
Vol. 23 ISMB/ECCB 2007, pages i440–i449
BIOINFORMATICS doi:10.1093/bioinformatics/btm183

Nucleotide variation of regulatory motifs may lead to distinct

expression patterns

Liat Segal1,†, Michal Lapidot2,†, Zach Solan3, Eytan Ruppin1,4, Yitzhak Pilpel2 and
David Horn3,*
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, 2Department of Molecular Genetics, Weizmann
Institute of Science, Rehovot 76100, 3School of Physics and Astronomy and 4School of Computer Science,
Tel Aviv University, Tel Aviv 69978, Israel

ABSTRACT

Motivation: Current methodologies for the selection of putative

transcription factor binding sites (TFBS) rely on various assumptions

such as over-representation of motifs occurring on gene promoters,

and the use of motif descriptions such as consensus or position-

specific scoring matrices (PSSMs). In order to avoid bias introduced

by such assumptions, we apply an unsupervised motif extraction

(MEX) algorithm to sequences of promoters. The extracted motifs

are assessed for their likely cis-regulatory function by calculating the

expression coherence (EC) of the corresponding genes, across a set

of biological conditions.

Results: Applying MEX to all Saccharomyces cerevisiae promoters,

followed by EC analysis across 40 biological conditions, we obtained

a high percentage of putative cis-regulatory motifs. We clustered

motifs that obtained highly significant EC scores, based on both their

sequence similarity and similarity in the biological conditions these

motifs appear to regulate. We describe 20 clusters, some of which

regroup known TFBS. The clusters display different mRNA expres-

sion profiles, correlated with typical changes in the nucleotide

composition of their relevant motifs. In several cases, a variation of a

single nucleotide is shown to lead to distinct differences in

expression patterns. These results are confronted with additional

information, such as binding of transcription factors to groups

of genes. Detailed analysis is presented for clusters related to

MCB/SCB, STRE and PAC. In the first two cases, we provide

evidence for different binding mechanisms of different clusters

of motifs. For PAC-related motifs we uncover a new cluster that

has so far been overshadowed by the stronger effects of known

PAC motifs.

Contact: horn@tau.ac.il

Supplementary information: Supplementary data are available at

http://adios.tau.ac.il/regmotifs and at Bioinformatics online.

1 INTRODUCTION

Regulation of gene expression is mainly mediated through

specific interactions of transcription factors (TF) with DNA

promoter elements. The TF-binding sites (TFBS) are short

(typically of length 6–20 bases) and comprise a minority of the

nucleotides within a promoter region. The binding sites are

embedded within a sequence that is assumed to be non-

functional with respect to transcription. Furthermore, a single

TF protein may interact with a variety of sequences. Identifying

genuine binding sites is a challenging task as the physical extent

of a promoter is rarely well defined, and within this ill-defined

region we are seeking sparsely distributed, short and imprecise

sequence motifs.
Advances in genome research, including whole genome

sequencing and mRNA expression monitoring have allowed

the development of computational methods for binding site

prediction. Among the most popular and powerful methods for

ab initio detection of regulatory motif is Gibbs-sampling

(Lawrence et al., 1993), which detects over-represented

motifs. However since regulatory motifs are very short, while

in contrast, the regulatory portion of the genome is very long

(e.g. 6 000 000 bp in yeast, and much longer in mammals), and

since the size of gene regulatory networks is relatively small

(typically tens of genes), most regulatory motifs are not

expected to be over-represented on a genome-wide scale. The

task of motif identification is thus often first tackled by

grouping together relatively small sets of genes (tens or

hundreds) that are likely to be co-regulated, followed by

motif searching within such groups (Brazma et al., 1998;

Harbison et al., 2004; Tavazoie et al., 1999).

Other methods employ phylogenetic footprinting for the task

of motif finding. Such methods compare upstream regions of

orthologous genes from related species, assuming that TFBS

are relatively conserved. The choice of species is then crucial for

obtaining reliable results. Comparing species with a short

divergence time may yield false positives while choosing too

distant species will fail to recover species-specific sites. For

instance, �40% of human functional TFBS are expected to be

non-functional in rodents (Dermitzakis and Clark, 2002).

