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SUMMARY

Gene expression burdens cells by consuming re-
sources and energy. While numerous studies have
investigated regulation of expression level, little is
known about gene design elements that govern
expression costs. Here, we ask how cells minimize
production costs while maintaining a given protein
expression level and whether there are gene archi-
tectures that optimize this process. We measured
fitness of �14,000 E. coli strains, each expressing
a reporter gene with a unique 50 architecture. By
comparing cost-effective and ineffective architec-
tures, we found that cost per protein molecule could
be minimized by lowering transcription levels, regu-
lating translation speeds, and utilizing amino acids
that are cheap to synthesize and that are less hydro-
phobic. We then examined natural E. coli genes and
found that highly expressed genes have evolved
more forcefully to minimize costs associated with
their expression. Our study thus elucidates gene
design elements that improve the economy of pro-
tein expression in natural and heterologous systems.

INTRODUCTION

In nature, cells must express different genes in a regulated

manner. On one hand, genes must be expressed at levels that

maximize their benefit, and on the other, cells need to minimize

the genes’ production costs (Dekel and Alon, 2005; Wagner,

2005). Costs of expression originate from spending cellular re-

sources, such as building blocks (amino acids and nucleotides),

from allocation of cellular machineries (RNA polymerase and

ribosome), and from energy and reducing power consumption

(Bienick et al., 2014; Glick, 1995; Ibarra et al., 2002; Rang

et al., 2003). Even after their production, proteins might still

impose costs when degraded or by exerting toxicity, e.g., due
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to aggregation (Geiler-Samerotte et al., 2011). Understanding

what molecular processes determine expression cost, its rela-

tion to cellular growth and gene regulation, and how costs evolu-

tionarily shape the genome are key aspects of cell biology that

remain largely elusive. While numerous studies investigated mo-

lecular mechanisms and gene sequence architectures that regu-

late expression level (Gingold and Pilpel, 2011; Kudla et al., 2009;

Qian et al., 2012; Sharp et al., 1986; Subramaniam et al., 2013),

very little is known about design elements that govern expres-

sion costs.

Different works have studied expression costs in unicellular or-

ganisms by imposing the expression of an unneeded protein

(Bentley et al., 1990; Dekel and Alon, 2005; Dong et al., 1995; Ka-

fri et al., 2016; Rang et al., 2003; Scott et al., 2010). The produc-

tion of such unneeded proteins diverts resources from synthesis

of the cell’s own proteins, thus decreasing cellular fitness (Emils-

son and Kurland, 1990; Marr, 1991; Vind et al., 1993). Central to

these studies is the characterization of the correlation between

the imposed expression levels of the unneeded proteins to the

cost. Yet, ultimately natural selection dictates the expression

level of natural genes according to the required concentration

of each protein. Thus, a fundamental question, which has not

been addressed before, is how cells can achieve a specific

expression level of a gene while minimizing its expression costs.

Addressing this question is challenging because changes in

sequence could affect both expression level and expression

costs. To disentangle expression level and expression costs

and reveal mechanisms that affect cost per protein molecule,

we utilized a synthetic reporter library of �14,000 different

sequence variants, each fused upstream to a GFP gene

(Goodman et al., 2013). We then combined competition assays

and deep sequencing tomeasure the fitness of all variants in par-

allel. This procedure allowed us to elucidate gene architectures

that minimize expression cost at a given protein expression level.

We show that various molecular mechanisms, such as protein/

mRNA ratios, ribosome early elongation pauses, amino acid syn-

thesis costs, and peptide hydrophobicity, determine the cost per

protein molecule. We then generated a model that predicts the

cost effectiveness of gene architectures and applied it to natural

E. coli genes. We found that highly expressed genes have
.
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Figure 1. 50 Gene Architectures Affect Cost of Gene Expression at a Given Expression Level

(A) We utilized a synthetic library of �14,000 E. coli strains, each expressing a GFP construct with a unique 50 architecture that includes a promoter, ribosome

binding site (RBS), and an 11-amino-acid-fused peptide. There were two different promoter types, four RBSs, and 137 amino acid fusions that were each

synonymously re-coded to 13 different versions (see Goodman et al., 2013 for full details).

(B) FitSeq methodology to measure relative fitness of strains in a pooled synthetic library. First, the library was grown six independent times for�84 generations,

and samples were taken at generations 0, �28, �56, and �84. Then, unique 50 gene architectures were simultaneously amplified and sent for deep sequencing,

which allowed to follow the frequency of each variant in the population over the course of the experiment. Finally, a relative fitness score was assigned for each

variant based on its frequency dynamics.

(C) GFP expression level (as measured by Goodman et al., 2013; x axis) versus fitness effect (based on results of repetition C; y axis) of each variant in the library

(Pearson correlation, r = �0.79, p < 10�200). Fitness effect comes from the burden of expressing unneeded proteins on cellular growth and is calculated by

analyzing the frequency dynamics of each variant (see Experimental Procedures). We defined fitness residual as the difference between a variant’s observed and

expected fitness. The expected fitness is calculated from the regression line between GFP expression and fitness (black line). Some variants consistently

demonstrated positive (blue dots, n = 975) or negative (red dots, n = 815) fitness residual sign. Other variants showed extremely low fitness residual, and we

termed those variants as ‘‘underachievers’’ (purple dots, n = 80). The group size of positive, negative, and underachiever variants are significantly much higher

than expected by chance (Supplemental Information). These results suggest that certain 50 gene architectures can increase or reduce the cost of gene

(legend continued on next page)
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evolved more forcefully to be encoded by cost-minimizing

mechanisms. Our observations indicate that natural selection

has shaped genes’ architectures to reduce cost of gene

expression.

RESULTS

50 Gene Architecture Affects Cost of Gene Expression
Our question is whether different gene sequence elements can

minimize cost of expression per protein molecule and hence in-

crease cellular fitness. To focus on sequence features at the 50

region of a gene, we utilized a previously published synthetic

gene library (Goodman et al., 2013) composed from �14,000

different variants expressing a GFP gene. Each variant holds a

unique variable 50 gene architecture that includes a promoter,

a ribosome binding site (RBS), and an 11-amino-acid-long N ter-

minus fusion (Figure 1A; Experimental Procedures).

