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Abstract

Transcription factors (TFs) regulate gene expression through specific interactions with short promoter elements. The same
regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict
whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or
serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional
implications of variations on regulatory motifs and to compare the functions of related sites. We have developed
computational means for estimating the functional outcome of substituting a single position within a binding site and
applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on
gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence,
we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites
in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter
expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that
substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results
should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is
expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.
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Introduction

The regulation of gene expression is mediated mainly through

specific interactions of TF proteins with DNA promoter elements.

TF binding sites (TFBS) are short (typically of length 6–20 bases)

and imprecise; unlike restriction enzymes which recognize unique

nucleotide sequences, a single TF protein may interact with a

range of related sequences. For most TFs, there appears to be no

distinct sequence of nucleotide bases that is shared by all

recognized binding sites. However, there are typically clear biases

in the distribution of bases that occur at each binding site position.

These biases are commonly represented by position weight

matrices (PWMs), whose components give the probabilities of

finding each nucleotide at each binding site position [1].

Given the degenerate nature of genuine binding sites, highly

similar sites within the same genome may be recognized by the

same TF or by distinct TFs. This is also true for the genomes of

related species, where slight changes in binding site sequence,

occurring throughout evolution, may in some cases maintain the

specificity of the site and in others lead to its loss or to the creation

of a site targeted by a different TF [2,3]. The desire to distinguish

between ‘neutral’ binding site variations, which do not change the

recognition range of the site, and ‘functional’ variations, which

may affect gene expression by altering protein-DNA interactions,

lays at the heart of this work. Such a distinction may have several

implications. Firstly, it should greatly improve the performance of

scanning algorithms, which search promoter sequences for

matches to predefined PWMs. These algorithms typically regard

all mismatches between a promoter sequence and a given PWM’s

preferences as equal (c.f. ScanACE [4], MatchTM [5], MAST [6]).

More reliable predictions may be obtained if such mismatches are

differentially weighed based on their expected effects on

expression. Identification of genuine sites is also crucial when

comparing the promoters of orthologous genes - some across-

species variations may change the functionality of a motif in some

of the organisms. Another intriguing application is the detection of

regulatory site variations, which have the potential to reduce

fitness, and cause diseases, through altering gene expression.

Disease-causing binding site variations are known to occur [7,8],

however so far no attempts have been made for their prediction on

a genome wide scale. Most efforts to distinguish disease-causing

variations from neutral ones have focused on coding single

nucleotide polymorphisms (SNPs) [9–15]. Estimates show that the

human population contains thousands of cis-regulatory variations

[16]. Such high numbers justify a dedicated effort for the

development of computational means for predicting deleterious

regulatory variations.

The present work lays the foundations for the development of

such methods, experimented here in yeast, introducing measures

for quantifying the effects of binding site variations on gene

expression. We have first constructed a putative binding site motif
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collection using our previously introduced expression coherence

(EC) score, which quantifies a motif’s regulatory effect by

measuring the extent to which genes that contain it display

similar expression at a given biological condition [17–19]. We next

exploit this quantitative measures of a motif’s regulatory effect, in

order to systematically compare the expression patterns of genes

containing binding sites differing by a single nucleotide position.

We accumulate statistics for many substitutions across multiple

putative binding sites, and observe that not all nucleotide

substitutions are similar in severity: We found that substitutions

of the type A-.N, and substitutions of the type N-.A (where N is

any nucleotide but A) tend to be ‘‘benign’’, i.e. they relatively

rarely change the expression patterns of the regulated genes. On

the other hand, substitutions of the type G-.N, and N-.G are

more likely than other substitutions to lead to binding site loss.

Results

Predicting the outcome of a binding site substitution –
the case of Ndt80

A single base mutation in the binding site of a TF can result in

one of three scenarios: (i) Binding site conservation - the mutant is

also recognized by the same TF and the substitution from wild-

type to mutant is thus expected to have a very mild effect (Figure 1,

green arrows). (ii) Binding site switching - the mutant is no longer

recognized by the original TF, but is recognized by an alternative

TF (Figure 1, blue arrows). (iii) Binding site loss: the mutant

binding site is no longer recognized by any TF (Figure 1, red

arrows). The primary goal of this work was to computationally

distinguish these three scenarios.

