INTRODUCTION

Olfactory receptor (OR) proteins are G-protein-coupled receptors (Buck and Axel, 1991; Lancet and Pace, 1987; Reed, 1990), expressed mainly in the olfactory neuroepithelium, but also found in other tissues (Druket al., 1995; Walensky et al., 1998), including mammalian germ cells (Parmentier et al., 1992). Their major role is the activation of a signal transduction pathway leading to odorant recognition and discrimination (Buck and Axel, 1991; Lancet and Ben-Arie, 1993; Ngai et al., 1993). Each neuronal cell may express only one OR gene (Lancet, 1991), and even just one allele at a given locus (Chess et al., 1994). This expression pattern is believed to provide the molecular basis of odor discrimination.

OR proteins were first cloned from rat (Buck and Axel, 1991) and later shown to be present in the genome of a wide variety of species (Barth et al., 1997; Ben-Arie et al., 1994; Freitag et al., 1995; Issel-Tarver and Rine, 1997; Nef et al., 1996; Sullivan et al., 1996). The total number of OR genes in the mammalian “olfactory subgenome” is estimated to be 300–1000 (Buck and Axel, 1991; Lancet et al., 1993a; Ressler et al., 1994), constituting a very large gene superfamily, divided into more than 20 families (Lancet and Ben-Arie, 1993). Analyses of OR genomic sequences provided evidence for a simple gene structure, which includes, in addition to the first exon, the ~1-kb long intronless coding region, a 5- to 6-kb upstream intron, a short 5’ untranslated exon, and a putative control region (Asai et al., 1996; Glusman et al., 1996; Walensky et al., 1998).

OR genes have been shown to be disposed in clusters on several chromosomes in human (Ben-Arie et al., 1994; Rouquier et al., 1998b) and other species (Barth et al., 1997; Issel-Tarver and Rine, 1997; Sullivan et al., 1996), as is the case for other multigene families (Heim and Meyer, 1992; Higgs et al., 1989). The gene clusters have likely arisen by a process of repeated duplication of individual genes (Glusman et al., 1996) as well as of entire clusters (Lancet and Ben-Arie, 1993; Trask et al., 1998). The cluster organization may be related to the regulation of gene expression, which leads to the unique patterns of OR cellular expression (Chess et al., 1994).

In the human genome, OR clusters have been identified on numerous chromosomes (Buettner et al., 1998; Olsen et al., 1993; Rouquier et al., 1998b), and more than 100 OR genes have been partially or fully sequenced so far. One of the OR clusters, encompassing an ~450-kb region on human chromosome 17p13.3, has been studied in our laboratory in considerable de-

tail (Ben-Arie et al., 1994; Glusman et al., 1996), including physical mapping and DNA sequencing (Glusman et al. 1996, Glusman, submitted). The 16 OR coding regions in this cluster belong to seven OR subfamilies, potentially generated by a complex multistep duplication mechanism. This well-characterized cluster constitutes an ideal target for comparative studies of OR evolution.

One of the most important questions in the field of olfaction is how OR gene diversity has been generated. In contrast to the case of immune genes, no evidence exists for somatic DNA rearrangements or somatic mutations in the coding regions of olfactory genes, and OR diversity therefore appears to be wholly germline-encoded. Single point mutations in newly duplicated genes are a potential diversification pathway, but it may not suffice to allow organisms to cope with a constantly changing chemosensory environment. In some other multigene families, gene conversion among paralogs has been proposed to be a pathway for diversification (Slightom et al., 1985; Wines et al., 1991), a process believed to be enhanced by gene clustering. We report here a comparison of the OR genes in the human chromosome 17 cluster to their orthologous coding regions in chimpanzee, as well as in other primates. The data lend considerable support for the role of gene conversion in the evolution of olfactory receptor diversity.

In the human genome, OR clusters have been reported to harbor a very high proportion of pseudogenes (Ben-Arie et al., 1994; Buettner et al., 1998; Rouquier et al., 1998b), potentially reflecting a recent diminution of the olfactory repertoire. Indeed, in the currently studied cluster at least 40% of the coding regions represent pseudogenes. However, relatively little information has been available on the timing of this gene inactivation process. The present comparative sequence analysis reveals that rapid genome dynamics applies also to pseudogene generation and that the entire human chromosome 17 OR cluster may have been functionally intact at the dawn of great ape evolution.