To reveal the expression cost of each variant, we measured

relative fitness of all variants in parallel in a competition assay

in six independent repeats. We then deep sequenced the vari-

able region of the pool of variants and calculated relative fitness

of each variant (Figure 1B; see Experimental Procedures).

We regressed fitness values against GFP expression levels

and observed a negative, linear correlation (Figure 1C, Pearson

correlation, r =�0.79, p < 10�200; Figure S1A). The linear decline

in fitness with expression is in agreement with previous studies

(Kafri et al., 2016; Scott et al., 2010). The regression line, which

outlines the relations between fitness and expression, allowed

us to estimate the expected fitness for each library variant ac-

cording to its GFP expression level. Variants whose fitness

does not deviate consistently across repeats from this regres-

sion line are deduced not to utilize mechanisms that enhance

or reduce the production cost per protein molecule.

Yet, many variants did deviate from the linear regression line,

demonstrating fitness that is higher or lower than expected given

their GFP expression levels. We hypothesized that variants that

repeatedly deviated from the expected fitness might utilize

gene architectures that either reduce or increase the cost of

GFP production per protein molecule. Hence, we calculated

each variant’s ‘‘fitness residual,’’ which we defined as the differ-

ence between the actual fitness that wemeasured for the variant

and the fitness expected for it according to its GFP expression

level and the linear regression (Figure 1C). A positive fitness

residual means that a given variant showed higher fitness than

expected given its GFP expression level, suggesting that it can

produce this GFP level with lower costs. A negative fitness resid-

ual means that the variant showed lower fitness than expected

given its GFP expression level.

We then classified each variant as either positive or negative

according to its fitness residual sign (Figure 1C, blue and red

dots; see Experimental Procedures). Since the observed fitness

residual is sensitive to biological noise (i.e., drift during competi-
expression. See also Figure S1A. Inset: positive (blue violin plot) and negative (re

expression level (Wilcoxon rank-sum, p = 0.46). Black line represents the median

thus allowing us to elucidate other molecular mechanisms that tune expression

(D) Fitness and fitness residuals demonstrate different distributions. While most

normal distribution, though with a negative tail.
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tion) and experimental errors (i.e., sampling errors), we only clas-

sified variants as positive or negative if their fitness residual sign

was identical in at least five out of the six repeats of the experi-

ments in each of the two final sampling points of the competition

(see Experimental Procedures and Supplemental Experimental

Procedures). This approach resulted in 975 positive and 815

negative variants (significantly higher than expected by chance

even at very high levels of measurement errors; Supplemental

Experimental Procedures). Classification into either positive or

negative fitness residual groups allowed us to eliminate the ef-

fect of GFP expression level on fitness as these two groups

demonstrate the same expression distribution (Figure 1C, inset).

We also noticed a set of 80 library variants, which we termed

‘‘underachievers,’’ whose fitness residual scores were repeat-

edly at the bottom 5% of the entire library (Figure 1C, purple

dots; see Experimental Procedures). We hypothesized that

these underachiever variants show extremely low fitness resid-

uals because they produce GFP even more wastefully, and we

expected them to show stronger usage of low-efficiency gene

architectures compared to the negative fitness residual group.

There appeared to be no ‘‘overachievers’’ in these data.

Production of More Proteins per mRNA Molecule Is an
Economic Means to Minimize Expression Costs
We first hypothesized that reaching the same GFP level with

lower levels of mRNA of the GFP gene could be beneficial. While

positive and negative fitness residual variants come from the

same distribution of GFP expression levels (Figure 1C, inset),

we compared their GFPmRNA levels and found positive variants

to have lower levels compared to negative variants (Figure 2A;

Wilcoxon rank-sum, p = 1.6 3 10�9, effect size = 58.26%; see

Experimental Procedures). This difference was independent

of GFP level: binning the data according to GFP levels, we

observed the reduced levels of mRNA for positive variants in

all expression bins (Figure S1B).

The observation that positive variants have equal GFP protein

levels but lower GFP mRNA levels indicates that they are able to

produce more GFP proteins per mRNAmolecule. We postulated

that high translation initiation rate could be a mechanism for

maintaining the same GFP levels despite low mRNA levels in

positive variants. We calculated initiation rates for all library var-

iants using the ‘‘Ribosome Binding Site Calculator’’ (Salis, 2011)

and observed that indeed positive variants had higher initiation

rates (Figure 2B; effect size = 61.9%, Wilcoxon rank-sum,

p = 3.7 3 10�18). This observation holds true when examining

mRNA level versus translation initiation rate at the individual

variant level (Figure S2A). Indeed, when examining translation ef-

ficiency per variant (using measured protein levels divided by

mRNA levels), positive variants demonstrated higher translation

efficiencies than negative fitness residual variants (Figure 2C; ef-

fect size = 55.67%, Wilcoxon rank-sum, p = 3.4 3 10�5). More-

over, we found that underachiever variants demonstrated even
d violin plot) fitness residual variants come from the same distribution of GFP

value. Thus, the effect of GFP levels on fitness was successfully factored out,

cost at given expression levels.

variants showed negative fitness values, fitness residual is more similar to a



Figure 2. Higher Ratio of GFP Protein/mRNA Minimizes Cost of

Gene Expression

(A) Although coming from the same distribution of GFP levels, positive variants

(blue violin plot) demonstrate lower mRNA levels of the GFP gene compared to
higher mRNA levels and lower translation efficiencies compared

to the negative variants (Figures 2A and 2C; effect size = 68.04%

and 63.06%,Wilcoxon rank-sum, p = 9.63 10�8 and 1.13 10�4,

respectively). Thus, by increasing translation efficiency, cells

reduce transcription costs and hence also cost per protein.

