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Abstract

Genetic regulatory circuits are often regarded as precise machines that accurately determine the level
of expression of each protein. Most experimental technologies used to measure gene expression levels
are incapable of testing and challenging this notion, as they often measure levels averaged over entire
populations of cells. Yet, when expression levels are measured at the single cell level of even genetically
identical cells, substantial cell-to-cell variation (or “noise”) may be observed. Sometimes different genes
in a given genome may display different levels of noise; even the same gene, expressed under different
environmental conditions, may display greater cell-to-cell variability in specific conditions and more tight
control in other situations. While at first glance noise may seem to be an undesired property of biological
networks, it might be beneficial in some cases. For instance, noise will increase functional heterogeneity in
a population of microorganisms facing variable, often unpredictable, environmental changes, increasing
the probability that some cells may survive the stress. In that respect, we can speculate that the popu-
lation is implementing a risk distribution strategy, long before genetic heterogeneity could be acquired.
Organisms may have evolved to regulate not only the averaged gene expression levels but also the extent
of allowed deviations from such an average, setting it at the desired level for every gene under each spe-
cific condition. Here we review the evolving understanding of noise, its molecular underpinnings, and its
effect on phenotype and fitness – when it can be detrimental, beneficial, or neutral and which regulatory
tools eukaryotic cells may use to optimally control it.

Key words: Noise in gene expression, noise control mechanisms, regulatory networks, network
biology.

1. Relevance
of Noise in
Biological
Systems Since the earliest discoveries of the basic mechanisms that con-

trol gene expression, biologists have been intensively engaged in
measuring mRNA and protein levels. Such studies, driven by a
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broad range of technologies, have established links between the
programs that regulate gene expression and the corresponding
molecular phenotype – the level of expression of each individual
gene and its response to external signals and, ultimately, to the
phenotype of the organism. The advent of genomics revolution-
ized the study of gene expression: technologies such as DNA and
protein microarrays, and most recently, RNA sequencing enables
the measurement of gene expression for every gene, providing
rich information about transcription (1), mRNA degradation (2),
translation (3), RNA editing (4), and more. Examination of con-
trol regions of genes will enable researchers to decipher the regu-
latory programs that underlie the observed behavior.

However, common to all such technologies is the fact that
measurements represent averaged RNA and protein levels over
large populations of cells. For instance, a typical microarray exper-
iment requires more than 100,000 cells. Such measurements thus
provide very reliable estimates of the average level of expression of
a given gene over an entire population of what are typically genet-
ically identical cells. If all cells in a population expressed a given
gene at the same or even very similar levels, then the average alone
would, indeed, capture the reality well. However, if different cells
in the population expressed a given gene at different levels, then
information about cell-to-cell variation would be lost. If cells take
control of the extent to which they allow or restrict such diver-
sity, deciphering the mechanisms that exert such control would
require alternative models and technologies.

From a theoretical perspective, what is the potential for cell-
to-cell variation in gene expression levels, among genetically iden-
tical cells? Stochasticity and randomness govern the microscopic
world inside cells, the world of molecular recognition that is
driven by interactions between molecules in a crowded environ-
ment. The effects of such random events may be particularly dra-
matic when it comes to molecules that are represented in just a
few copies per cell, as is the case with many regulators of gene
expression. For instance, if a particular regulator is present, on
average, in two copies per cell, we should not be surprised to find
cells that have four copies and others with one or even zero copies
of this molecule. It is also easy to imagine that the targets of such
a regulator would also display corresponding, and perhaps even
greater, fluctuations as a result. Cell-to-cell variation at the level
of gene expression may constitute a real possibility.

What would be the interest of studying this possible variation?
We might think that if the population averages out such fluctu-
ations then they will have no functional consequence. Here we
will argue for the converse. Consider, for instance, a population
of genetically identical Escherichia coli cells that are attacked by
an antibiotic drug. While the majority of the population may die,
a portion may survive the attack. Note that we do not consider
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here the case of resistant cells that are genetically different from
the majority of the population; rather, only those persisters (5)
that are genetically identical to the rest of the cells. Further inves-
tigation revealed a stochastic split of the population into two sub-
populations, one that is sensitive to the drug and another that is
not, and a purely random event that allows cells to switch from
one fate to the other (5). Another example, for instance, sporu-
lation in yeast, a potential defensive response to stress, manifests
itself in only a portion of genetically identical cells in a popu-
lation. It turns out that a single protein stochastically expressed
at varying levels in different cells determines the different cellu-
lar fates (6). To take examples from multi-cellular organisms, a
combined theoretical–experimental approach involving immune
T-cells found that stochastic variation in the expression of key sig-
naling proteins generates substantial cell-to-cell variability in the
antigen responsiveness needed among cells in a clonal population
(7). Another example relates to populations of cells in tumors.
After chemotherapy treatment the majority of the cells may die,
but a smaller sub-population may survive. Recently, an individual
protein was found that, due to stochastic effects, may be tem-
porarily present at varying levels in particular cancer cells (8). As
a consequence, some of the cells are rendered resistant to a drug,
whereas others are unable to survive the same therapy. In all these
systems, a seemingly random event at the molecular level – often
the choice of expression level for key genes in particular cells –
gave rise to dramatically different phenotypes at the cellular and
organism levels. Without measuring the levels of relevant proteins
at the population level and the average over all the cells in the
population, the underpinnings of the sophisticated environmen-
tal response can be altogether missed.