Furthermore, the alignment of orthologous intergenic

sequences is nontrivial since well-conserved sequences of

different lengths are interspersed with sequences that show

little conservation.
For most TFs, there appears to be no unique sequence of

bases that is shared by all recognized binding sites. However

there are typically clear biases in the distribution of bases that

occur at each position. These biases are commonly represented

mathematically by position-specific scoring matrices (PSSMs),

whose components give the probabilities of finding each
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nucleotide at each binding site position (Berg and von Hippel,

1987; Stormo, 2000).
Motif representations by PSSM, however, ignore dependen-

cies between nucleotide positions in regulatory motifs, even

though such dependencies are known to occur (Benos et al.,

2002; Bulyk et al., 2002). Statistical models that account for

such dependencies include hidden Markov models and

Bayesian networks (Durbin et al., 1998). Yet, even sophisti-

cated models of this kind have relatively low values of

sensitivity and specificity when required to represent the

known binding sites (Barash et al., 2003).
Here, we employ a different approach that attempts to

avoid the limitations and inherent assumptions discussed

above. We adapt a recently published unsupervised algorithm

(Solan et al., 2005), designed originally to extract patterns

from natural-language corpora. This motif extraction algo-

rithm (MEX) is based on a statistical model that identifies

consecutive chains of interdependencies between adjacent

nucleotide positions. It can thus successfully identify motifs

as statistically significant on a genome-wide scale, even

without significant over-representation. The algorithm readily

detects the motif boundary, as the position where the series

of highly probable transitions begins or terminates. MEX

both overcomes the requirement to pre-group potentially

co-regulated genes, and captures interdependencies between

motif positions.

Applying MEX to genome-wide yeast regulatory sequences,

we extract sequence motifs. We then validate their biological

significance using whole genome mRNA expression data.
We use the expression coherence (EC) score (Lapidot and

Pilpel, 2003; Pilpel et al., 2001) in order to check which of the

identified motifs exert significant effects on the expression

profiles of their downstream genes. The expression analysis

shows an enormous enrichment of highly scoring motifs among

MEX’s predictions, and identifies potential biological

conditions in which these motifs act. We further group the

high-scoring motifs into subsets based not only on their raw

DNA sequence, but also on the biological conditions in which

they govern coherent expression. Such grouping reveals

biological insights that are easily missed by conservative

methods, which rely on sequence alone. For instance, partially

overlapping TFBS that are bound by distinct TFs regulating

different biological conditions, may be indistinguishable by

sequence, yet appear in separate clusters using our method.

Another biological phenomenon we capture is slight variations

in binding site sequence, which result in different expression

outputs.
Our analysis shows that the commonly used PSSM descrip-

tion does not capture some very important properties; there

exist specific structural relations, such as positional dependen-

cies, that correlate with high EC values in particular biological

conditions, i.e. they are of functional importance.

2 METHODS

2.1 The motif extraction algorithm (MEX)

MEX is a motif extraction algorithm (Solan et al., 2005) developed

as part of another algorithm, ADIOS, which induces grammar from

texts. Given a set of DNA sequences, such as the promoters of all genes

in Saccharomyces cerevisiae, one loads all strings on a graph composed

of four vertices corresponding to the 4 nucleotides that form the

alphabet of the problem at hand. All these strings form paths over the

graph. MEX identifies significant patterns by searching for convergence

of multiple paths onto the same subpaths and divergence from them.

These substrings are considered to be motifs if they obey two

requirements concerning the amount of convergence/divergence

observed, specified by a parameter �, and its statistical significance

given the number of paths involved, set by a threshold �. Further

information can be found in the Supplementary Material and at

http://adios.tau.ac.il.

We applied MEX to 4800 promoters of 6300 genes from the genome

of S.cerevisiae. Some promoters are located in the intergenic region of

two oppositely oriented genes and thought to regulate both.

Throughout this work, bidirectional promoters were taken twice in

different orientations and associated with the corresponding genes.

Each promoter sequence, of length up to 1000 bp, is considered as a

path on the graph created by MEX. After all information is loaded onto

the graph, we use all promoter sequences as trial paths in order to

extract motifs.

MEX selects motifs according to edge criteria rather than over-

representation in the dataset. Nonetheless it can pick up repetitive

motifs, in particular those of very high occurrence (in the thousands)

that may be unrelated to regulatory functions. Hence we limit ourselves

to motifs whose occurrence rate is between 5 and 100 in the entire data.

We also require a lower limit of length 6 bp.

2.2 The expression coherence (EC) score

The EC score of a motif, that appears in the promoters of a set of genes,

S, is defined as the fraction of gene pairs (i,j) in S, for which the

Euclidean distance between normalized expression profiles falls below a

threshold, DT. DT is determined as a distance at which random gene

pairs have a probability P of scoring below. The EC score may range

between 0 and 1 and is higher for sets of genes that converge into one or a

few tight clusters in expression space (see SupplementaryMaterial for an

intuitive explanation). A sampling-based means exists for the assessment

of statistical significance, in terms of P-value of EC scores, given the

gene set size N and the examined expression time series (Lapidot and

Pilpel, 2003).When calculating EC scores for multiple motifs, we applied

the false discovery rate (FDR) theorem (Benjamini and Hochberg, 1995)

in order to account for the testing of multiple hypotheses and to control

the amount of false positives. The FDR criterion determines the P-value

cutoff below which motifs are guaranteed to be statistically significant at

a specified false discovery rate.