Slower Translation Speed at Early Elongation of Coding
Region, Achieved by Diverse Means, Reduces
Expression Costs
We next aimed to elucidate other cellular mechanisms that

directly regulate the translation machinery and that might reduce

expression costs. We first examined codon decoding speeds by

the ribosome. Codon adaptation of transcripts to the cellular

tRNA pool has been shown to be a regulatory mechanism for

translation elongation (Goodarzi et al., 2016; Higgs and Ran,

2008; Kudla et al., 2009; Plotkin and Kudla, 2011; Shah and Gil-

christ, 2011; Weinberg et al., 2016; Yona et al., 2013). Specif-

ically, the prevalence of slowly translated codons at the 50 of
open reading frames (ORFs) has been suggested to support

the efficiency of gene translation (Tuller et al., 2010a). This

‘‘ramp model’’ proposes that delaying ribosomes at the begin-

ning of the elongation phase decreases downstream ribosomal

pauses and collisions, which can therefore reduce ribosome

jamming, and perhaps also ribosomal abortion events.

Although contradicting evidence were reported for the exis-

tence and relevance of this mechanism to expression level

(Charneski and Hurst, 2014; Dana and Tuller, 2014; Heyer and

Moore, 2016; Ingolia et al., 2009; Shah et al., 2013; Tuller and

Zur, 2015), the main prediction of the model—that 50 ramping

reduces cost of expression at a given expression level—has

not been tested so far. Here, we had the first opportunity to

test this hypothesis as only the 50 variable region of the GFP var-

ied in the library, while all other parameters remained constant.

Thus, we asked whether slow 50 translation speed is associated

with positive fitness residual. We used ‘‘mean of the typical

decoding rates’’ (MTDR) (Dana and Tuller, 2014), a measure

of codon decoding time derived empirically from ribosome

profiling data in E. coli (see Experimental Procedures), to calcu-

late translation speed for each library variant. We reasoned that

if translational ramp is beneficial, then low MTDR scores, i.e.,

low ribosome speeds, should be more prevalent among the

positive fitness residual variants. Indeed, our results showed

that positive variants demonstrate significantly lower translation

speeds at the N-terminal fusion (Figure 3A; effect size =

59.55%, Wilcoxon rank-sum, p = 3 3 10�12) and further for
negative variants (red violin plot) (effect size = 58.26%, Wilcoxon rank-sum,

p = 1.6 3 10�9). Consistently, underachiever variants (purple violin plot) show

higher mRNA levels compared to negative variants (effect size = 68.04%,

Wilcoxon rank-sum, p = 9.6 3 10�8). Black line represents the median value.

(B) Positive variants show higher translation initiation rates compared to

negative variants (effect size = 61.9%, Wilcoxon rank-sum, p = 3.7 3 10�18).

(C) Positive variants demonstrate higher translation efficiencies (protein/

mRNA) compared to negative variants (effect size = 55.67%, Wilcoxon rank-

sum, p = 3.4 3 10�5). Consistently, underachiever variants (purple violin plot)

further show lower translation efficiencies compared to negative variants

(effect size = 63.06%, Wilcoxon rank-sum, p = 1.1 3 10�4).

Statistically significant differences (p < 0.05) are marked with an asterisk. See

also Figures S1B and S2A.
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Figure 3. Slow Translation Speed at Early

Elongation, Achieved by Diverse Molecular

Means, Reduces Expression Cost

(A, C, and D) Positive variants show lower values

of codon decoding speed (A), stronger mRNA

structures (C), and lower speeds due to higher

anti-Shine Dalgarno affinities (D) compared to

negative variants (effect size = 59.55%, 65.03%,

and 63.82%, Wilcoxon rank-sum, p = 3 3 10�12,

5.4 3 10�28, and 6.3 3 10�24, respectively).

Statistically significant differences (p < 0.05) are

marked with an asterisk. See also Figure S1B.

(B) Mean folding energy of mRNA secondary

structure according to window’s start position

for positive (blue curve) and negative (red curve)

variants; error bars represent SEM. Dashed

lines mark different positions along the variable

region upstream to the GFP. Black vertical line

marks the beginning of window with the largest

observed difference, which is found at nucleotide

positions +4 of the ORF, just after the first AUG

codon. The distributions at this window position

are seen in (C). See also Figure S2B.
the underachievers (effect size = 64.79%, Wilcoxon rank-sum,

p = 1.2 3 10�5).

Though in the original ramp model ribosome attenuation was

proposed to be obtained by codons that correspond to rare

tRNAs, additional mechanisms that can slow down the

ribosome at early elongation regions could serve in ramping.

These mechanisms include, in particular, tight mRNA second-

ary structure (Goodman et al., 2013; Tholstrup et al., 2012;

Tuller et al., 2010b; Wen et al., 2008) and high affinity to the

anti-Shine Dalgarno (aSD) motif of the ribosome (Li et al.,

2012). We thus examined each of these factors separately

and asked whether they are associated with positive or nega-

tive fitness residual.

When we computed folding energies for segments of mRNA

nucleotides on a sliding window along the variable region

of each variant, we found that positive fitness residual

variants demonstrated tighter secondary structures compared
146 Molecular Cell 65, 142–153, January 5, 2017
to negative variants along many different

window positions (Figure 3B; Figure S2B

for different window sizes). Strikingly, the

maximum difference in folding energy is

observed when the window’s start posi-

tion is at the beginning of the translated

region of the ORF, excluding the up-

stream 50 UTR (Figure 3C; effect size =

65.03%, Wilcoxon rank-sum, p = 5.4 3

10�28). Hence, these results, together

with previous ones, reveal the dual

role of mRNA folding: on one hand,

loose mRNA structure at the RBS is

associated with high expression level

(Goodman et al., 2013), and on the other

hand, utilization of a strong secondary

structure at the 50 end of the ORF can

reduce per-protein costs.
It was previously suggested that elongating ribosomes inE. coli

dwell longer on sequences that have high affinity to the aSDmotif

in the ribosome (Li et al., 2012). However, this observation has

been recently questioned (Mohammad et al., 2016). We next

examined the effects of Shine Dalgarno-mediated ribosomal

pauses on fitness residuals. We calculated affinities to the aSD

along the sequence of each variant, derived a ribosome speed

estimation based on these affinities (see Experimental Proced-

ures) and found that positive fitness residual variants are charac-

terized by low ribosome speed early in the ORF (Figure 3D; effect

size = 63.82%, Wilcoxon rank-sum test, p = 6.33 10�24).