The paradigm that emerges is that certain critical biological
phenomena, such as drug persistence, stress response, immune
response, and cancer cell proliferation, are rooted in stochastic
molecular events, which ultimately lead to phenotypic variation
among genetically identical cells. Yet these cases might repre-
sent the exception rather than the rule. The perception that cells
tightly control the expression of their genes, to such an extent
that cell-to-cell variation would be limited, may indeed be cor-
rect in the case of many genes that must be expressed at precisely
fixed levels. The dozens of proteins that make up large macro-
molecular complexes such as the ribosome, for example, should
conceivably be kept under tight control, not least to eliminate
wasteful production. It is thus conceivable that cells may have
evolved mechanisms to determine the extent to which they can
safely permit variations in the expression of some genes in their
genomes and restrict variation in others.

Stochastic variation in gene expression levels among genet-
ically identical cells grown under the same conditions is often
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dubbed “noise” (9–12). Quantification of noise in gene expres-
sion often requires measurements of mRNA or protein levels in
single cells. In recent years, experimental techniques to measure
gene expression in single cells at high throughput and with great
accuracy have matured (9–13, 18), along with theoretical mod-
els to rationalize the results (14, 15). The aims of those studying
noise in gene expression are thus to measure noise in various bio-
logical setups, to decipher the regulatory means by which cells
control noise, and to study the biological consequences of such
non-genetic variation. Another substantial bonus from the study
of noise comes from the fact that the statistical properties of noise
can reveal basic principles of the molecular processes that govern
gene expression. For instance, by analysis of noise spectra it was
possible to deduce that gene expression occurs in bursts, whose
two key parameters are the burst size and frequency (15). This
information is essential to understanding noise behavior but its
implications extend to the basics of gene expression mechanisms.

2. Noise in Gene
Expression

Consider the expression level of protein X in a unicellular organ-
ism such as yeast in the following thought experiment: Let us
measure its expression in two genetically identical cells. Since
the two cells are genetically identical, we might expect that the
expression level of our protein would be identical in both. Sup-
pose that we have measured the actual copy number of protein X
in each cell and found it to be twice as high in one of the cells,
compared to the other. Our first suspicion might be that a mea-
surement error occurred or, to put it more quantitatively, that the
measurement error is larger than the true variation between our
two cells. Let us then assume that the difference is reproducible,
even after many repetitions; moreover, it is not seen with respect
to another protein, Y, which on average shares the same expres-
sion level as X.

So, why the level of expression of protein X appears to dif-
fer so significantly between the two cells? First, even if our two
cells are identical at the DNA level, errors do occur at the level
of transcription and translation: on average, 1 in every 10,000
transcribed nucleotides, and 1 in every 1,000 translated amino
acids, is expected to be wrong (16, 17). Such errors may affect
the expression level of a protein, e.g., by affecting the stability
of the mRNA and the protein or by affecting protein X’s reg-
ulators. A dramatic phenotypic consequence of such errors was
recently demonstrated in a study in which transcription error rate
was increased by a positive feedback (17).



Noise in Biological Systems 411

Let us assume that in the two cells, all copies of X were tran-
scribed and translated without a single error. What other reason
may be responsible for the different levels of expression of pro-
tein X? The cells might have been subjected to different “micro-
environments” (for instance, one might have been closer to the
edge of a colony or they might have been at different stages of
the cell cycle). Let us further assume that the two cells had been
exposed to the same micro-environment, they were synchronized
relative to the cell cycle, and they were also equal in size and mass.
Remarkably, the two cells might still express protein X in varying
amounts, because they could differ at the microscopic level (for
instance, the existence of two copies of a transcription factor con-
trolling the expression of the X gene in one cell, while three in
the other). Let us assume that the regulators are found at the
same level in all cells too. Moreover, the two cells are identical
not only with respect to DNA, mRNA, and protein sequence but
also with respect to the concentration, location, and molecular
dynamics of every molecule within them, including every tran-
scription factor and ligands. From this perfectly identical starting
point, let each of the cells live out its natural lifespan. After a short
while, would our cells show identical or different levels of protein
X? Even under these “identical” conditions, basic physical chem-
istry shows that differences might still be possible. All processes
involving the propagation of genetic information, including the
unwinding of the DNA for transcription, transcription itself, pro-
cessing of RNA, degradation of transcripts, translation, protein
modification, and protein degradation, are based on interactions
between molecules and inevitably include a stochastic component
(i.e., while in one cell the transcription factor may initiate, e.g.,
two transcription events at a given time interval, in the other it
may occur only once. The binding constant between that factor
and the promoter of the gene encoding X may be the same in the
two cells, but this is merely a macroscopic constant that relates to
a ratio of probabilities). Of particular interest is the fact that small
stochastic differences may be amplified or canceled out due to
further random events (for instance, in one cell each transcript is
translated 10 times before it is degraded, resulting in 20 copies of
protein per cell and only 10 in the other). An example in which
the initial difference between the two cells may be diminished
may be that RNA degradation, often mediated by the binding of
an RNA binding protein, may occur faster in the first cell with
higher transcript levels.