2.3 mRNA expression data

Whole-genome mRNA expression data of 40 time series experiments,

representing a wide range of natural (e.g. cell cycle) and perturbed

conditions in S.cerevisiae, were obtained from ExpressDB (http://

arep.med.harvard.edu/cgi-bin/ExpressDByeast/EXDStart). For a com-

plete list of conditions see Supplementary Material.

2.4 Clustering motifs by sequence and function

We have formulated an iterative method for clustering motifs,

according to both their sequences and the biological conditions in

which they operate, as determined by their EC scores across the 40

examined biological conditions. We initiate clusters by gathering motifs

that share some building blocks (of length 6 bp), or ‘seeds’. Then, a

series of iterations improves the clusters, using various procedures

detailed below. The clusters refinement steps include addition and

removal of motifs from existing clusters and splitting and merging of

clusters. We quantified the quality of clusters using several criteria

Nucleotide variation of regulatory motifs
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associated with sequence patterns and EC score patterns of the motifs.

The refinement steps are listed below.

2.4.1 Initiating clusters by seeds Our set of motifs was scanned

to find short strings of nucleotides (of length 6) that appear within at

least three motifs, to be called ‘seeds’. Selecting all motifs that contain a

given seed defines a preliminary cluster.

2.4.2 Pruning clusters to increase EC tightness For each motif,

which had a significant EC score (had passed the FDR criterion) in at

least one of the examined biological conditions, one defines an EC

vector of length 40, whose entries specify the EC P-values of the motif

across the 40 biological conditions. Such vectors comprise the matrices

in Figures 5–7. Let us define the space of all these vectors as EC space

and define an EC divergence measure for a cluster of motifs as the

average distance of all pairs of its EC vectors. In order to decide

whether to eliminate a motif from a given cluster, we ask whether its

presence increases the divergence of the cluster. To decide whether a

motif m should be eliminated from a cluster M, we compare the EC

divergence of M with the empirical distribution of EC divergence scores

resulting from replacing m with every one of the motifs that lie outside

the cluster M. An example is shown in Figure 1.

2.4.3 Expanding clusters We search for new motifs to be added

to the cluster without increasing its EC divergence. To decide whether

a motif m should be added to a cluster M we compare the EC

divergence resulting from its addition (Mþm) with the empirical

EC divergence distribution resulting from additions of each of the

motifs lying outside M.

At the same time we also require sequential similarity of the new

motif to the ones that belong to the cluster. The sequential distance

between motifs is defined as the edit distance of their best alignment,

not allowing gaps. The distance score, D, is normalized between 0 and 1

such that D¼ 0 if the short motif is fully contained in the long one, and

D¼ 1 if the motifs have no match at all.

2.4.4 Fusion of clusters Clusters will be merged if they share a

minimum percentage of motifs and are also found to be similar in EC.

EC distance between two clusters A and B is defined by a Fisher

criterion, as the distance between the centers of the clusters, divided by

the sum of their SDs:

FA,B ¼
�A � �Bk k

�Ak k þ �Bk k

�A and �B are the mean EC vectors of the two EC matrices (the

center of each cluster). For each cluster we define � as the vector of 40

SDs corresponding to the 40 EC experiments. Clusters will be merged if

their F is smaller than some threshold, as long as they also obey the

sequential similarity criterion.

2.4.5 Splitting of clusters Clusters are split intoK smaller clusters

if they exceed a given size. Splitting is done using K-means on the EC

space of the cluster (K is a parameter of the algorithm and was set to

K¼ 3 in this work). After applying this indiscriminative step, however, a

fusion step is applied, so that unnecessary splitting will be reversed.

2.4.6 Fine refinement of clusters The former procedures are

applied iteratively in a preset order, generating clusters that are rather

tight in EC and in sequence and differ from each other in sizes, EC

patterns and motif sequences. The clusters are given a cluster score

(defined in Supplementary Material), encapsulating the various

measures used so far. In a final pruning step, using finer parameters,

improvement is tested with respect to the cluster score, and the pruning

is accepted or rejected accordingly.

2.4.7 Flow of the algorithm After initiation, cycles of the various

iterations occur, gradually improving the clusters with respect to their

sequences and EC patterns. The algorithm stops when the rate of

change of the clusters falls below a certain cutoff (a stopping criterion)

or if no clusters are found. Clusters that are too small are disregarded.

Our clustering method may be considered ‘fuzzy’ in the sense that single

motifs may belong to several clusters. Furthermore, not all motifs must

be clustered and may be left as singletons.

2.5 Finding GO annotations of clusters

Co-regulated genes may be involved in similar cellular processes and

functions. Information regarding the functional tendencies of genes on

the promoters of which the cluster’s motifs are found may be helpful in

getting a notion about the identity of clusters. We used GO term finder

(Boyle et al., 2004) in order to test the GO enrichment (Ashburner et al.,

2000) of such sets of genes.