We thus provide the first experimental evidence for a set of

three gene architecture factors—codon decoding time, mRNA

structure, and affinity to the anti-Shine Dalgarno motif—that

could each implement 50 ramping by slowing down ribosomes

and, by that, allow cells to reduce the cost of gene expression

at a given expression level.



Figure 4. Usage of Expensive-to-Synthetize, Lowly Available, and Hydrophobic Amino Acids Decreases Fitness Residual

(A) N terminus amino acid fusions of negative variants are more expensive to synthesize compared to positive variants (effect size = 72.74%,Wilcoxon rank-sum,

p=7.4310�62).Underachieversutilizeevenmoreexpensiveaminoacids (effectsize=72.75%,Wilcoxon rank-sum,p=1.7310�11).SeealsoFiguresS1BandS2C.

(B) The frequency ratio of amino acids between positive and negative variants is negatively correlated with the energetic cost of amino acids (Pearson correlation,

r = �0.54, p = 0.01). Each amino acid is marked according to its one-letter code.

(C) The frequency ratio of amino acids between positive and negative variants is negatively correlated with the demand/supply ratio of amino acids (Pearson

correlation, r = �0.82, p = 10�4). Demand comes from occupancy of ribosomes on each transcript (see Experimental Procedures), and supply is the cellular

concentration of each amino acid (Bennett et al., 2009).

(D) Amino acid availability and energetic cost are correlated (Pearson correlation, r = �0.72, p = 1.8 3 10�3).

(E) N terminus amino acid fusions of negative variants are more hydrophobic than positive variants (effect size = 69.11%, Wilcoxon rank-sum, p = 3.23 10�44). N

terminus fusion of underachievers are even more hydrophobic (effect size = 81.67%, Wilcoxon rank-sum, p = 7.7 3 10�21). See also Figures S1B and S2C.
Another means of reducing translation speed that was

recently demonstrated (so far in yeast) is the incorporation of

positively charged amino acids (Charneski and Hurst, 2013)

or proline residues (Artieri and Fraser, 2014) in newly synthe-

sized peptides. Yet, we did not detect any difference in fre-

quency of such amino acids between the positive and negative

fitness residual groups.

Amino Acid Synthesis Cost and Hydrophobicity Affect
Cost of Gene Expression
So far we have examined features that are based on the nucleo-

tide sequence and how it associates with fitness residual. Next,

we aimed to explore the possibility that the amino acid compo-

sition of the N terminus fusion to the GFP associates with cellular

fitness.

Amino acids differ by themetabolic costs associated with their

biosynthesis—predominantly energy and reducing power deter-

minants invested in their metabolic production (Akashi andGojo-

bori, 2002). We thus hypothesized that usage of energetically

expensive amino acids may cause a heavier burden at a given
expression level. Indeed, lower cost of the N terminus fusions

were found to associate with positive fitness residual variants

(Figure 4A; effect size = 72.74%, Wilcoxon rank-sum, p =

7.4 3 10�62). Here, as well, underachiever variants show more

expensive amino acid usage compared to the negative group

(Figure 4A; effect size = 72.75%, Wilcoxon rank-sum, p =

1.7 3 10�11).

We further examined the relation between fitness residual

and amino acid energetic cost by calculating the frequency

ratio of each individual amino acid between the positive and

negative fitness residual groups (see Experimental Proced-

ures). Remarkably, this frequency ratio was found to negatively

correlate with the metabolic cost of each amino acid (Fig-

ure 4B; Pearson correlation, r = �0.54, p = 0.01). These

observations suggest that expensive-to-synthesize amino

acids burden cells during their costly production due to a

potential feedback that increases their synthesis in response

to consumption.

In addition to direct metabolic cost, the incorporation of amino

acids that appear in low cellular concentrations could reduce
Molecular Cell 65, 142–153, January 5, 2017 147



fitness indirectly as it might disturb the synthesis of other native

proteins. We used ribosome profiling data (Li et al., 2012) to

calculate amino acid demands and utilized previously measured

cellular concentrations as amino acid supplies (Bennett et al.,

2009) (see Experimental Procedures). Indeed, we found that

amino acids with low demand-to-supply ratios are more

prevalent in positive variants (Figure 4C; Pearson correlation,

r = �0.82, p = 10�4). This observation implies that utilization of

amino acids that are less available to the cell (either due to

high demand or low supply) increase expression cost and

are associated with negative fitness residual variants. Since

metabolic cost of amino acids and their cellular supplies

are correlated (Figure 4D; Pearson correlation, r = �0.72,

p = 1.8 3 10�3), we could not evaluate which mechanism—

cost or availability—contributes more to fitness residual.

We next reasoned that an additional factor by which a protein

could affect fitness is its toxicity, e.g., due to aggregation. As

aggregation is driven by hydrophobic interactions, we turned

to a conventional measure of amino acid hydrophobicity (Kyte

and Doolittle, 1982) to examine whether it is predictive of

fitness residuals. We found that positive fitness residual vari-

ants tended to have significantly less hydrophobic amino acids

fused to the GFP (Figure 4E; effect size = 69.11%, Wilcoxon

rank-sum, p = 3.2 3 10�44). Underachievers showed an even

more pronounced effect (Figure 4E; effect size = 81.67%, Wil-

coxon rank-sum, p = 7.7 3 10�21). This negative effect of

hydrophobic residues in cytosolic proteins could indeed be

derived from post-synthesis costs, but it could also reflect an

equally interesting possibility: that aggregation-prone peptides

reduce the functional level of the GFP (and similarly the fraction

of the active form of native proteins). According to this possibil-

ity, aggregation is wasteful and must be compensated by

further costly production to reach the required expression level

of the protein.

We further found that the higher the GFP expression, the more

beneficial it should be to utilize cheap or hydrophilic amino acids

(Figure S2C).