In summary, there are many mechanisms by which two genet-
ically identical cells may express a specific protein (protein X) at
different levels. Can we measure the effect of stochasticity if all
other factors such as genotype and cell size are kept constant or
due to environmental changes (for instance, by applying environ-
mental stress)? If so, what patterns would be expected for the
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levels of protein X and other proteins (for example, protein Y,
expressed on average at the same level as protein X across all cells
but with different functions and involved in a different regulatory
network, or protein Z, expressed at higher levels)? More impor-
tantly, can noise play a part in central biological processes and
be responsible for cell fates and specific phenotypes that could
be investigated? For example, do cells set different noise levels for
each gene, according to both its function and environmental con-
ditions? Can cells and organisms control the extent of variation
and stochasticity so as to minimize it when harmful or amplify it
and benefit from it when possible?

3. Measuring
Noise in Living
Cells

A landmark work that transformed the study of cellular stochas-
ticity into a quantitative biophysical science was that of Elowitz
et al. (18). While finding two cells with the same concentration,
location, and dynamics of all molecules is still impossible, they
found a clever practical solution. By using two fluorescent pro-
teins (cyan and yellow) under the control of two identical pro-
moters, placed in two similar locations in the E. coli genome,
they generated a cellular environment that was practically iden-
tical for the two genes – thus, not two identical cells with the
same gene as in our thought experiment (see previous section),
but rather the same cell that serves the expression of two distin-
guishable genes. Since the two proteins fluoresce in separate col-
ors, comparing the intensity from the two channels in the same
cell was sufficient to identify differences that must be attributed,
for the most part, to stochastic events that happened inside that
cell. Elowitz and coworkers then used fluorescent-activated cell
sorting (FACS) to measure fluorescence in the two channels that
correspond to the two genes in individual cells. The difference in
expression between a pair of two such proteins expressed in the
same cells was termed the “intrinsic noise” of the system – only
stochastic processes within each cell could give rise to differences
in the expression level of these two probes in each cell. With the
same experimental method, focusing on one wavelength at a time,
the researchers could then compare the different cells and exam-
ine the variations among them at the level of protein expression.
This variation was called the “extrinsic noise,” as it captured exter-
nal sources of variation, such as varying concentrations of a rel-
evant transcription factor and number of ribosomes in each cell.
It was then possible to estimate not only each noise source but
its relative contribution to the final level of variation. The authors
concluded that extrinsic noise was a major factor, but that intrinsic
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noise had a significant contribution too to the overall cell-to-cell
variation. Applying a similar system to Saccharomyces cerevisiae,
Raser and O’Shea were able to measure the relative contribution
of intrinsic and extrinsic sources of noise in this model eukaryote
and found that the intrinsic noise is gene-specific and may con-
stitute an evolvable trait that can be optimized to balance fidelity
and diversity in eukaryotic gene expression (19).