2.6 Incremental TF binding rates

In order to further validate the identity of clusters with respect to

known TFs, we performed a comprehensive estimation of the binding

of various S.cerevisiae TFs to the promoters on which our motifs were

found. For this purpose we employed yeast genome-wide location

analysis data (Harbison et al., 2004), in which the genomic occupancy

of 203 DNA-binding TFs had been measured in vivo via ChIP-on-chip

experiments at various environmental conditions. We have calculated

the binding rates, i.e. the percentage of promoters within each cluster

that are bound by each TF. Since some TFs are less specific, and

typically bind more genes than others, we defined incremental binding

rates by subtracting the mean binding rate of each TF from the binding

rates of each TF to every cluster. Figure 4 displays the incremental

binding rates of each of the 203 tested S.cerevisiae TFs to our motif

clusters.

Fig. 1. An example for testing the contribution of a specific motif to the

cluster’s tightness. The EC divergence score of the cluster including the

motif AAACGCGAAAA (black triangle) is compared to the empirical

distribution of EC divergence of clusters, in which the motif in question

has been replaced with random motifs (histogram). Our null hypothesis

claims that the motif does not reduce EC divergence of the group

(which is equivalent to saying that the motif harms the tightness of the

cluster). In this example, however, the divergence score of the cluster

with the motif included in it is very small. Hence, we can reject the null

hypothesis with a probability value of 0.001 and include the motif in

the cluster.
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2.7 Localization of motifs along promoters

Further analysis of motif clusters refers to their positional distribution

along the promoters on which they occur. This is compared with a

background model consisting, for each cluster, of 1000 randomly

selected groups of motifs (sampled from our final set of motifs) of the

same size as that of the cluster. We examined the difference in positional

tendency between each cluster and its background model and evaluated

its significance. A P-value was calculated using running windows of

50 bp along the promoters. For each such window the average rate of

motif occurrence was calculated for the cluster, as well as for each of the

groups composing the background model and a P-value was assessed.

Note that the background model used here is not a random one, but

contains information that is inherent in the final set of motifs. Had we

chosen groups of random sequences from the promoters (instead of

motifs from our final set), the distribution would be uniform.

3 RESULTS

3.1 Extraction and selection of putative cis-regulatory
motifs from the promoters of S.cerevisiae

Applying MEX to genome-wide promoters of S.cerevisiae (see

Methods section), using the parameters �¼ 0.1 and �¼ 1, we

have extracted 9370 putative cis-regulatory motifs. As TFs are

thought to recognize and bind double-stranded DNA, we

unified motifs with their reverse compliments, reducing the

total number of extracted motifs to 8498 potential TF-binding

sites. To assess the regulatory potential of these putative motifs,
we calculated EC scores (see Methods section) and correspond-

ing P-values for these 8498 putative motifs across 40 biological

conditions including cell cycle, sporulation and multiple

environmental stresses. Each biological condition was repre-

sented by a time series experiment, monitoring yeast whole-

genome mRNA levels.

Setting the false discovery rate to 0.1, 22% of the MEX-

extracted motifs had a significant EC score in at least one of the
examined biological conditions. For comparison, in an

exhaustive enumeration of all k-mers of length 7–11 residing

in S.cerevisiae promoters (Shalgi et al., 2005; Lapidot and

Pilpel, in preparation), only 0.6% scored significantly, under

the same FDR condition. MEX provides striking enrichment in

selecting biologically significant motifs. Moreover, when

comparing the motif sets that passed FDR in both cases, we

observed that 55% of MEX’s motifs were not discovered by the

exhaustive approach (Supplementary Fig. 10.1). These are

mostly weaker motifs that could not be identified within a very

noisy background, i.e. MEX increased the signal to noise ratio.

In addition, MEX extracted sequence motifs of length up to

19 nt, which is extremely expensive computationally when

running over all k-mers. Motifs that were detected by the

exhaustive approach, but not by MEX, most likely do not obey

the inherent position dependencies, selected for by MEX. It has

been reported that some, but not all functional TFBS display

such position dependencies (Tomovic and Oakeley, 2007).
We compared both our MEX-extracted motif set and the

exhaustive motif set to the well-accepted reference set published

by Harbison et al. (2004). We applied a scoring method that

assesses how likely a given k-mer is to be generated by a given

PSSM (see Supplementary Material). Applying a cutoff of 99%

identity, 16% of the exhaustive set provides coverage of 91% of

Harbison’s PSSMs, and 45% of the MEX set, covered 66% of

the Harbison set. Namely MEX is not as comprehensive as the

exhaustive set, but it is enriched in signal and contains less false

positives.
In summary, the strength of MEX is not in its comprehen-

siveness, but in its scalability, ability to identify inter-position

dependencies and to detect weaker motifs.

