applies when sH is much smaller than 1.
Figure S6 shows a comparison of the two approximations in eq. 

A2 to results from stochastic simulations obtained by counting 
the number of fixation events after the appearance of an adaptive 
genotype.

We notice that Eq. A2b is independent from the switching rate 
γ. Hence, the adaptation rate will be proportional to the appear
ance rate (see Figure S3). We therefore consider the appearance 
rate as a proxy for the adaptation rate in the main text. 

H. Complex landscapes: breaking the 
association between mutators and mutants
The stochastic model was run following the usual mutation— 
phenotypic switching—selection—drift scheme. Right before the 
drift step, the population vector was recalculated as follows:

M′1 = max ( pS · pM, 0) 

m′1 = max ( pS · (1 − pM), 0) 

M′0 = max ((1 − pS) · pM, 0) 

m′0 = max (1 − M′1 − m′1 − M′0, 0) 

The genotype 0 is the most abundant genotype at that generation. 
All the mutants’ (mutants are all genotypes that are not the geno
type 0) frequencies are kept identical relative to each other, but 
their sum is set to M′1 (for mutator mutants) or m′1 (for non- 
mutator mutants).

I. Complex landscapes: eliminating hitchhiking
The stochastic model was run following the usual mutation— 
phenotypic switching—selection—drift scheme. Right before the 
drift step, the population vector was recalculated as follows:

M′1 = max (A + pM · pS, 0) 

m′1 = max ( pS − M′1, 0) 

M′0 = max ( pM − M′1, 0) 

m′0 = max (1 − M′1 − m′1 − M′0, 0) 

The genotype 0 is the most abundant genotype at that generation. 
All the mutants’ (mutants are all genotypes that are not the geno
type 0) frequencies are kept identical relative to each other, but 
their sum is set to M′1 (for mutator mutants) or m′1 (for non- 
mutator mutants).
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J. Complex landscapes: limiting pM
The stochastic model was run following the usual mutation— 
phenotypic switching—selection—drift scheme. The desired fre
quency of mutators is equal to M. Right before the drift step, the 
population vector was recalculated as follows:

M′1 = max (A + pM · pS, 0) 

m′1 = max ( pS − M′1, 0) 

M′0 = max (M − M′1, 0) 

m′0 = max (1 − M′1 − m′1 − M′0, 0) 

The genotype 0 is the most abundant genotype at that generation. 
All the mutants’ (mutants are all genotypes that are not the geno
type 0) frequencies are kept identical relative to each other, but 
their sum is set to M′1 (for mutator mutants) or m′1 (for non- 
mutator mutants).
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