As a first step towards establishing a general scheme for the

assessment of the effect of single-base substitutions on the binding

sites of transcription factors, we examined computationally the

effects of such substitutions on the consensus site of the yeast

sporulation factor Ndt80, the primary transcriptional activator of

middle sporulation genes. Using our motif landscape analysis tool

[17] we analyzed the effects of all single-base substitutions on

Ndt80 binding (Figure 1, right panel). For each ‘mutant’ motif, this

tool answers two questions: can it potentially constitute a binding

site for a TF? and more specifically, is it likely to bind the same TF

as the ‘wild-type’ motif? To answer the first question, the tool

employs the previously described Expression Coherence (EC)

score [17–19], which assesses the effect of a promoter sequence

motif on the corresponding genes’ expression profiles. The EC

score measures the extent to which a set of genes (in this case the

set is defined by a common sequence motif in the genes’

promoters) displays similar expression profiles at a given biological

condition. The statistical significance (p-value) of an EC score is

the estimated probability of obtaining the observed or higher EC

score by chance and is dependent on the size of the set of genes

considered [17]. The answer to the second question is obtained by

computing the Pearson correlation distance between the mean

expression profile, under a relevant condition, of the set of genes

whose promoters contain the ‘wild-type’ motif and that of the set

of genes whose promoters contain the ‘mutant’ motif.

Using the S. cerevisiae sporulation expression data [20], our

landscape analysis predicted that two out of the three possible

substitutions in the second position will have only a minor effect on

expression whereas an A-.G substitution at the same position will

have a harsher effect (see Figure 1 legend for details). When

averaging over all possible single nucleotide substitutions (Figure 2),

the second position seems to be the most tolerant towards

substitutions (mean expression distance, i.e. 1-Pearson correlation

coefficient, is 0.0358), and the seventh position – the most sensitive

(mean expression distance 0.7715). One possible reason for such a

marked difference between the tolerance of different positions

within the same motif to substitutions may be that the binding

transcription factor forms different contacts with the DNA at each

of the positions. Particularly, we may expect the positions that

form tight contact to be less permissive to substitutions. Indeed,

our results are in good agreement with the structural data of Ndt80

bound to its DNA target [21]: the second ‘permissive’ motif

position is the only position which does not form a direct contact

with the protein. But do these differences affect TF function?

Reassuringly, these results are also supported by published in vivo

reporter expression experiments and in vitro binding assays of

Ndt80 mutants [22]. This experiment represents the ‘wet’ analog

to our computational experiment – each of the nucleotide

positions in the Ndt80 consensus site was replaced with all

possible three alternatives. These results too showed that the

second position is most permissive to substitutions, and that, as

predicted by us, G is the only nucleotide that when placed at this

position weakens binding affinity and reduces expression level of

the reporter gene [22]. This implies that the computational

measures used here can complement and predict the outcome of

‘wet’ mutation experiments.

The use of Ndt80 as a test case also provided us with the

opportunity to examine whether we can computationally distin-

guish between binding site switching and binding site loss. Ndt80

recognizes variations of a site termed middle sporulation element

(MSE), whose consensus sequence is GNCRCAAW. Interestingly,

variations of the MSE are also recognized by Sum1, a

transcriptional repressor of middle sporulation genes during

mitosis and early sporulation. Through a combination of in vivo

reporter expression assays and in vitro binding assays of Ndt80 and

Sum1 mutants, Pierce et al. defined the specific binding

preferences of these two TFs [22]. They found that while positions

Author Summary

A prime mode of control of transcription is the binding of
transcription factors to promoter elements. These ele-
ments are often imprecise – often more than one, yet
typically not all, of the nucleotides may be tolerated. In
another field of protein structures, only some of the amino
acid substitutions are tolerated. Are there parallels to this
situation in transcription motifs? For instance, could
substitutions between Adenine and Guanine have rela-
tively little effect on transcription? An experimental
approach here is daunting, requiring a library of reporter
genes, each under the regulation of a different motif
version. Yet genomes contain genes with natural variations
on motifs, while micro-array data provide the expression
pattern of those genes. We inspected the S. cerevisiae
genome to derive nucleotide substitution severity ‘‘rules’’.
We compared the expression of genes containing motifs
to the expression of genes that contain motif variations,
and assessed how drastically each substitution affected
expression. The power of the approach comes from the
statistics – we gathered data for thousands of genes and
motifs in dozens of growth conditions. We found that not
all nucleotide substitutions are equal: e.g. substituting
Adenines is more likely to be benign, compared to
Guanines. It is possible that the different chemical nature
of nucleotides could explain these findings. One future
implication of this type of work is that it may aid in
predicting which human mutations in promoter elements
are more likely to cause a disease by affecting transcrip-
tion.

Variations on Regulatory Motifs
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3–5 of the MSE are important for binding of both Ndt80 and

Sum1, there is a difference in binding preferences at positions 6–7.