The EC analysis not only selects the potentially functional

motifs, but also assigns them with a semantic description,

namely the set of biological condition in which they operate,

and the regulatory effect they exert (e.g. increased expression in

response to a particular stress, or peak in expression level at a

particular stage of the cell cycle). Figure 2 shows such semantic

annotation of two high-scoring motifs found by MEX. These

motifs govern opposite responses to hypo-osmotic pressure.

Analyses of individual motifs can be performed through the

Motif Analysis Workbench (Lapidot and Pilpel, 2003) at http://

longitude.weizmann.ac.il/services.html.

3.2 Clustering motifs by sequence and function

We applied further screening of our motifs, selecting a ‘distilled’

set of 694 motifs, which both passed FDR of 0.1 and were

assigned an EC score with a P-value of 0.001 or lower in at least

one of the examined biological conditions (a complete list of

motifs can be found at Supplementary Material). About half of

these motifs perfectly match (or are included in) known binding

Fig. 2. A semantic characterization of two of the motifs extracted by

MEX. MEX has identified two motifs governing opposite responses to

hypo-osmotic stress, CGATGAGCT (corresponding to the PAC motif)

and TAAGGGGA (corresponding to STRE). Each line represents the

expression profile of a single gene that contains the PAC-related motif

(black lines) or the STRE-related motif (gray lines) in its promoter,

following hypo-osmotic stress (Gasch et al., 2000). Gene sets containing

the PAC-related motif in their promoters are coherently expressed

(EC¼ 0.12, P-value50.0006). Genes governed by the STRE-related

motif, are also coherently expressed (EC¼ 0.38, P-value 0.00001), yet

display an opposing tendency following stress. This illustrates the

strength of MEX in identifying sequence motifs corresponding to

known S.cerevisiae TFBS based on promoter sequence alone and the

strength of the EC analysis in assigning a biological function to these

motifs.
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sites of 85 TFs (published by Harbison et al., 2004 and by

Pritsker et al., 2004).
We clustered this distilled set according to both sequence

similarity and similarity in function, i.e. in the set of conditions

each motif appears to regulate, as judged by the EC analysis

(see Methods Section). We have detected 20 clusters, covering a

total of 182 motifs. 14 of our clusters have large overlaps with

known clusters. Figure 3 displays the Fisher distance matrix of

these 14 clusters. On the diagonal (where F¼ 0) we have added

F-values that are obtained by randomly dividing each of the

given clusters into two arbitrary ones, in order to provide some

examples when F-values are too low to serve as a criterion for

separation among clusters. We clearly obtain groups of related

clusters, and we will study and name them accordingly.

Below we discuss in detail 8 clusters, belonging to 3 distinct

groups. The remaining clusters are presented in the

Supplementary Material.

3.3 MCB/SCB clusters

The first four clusters (see Figure 4) have large overlaps with

known recognition sites of two related TF complexes, MBF

(MluI cell cycle box binding factor) and SBF (Swi4-Swi6 cell

cycle box binding factor). Both complexes are heterodimeric

and are known to regulate the G1/S transition during cell cycle

(Koch et al., 1993). MBF consists of two protein components,

Mbp1 and Swi6, and recognizes the binding site MCB (MluI

cell cycle box). SBF consists of Swi4 and Swi6 and binds a site

called SCB (Swi4-Swi6 cell cycle box). Both MBF and SBF play

important roles in the regulation of many processes, including

DNA synthesis, DNA repair and budding.

Figure 5 displays our four motif clusters, associated with

MCB and SCB, along with their EC patterns. The identity of

our four clusters was further validated in two manners. First,

we have tested the GO enrichment of the set of genes on the

promoters of which the cluster’s motifs are found (see Methods

section). Indeed, the four clusters are found to be significantly

enriched with GO terms such as DNA metabolism, DNA repair

and response to various types of stress. This analysis provides

some information regarding the functional tendencies of the

four clusters. It does not, however, provide a high enough

resolution for discriminating between them, in terms of specific

cellular processes and functions of the genes associated with

those clusters.
A second analysis estimated the incremental rate of binding of

TFs to the set of promoters of each cluster (see Methods section

and Fig. 4). As before, it appears that the four clusters at hand

show a significantly high binding rate to Mbp1, Swi4 and Swi6.
Combining the information of known motifs, GO annotation

enrichment and the binding of TFs to the genome, we

concluded the following; The first cluster, MS1, contains

‘classic’ MCB and SCB binding sites bound by Mbp1, Swi4

and Swi6. The cluster is very significant in experiments testing

the cell cycle and various environmental stresses. The motifs of

cluster MS2 are identified as MCB binding sites, while those of

MS3 are identified as SCB motifs. It appears that MS2 is

particularly important in cell cycle experiments, whereas MS3 is

significant in stress-related experiments and not as much in cell

cycle ones. Cluster MS4, whose motifs are functional at cell

cycle experiments, is identified mostly as MCB, though some of

its motifs fit SCB as well.
The EC patterns of the four clusters show clear differences.