All Sequence Parameters Contribute Independently to
Fitness
We have revealed, so far, a set of mechanisms that affect

expression costs and therefore cellular fitness. Although these

mechanisms are different in their nature, it is possible that var-

iants that score highly on one of these parameters tend

to score highly on others. For example, anti-Shine Dalgarno

affinity could correlate with the energy of the secondary

structure of the mRNA, as both parameters are influenced

by Guanine content. To check this possibility, we computed

the correlation among the variants in the library between

each pair of sequence parameters: codon decoding speed,

mRNA secondary structure, anti-Shine Dalgarno affinity, hy-

drophobicity, and amino acid energy cost. Reassuringly,

no strong correlation was found between any two parameters

(Figure 5). Nonetheless, for feature pairs that did demonstrate

non-negligible correlations (Pearson correlation, r > 0.1),

we asked whether the signal of one feature is still observed

while controlling for variation in the other. We found that

each factor contributed directly to the signal, even upon
148 Molecular Cell 65, 142–153, January 5, 2017
controlling for other factors as potential confounders (see

Figure S3).

Expression Costs Can be Minimized Even at Specified
Amino Acid Sequences
Since maintaining a protein’s function usually requires keeping

its specific amino acid sequence, we next asked whether the

mechanisms that we found here can reduce expression costs

for a specified peptide sequence by using alternative nucleotide

sequences.We defined ‘‘Dfitness-residual’’ as the difference be-

tween a variant’s fitness residual and the average fitness residual

of all library variants who share with that variant the same amino

acid sequence. Then, we compared the various architectural

features between variants with above-average Dfitness-residual

to variants with below-average Dfitness-residual (see Experi-

mental Procedures).

Figures 6A–6E depict, for each of the analyzed features, the

difference in feature value between variants with above- or

below-average Dfitness-residual. Interestingly, for each feature,

the above- and below-average sub-groups had significantly

different feature scores, reflecting the same trends as observed

in all earlier analyses. For example, mRNA levels tend to be

higher in the below-average sub-group in most of the 137 N ter-

minus fusions (t test, p values for GFPmRNA levels = 6.23 10�3,

initiation rates = 73 10�9, codon decoding speeds = 4.33 10�2,

mRNA folding = 3.53 10�16, and aSD velocity = 7.63 10�7). The

conclusion from this analysis is that although amino acid features

affect fitness residuals, the other features provide sufficient de-

grees of freedom to minimize costs even at a specified amino

acid sequence.

A Regression Model Calculates Relative Contribution of
Each Feature and Predicts Fitness Residual Scores
So far, we have examined fitness residual as a binary classifi-

cation, namely categorizing variants with either positive

or negative fitness residual. Complementing this binary anal-

ysis, in Figure S4A, we show that each feature correlates

significantly with actual fitness residual values. We next

aimed to predict actual fitness residual values of the library

variants from their gene architecture features using a multi-

ple linear regression model. We trained the model on a

randomly chosen subset of 70% of the library variants,

cross validated it on all other variants by comparing

their predicted and observed fitness residual, and found a

good correlation (see Experimental Procedures; Figure 7A;

r = 0.53, p < 10�200).

When the regression was performed on a scrambled library,

which randomly links feature values and variants, the correlation

between observed and predicted fitness residual was practically

eliminated (Figure S4B; r = 0.02). We performed 105 such ran-

domizations, and all of them demonstrated such extremely

weak correlations. This negative control demonstrates that we

obtained a genuine means to predict fitness residual values

based on computable gene architecture parameters. We

concluded that a gene architecture that utilizes more of the fea-

tures that we discovered and that, to a greater extent, typically

gives rise to higher fitness residuals as expression costs are

further minimized.



Figure 5. Each Feature Affects Fitness Residual Independently

Correlation plots of each feature pair show lack of correlation inmost cases and only weak correlations in other cases. For feature pairs with Pearson correlation of

r > 0.1, we compared the difference in one feature while controlling for the second and vice versa. See also Figure S3. Black lines are the regression curves

between each feature pair. Number at upper-left corner is the Pearson correlation.
Additionally, this regression model allowed us to calculate the

relative contribution of each feature by comparing the coeffi-

cients assigned by the regression model (Figure 7B). This anal-

ysis revealed that the features contributing to fitness residual

the most are hydrophobicity and metabolic cost of the N termi-

nus fusion, while codon decoding speed contributes the least.

To avoid over-fitting of our model on the library data, we per-

formed feature selection using the Lasso algorithm (see Experi-

mental Procedures). This validation resulted in the exclusion of

only codon decoding speed from the model, suggesting that

its contribution to fitness residual is indeed lower compared to

other features.

Highly Expressed Natural Bacterial Genes Have Evolved
Gene Architectures that Minimize Their Production
Costs
With these findings from the synthetic library, we next asked

whether the mechanisms that we revealed as cost reducing

were also utilized by natural selection to optimize E. coli’s

native genes. We thus calculated each E. coli gene’s score
with respect to the relevant features and used the regression

model to predict its fitness residual score (see Experimental

Procedures and Table S4, related to Figure 7). Since a higher

expression level results in higher expression cost, we next hy-

pothesized that E. coli genes with higher expression levels are

more likely to be endowed with cost-reducing architectures.

Indeed, we found a significant correlation between predicted

fitness residual of E. coli genes and their protein expression

levels (Figure 7C; r = 0.25, p = 2 3 10�53), demonstrating a

stronger selection for optimizing the 50 gene architecture for

highly expressed genes. We obtained similar results when pre-

dicting fitness residuals for all genes in the Gram positive

B. subtilis, pointing to the generality of the model (Figure 7E;

r = 0.33, p = 10�93; see Experimental Procedures and Table

S4, related to Figure 7).