4. Expanding the
Scope: Measuring
Noise for Many
Genes and
Conditions

The studies described thus far have focused on exogenous genes
and measured noise levels under a limited set of environmen-
tal conditions. Yet to penetrate deeper into the biological sig-
nificance of noise, three additional steps were necessary: first,
to measure noise of endogenous genes, insofar as was possible,
with minimal interruption of their native controls; second, to
scale up measurements so as to probe as many genes as possible;
and third, it was essential that the noise of a given native gene
would be measured under varying growth conditions. Bar-Even
et al. (20) and Newman et al. (21) accomplished these aims in
a complementary fashion. For this purpose, they used a library
of S. cerevisiae strains, each expressing one of the endogenous
genes of this species (22) fused to a green florescent protein
(GFP). Examining the fluorescence of cells from each such strain
by FACS, it was possible to measure the cell-to-cell variations
in expression of each gene in the genome. Here, since a single
type of fluorescent protein (GFP) was used, intrinsic and extrinsic
noise were no longer separated and the integrated contribution
from the two sources of variation was measured as a single num-
ber [yet when a sample of the genes was also measured in two
colors, a predominant contribution from the intrinsic noise was
actually found (20)]. In all, Bar-Even and colleagues studied 43
genes; yet they examined noise under a diversity of conditions.
These authors selected their sample genes so as to represent sev-
eral genetic modules that were originally defined, based on clas-
sical microarray experiments: these included stress-related genes,
genes encoding structural constituents of the proteasome, genes
involved in ergosterol metabolism, and genes responsible for the
processing of ribosomal RNA (rRNA). They then exposed the
cells to 11 different conditions, the majority of which were stress-
ful, yet a few actually involved recovery from stress conditions.
Finally, they measured, for each gene, the distribution of expres-
sion values under each condition at the single cell level. New-
man and colleagues did not explore as many conditions; instead,
they measured the expression of a most significant portion of the
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entire yeast genome (21). The two papers focused on two param-
eters that characterized each gene: the mean of the distribution
and the “noise coefficient” – namely, the variance divided by the
square of the mean. Plotting the noise coefficient vs the mean
expression, the two groups found the same intriguing, “scaling”
relationship: the noise declined as the reciprocal of the mean of
the distribution. That is, not only were highly expressed genes less
noisy (as might be expected, given the mean of the distribution,
with the value obtained from a standard microarray experiment) it
was possible to rather accurately predict the amount of noise for
most genes under most conditions. Theoretical analysis in both
works suggested that such scaling might result from variations
in mRNA copy numbers, caused by the stochasticity of “birth
and death” of mRNA molecules or from fluctuations in promoter
activity (20, 21).

If noise can be inferred from the mean, could we avoid mea-
suring noise in future experiments and settle for the more conven-
tional measurements? The fact is that, although most genes under
most conditions obeyed the scaling law, interesting deviations
were found. The “noise residual” was thus defined as the differ-
ence between the amount of noise that a gene actually displayed
and the amount of noise that could be predicted for the gene,
given its mean expression and the general scaling between noise
and mean that holds true for most genes in most conditions (Fig.
23.1). For instance, stress-related genes were consistently above
the scale (i.e., for these genes, noise was typically higher than the
expected value, given their own mean and the general scaling).

What could be the rationale behind this enhanced noise in
stress genes? One intriguing possibility is that cells implement
a “risk distribution strategy” with these genes – that different
cells in the isogenic population provide stochastically different
“responses” (i.e., expression levels of these genes). According to
this hypothesis, the cells that happened to express these genes at
the optimal level would be more likely to survive. In fluctuating
environments such approach might, under some circumstances,
constitute the most feasible strategy (23). Note, however, that
since the cells are genetically identical, such changes would not be
inherited (see below on the “memory” of such fluctuations and
on the combination of genetic and non-genetic diversity). The
fact that in the experiments where stress was alleviated (20), the
stress genes typically showed reduced noise (Fig. 23.1) supports
that control of the noise in these genes may constitute a cellu-
lar response to changes in environmental conditions from non-
stressful to stressful conditions and vice versa.

Examination of the response of other genes revealed an
opposite trend: negative noise residuals (Fig. 23.1). Take, for
instance, the genes encoding constituents of the proteasome, a
multi-subunit cellular complex. Under stress conditions, these
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Fig. 23.1. Variations in levels of noise of specific yeast genes under different conditions.
Levels of noise residuals of 43 S. cerevisiae genes in 11 different environmental condi-
tions. Here, each horizontal line corresponds to a gene. Each condition is represented
as a set of consecutive columns with each column corresponding to a time point. The
noise was measured at six time points following the environmental change (20), and
noise propagation can be traced for each gene at each condition. The color code depicts
the “noise residual” of each gene in each condition, namely the difference between the
actual noise level of a gene and the noise level expected for that gene given its mean
expression level and the general scaling between noise and mean expression (20). The
43 genes were sampled from the entire yeast genome and they represent four mod-
ules: stress genes, ergosterol metabolism, constituents of the proteasome, and genes
involved in the processing of ribosomal RNA (rRNA). The environmental conditions rep-
resent different perturbations and stress relaxing conditions (1st through the 7th, and
the 11th sets of columns, and 8th–10th column, respectively) (20). The stress genes
show higher noise levels throughout the conditions, especially under stress, while genes
involved in ergosterol metabolism and proteasome and rRNA biosynthesis show noise
being kept at controlled, low levels, particularly under stress conditions.

genes featured very tight distribution, with negative noise residu-
als. The example of genes encoding structural constituents of the
proteasome shows that in some cases high levels of noise may be
actually undesirable or should be kept under tight, controlled lev-
els, for instance, when a fine coordination and stoichiometry of
synthesis of specific subunits of a multi-subunit complex is neces-
sary. In other genes in which the extent of noise implied by the
mean is neither helpful nor detrimental, cells may not attempt to
control the levels, and noise may be set by simple probabilistic
rules (21).