MATERIALS AND METHODS

Fluorescence in situ hybridization (FISH). Chromosomes were prepared from human (HSA) peripheral blood lymphocytes, from EBV-transformed lymphoblastoid cells of chimpanzee (PTR), gorilla (GGO), orangutan (PYP), and Presbytis cristata, and from fibroblast cultures of Callithrix geoffroyi. For FISH (Ward et al., 1995), chromosome preparations were treated with 100 μg/ml RNase A in 2× SSC at 37°C for 60 min and with 0.01% pepsin in 10 mM HCl at 37°C for 60 min, and again dehydrated in an alcohol series. PAC DNA was labeled by standard nick translation with biotin-16–dUTP (Boehringer Mannheim). Slides were denatured at 80°C for 10 min and then dehydrated in an ethanol series (70, 85, and 100%). The slide was coated with a 1:5 dilution of a 1:1000 dilution of the 16 OR genes, based on the available sequences (Glusman, in preparation) as follows: OR17-2, 5'-GATACTGTTTGGTTCATTATA-3' and 5'-TTATGTACGATGCATTATAC-3' (1016 bp, 55°C); OR17-4, 5'-TTTGGTAAACATTTGCTGGT-3' and 5'-TTATGATTTTCCTTGT-3' (935 bp, 55°C); OR17-23, 5'-TTTTATTCACGGTTTTGAGG-3' and 5'-GCTGGACG-3' (1076 bp, 55°C); OR17-30, 5'-GTTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-31, 5'-GCTGGACG-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-25, 5'-TTTGGTAAACATTTGCTGGT-3' and 5'-GCTGGACG-3' (1013 bp, 55°C); OR17-210, 5'- TTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); NC4, 5'-TTCATTCTCGTCCATC-3' and 5'-ATATACCGTAACTGGTGACTA-3' (1117 bp, 55°C); OR17-210, 5'-TTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-4, 5'-TTTGGTAAACATTTGCTGGT-3' and 5'-GCTGGACG-3' (1013 bp, 55°C); OR17-23, 5'-TTTTATTCACGGTTTTGAGG-3' and 5'-GCTGGACG-3' (1076 bp, 55°C); OR17-30, 5'-GTTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-31, 5'-GCTGGACG-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-25, 5'-TTTGGTAAACATTTGCTGGT-3' and 5'-GCTGGACG-3' (1013 bp, 55°C); OR17-210, 5'- TTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); NC4, 5'-TTCATTCTCGTCCATC-3' and 5'-ATATACCGTAACTGGTGACTA-3' (1117 bp, 55°C); OR17-210, 5'-TTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-4, 5'-TTTGGTAAACATTTGCTGGT-3' and 5'-GCTGGACG-3' (1013 bp, 55°C); OR17-23, 5'-TTTTATTCACGGTTTTGAGG-3' and 5'-GCTGGACG-3' (1076 bp, 55°C); OR17-30, 5'-GTTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-31, 5'-GCTGGACG-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C); OR17-25, 5'-TTTGGTAAACATTTGCTGGT-3' and 5'-GCTGGACG-3' (1013 bp, 55°C); OR17-210, 5'- TTGGTGTTAATGTTACAGAA-3' and 5'-CCGGTCTCCACTTCAAT-3' (1007 bp, 55°C).
Cloning of PCR products. When more than one type of PCR product was obtained (namely two closely related paralogs or two alleles of the same gene), the PCR products were cloned using the TOPO TA Cloning kit (Invitrogen, Carlsbad, CA) or the CloneAmp pAMPl system for rapid cloning kit (Gibco BRL). Plasmid DNA for sequencing was purified with the Wizard Plus SV Miniprep kit (Promega).

Sequencing. Sequencing reactions were performed on PCR products or clones in both directions with dye terminators (Dye terminator cycle sequencing kit; Perkin-Elmer) on an ABI 373 or ABI 377 automated sequencer. After base calling with ABI Analysis Software (version 3.0), the analyzed data were edited using Sequencher 3.0 (GeneCodes Corp., Ann Arbor, MI).

Sequence analysis. The new sequences described in this paper have been deposited with GenBank under Accession Nos. AF101730 through AF101778. Additional OR sequences used in this study are as follows: OR17-1 (AF087915), OR17-2 (AF087916), OR17-4 (AF087917), OR17-7 (AF087918), OR17-23 (AF087919), OR17-24 (AF087920), OR17-25 (AF087921), OR17-30 (AF087922), OR17-31 (AF087923), OR17-36 (AF087924), OR17-37 (AF087925), OR17-206 (AF087927), OR17-209 (AF087928), OR17-210 (AF087929), and OR17-228 (AF087930).

Nucleotide sequence alignments were performed using the ClustalW program with standard parameters, and phylogeny was assessed using the neighbor-joining analysis (Higgins et al., 1994). The detection of gene conversion events was performed in two ways: (1) A pretty box analysis of the relevant sequences was drawn using the MacBoxShade 1.0.8 computer program (http://www.netaxis.com/~jayfar/mops.html), and a site by site search for shared nucleotides between paralogous sequences was performed. (2) The nucleotide alignment was searched for recombination breakpoints using the TOPAL package (McGuire and Wright, 1998). The window sliding graph of the difference in the sum of squares (Dss) was analyzed, and the regions having a high Dss level were further analyzed by eye.