Interestingly, the range of fitness residuals predicted by our

model for the E. coli and B. subtilis genes was significantly larger

than the range predicted by a mock regression model that was

trained on randomly scrambled data of the synthetic library

(see Experimental Procedures; Figures 7D and 7F; p < 10�5).
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Figure 6. Variant with Same N Terminus

Amino Acid Fusion Demonstrate a Range

of Fitness Residuals

(A–E) Each dot represents one of the 137 N ter-

minus fusions in the library. The x axis and the

y axis represent the mean value of a feature for

the variants with either below-average or above-

average Dfitness-residual, respectively. The ver-

tical and horizontal error bars represent standard

errors for each of the axes. A statistical difference

for deviance from the X = Y line was observed for

all features, suggesting that even at a given amino

acid sequence, these mechanisms affect fitness

residual and can minimize expression costs (t test,

p values: A, mRNA levels, 6.2 3 10�3; B, initiation

rates, 73 10�9; C, codon decoding speeds, 4.33

10�2; D, mRNA folding, 3.5 3 10�16; and E, aSD

velocity, 7.63 10�7). d is Cohen’s d that calculates

the effect size.
This observation suggests that the model that we trained on the

library data is able to expose the expression-cost optimality of

natural 50 gene architectures.

DISCUSSION

In this study, we found architectures and motifs that govern

expression costs and reveal their function even beyond a direct

effect on the process of expression. We show that regulating

initiation and mRNA levels affects expression cost, as increasing

the number of proteins that are produced per mRNA is associ-

ated with a positive fitness residual. This architecture could be

beneficial because it reduces energy and resource consumption

that are devoted to mRNA production. If cost reducing, why do

genomes not further utilize the strategy of low transcription

and mRNA abundance, combined with high translation initia-

tion? One potential reason is that too low of mRNA levels might

lead to increased expression noise (Taniguchi et al., 2010) or

increased response time to an environmental signal (Gasch

and Werner-Washburne, 2002). It is thus expected that natural

genes would show a tradeoff between cost-reducing architec-
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tures and designs that satisfy other re-

quirements, such as controlled noise

and short response times.

The ‘‘translational ramp’’ theory pre-

dicted an effect of ribosome speed at

early elongation on expression cost at

a given expression level (Tuller et al.,

2010a). The theory was never tested

as such, since fitness reduction upon

expression of an unneeded protein was

not systematically measured for different

gene sequences at various expression

levels. We demonstrate here that slow

translation speed at the 50 end is benefi-

cial in terms of reduced expression cost

and increased cellular growth rate. We

show that in addition to codon decoding
times, there are at least two additional ramping means that are

likely beneficial: occurrence of Shine-Dalgarno-like sequences

and strong secondary structures.

Recent works showed that 50 mRNA secondary structure gov-

erns expression level of transcripts in bacteria (Goodman et al.,

2013; Kudla et al., 2009; Shah et al., 2013). Here, we observed

that tight mRNA structures are enriched in positive variants.

Consequently, it seems that mRNA structure plays a more com-

plex role than previously thought. On one hand, 50 mRNA struc-

ture, specifically upstream of the AUG start codon, regulates

expression levels as it governs initiation rates (Goodman et al.,

2013; Salis, 2011). On the other hand, tight structures at the

beginning of the ORF, which were previously observed in E. coli

genes (Tuller et al., 2011), are shown here to be beneficial inmini-

mizing expression cost.

We revealed that the amino acid composition of a gene can

also affect expression cost at a given expression level by

showing that hydrophobic amino acids reduce fitness residual,

perhaps due to their increased tendency to form toxic aggre-

gates in the cytoplasm. In agreement with this, it was shown

that mis-folded proteins impose growth reduction to yeast



Figure 7. A Model that Predicts Fitness Re-

sidual Accurately Reveals that Fitness

Residual of Natural Bacterial Genes Is

Correlated with Their Expression Level

(A) A linear regression model based on all eight

features predicts fitness residual accurately in a

cross-validation test (Pearson correlation, r = 0.53,

p < 10�200). See also Figure S4.

(B) The weighted coefficients of each feature in

the regression model demonstrating the relative

contribution of each feature to fitness residual

(p value for regression coefficient of mRNA

level = 3.5 3 10�11, initiation rate = 2.5 3 10�12,

TEGFP protein/mRNA = 2.7 3 10�9, codon decoding

speed = 8.7 3 10�3, mRNA folding energy =

1.5 3 10�50, aSD velocity = 8.7 3 10�3, hydro-

phobicity < 10�200, andamino acid synthesis cost =

5.4 3 10�80). The sign of the contribution of each

coefficient shows whether a feature is associated

positively or negatively with fitness residuals. Error

bars represent standard error of the coefficient

estimation.

(C) Predicted fitness residuals of E. coli genes

according to the regression model are correlated

with their expression levels (Pearson correlation,

r = 0.25, p = 2 3 10�53), suggesting that natural

selection shapes 50 gene architectures in order to

minimize costs of gene expression.

(D) Distribution of fitness residual scores for E. coli

genes as predicted by regression model that was

trained on either experimental or mock data. The

experimentally based model predicts a significant,

higher range of fitness residuals (p < 10�5), sug-

gesting that the mechanisms that we elucidate

with the synthetic library also apply on natural

genes.

(E) Predicted fitness residuals of B. subtilis genes

according to the regression model are correlated

with their expression levels (Pearson correlation,

r = 0.33, p = 10�93), suggesting that our model

also applies for other bacteria species.

(F) Same as (D), only for B. subtilis genes.
cells in a dosage-dependent manner (Geiler-Samerotte

et al., 2011). It is interesting to postulate that hydrophobic

residues that promote aggregation can reduce the portion of

properly folded, functional protein. Such futile protein synthe-

sis might need to be compensated for by further costly pro-

duction in order to reach the needed functional level of a

certain protein.

We further demonstrate that there are sufficient degrees of

freedom for a gene to evolve a cost-reducing architecture,

even when its amino acid sequence is constant. Hence, our
Molec
study suggests design elements that

could be utilized both for better heterolo-

gous gene expression and by natural

selection for the optimization of natural

genes.