The latter can be correlated with the detailed nucleic acid

decomposition of their motifs. Motifs of MS1 and MS2 have

different common cores, ACGCGA and ACGCGT, respec-

tively. We conclude that the single adenine to thymine

substitution in the core of these motifs may be responsible for

the relevance of MS1 to a particular heat shock experiment

(Fig. 5) and for leading MS2 in its effect on the menadione and

hydrogen peroxide experiments. Clusters MS1 and MS2

provide support for a known difference in binding preferences

between MBF and SBF, and proof of concept for our method’s

ability to distinguish between two highly similar motif clusters.
The MS3 cluster displays a core of TCGCGA, differing from

MS1 at another position within the motif cores. Here again it

appears that the specific sequence to which a TF is bound plays

an important role in the regulation of gene expression. In

particular, note the absence of significance of MS3’s motifs in

most cell cycle experiments and their importance in the stress-

related biological conditions.
MS4 displays a complementary behavior to MS3, relevant

only to cell cycle experiments. Most of its motifs have a core of

ACGCCA. Thus we show that the avidity of clusters, and the

TFBS that they contain, is strongly dependent on particular

details of their motifs.

3.4 STRE clusters

Another demonstration of the importance of specific sequences

of TFBS is observed in two clusters, ST1 and ST2, which have

Fig. 3. Fisher distances between 14 of our final clusters. On the

diagonal (where F¼ 0) we have added the mean F-values obtained by

randomly dividing each of the clusters into two arbitrary ones (mean

over 100 random divisions for each cluster).
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been identified as STREs (Stress Response Elements). STREs

are known to be bound by two related TFs, MSN2p and
MSN4p. These two Cys2His2 zinc finger proteins are known to

take part in regulating the expression of many stress-related

genes.
Cluster ST1 has high overlap with well-known binding sites of

MSN2p and MSN4p. The sequences composing cluster ST2

show sequential similarity to the known binding sites of MSN2p
and MSN4p yet have not been previously identified as STRE.

Furthermore, the genes belonging to the promoters on which
the two clusters are found are highly enriched with GO

annotations such as stress response, energy reserve metabolism,

sporulation and more. This is in agreement with the known

roles of MSN2p and MSN4p in the regulation of stress-related
genes. It appears (Fig. 4) that while ST2 shows high binding

rates to both MSN2p and MSN4p, the well-known STRE

sequences of ST1 show lower binding rates to these TFs. Note,

though, that the incremental binding rates of ST1 to all the
other tested TFs are even lower.

As expected, the EC pattern of ST1 is especially rich for
stress-related conditions (Fig. 6). Although similar in tendency

to ST1, the EC pattern of ST2 is not as strong as that of ST1.

3.5 PAC clusters

The third group of clusters contains P1 and P2. P1 has large

overlap with Polymerase A and C (PAC) motifs, which are

known to be involved in the regulation of ribosomal genes. P2
contains motifs bearing some similarity to known PAC motifs,

though some of them have not been previously identified as

such. The identity of both P1 and P2 was further validated

through the GO annotations analysis of the relevant genes,

pointing mainly to the biogenesis of the ribosome. The genes

associated with both clusters have not been found to be

significantly bound by any of the 203 transcription factors

tested by Harbison et al (Fig. 4). This is not surprising, since the

TF that binds PAC motifs is unknown.

The EC patterns of both P1 and P2 (Fig. 7) are extremely rich

in significance at most conditions. This agrees with the fact that

PAC regulates many ribosomal genes, thus affecting numerous

cellular processes. Yet, while the EC patterns of P1 and P2 are

similar in their tendencies, they are different in potency (Fig. 7).

3.6 Mechanisms determining strength of regulation

Genes that are regulated by the same TF often display various

expression levels. This is motivated biologically by the need to

provide a wide range of behavior, allowing sub-groups of genes

to be regulated in different manners.
Variability of regulation may arise through four major

causes: (1) specific TFBS binding mechanism, (2) different

numbers of TFBS occurrences on the promoters, (3) specific

localizations of the TFBS along the promoter and (4)

interactions between different TFs (Sudarsanam et al., 2002).

A combination of these causes may control the high variability

in gene expression as well as act as a fine tuner.

We expect the last cause to be of secondary importance in

our clusters analysis, since there exist only small overlaps

between genes that carry motifs of two different clusters

(Supplementary Fig. 9.1). We further analyzed the first three

possible causes for the clusters at hand, to determine which is

Fig. 4. Incremental binding rates of each of the 203 transcription factors (columns) to every cluster (rows). Hot colors (dark red) represent high

incremental binding rates. The first four clusters (MS1–MS4) have large overlaps with well-known TFBS, such as those bound by MBF and SBF.