5. How Cells
Control Noise and
Set a Desired
Level for Each
Gene

The aforementioned studies (18–21) show that cells appear to be
able to set the noise levels and their enhanced or reduced extent
compared to mean expression values. Genes that belong to the
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same functional category or structural complex often show similar
changes in noise under a specific condition. Moreover, a given
gene may show different levels of noise amplification or reduction
under different conditions. This requires to be finely regulated. In
recent years, new studies are revealing a rich array of strategies to
regulate noise levels in cells. The means to control cellular noise
can be related to the kinetic parameters of the processes governing
gene expression and the topology of the regulatory networks and
can sometimes be inferred from the genomic features inside and
in the proximity to genes.

5.1. A Model for the
Propagation of Noise

As an alternative to the works by Elowitz and colleagues (18)
and Raser and O’Shea (19) which measured intrinsic and extrin-
sic noise, Paulsson took a different approach and developed a
mathematical model that described the propagation of noise in
a cellular pathway (14). Consider two molecules, A and B, such
that A is either a regulator of B or that A and B are, respectively,
the mRNA and protein encoded by a particular gene. In either
of these cases, noisy fluctuations in A might be further propa-
gated into B. Focusing on the downstream component B, Pauls-
son suggested an alternative to the dichotomy between intrinsic
and extrinsic noise, realizing that the noise in B would arise from
a combination of two components: the noise generated by B itself
and the noise that B “inherits” from A. While Paulsson’s model
was predominantly theoretical, a similar conclusion was reached
by Pedraza and van Oudenaarden (24) who experimentally mea-
sured expression correlations between genes in single cells. These
authors also found that noise in the expression of a gene was
determined by its intrinsic fluctuations, noise transmitted from
upstream genes, and global noise affecting all genes.

Understanding the contribution of noise in A to noise in B is
of particular interest, since such knowledge enables the descrip-
tion of noise propagation along genetic chains. According to
Paulsson’s model, one relevant parameter that governs such prop-
agation is the response dynamics of A and B. Intuitively, if A is a
very rapidly changing molecule, then B will “inherit” the fluctu-
ation only if B, too, is rapidly fluctuating. If, on the other hand,
B has a very slow rate of turnover, it will not trace the fluctu-
ations in A over time and will thus not inherit the noise (i.e.,
B will be said to have “time-averaged” fluctuations in A). What
governs the response times of specific molecules? Some response
times may be largely governed by the degradation kinetics. Con-
sider an mRNA and a protein encoded by a given gene as the “A”
and “B” molecule in the above formalism. If the protein had was
rapidly fluctuating (e.g., due to a relatively high degradation rate)
then noise at the mRNA level would be effectively propagated
to the protein. In recent years, techniques to measure the stabil-
ity of both mRNA (2, 25) and protein (26) at the genome level
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have begun to mature, and comprehensive studies to test the pos-
sibility that noise propagation can be deduced from elementary
parameters and other additional factors affecting the accuracy at
which fluctuations might be propagated (14) are becoming more
feasible.

5.2. The Relative
Efficiency of
Transcription vs
Translation

The extent (efficiency) of transcription and translation of a given
gene and the relative contribution (ratio) between them deserve
special attention. As a case example, assume that a given protein is
needed at an average of 200 copies per cell. Imagine two extreme
(probably not very “realistic”) strategies to obtain that desired
level of protein expression: The first one is when the transcrip-
tion of the corresponding mRNA takes place at a very low extent:
so, for instance, only two mRNA molecules are present, on aver-
age, per cell, requiring each one to be translated, on average, 100
times. The other extreme is that transcription is extensive, result-
ing in 200 copies of the corresponding mRNA. To get the 200
proteins, in principle, it will be enough that each mRNA will be
directed to the protein biosynthesis machinery only once (less if
polyribosomes are acting).

The first case, with a very low transcription rate and the need
for extensive translation, is economical in terms of RNA synthe-
sis, but what will happen to the noise at the protein level? While
the mRNA is present, on average, at two copies per cell, fluctu-
ations with one, three, or four copies are likely. Translation has
the potential to further amplify such fluctuation, yielding high
predicted noise. Also, the need to reuse the same mRNAs for
translation may lead to a slow global response, with low rates of
protein biosynthesis (in some cases higher than the mRNA and
protein turnover, in which case the degraded molecules will need
to be re-synthesized). Target protein levels may be difficult to
achieve in some cases, with high predicted noise.