As such, our observations are also rele-

vant to biotechnology and synthetic

biology. Many times in such non-natural
systems, there is a need to express a foreign gene, whose

expression could deprive resources from the hosting cell. Our re-

sults allow the design of an optimized nucleotide sequence

version for heterologous expression that minimizes the cost of

production and, by that, reduces the burden on the cell while

not compromising expression level.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for full description.
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Library Architecture

The synthetic library was provided to us by Goodman et al. (2013) and is

fully described there. In short, each variant in the library harbors a unique

50 gene architecture that is composed of a promoter, a ribosome binding

site, and an N0 terminus amino acid fusion of 11 amino acids followed by

a super-folder GFP (sfGFP) gene. The library as a whole includes two pro-

moters with either high or low transcription rates; three synthetic RBSs

with strong, medium, or low translation initiation rates, as well as 137

different genomic RBSs that were defined as the 20 bp upstream to the

ORF of 137 E. coli genes; and, finally, 137 coding sequences (CDSs) con-

sisting of the first 11 amino acids from the same genes. Each CDS appears

in the library in 13 different nucleotide sequences representing alternative

synonymous forms. All combinations amounted in 14,234 distinct library

variants.

Competition Assay

Competition experiment was carried out by serial dilution. The library was

grown on 1.2 mL of Lysogeny broth (LB) and 50 mg/mL kanamycin at 30�C,
the exact same conditions that were used in Goodman et al. (2013) to measure

GFP expression level. We grew six parallel, independent lineages, and each

was diluted daily by a factor of 1:120 into fresh media (resulting in �6.9 gener-

ations per dilution). This procedure was repeated for 12 days, and samples

were taken from each lineage every 4 days (�27 generations), mixed with glyc-

erol, and kept at �80�C.

Fitness and Fitness Residual Estimations

Fitness effect is derived from the following equation:

fðtÞ= fðancÞ,ð1+ sÞtzfðancÞ,est

where f is the variant frequency, t is the generation number, and s is the fitness

effect.

To extract fitness effect, we took two independent approaches. First, we

took the logarithm of the ratio between the frequency of a variant at a certain

time point and its frequency at time zero. We then divided this value by the

number of generations. This calculation was performed for both generation

�84 and generation �56. See Supplemental Experimental Procedures for

description of fitness calculation based on maximum likelihood. The two

fitness-estimation methods were highly correlated (Figures S5A and S5B;

r = 0.99, p < 10�200) and resulted in the same conclusions throughout our

analyses.

We then defined ‘‘fitness residual’’ of a variant as the difference between the

observed fitness by FitSeq and the fitness predicted by a linear model given

the variant’s GFP expression level (see Supplemental Experimental Proced-

ures for further details).

Model for Estimating Translation Velocity Based on Anti-Shine

Dalgarno Affinity

The Shine-Dalgarno affinity was calculated identically to Li et al. (2012). In

short, for each position, we calculated the affinity of 8–11 bp upstream of

that position (the distance between the ribosome A site and the aSD site) to

the anti-Shine Dalgarno motif. The free energy of interaction between the

aSD motif and the mRNA sequence (DG) was calculated for all possible 10-

mer sequences for that position using the RNA annealing function from the

ViennaRNA package algorithm (Lorenz et al., 2011), and the highest affinity

(lowest energy) score was used. We calculated the affinity for all positions

for which the annealing with the aSD motif resides in the 11 amino acid fusion

(positions 19–33) and then transformed all affinities of a given variable

sequence to estimated ribosomal velocity, as follows.

We converted the DG estimates into the equilibrium constant of the interac-

tion, K, which represents the equilibrium between association (kf) and dissoci-

ation (kb). The elongation velocity (v) as the ribosomemoves from current site n

to the n + 1 site is given by the harmonic mean of the dissociation reaction of

site n and the association reaction of site n + 1:

1

vn/n+ 1

=
1

kbn
+

1

kfn+1

Equation 1
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vn/n+ 1 =
kbnkfn+1

kbn + kfn+ 1

Equation 2

We further assume that the association reaction rate is not dependent on the

sequence, therefore, for every n, kfn = kf , and that differences in affinity thus

only reflect differences in dissociation constant displayed by various se-

quences. We then get a term for the ribosomal velocity at a specific position

by the anti-Shine Dalgarno affinity:

vn/n+ 1 =
kf,kfK�1

kf ð1+K�1Þ= kf
e
DG
RT

1+ e
DG
RT

Equation 3

To calculate the average ribosomal velocity across the entire N terminus

fusion sequence of each library variant, we calculated the harmonic mean of

the velocity values for all positions. See Supplemental Experimental Proced-

ures for full description.
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Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C.,

Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA Package 2.0. Algorithms

Mol. Biol. 6, 26.

Marr, A.G. (1991). Growth rate of Escherichia coli. Microbiol. Rev. 55, 316–333.
Mohammad, F., Woolstenhulme, C.J., Green, R., and Buskirk, A.R. (2016).

Clarifying the translational pausing landscape in bacteria by ribosome

profiling. Cell Rep. 14, 686–694.

Plotkin, J.B., and Kudla, G. (2011). Synonymous but not the same: the causes

and consequences of codon bias. Nat. Rev. Genet. 12, 32–42.

Qian, W., Yang, J.R., Pearson, N.M., Maclean, C., and Zhang, J. (2012).

Balanced codon usage optimizes eukaryotic translational efficiency. PLoS

Genet. 8, e1002603.

Rang, C., Galen, J.E., Kaper, J.B., and Chao, L. (2003). Fitness cost of the

green fluorescent protein in gastrointestinal bacteria. Can. J. Microbiol. 49,

531–537.

Salis, H.M. (2011). The ribosome binding site calculator. Methods Enzymol.

498, 19–42.

Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z., and Hwa, T. (2010).

Interdependence of cell growth and gene expression: origins and conse-

quences. Science 330, 1099–1102.

Shah, P., and Gilchrist, M.A. (2011). Explaining complex codon usage patterns

with selection for translational efficiency,mutation bias, and genetic drift. Proc.

Natl. Acad. Sci. USA 108, 10231–10236.

Shah, P., Ding, Y., Niemczyk, M., Kudla, G., and Plotkin, J.B. (2013). Rate-

limiting steps in yeast protein translation. Cell 153, 1589–1601.