The first is a well-known complex, formed by the proteins Mbp1 and Swi6, while the latter consists of Swi4 and Swi6. This reassures the identity of

clusters MS1–MS4, as the highest incremental binding rates attained for these clusters are of Mbp1, Swi4 and Swi6. A similar validation arises for

other clusters as well. Note that the TFs which bind the sites known as PAC and RRPE have not yet been discovered, as is also reflected by the lack

of signal for the clusters P1, P2 and RR.
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relevant to the different regulation effects observed in

Figures 5–7.
For each motif within each cluster, we tested the distribution

of the number of its appearances on the promoters in

comparison to the distribution of randomly sampled motifs.

The background model was based on our 694 motifs. It appears

that the distributions of number of appearances of the clusters’

motifs on the promoters are not significantly different from

that of the background model. Furthermore, no significant

differences in motif appearance numbers were detected between

clusters.
A second analysis tested the localization of motifs of each

cluster along the promoters. Figure 8 displays histograms of

motif distances from the translation start site. These distribu-

tions are compared with a background model (see Methods

section). In most cases, both the clusters and the background

model display peaks at about 140 bp upstream to the genes’

translation start site. This position preference is characteristic

to our set of motifs and is not apparent in sets of random

sequences sampled from the promoters.

The motifs of clusters MS1 and MS2, for example, have a

similar number of appearances per promoter. Furthermore,

Fig. 5. Four of our clusters contain motifs that are known MBF and

SBF recognition elements (Top to bottom: MS1, MS2, MS3 and MS4).

Each matrix represents the EC patterns of the motifs within one cluster.

The EC pattern of a motif is a vector of 40 P-values of EC scores for 40

biological conditions (low P-values are represented by dark colors, with

a grayscale proportional to �log(P-values), white implies FDR40.1).

The bars indicate the percentage of motifs that had significant EC

scores in each biological condition.

Fig. 7. Matrices of EC patterns for clusters P1 and P2. The upper

cluster (P1) contains known PAC motifs, while most of the motifs of the

lower cluster (P2) have not yet been described. The EC patterns of the

two clusters are significantly rich. This agrees with the fact that PAC

regulates many ribosomal genes, hence affect numerous cellular

processes.

Fig. 6. Matrices of EC patterns for the two clusters ST1 and ST2. These

clusters contain motifs that are identified as STRE, to which MSN2p

and MSN4p bind, regulating the expression of stress-related genes.
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these motif occurrences are distributed similarly to the back-

ground model. Additionally, the analysis of motifs’ localiza-

tion, depicted in Figure 8, does not provide any distinction

between these two clusters. Hence, we infer that the difference

in their functional behavior in some of the tested conditions,

displayed in Figure 5, is caused by stronger binding mechan-

isms of motifs in MS1, i.e. of motifs with the core ACGCGA.

Such binding mechanism may be the result of either a specific

binding affinity of the TF to the TFBS, or due to conforma-

tional changes of the TF while bound to a specific TFBS

(Leung et al., 2004). Conformational changes may also affect

the recruitment of cofactors, thus alter regulation.
The same holds also for comparisons of MS1 with MS3 and

MS4. In all these cases, the changes in regulation strength seem

to be caused by variations in the binding mechanisms of TFs to

the relevant TFBS. We conclude that for these four clusters,

changing a single nucleotide in a TFBS may have a strong

impact on the binding mechanism of the TF to the promoter.

A similar story seems to hold for the STRE clusters. Once
again, their differences are neither due to different motif copy
numbers nor due to positional preferences across these

promoters (Fig. 8). Hence, once again, we attribute slight
functional differences to small changes in motif nucleotide
compositions which may lead to differences in binding

mechanisms of the TFBS.
Clusters P1 and P2 tell a different story. As in the previous

examples, the motifs belonging to the two clusters are similarly

distributed across the promoters. However, in the case of P1,
motifs strongly tend to occupy the region between 60 and 150
bp upstream to the genes. This tendency is significantly

different from the background model, with a P-value smaller
than 0.001. Thus, in the case of the PAC clusters, the
whereabouts of the motifs along the promoters have strong

effects on regulation.

4 DISCUSSION

The conventional representation of motifs by PSSMs encapsu-
lates the sequential information of a cluster of aligned motifs.