The identification of human–chimpanzee orthologous pairs was accomplished using the HoverGen database (Duret et al., 1994). The following orthologous pairs were used to compute a typical value for interortholog distances for coding regions: β-globin (HS661), β-globin (HUMHB222), insulin (HSINSU), relaxin 1 (HSREL2), relaxin 2 (A06925), interleukin 8 (HSALBR84), N-formyl-1 (HUMFMLP), C5aR (HSC5AR), low-affinity N-formyl (HSLIPPA4), N-formyl2 (HUMFMLP), C-myc (HUMMYCPOA), interferon inducible (HSINFN3), complement component C4A (HUMMHC4AB), intercellular adhesion molecule 1 (HSCAM1), von Willebrand factor (HSMGP1), and interleukin-sensitive Na+ channel (Hsu38165). In those cases where intronic sequences were available from both human and chimpanzee, the data were used to obtain an estimate of noncoding nucleotide divergence. The statistical significance of the differences between the group averages was determined by a t-test analysis. Nucleotide divergence values were computed using the GeneAssist program (Shpaer, 1997).

RESULTS

The Orthologous OR Cluster in Great Apes

A minimal set of five PAC clones covering the human cluster were used as fluorescence in situ hybridization probes. These PACs were hybridized to both human and great ape metaphase chromosome spreads. In human, each probe showed specific hybridization to chromosome 17p13 (Fig. 1A). In the chimpanzee, each probe was localized to the subtelomeric short arm of chromosome 19 (Fig. 1B). The hybridized chimpanzee chromosomal band (PTR 19p15) is homologous to the studied human chromosomal band (HSA 17p13) (Paris Conference, 1975). An apomorphic reciprocal translocation between ancestral chromosomes homologous to human chromosomes 5 and 17 has occurred in the gorilla (Stanyon et al., 1992). Thus, sequences homologous to human chromosomes 17 are diverged on gorilla chromosomes 4 and 19. Interestingly, each PAC was mapped on gorilla chromosomal band 19q23–q24 (Fig. 1C), the homolog of HSA 17p13, in close proximity to the evolutionary chromosome breakpoint. In orangutan, all five PACs were localized in the subtelomeric region 19pter (Fig. 1D). Orangutan chromosome 19 is the counterpart of HSA 17 (J auch et al., 1992). Under routine conditions of high stringency, nonhybridization signals were visible on other chromosomes. This supports the conclusion that in all great apes, similar to humans, this group of OR genes is disposed in a contiguous genomic cluster, which is located in the syntenic chromosomal region. This cluster conservation may actually be more general. Two PACs, namely 107 and 129, were also hybridized on chromosomes of Pr. cristata and C. geoffrey. In both Old and New World monkeys, specific hybridization signals were detected exclusively on the homologs of HSA 17 (data not shown).

The OR Orthologous Gene Pairs

As a first step in the characterization of the syntenic genomic cluster in chimpanzee, we sequenced this simian OR orthologs by generating gene-specific primers for PCR amplification, based on the knowledge of the full-length sequences of all 16 OR genes from the human chromosome 17 cluster (Glusman, submitted). PCR amplification was performed at high stringency on chimpanzee genomic DNA, with 16 primer pairs corresponding to the DNA sequences immediately flanking the human open reading frames. These sequences harbor considerable variability, thus allowing most of the OR open reading frames to be uniquely amplified. Using these primer pairs, 16 chimpanzee coding regions have been amplified and sequenced. The relatively low degree of interspecific divergence (mean of 2.1 ± 0.1%), as well as the fact that a single PCR amplification product was obtained for almost all of the OR genes, is evidence that we have likely identified unique orthologs of the human OR gene cluster members. This, together with the results of the in situ hybridization experiments, suggests, although not demonstrated by direct mapping data, that the chimpanzee cluster organization may be the same as that in human (Fig. 2).

The dendrogram presented in Fig. 3 shows two exceptions to the straightforward orthology relationships. One case is the human paralogous pair hOR17-30 and hOR17-31 (99.0% identity), for which
the human–chimpanzee orthology relationships are uncertain (Fig. 3, upper arrow). In a second case (hOR17-93), the primer pair amplified two different products. Subcloning and sequencing led to the identification of a new OR gene, OR-923, common to human, chimpanzee, and gorilla, that belongs to the same subfamily (1E) as OR-93 and OR-2 (Fig. 3, lower arrow). At present it is not clear whether OR-923 is located in the flanking region of the currently studied OR cluster or elsewhere in the human genome.

Recent Pseudogene Formation

Of the 16 human ORs identified by genomic sequencing, 6 are fixed in the human population as pseudogenes, while one (OR17-31) is polymorphic, having one intact allele and one interrupted allele (Sharon, in preparation). In chimpanzee, four pseudogenes were found to bear mutations that disrupt the open reading frame (Fig. 4). Two of the pseudogenes (OR-23 and OR-25) were rather ancient, with the deleterious mutations shared by humans, chimpanzees, and gorillas. In two other cases (OR-208 and OR-24), both human and chimpanzee have pseudogenes, but these have been generated by independent events in the two species (Figs. 2 and 4). A fifth pseudogene (OR-210) is human-specific, having a premature stop codon, while in chimpanzee it has an intact open reading frame. For the sixth human pseudogene, which has a very high GC content and could not be amplified from any primate genomic DNA, no comparative data are available.