For these positions, Ndt80 requires strictly an A, whereas Sum1

binds equally to an A and to a T. Indeed, our landscape analysis

(Figure 1, right panel) shows that mutating position 6 from A to T

results in a change in expression profile, yet coherence remains

significant (p-value 0.0083). This may be explained by the binding

site switching from Ndt80 to Sum1. Transitions of the same

position into C or G result in binding site loss (p-values of the EC

score of the substituted motifs are 0.4 and 0.3, respectively). The

same applies for position 7, in which transition from A to T

maintains a relatively significant EC score (p-value 0.019), yet the

expression profile is changed relative to the genes containing the

consensus motif. On the other hand, substitutions at this position

to both C and G lead to complete loss of coherence (EC p-values

are 0.4 for both variants). This position also scored as the most

sensitive to mutations – any change will abolish the Ndt80 site,

either by switching or complete loss.

Compiling a comprehensive transcription regulatory
motifs collection in yeast

Encouraged by our ability to predict the effects of binding site

substitutions within a single motif, we attempted to generalize

these predictions in order to define universal properties of

substitutions that alter gene expression. Towards this end we

compiled a dataset of motifs that are likely to participate in the

regulation of gene expression. This study was conducted in the S.

cerevisiae genome, for which vast TFBS knowledge is available.

However, in order to both broaden this knowledge and form a

quantifiable connection between binding site sequence and the

expression profiles of the regulated genes, we compiled a new

comprehensive motif dataset. This dataset is unbiased by prior

knowledge and is based on the premise that any nucleotide

sequence that resides in the promoter of a gene may contribute to

the regulation of the gene’s expression. A further advantage of our

dataset is that it is not limited to TF binding sites – motifs found by

our methodology are relevant to transcription, but not all are

necessarily TF binding sites. Some, for example, may be involved

in DNA bending.

We constructed our motif dataset by integrating whole genome

promoter sequences of S. cerevisiae with expression patterns of the

corresponding genes in 40 natural and perturbed biological

conditions including cell cycle, sporulation and various stress

responses. Each biological condition was represented by a time

series of microarrays (see methods). To obtain the most compre-

hensive dataset, we systematically scanned all k-mers (k ranges from

7 to 11) that appear in S. cerevisiae promoters. For each k-mer and

each of the 40 biological conditions, we computed the EC score of

the set of genes that contain it in their promoters. A p-value was

assigned to each EC score and a false discovery rate (FDR) [23] of

0.1 was applied to correct for multiple hypotheses (see methods).

The EC score was used not only to assess the biological significance

of the scanned k-mers, but also to assign them with likely regulatory

Figure 1. Possible outcomes of binding site substitutions. Left panel: points represent promoter elements, discs represent TF recognition
ranges. Points included within a disc represent promoter elements that are bound by the corresponding TF. Arrows illustrate the result of single
nucleotide substitutions within a promoter element. Three scenarios are illustrated: binding site loss (red arrows), reduced affinity to the same TF
(green arrows), or binding site switching – creation of a binding site with as higher affinity to a different TF (blue arrows). Right panel: Our motif
landscape analysis tool [17] is used to detect these three scenarios. This display captures the effects of motif single nucleotide substitutions on the
expression profiles of the downstream genes. The analyzed motif is the yeast Ndt80 sporulation factor (consensus marked in red). The dendrogram
on the left part of the display shows the similarity in mean expression profiles between gene sets bearing variations of the motif in their promoters.
The right side of the display shows the similarity within sets of genes that contain the same motif variation in their promoters, as measured by the EC
score. Gene set sizes appear in parentheses, and p-values corresponding to the EC scores follow. The middle section displays the sequence of the
motif variation examined in the corresponding row (with a ‘-’ indicating same nucleotide as the wild type motif). A substitution that is in the
recognition range of the same TF is expected to maintain a high EC score and a similar expression profile (green arrow). A substitution that causes
binding site loss is expected to be recognized by both loss of coherence and a change in the mean expression profile (red arrow). A substitution that
creates a motif that is in the recognition range of a different TF is expected to maintain high expression coherence, while altering the mean
expression profile (blue arrow).
doi:10.1371/journal.pgen.1000018.g001
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functions, in the form of the set of biological conditions in which

they operate, and the regulatory effects they exert in each condition

(e.g. increased expression following stress, or peak in expression level

at a particular cell cycle stage).

A total of 8,610 sequence motifs appeared significant in at least

one of the examined biological conditions. These comprise the

‘core’ of our dataset (hereafter referred to as the ‘core dataset’).

This dataset represents potential cis-regulatory elements, whereas

the rest of the scanned k-mers represent a control set of

presumably non-functional elements. A list of our core motif

sequences, along with their EC scores and p-values in the

biological condition in which each motif obtained the most

significant score is provided in the supporting information

(supporting Table S1).