The simplicity of such representation leads, however, to
possibly wrong conclusions. Mononucleotide frequency
weight matrices cannot accurately depict the binding site

specificities of their included motifs (Bulyk et al., 2002).
Here we started out with single motifs, as extracted by MEX

from sequential data, and assessed for potential regulatory

function by the EC analysis. MEX does not use either PSSM
nor consensus sequences in its search for motifs. This allows us

to analyze each sequence independently, and only then generate
clusters of motifs, gaining a better understanding of the
regulation without reducing the sequence information. As a

result, inter-dependencies within the sequences are not lost.
The main strengths of the method presented here are: (i) it is

an ab initio motif finder, which infers specificity from sequence

alone without prior TFBS knowledge, (ii) it is applicable to
whole genomes and does not require prior grouping of
promoters, or their alignment, (iii) it captures inter-position

dependencies, (iv) it is scalable to larger genomes and (v) it
combines sequence with expression data, assigning likely
biological functions to the extracted motifs. As such, the

current methodology may be complementary to other ab initio
algorithms like MEME (Bailey and Elkan, 1995), AlignAce
(Roth et al., 1998), Weeder (Pavesi et al., 2004), a leading k-mer

based approach and YMF (Sinha and Tompa, 2003), which
search for over-represented motifs in pre-defined clusters of

co-regulated genes.
The previously reported approach that perhaps most

resembles ours is MobyDick (Bussemaker et al., 2000), which

identifies significant ‘words’ in genome-wide promoters, based
on a maximum-likelihood search for over-represented k-mers.
Whereas we have concentrated on deterministic motifs with a

minimal length, they have set an upper-bound on their k-mers,
which were later expanded by using gapped motifs. Such higher
motif structures can also be obtained using the ADIOS

algorithm (Solan et al., 2005) that generalizes MEX. Limiting
ourselves to deterministic ungapped motifs allowed us to reach
our main conclusion regarding the importance of single

nucleotide variations.

Fig. 8. Localization of motifs on the promoters of several clusters. The

black lines indicate, for each position upstream to the genes (up to

�500bp), the percentage of promoters on which the cluster’s sequences

have been found. This can be compared to the localization of groups of

motifs (of the same sizes as those of the clusters in question), randomly

sampled from the set of 694 motifs. For each cluster, the dark gray line

shows the mean motif occurrence per position over 1000 such sampled

groups, while the light gray area represents the samples’ SD of

occurrences per position.
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Our motif clusters were analyzed in various manners and

their relationships to known TFs were tested. We have left

these clusters in the form of groups of motifs, rather than

combining them into PSSM or consensus representations,

because we learned from our analysis that single changes of a

nucleotide in a motif can go a long way in affecting the

biological behavior.

In several cases, we obtain few motif clusters that contain

elements of several known TFBS groups. Examples are clusters

MS1 to MS4 that contain motifs traditionally labeled as MCB

and SCB (belonging to the TFs MBF and SBF, correspond-

ingly). Our clustering does not necessarily follow conventional

labeling: e.g. all MCB motifs belong to one PSSM in Harbison

et al., whereas they are scattered among four of our clusters,

MS1–MS4.

Differences in EC patterns imply different regulation

strengths associated with the relevant motifs in various sets of

biological conditions. Regulation strength depends on various

mechanisms. We looked at repetition rates and loci of motifs on

promoters to decide whether any of them should carry the

burden for higher or lower regulation strength, or whether it is

the binding mechanism of the TF to the motif that does it. In

both the MCB/SCB and STRE clusters we concluded that the

latter is the case.
Different binding mechanisms may occur due to specific

TF-TFBS binding affinity or conformational changes of the TF

(or of its co-factors) while bound to a specific TFBS, but may

also come about because of the existence of different TFs

(or co-factors) competing over similar TFBS. For instance,

it has been reported that binding site sequence variations may

cause the bound TF to adopt different conformations, directing

interactions with specific co-factors and resulting in different

expression responses (Lefstin and Yamamoto, 1998).
Since both MCB and SCB are bound by protein complexes,

one may hypothesize that the differences in the biological

conditions regulated by clusters MS3 and MS4 result from

different compositions of the complexes. Comparing Figure 5

to Figure 4, one may suggest that MS4 has very weak or no

binding to Swi4 and this may be the reason why no effect is

observed in all stress conditions. MS3 has weak binding to

Mbp1 and this may be the reason for the absence of effects on

four of the cell cycle experiments.

Our PAC clusters, P1 and P2, show different EC patterns. P1

both shows higher EC significance and displays positional bias

along the promoter. The latter may perhaps be correlated with

the loci of nucleosomes on the DNA (Segal et al., 2006),

affecting the strength of the regulation. We presume that in this

case this is one of the reasons for the much higher regulation

strength of P1 motifs.

Most of the P2 motifs were not mentioned in the literature,

presumably because the effects of P1 overshadow them. This

demonstrates that one needs a discriminating analysis to

distinguish the P2 motifs from their stronger P1 relatives.

MEX tests the significance of each motif in an independent

manner, and is not limited by statistical considerations such as

over-representation within a given class of genes. Hence our

method was able to uncover clusters of motifs that have been

overlooked by others.
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