Additional partial analyses of the orthologous OR genes in gorilla, orangutan, and macaque provided crucial timing information on the process of primate OR pseudogene formation. We found that the two pseudogenes (OR-23 and OR-25) shared by the African apes—chimpanzee and gorilla—and human are intact in orangutan and macaque. This led to the conclusion that they were intact at the time of orangutan–African ape divergence (~9 million years ago (Easteal and Herbert, 1997)).

None of the other five primate pseudogenes analyzed is shared by all African apes. These include two of the OR genes (hOR17-7 and OR17-209), which are intact in human and chimpanzee, but are pseudogenes in gorilla, due to one base deletions. In both cases, the gorilla pseudogenes are accompanied by an intact vari-
ant, a potential case of heterozygosity with one of the alleles being a pseudogene. It may thus be inferred that OR-7, OR-24, OR-208, OR-209, and OR-210 were all functional at the time of the orangutan–African ape divergence. In other words, it is likely that as recently as \#9 million years ago all 15 OR genes in the genomic cluster analyzed by us were intact (Fig. 4).

A Human-Specific Deleterious Gene Fusion

A previous analysis of a region within the human OR cluster on chromosome 17 (Glusman et al., 1996) revealed that two of the OR pseudogenes, hOR17-24 and OR17-25, were fused by nonhomologous recombination. Here we used PCR to amplify across the recombination point. The results indicated that this gene pair is fused in all 80 unrelated human individuals tested (data not shown), and thus this dual gene inactivation event seems to be fixed in the human population. We have obtained sequence evidence that these genes are not fused in other primates. This is indicated by our ability to sequence OR-25 in chimpanzee and orangutan and to obtain 138 bp of the region that was lost in hOR17-25 due to the fusion event. The chimpanzee orthologs (cOR19-24 and cOR19-25) still have small deletions that render them pseudogenes. One of these, a 2-bp deletion in OR-25, was found in the human, chimpanzee, bonobo, and gorilla orthologs, but not in the orangutan ortholog, and thus seems to have occurred before the orangutan–African ape divergence, much earlier than the human-specific hOR17-24/OR17-25 fusion event.

Punctuated Evolutionary Changes

Ten of the 16 OR genes in the cluster have intact open reading frames in both human and chimpanzee. Nine have been inherited from the common ancestor only with point mutations, and one (hOR17-93) has a 27-bp in-frame internal duplication (Ben-Arie et al., 1994), which is shown here to be human-specific.

Aiming to study further the differences between intact ORs and pseudogenes, we compared the nucleotide and amino acid sequences of OR orthologous pairs with other intact genes and with noncoding regions (see Materials and Methods for details). While the seemingly intact genes showed an average of 1.9 ± 0.7% single nucleotide difference between respective orthologs, a somewhat higher average nucleotide substitution rate (2.5 ± 0.5%) was seen for the pseudogenes (P = 0.09). The values for the intact OR open reading frames were statistically different from those seen for other genes (1.2 ± 0.6%; P = 0.01). On the other hand, the degree of single nucleotide substitution for the OR pseudogenes is rather similar to that found in noncoding regions along the cluster and elsewhere in the primate genome (2.5 ± 1.1%; P = 0.89). At the protein level, a clearer picture emerged. Intact OR genes show a rate of change significantly higher than that for open reading frames from other genes (3.6 ± 1.6% vs 1.8 ±

FIG. 2. The human OR cluster on 17p13.3 and the syntenic cluster on chimpanzee chromosome 19p15. The direction of the coding regions was determined only in the human gene cluster (Glusman, in preparation) and is speculated to remain unchanged in the chimpanzee genomic clusters. Pseudogenes are marked by ψ, and the mutations affecting the length of the open reading frames are shown between the two cluster lines. Percentage divergence is simply the percentage of nucleotide differences. The grouping into subfamilies was performed according to Glusman (in preparation). The location of OR-923 in the human genome was not determined, and thus its location is indicated by a broken line.
1.6\% (P = 0.009), but significantly lower than for OR pseudogenes (5.7 ± 1\%; P = 0.017). Thus, intact OR genes, but not pseudogenes, appear to be subject to a selective pressure, although lower than seen in other gene coding regions.

An interesting comparison may be made among OR genes and pseudogenes in terms of the distribution of the human–chimpanzee differences along the coded protein, summed over all relevant genes. For intact genes, but not pseudogenes, two of the transmembranal helices (TM2 and TM3) were found to be practically devoid of mutations, i.e., to be highly conserved between the two species. Unexpectedly, normal genes showed a relatively large number of amino acid differences in the second intracellular loop (between TM3 and TM4), containing the conserved MAYDRYVAIC motif and known to be highly conserved in GPCRs (Baldwin, 1994).