Sharp, P.M., Tuohy, T.M., and Mosurski, K.R. (1986). Codon usage in yeast:

cluster analysis clearly differentiates highly and lowly expressed genes.

Nucleic Acids Res. 14, 5125–5143.

Subramaniam, A.R., Pan, T., and Cluzel, P. (2013). Environmental perturba-

tions lift the degeneracy of the genetic code to regulate protein levels in bac-

teria. Proc. Natl. Acad. Sci. USA 110, 2419–2424.

Taniguchi, Y., Choi, P.J., Li, G.-W., Chen, H., Babu, M., Hearn, J., Emili, A., and

Xie, X.S. (2010). Quantifying E. coli proteome and transcriptome with single-

molecule sensitivity in single cells. Science 329, 533–538.

Tholstrup, J., Oddershede, L.B., and Sørensen, M.A. (2012). mRNA pseudo-

knot structures can act as ribosomal roadblocks. Nucleic Acids Res. 40,

303–313.

Tuller, T., and Zur, H. (2015). Multiple roles of the coding sequence 50 end in

gene expression regulation. Nucleic Acids Res. 43, 13–28.

Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T.,

Dahan, O., Furman, I., and Pilpel, Y. (2010a). An evolutionarily conserved

mechanism for controlling the efficiency of protein translation. Cell 141,

344–354.

Tuller, T., Waldman, Y.Y., Kupiec, M., and Ruppin, E. (2010b). Translation ef-

ficiency is determined by both codon bias and folding energy. Proc. Natl.

Acad. Sci. USA 107, 3645–3650.

Tuller, T., Veksler-Lublinsky, I., Gazit, N., Kupiec, M., Ruppin, E., and Ziv-

Ukelson, M. (2011). Composite effects of gene determinants on the translation

speed and density of ribosomes. Genome Biol. 12, R110.

Vind, J., Sørensen, M.A., Rasmussen, M.D., and Pedersen, S. (1993).

Synthesis of proteins in Escherichia coli is limited by the concentration of

free ribosomes. Expression from reporter genes does not always reflect func-

tional mRNA levels. J. Mol. Biol. 231, 678–688.

Wagner, A. (2005). Energy constraints on the evolution of gene expression.

Mol. Biol. Evol. 22, 1365–1374.

Weinberg, D.E., Shah, P., Eichhorn, S.W., Hussmann, J.A., Plotkin, J.B., and

Bartel, D.P. (2016). Improved ribosome footprint and mRNA measurements

provide insights into dynamics and regulation of yeast translation. Cell Rep.

14, 1787–1799.

Wen, J.-D., Lancaster, L., Hodges, C., Zeri, A.-C., Yoshimura, S.H., Noller,

H.F., Bustamante, C., and Tinoco, I. (2008). Following translation by single

ribosomes one codon at a time. Nature 452, 598–603.

Yona, A.H., Bloom-Ackermann, Z., Frumkin, I., Hanson-Smith, V., Charpak-

Amikam, Y., Feng, Q., Boeke, J.D., Dahan, O., and Pilpel, Y. (2013). tRNA

genes rapidly change in evolution to meet novel translational demands. eLife

2, e01339.
Molecular Cell 65, 142–153, January 5, 2017 153

http://refhub.elsevier.com/S1097-2765(16)30715-8/sref4
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref4
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref4
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref4
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref4
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref4
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref5
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref5
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref5
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref6
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref6
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref7
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref7
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref7
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref8
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref8
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref9
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref9
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref10
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref10
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref10
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref11
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref11
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref12
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref12
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref12
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref13
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref13
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref13
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref13
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref14
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref14
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref15
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref15
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref16
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref16
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref16
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref17
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref17
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref18
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref18
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref19
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref19
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref19
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref20
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref20
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref20
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref21
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref21
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref21
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref22
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref22
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref23
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref23
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref23
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref24
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref24
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref25
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref25
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref25
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref26
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref26
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref26
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref27
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref28
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref28
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref28
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref29
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref29
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref30
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref30
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref30
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref31
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref31
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref31
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref32
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref32
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref33
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref33
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref33
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref34
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref34
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref34
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref35
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref35
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref36
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref36
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref36
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref37
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref37
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref37
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref38
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref38
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref38
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref39
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref39
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref39
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref40
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref40
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref40
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref41
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref41
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref41
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref41
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref42
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref42
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref42
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref43
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref43
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref43
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref44
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref44
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref44
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref44
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref45
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref45
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref46
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref46
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref46
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref46
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref47
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref47
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref47
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref48
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref48
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref48
http://refhub.elsevier.com/S1097-2765(16)30715-8/sref48

	Gene Architectures that Minimize Cost of Gene Expression
	Introduction
	Results
	5′ Gene Architecture Affects Cost of Gene Expression
	Production of More Proteins per mRNA Molecule Is an Economic Means to Minimize Expression Costs
	Slower Translation Speed at Early Elongation of Coding Region, Achieved by Diverse Means, Reduces Expression Costs
	Amino Acid Synthesis Cost and Hydrophobicity Affect Cost of Gene Expression
	All Sequence Parameters Contribute Independently to Fitness
	Expression Costs Can be Minimized Even at Specified Amino Acid Sequences
	A Regression Model Calculates Relative Contribution of Each Feature and Predicts Fitness Residual Scores
	Highly Expressed Natural Bacterial Genes Have Evolved Gene Architectures that Minimize Their Production Costs

	Discussion
	Experimental Procedures
	Library Architecture
	Competition Assay
	Fitness and Fitness Residual Estimations
	Model for Estimating Translation Velocity Based on Anti-Shine Dalgarno Affinity

	Accession Numbers
	Supplemental Information
	Author Contributions
	Acknowledgments
	References