On the other hand, a higher, efficient transcription (which
will provide a “pool” of ready-to-use mRNAs) coupled with
limited translation (which may be controlled by different mech-
anisms: polyadenylation, subcellular localization, and polyribo-
some levels) will result in few fluctuations and a relatively
noise-free protein population. This strategy may also ensure fast
responses in shorter times and, once target levels are obtained, the
possibility of activation of mechanisms of control (e.g., feedback
regulation or others, see below). Efficient, extensive transcription
coupled with balanced translation can provide quick and fine con-
trol of protein levels.

From here, a simple prediction might be that cases of exten-
sive transcription coupled with limited translation would exhibit
low noise and high level of control of expression. The possibil-
ity that low levels (less efficient) of transcription coupled with
extensive translation may constitute in some cases a means to
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enhance noise levels should not be discarded. There are several
lines of support for the argument that the extent of translation
(translation levels) is directly linked to noise levels. Ozbudak and
coworkers independently modified the transcription and transla-
tion of a reporter gene and found that an increase in translation
mainly increased noise level (11). Black et al. also provided a con-
vincing demonstration of the idea (12), where they changed the
nucleotide coding sequence of a gene without affecting amino
acid sequence and shifted it toward higher or lower transla-
tion efficiency codons. They found that noise indeed increases
with translation extent (efficiency), provided that the gene was
not fully induced at the transcription level. Interestingly, these
results could also be predicted from a theoretical model that
these authors provided that deals with the propagation of noise
from the mRNA to the protein level (12). In accordance with
this, Fraser et al. (27) have also found a related trend in yeast:
essential genes and genes involved in cellular complexes tend to
minimize their predicted noise level by employing a strategy that
maximized the ratio of transcription to translation. Furthermore,
an inspection of the noise residuals of the 43 S. cerevisiae genes
measured by Bar-Even et al., against their sequence-based calcu-
lation of translation efficiency (the tRNA adaptation index) (28),
shows a correlation between them (Fig. 23.2). Genes with high

Fig. 23.2. Correlations of noise residuals and tRNA adaptation index. Noise residuals
correlate with the tRNA adaptation index of yeast genes, particularly with genes involved
in response to stress. Here, the same set of genes as in Fig. 23.1 is analyzed, with colors
depicting association to the four modules in Fig. 23.1. The noise residual of each gene
is calculated as the mean of its values across all time points in all six conditions. The
tRNA adaptation index (tAI) of each gene was calculated as in (28). The tAI captures the
extent to which the codons in a gene are biased toward the more abundant tRNAs in the
genome (high translated genes).
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predicted translation efficiency (highly translated) indeed show
some tendency toward higher noise residuals, whereas genes with
low predicted efficiency of translation corresponded to the least
noisy genes. Of particular interest are the proteasomal genes that
under stress conditions display little noise, in fact even lower than
expected from their means. These genes, under stressful condi-
tions, are typically induced at the mRNA level (29). The results
suggest that a means to obtain tight, noise-filtered distribution
for proteasomal genes under stress is to employ the strategy of
high transcription rate with limited, coupled translation. Similar
conclusions have been reached by a mathematical treatment of a
related system (30).

At the molecular level, the TATA box in gene promoters was
found to be another key factor with which cells may tune noise
levels. The TATA sequence is not present in every gene’s pro-
moter, but genes that do contain it typically show high levels
of noise (19, 20, 31, 32). The prevailing explanation is that the
TATA sequence amplifies fluctuations through facilitation of tran-
scription re-initiation (33, 34).

5.3. Local Network
Connectivity,
Redundancy, and the
Effect on Noise

An additional regulatory attribute that affects the noise level and
pattern displayed by genes is their connectivity within the regula-
tory network. Consider two genes that are identical with respect
to many of the aforementioned properties, such as the efficiency
of their translation and transcription, but are nonetheless embed-
ded in two different regulatory network motifs. In one case, the
gene exerts negative feedback regulation on itself (either directly
or through a mediator) and in the other, the gene exerts a posi-
tive feedback on its own level of expression. In which case would
the gene manifest a higher amount of noise? Intuitively, the neg-
ative regulatory scheme would tend to counteract, or “correct,”
noisy fluctuations – when the amount of the autoregulated gene
stochastically increases the negative regulation will counteract the
fluctuation by increasing the extent of inhibition, while a fluctua-
tion in the other direction would result in lower inhibition (10).
In the positive feedback case, fluctuations in either direction are
expected to intensify themselves, resulting in higher noise levels.
Theoretical work, however, has recently elegantly refined these
notions, predicting that while negative feedback eliminates noise,
it comes at a price: reduced sensitivity to changes in environmen-
tal signals (35). When comparing circuits with the same level of
sensitivity to environmental changes, it was found that a positive
feedback design actually buffers noise better than negative feed-
back. It was further suggested that the improved capacity of a
positive feedback circuit to buffer noise at a given level of envi-
ronmental sensitivity comes from its time-averaging capacity (35).