Gene Conversion Events

Aiming to identify those sequences that most likely underwent gene conversion events, we carried out a systematic comparison of all available sequences from each subfamily. Candidate regions were those that harbor new mutations shared between members of a paralogous pair. Three of the gene subfamilies within the currently analyzed OR cluster are represented by three or more members per subfamily. In all three cases, there is evidence for gene conversion events, which occurred among subfamily members, and not across subfamily boundaries (Table 1 and Fig. 5A). In family 3A, 11 events may be discerned, most of them sharing a common donor OR coding region, OR-228. Two of the events involve an independent conversion of a specific segment from OR-228 to OR-40, in both human and chimpanzee. Repeated gene conversion, in which at least two instances of genetic exchange could be identified, involves a rather long (610 bp) transfer, with OR-228 as a donor and OR-201 as an acceptor. The first conversion event appears to have occurred prior to the separation of Old World monkeys from apes. This is evidenced by the presence of the same configuration in the chimpanzee, gorilla, and macaque orthologs of OR-201. In a much more recent event, the same region underwent human-specific gene conversion, as evidenced by the 99.5\% nucleotide identity shared by the first 610 bases of the hOR17-201 and OR17-228 coding regions (Fig. 5B). In contrast, the ~400 nucleotides at the 3′ end of hOR17-201 shows only 87.1\% nucleotide identity to the nearest subfamily member, hOR17-24, and thus seems to represent the original state of hOR17-201 prior to the occurrence of the gene conversion events.

In another subfamily, 1E, four gene conversion events appear to have occurred. In two of these, short segments were donated by as yet unidentified OR genes, while in one case, a chimpanzee specific short gene conversion event could be identified between cOR19-93 and cOR19-210. In the fourth case, OR17-2 served as a donor of a central segment that spans most of the coding region (at least 857 bp), and contains an older short converted segment. The acceptor is OR-923 (Fig. 5A), the newly identified OR gene.

In the case of family 1D, gene conversion events could be identified among most subfamily members (Fig. 5A). A special case in this subfamily consists of the two highly similar OR paralogs, hOR17-30 and OR17-31, which share 99.0\% nucleotide identity. This suggests a very recent human-specific duplication, since the observed similarity is even higher than that encountered among human–chimpanzee orthologs in the cluster (97.9 ± 0.6). Interestingly, when a pair of oligonucleotides designed to amplify both hOR17-30 and OR17-31 were used to PCR-amplify the expected single chimpanzee ortholog, two highly similar genes could be detected (99.4\%). However, since the two human coding regions were found to be much more similar to each other than to any of the chimpanzee homologs (Fig. 3), no obvious orthology relationships could be established. The simplest hypothesis would be, therefore, that a duplication occurred prior to the human–chimpanzee divergence and that the two duplicated genes were then homogenized in human, through a gene conversion event.
To study this question further, we sequenced the gorilla and macaque orthologs. The results showed that each species contains a pair of paralogous genes, which are highly similar (nucleotide identity ranging from 99.2 to 97.7), confirming the notion of an even earlier duplication, followed by recent homogenizing gene conversion events in each of the species.

A summary of all the significant gene conversion traces seen in primate OR genes (Fig. 6) indicates that they belong to two classes: long range (more than 50% of the coding region length) and short range (considerably smaller segments). There is a clear indication that the C-terminal third of the OR coding region has a much lower propensity of taking part in gene conversion. A considerable fraction of these events (43%, Fig. 6) have their beginning and/or end fall within the region of the OR molecule, encompassing the hypervariable helices 3, 4, and 5 and the second extracellular loop, suggesting events that could generate new binding site specificities.

FIG. 4. A primate evolutionary tree representing the inferred formation of different OR pseudogenes. The identifying numbers of genes turned to pseudogenes are marked in circles along the evolutionary branches. The reconstructed configuration of pseudogenes in the OR cluster is shown on the right and bottom striped bars, where pseudogenes within the cluster are shown in gray (half bar is a polymorphism). Estimated divergence times: human–chimpanzee, 5 million years ago (MYA); hominoid–gorilla, 8 MYA; orangutans–African apes, 9 MYA. Hum, human; Chimp, chimpanzee; Gor, gorilla; Orang, orangutan.

To study this question further, we sequenced the gorilla and macaque orthologs. The results showed that each species contains a pair of paralogous genes, which are highly similar (nucleotide identity ranging from 99.2 to 97.7), confirming the notion of an even earlier duplication, followed by recent homogenizing gene conversion events in each of the species.

A summary of all the significant gene conversion traces seen in primate OR genes (Fig. 6) indicates that they belong to two classes: long range (more than 50% of the coding region length) and short range (considerably smaller segments). There is a clear indication that the C-terminal third of the OR coding region has a much lower propensity of taking part in gene conversion. A considerable fraction of these events (43%, Fig. 6) have their beginning and/or end fall within the region of the OR molecule, encompassing the hypervariable helices 3, 4, and 5 and the second extracellular loop, suggesting events that could generate new binding site specificities.

DISCUSSION

While displaying a dynamic process of internal evolutionary change, the orthologous simian OR cluster appears to have been kept intact in its overall layout and have remained as a single genomic copy. Except in cases of paralogs with very high mutual similarity (e.g., OR17-30 and OR17-31), pairwise orthology relationships have been established for the OR genes within the primate clusters. Such local chromosomal conservation was shown, among others, in related human, dog, and mouse OR clusters (Carver et al., 1998; Issel-Tarver and Rine, 1997) and within the globin gene cluster (Slightom et al., 1985). In closely related species such as human and chimpanzee, detailed synteny relationships may extend to much larger genomic segments, as exemplified by the syntenic region on human chromosome 4p (Crouau-Roy et al., 1996). Alternative scenarios could have been frequent interchromosomal duplications as was found in a block of three OR genes (Brand-Arpon et al., 1999; Trask et al., 1998) or where a simian cluster is duplicated or split into two or more segments on different chromosomes, as has been shown for other gene-rich clusters on human chromosomes X and 16 (Eichler et al., 1996). Our results plausibly suggest that most or all the orthologs for genes in the human chromosome 17 OR cluster are included in a chimpanzee syntenic chromosomal cluster on chromosome 19.

Whereas the entire OR cluster seems to have remained undisturbed, at least two of its OR genes have
been reported to have close paralogs on other human chromosomes. These include two paralogs of hOR17-23 on human chromosome 11 (Buettner et al., 1998) and two paralogs of hOR17-2 on chromosomes 5 and 13 (Rouquier et al., 1998b). Such paralogs were probably generated by a rather recent interchromosomal duplication. The gene OR-923 reported here may be another such case, if future analyses locate it in a cluster different from that of human chromosome 17.

A central aspect of the evolution of the olfactory subgenome is the level and type of selection acting on OR genes. Since a typical “general” odorant is likely to be sensed by several receptors with different affinities (Lancet et al., 1993b), only a low level of selection is expected against the loss of single OR genes. Still, some selection does appear to operate, as indicated by the discernibly lower rate of variation among intact OR gene orthologs, than among pseudogenic orthologs. Two of the most interspecifically conserved OR genes are the intact coding regions of OR-2 and OR-4. These coding regions have been found to be intact in all primate species studied. Interestingly, hOR17-2 was found to be expressed in the human male germline. The OR17-2 gene product therefore potentially interacts with specific sperm-related chemical signals (Parmentier et al., 1992), which may explain its conservation among species. The higher degree of conservation in these OR genes could also be ascribed to an involvement with highly specific olfactory cues, typified by behaviorally important odors such as pheromones.

The availability of an entire group of full-length OR coding region sequences permitted us to conduct a significant analysis of pseudogene incidence. Six of the 16 genes (38%) on the human chromosome 17 OR cluster are found to be pseudogenes. The other 10 genes carry no clear signs of sequence deterioration within the coding regions. Some of them, however, could still be functionally defective. The lower rate of differences for the putative intact genes provides, nevertheless, an independent indication that these genes may be functional. For OR17-2, -40, -93, -201, and -228, there is, in addition, corroborative experimental evidence showing that these are transcribed in the olfactory epithelium (Ben-Arie et al., 1994; Crowe et al., 1996; A. Sosinsky and D. Lancet, unpublished data) and in sperm (Parmentier et al., 1992).

In the case of the OR clusters on human chromosome 11, a much higher overall incidence of pseudogenes was observed (nearly 80%), and some of the OR clusters were shown to contain only pseudogenes (Buettner et al., 1998). It is reasonable to speculate that these gene groups may have been inactivated as entire clusters, perhaps because of a defective expression control mechanism. In contrast, it is likely that for the cluster studied here such shared control elements are still intact.