Most recently, researchers faced an intriguing question per-
taining to the architecture of regulatory networks: often two
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or more alternative circuit designs can produce the same
outcome – in particular a negative regulatory effect on a gene
can be obtained either by repressing the inducer of the gene
or by inducing its repressor. Why is it that in reality one of the
designs, and not the other, appears to operate in a particular
system (36)? The authors focused on the genetic network that
governs competence – the ability of microbes to uptake DNA
from the environment, typically upon stress – in Bacillus subtilis.
Like any regulated system it needs to control not only induc-
tion but also its shutoff. It turns out that the shutoff of the
competence network in these bacteria is obtained by repressing
the system’s inducer, not by inducing a potential repressor. The
authors synthesized a seemingly equivalent variation on the cir-
cuit in which shutoff happens through induction of a repressor.
While the averaged properties of the native and synthetic designs
were designed to be similar, the native circuit showed enhanced
diversity between single cells, while the synthetic design was pre-
cise and relatively noise free. Why did evolution prefer the nosier
version? The fact is that the accuracy of the synthetic design came
at a price – bacteria that artificially expressed it were fit (i.e., could
take up DNA from the environment) only at a narrow range of
environmental parameters, compared to the cells that expressed
the native system. The higher noise obtained in the native system
thus appears to be adaptive as it allows higher population diversity
in variable situations (36). Presumably, the negative regulation of
the inducer in the native circuit is responsible for a lower expres-
sion level, possible high relative noise level, in this regulator. It
was concluded that noise actually facilitates the response of the
network to a variable environment. The more precise synthetic
design, in which the repressor is induced, is more similar to cir-
cuits such as at the heart of the circadian clock, where accuracy
and control are the main issue.

Apart from the connectivity in regulatory networks, the chal-
lenge of noise control may have constituted a driving force
explaining the unexpected conservation of redundancy in bio-
logical systems. It was recently suggested that partially redun-
dant duplicate genes may have been selected for preservation in
genomes, so as to filter noise in regulatory networks (37, 38).
Why are redundant genes often preserved, especially in pivotal
nodes of regulatory networks, if only one member of the gene
pair would suffice? Although redundant genes can often back each
other up if mutations occur in one of them, it is entirely possible
that the partially redundant genes will cover for each other when,
due to stochasticity, one of them showed a temporary fluctuation
that either increased or decreased its level, a far more likely event.

In many cases of redundancy in regulatory proteins, it was
found that the regulators also negatively regulate one another
(37, 38). Such a design could serve to reduce the effect of
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fluctuations: when the expression level of one of the two regu-
lators goes up, it would further inhibit its partner, and when it
is decreased, it would exert less of an inhibitory effect. Model-
ing results (37) show that the sum, or the product, of the con-
centrations of the two regulators may be kept relatively constant
in such a regime; furthermore, if a joint target of the two reg-
ulators is only affected by the sum, or product, of the concen-
trations of its two upstream regulators, it may experience a low
amount of noise. In other words, the negative regulatory cross-
talk that is often observed between semi-redundant gene dupli-
cates (see (37) for a review) may serve to transform noise fluctua-
tions in each of them into a relatively constant sum (or product)
of the two, thus minimizing further propagation of the noise.
This design may also explain why, in the extreme case of a con-
stant reduction of a gene’s expression level, e.g., due to a deletion
mutation in the gene, the semi-redundant duplicate may respond
by increased expression, in compensation (38). Such a capacity
might, in some cases, constitute a byproduct of a selectable tun-
able capacity to respond to random, temporal fluctuations in its
counterpart’s expression level (38).

5.4. A Potential Role
of Non-coding RNAs

Non-coding RNAs are transcripts that are not translated into pro-
teins. During the last decade, it has become apparent that in
essentially every organism, a considerable portion of the tran-
scribed RNAs are not translated. Many of these newly discovered
non-coding RNAs function as regulators, that is, they may regu-
late gene expression at multiple levels. Two relevant examples of
regulatory RNAs are microRNAs and antisense RNAs. Such tran-
scripts are known to interact with their targets by means of base
pair complementarity, mainly affecting the levels of stability of the
RNA target (e.g., an mRNA), and the efficiency of its translation.