The high incidence of OR pseudogenes in human

Table 1

<table>
<thead>
<tr>
<th>Acceptor gene<sup>a</sup></th>
<th>Donor gene<sup>a</sup></th>
<th>Sub family</th>
<th>Minimal region</th>
<th>Maximal region</th>
<th>Length of transfer</th>
<th>Timing of transfer<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HumanOR17-40</td>
<td>HumanOR17-228</td>
<td>3A</td>
<td>391–600</td>
<td>337–607</td>
<td>210–271</td>
<td><5MYA</td>
</tr>
<tr>
<td>cOR19-40</td>
<td>cOR19-228</td>
<td>3A</td>
<td>391–530</td>
<td>337–607</td>
<td>140–271</td>
<td><5MYA</td>
</tr>
<tr>
<td>OR-40</td>
<td>Unknown</td>
<td>3A</td>
<td>123–127</td>
<td>Unknown</td>
<td>5</td>
<td>>5MYA</td>
</tr>
<tr>
<td>HumanOR17-201</td>
<td>HumanOR17-228</td>
<td>3A</td>
<td>1–610</td>
<td>1–610</td>
<td>610</td>
<td><5MYA</td>
</tr>
<tr>
<td>OR-201</td>
<td>OR-228</td>
<td>3A</td>
<td>1–610</td>
<td>1–610</td>
<td>610</td>
<td>>30MYA</td>
</tr>
<tr>
<td>cOR19-201</td>
<td>cOR19-228</td>
<td>3A</td>
<td>153–154</td>
<td>126–177</td>
<td>2–52</td>
<td><5MYA</td>
</tr>
<tr>
<td>gOR19-201</td>
<td>gOR19-228</td>
<td>3A</td>
<td>7–7</td>
<td>1–23</td>
<td>1–23</td>
<td><8MYA</td>
</tr>
<tr>
<td>gOR19-201</td>
<td>gOR19-228</td>
<td>3A</td>
<td>525–530</td>
<td>506–561</td>
<td>6–56</td>
<td><8MYA</td>
</tr>
<tr>
<td>OR-201</td>
<td>Unknown</td>
<td>3A</td>
<td>82–87</td>
<td>Unknown</td>
<td>6</td>
<td>>30MYA</td>
</tr>
<tr>
<td>mOR19-228</td>
<td>mOR19-201</td>
<td>3A</td>
<td>23–100</td>
<td>8–123</td>
<td>78–116</td>
<td><30MYA</td>
</tr>
<tr>
<td>OR-2</td>
<td>Unknown</td>
<td>1E</td>
<td>219–246</td>
<td>135–291</td>
<td>28–157</td>
<td>>8MYA</td>
</tr>
<tr>
<td>OR-93</td>
<td>Unknown</td>
<td>1E</td>
<td>313–330</td>
<td>292–330</td>
<td>18–39</td>
<td>>5MYA</td>
</tr>
<tr>
<td>cOR19-93</td>
<td>cOR19-210</td>
<td>1E</td>
<td>260–265</td>
<td>226–281</td>
<td>6–56</td>
<td><5MYA</td>
</tr>
<tr>
<td>OR-923</td>
<td>OR-2</td>
<td>1E</td>
<td>1–857</td>
<td>1–904</td>
<td>857–904</td>
<td>>8MYA</td>
</tr>
<tr>
<td>OR-4</td>
<td>OR-23</td>
<td>1D</td>
<td>1–358</td>
<td>1–358</td>
<td>358</td>
<td>>8MYA</td>
</tr>
<tr>
<td>OR-23</td>
<td>OR-4</td>
<td>1D</td>
<td>119–119</td>
<td>98–160</td>
<td>1–63</td>
<td><8MYA</td>
</tr>
<tr>
<td>cOR19-23</td>
<td>OR-30</td>
<td>1D</td>
<td>97–98</td>
<td>44–130</td>
<td>2–87</td>
<td><5MYA</td>
</tr>
<tr>
<td>mOR19-23</td>
<td>mOR19-31</td>
<td>1D</td>
<td>363–417</td>
<td>358–423</td>
<td>55–66</td>
<td><30MYA</td>
</tr>
<tr>
<td>mOR19-23</td>
<td>mOR19-31</td>
<td>1D</td>
<td>513–556</td>
<td>496–574</td>
<td>44–79</td>
<td><30MYA</td>
</tr>
<tr>
<td>OR17-30</td>
<td>OR17-31</td>
<td>1D</td>
<td>1–939</td>
<td>1–939</td>
<td>939</td>
<td><8MYA</td>
</tr>
</tbody>
</table>

^aThe acceptor or donor gene is indicated by the species name (c, chimpanzee; g, gorilla, and m, macaque), chromosome number, and gene number. The species and chromosome number are indicated only in species-unique events.

^bEstimated divergence times: human–chimpanzee, 5 MYA; hominoid–gorilla, 8 MYA; Old World monkeys–primates, 30 MYA.
compared to other species such as mouse (<2% by our unpublished GenBank search) and zebrafish (about 10% (Barth et al., 1997)) suggests a time-dependent evolutionary process of OR gene loss. Overall, it is possible that more than half of all human OR genes are inactive (Rouquier et al., 1998b). A better understanding of this phenomenon requires information on the timing of the process that has turned genes into pseudogenes. We infer that all OR genes on the cluster we have studied were intact before the divergence of orangutans from African apes, estimated to be ~9 million years ago (Easteal and Herbert, 1997). This drastic change in the number of functional genes over a short period of evolution is noteworthy and is consistent with a trend indicated in a recent study of a single human OR pseudogene (Rouquier et al., 1998a). This change probably stems from the considerable reduction of the selection level acting on OR genes during primate evolution, in accordance with the decreasing olfactory dependence of this “micro-osmatic” order. Interestingly, a large array of class II olfactory receptor genes in the dolphin were found to be nonfunctional pseudogenes (Freitag et al., 1998). Class II receptors are speculated to recognize volatile odorants and thus might be turned into pseudogenes during evolution, in aquatic mammals, in a mechanism similar to the evolution of OR genes in primates. Based on the above-mentioned results, we assume that gradual loss of functional OR genes is not a human-specific phenomenon and might take place whenever there are genes encoding receptors with a negligible contribution to chemosensory faculties.

It is possible that the main selective force in the evolution of OR genes is that which favors the conservation of the overall size of the functional repertoire. If this size decreased below a specific threshold, a deficit could ensue in the animal’s overall olfactory faculties, including a potential decrement in the average affinity toward general odorants (Lancet et al., 1993b).

We describe here a large incidence of gene conversion events in the OR cluster. In all cases but five, the conversion donor was identified within the same OR gene cluster. Similarly, intrachromosomal gene conversion was previously reported to be much more frequent than interchromosomal gene conversion (Liao et al., 1997). The availability of the sequence of the monkey orthologs of hOR17-228 and OR17-201 shed light on an interesting phenomenon: two gene conversion events that occurred in the exact same position. This may indicate that, beyond straightforward sequence similarity, there are additional signals that regulate gene conversion among OR genes, perhaps recombination “hot spots” (Amor, 1988). A similar repeated gene conversion phenomenon was found in other GPCR genes, the color vision receptor genes, in which intron 4 of the green and red receptor genes was converted twice, with the last event probably being human-specific (Zhou and Li, 1996).

Gene conversion between OR genes had been previously postulated (Ben-Arie et al., 1994; Buck and Axel, 1991), but we provide here the first direct evidence that this mechanism is widespread among OR genes. Gene conversion may be important in generating the diversity of OR genes (see below). Notably, in three cases,
OR-30/31, OR-201, and OR-923, the observed gene conversion events appear to involve large segments of genes, resulting in the replacement of most of the open reading frame by a paralogous sequence. Such "homogenization" events would actually result in an opposite effect, namely, the decreased diversity of the OR repertoire, because they generate two largely identical paralogs (Liao et al., 1997; Schlotterer and Tautz, 1994). A similar homogenization process could also be important in pseudogene "rescue," whereby a pseudogene may be corrected by an intact gene, as was found in other gene families (Benevolenskaya et al., 1997).

In contrast to the homogenizing conversion events, we report here 10 other cases of gene conversion events, involving smaller segments of the coding regions. Such instances of short gene conversion were found in other gene families as well (Wines et al., 1991). These events may be essential in OR gene diversification. OR proteins are known to exist in several hundred variants, whose diversity is germline-coded. This situation is different from that encountered in immune receptors, whereby diversity is generated via somatic DNA rearrangements and mutations, as well as by combinatorial association at the protein level (Lieber, 1996).
A straightforward scenario would anticipate that OR diversity arises by gene duplication (Barth et al., 1997; Ben-Arie et al., 1994; Issel-Tarver and Rine, 1997), followed by the gradual accumulation of point mutations in the duplicated variant. The rather frequent occurrence of gene conversion reported here suggests that an additional germline mechanism for the generation of diversity may be at work in the olfactory receptor repertoire, similar to that found in other multi-gene families (Rodakis et al., 1984; Wines et al., 1991). It may thus be argued that many of the OR coding regions actually comprise mosaics of protein segments generated by repeated gene conversion events. If true, this would considerably accelerate the evolution of new OR variants and lead to a combinatorial process that brings together segments from several OR gene paralogs, to generate new odorant binding site configurations. That nearly a half of all the observed gene conversion events result in combinatorial joining within the putative OR binding site encompassing the hypervariable helices 3, 4, and 5 provides credence to this hypothesis.

Obviously, there is a subtle interplay between gene conversion, which may increase diversity, and pseudo-gene formation, which tends to decrease the multiplicity of the functional repertoire. Our results do not address the relative strength of these two effects during primate evolution. More extended comparative studies that might encompass complete OR gene repertoires in several species would likely shed light on this intriguing question.

ACKNOWLEDGMENTS

This research was supported by grants to D.L. from the U.S. National Institutes of Health (DC00305), a Wolfson Research Award of the Israel Academy of Science, the Israel Ministry of Science (in collaboration with the German BMBF and an Infrastructure grant), the German-Israeli Foundation for Scientific Research and Development, and the Krupp Foundation. The fluorescence in situ hybridization work was supported by Research Grant Ha1374/5-1 to T.H. from the Deutsche Forschungsgemeinschaft. We thank Dr. Yigal Horvitz for his kind gifts of blood, Dr. Cedric Campbell Muir and Dr. Keneth Kidd for the DNA samples, Dr. Edna Ben-Asher for the PAC clones used for FISH, Elena Robinson and Hilla German-Shashoua for technical assistance, and Moshe Eisenberg, Martin Kupiec, and Avraham Levi for fruitful discussions. D. L. holds the Ralph and Lois Silver chair in Neronogenomics.

REFERENCES