It is conceivable that a non-coding RNA would affect not
only the average expression level of its target but also the noise
that the target would display. A non-coding regulatory RNA
present in excess, relative to its target, may actually serve to buffer
noisy fluctuations in the target. Assume, for instance, that the reg-
ulatory RNA is present in a high average copy number, say 20
copies, in each cell in a population of isogenic cells. Now con-
sider an mRNA target of this regulator that is gradually induced
from very close to 0 copies to 50 copies per cell. The noise coeffi-
cient of that target would be high at the beginning of the induc-
tion process, due to its presence in low copy number. However,
if the regulatory RNA efficiently sequesters the target when the
latter is at a lower copy number, random fluctuations in the tar-
get would be dumped. Yet, as the target’s concentration contin-
ues to rise, at some point it may exceed the level of the regula-
tory RNA, and from that point on, the buffer would be unable
to effectively sequester the excess mRNAs. This would lead to a
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Fig. 23.3. A conceptual model of fluctuations and control of noise in RNA expression.
The expression of a regulatory RNA (e.g., a microRNA or an antisense RNA) is depicted
by the gray area, while the expression of the regulated transcript (e.g., an mRNA) is
depicted with a black line. A regulatory RNA may filter noisy fluctuations in the levels of
another regulated transcript (e.g., an mRNA). Levels of a regulatory RNA higher than the
levels of the target RNA may effectively buffer noisy fluctuations (due to specific binding,
sequestering, or targeting to degradation). Yet, when the levels of the regulatory RNA
are lower than the target levels the difference cannot be buffered by the regulatory RNA,
which will lead to fluctuations in mRNA expression.

step-like function in the concentration of the free mRNA target in
the cell: it would remain close to zero, so long as its total level is
below that of the regulator, but would abruptly increase, once it
exceeded that level (Fig. 23.3). Notably, microRNAs are known
to affect their targets both at the level of mRNA stability, where
they destine targets to degradation, and by inhibiting their trans-
lation (c.f. (39)). It is still not clear how the choice between these
two separate fates is determined for a pair of regulators and a tar-
get or why, in some cases, one fate is desired over the other. Yet
the realization that the ratio of translation to transcription affects
noise suggests an effect on the noise level of the target, due to a
choice between the two regulatory mechanisms. A potential appli-
cation arising out of such considerations lies in the emerging field
of synthetic biology, in which one of the challenges is to design
and build small circuits with desired properties. The synthetic use
of non-coding regulatory RNAs (40) may enable researchers to
“tune” the desired level of noise (either high or low) of the vari-
ous components in the system.

6. Genetic vs
Non-genetic
Variation

It has long been known that stressful conditions increase the rate
of mutations among microorganisms (41). This is rationalized as
an adaptive trait of such species – leading to an increase in genetic
diversity, the origin of new biological innovations, and, ultimately,
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survival of selected cells. Yet, depending on the selective
advantage, the rate of mutations, and the effective population
size, it may take tens of generations, typically many more, for spe-
cific mutations to reach a substantial portion of the population.
This is a long time, compared for instance to a killing effect of
the stressful condition. Thus, a faster means to increase diversity
in the population may be needed.

An increase in noise levels, predominantly observed in stress-
related genes under stressful conditions (20), may be envisaged
as a complementary mechanism for the rapid generation of diver-
sity. Unlike genetic diversity, which develops slowly, non-genetic
diversity, or noise, is obtained instantaneously in a population
(20). Furthermore, unlike mutations that are often, though not
always (42), assumed to be generated at random sites, noise
enhancement appears to be specifically directed toward genes that
are expressed in response to changes in specific environmental
parameters (43). The possibility exists that the labor involved in
generating population diversity might split between non-genetic
and genetic mechanisms, with the former occurring before the
latter can take over. One interesting example, obtained in yeast,
showed the feasibility of fitness advantage of enhanced noise
under stressful conditions. In this experiment a mutation leading
to increase in cell-to-cell variability in gene expression was found
to be beneficial after an acute change in environmental condi-
tions (31). In future, it would be relevant to see if spontaneous
increased noise can evolve and be selected for in the lab when
microorganisms adapt to stressful conditions.

If noise introduces diversity in a population, why is the need
for genetic-based diversity, in the form of enhanced mutation?
Noise has one obvious limitation: cells have a very short mem-
ory for noisy fluctuations; hence a stochastic increase or decrease
in expression level of a gene may not be faithfully inherited to
daughter cells. Since a cell that expresses a given gene at a high
level is genetically identical to the rest of the cells, its descendents
are expected to return to an averaged expression level in the com-
ing generations. How long does it take the progeny to “forget”
this legacy? A study in a mammalian system (44) suggested that
for many genes it is one generation time.

In summary, one potential model would suggest that follow-
ing an environmental change, stochasticity in gene expression may
begin to diversify the population with respect to particular genes.
Such diversity may provide the substrate for the selection of cells
during the initial phase of coping with the stress. In parallel, as
mutations begin to appear at a slower pace, they may allow sus-
tained diversity, from which the fittest cells will become fixated
in the population. Together, the two mechanisms may provide
diversity and a substrate for selection at both short and long
timescales.
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