Validation of method used to construct motif dataset
We performed several analyses to validate the ability of our

method to identify biologically significant motifs (see supporting

Text S1 for complete details). First, we compared the core dataset

to the well accepted reference collection of yeast TFBS published

by Harbison et al. [24] (supporting Text S1 and Figure S1).

Briefly, the Harbison set was obtained by experimentally

determining the genomic occupancy of DNA-binding transcrip-

tional regulators under rich medium as well as other growth

conditions. Using motif-discovery algorithms the information from

genome-wide location data was then combined with phylogenet-

ically conserved sequences and prior knowledge to derive for each

regulator its probable specificities [24]. Each motif in the Harbison

set is represented by a positional weight matrix (PWM), which

specifies for each position in the regulator binding site and each of

the four possible nucleotides, the likelihood of observing the

specific nucleotide at that particular position. Our dataset covers

99 out of the 102 PWMs published by Harbison et al. We also

found a tendency for genes, which contain the same motif from

our core dataset in their promoters, to be associated with similar

functions (supporting Text S1).

We next used our core dataset to investigate characteristics that

may be of relevance to motifs’ biological function. For this purpose

we compiled a control set of 190,211 low scoring k-mers, that were

insignificant in all 40 examined biological conditions, and in

addition scored especially low (p-value . 0.8, gene set size . 8) in

at least one of these conditions. We considered various features

that may be important for the function of a regulatory motif and

for each such feature, defined a quantitative measure, and tested

whether it can significantly differentiate between our highly

scoring motifs and the control set.

Compared to the control set our significant motifs were found to

have high GC content (relative to the yeast AT rich genomic

background (supporting Figure S2), to have high entropy

(supporting Figure S3), to appear in higher copy numbers

(supporting Figure S4) and to display a preference to distinct

positions relative to the transcriptional start site (TSS) in different

promoters (positional bias) (supporting Figure S5). Additionally,

our motifs were found to be evolutionarily conserved in the

promoters of four closely related Saccharomyces species (Figure 3 and

supporting Figure S6). Reassuringly, some of these properties are

known to characterize functional binding sites (positional bias

[19,25], multiplicity of sites [17,26], evolutionary conservation

[27,28]).

Creation of a high-confidence subset of the core motif
dataset

The analysis of evolutionary conservation revealed, that while

the core dataset is significantly more conserved than a randomized

motif set, there is a substantial number of motifs in the core dataset

that are not significantly conserved, as manifested by an overlap in

the two distributions of conservation rates (Figure 3). This implies

that the core dataset likely contains many false positives.

Therefore, in order to obtain a distilled signal in the analyses

that follow we applied a conservation-based filter to the core

dataset. Using the 95th percentile of the conservation rate (see

methods) of a control motif set as a threshold, we filtered out those

core dataset motifs that had a conservation rate below this

threshold. The new dataset, referred to as the filtered core dataset,

constitutes 1,036 motifs (see supporting Table S1 for the identity of

the motifs that were included in this set).

Exploiting our dataset to predict the outcome of a
binding site substitution

We next exploited the filtered core dataset in order to study the

functional outcomes of binding site variations. For each motif in

this dataset we exhaustively enumerated all possible single-base

substitutions and examined their effect on expression patterns, in

view of the three previously described scenarios (Figure 1, right

panel). The process of assessment of the effect of a substitution is

best described in terms of a decision tree. Figure 4 summarizes

the distribution of substitutions along the leaves of this decision

Figure 2. Tolerance of different Ndt80 positions to substitu-
tion. The averaged tolerance to substitution for each nucleotide
position within the Ndt80 motif was defined as the averaged correlation
coefficient between the mean expression profile of the genes that have
a perfect match to the consensus motif and the mean expression profile
of the genes that have each of the three possible substitutions relative
to the consensus in that position. The second motif position appears
the most tolerant to substitutions. This observation is supported by the
recently published structural data of Ndt80 bound to DNA [21]. The
second motif position does not form a contact with the protein.
doi:10.1371/journal.pgen.1000018.g002
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tree. The first decision addresses the possibility of binding site

loss. If the substitution results in a k-mer sequence that is outside

of the filtered core dataset we consider the substitution to result in

a binding site loss, since the genes that contain that version of the

motif are not significantly coherent, whereas the genes that

contain the original motif from the filtered core are coherent.

Next, we attempt to discover clear cases of binding site switches.

These are defined as cases where the original motif and the

substituted sequence are both members of the filtered core

dataset, but the sets of biological conditions in which they are

inferred to exert their effect are non-overlapping. Finally,

substitutions that survive the two filters can constitute either a

conservation of the binding site (i.e. benign mutations) or a

binding site switch, depending on their effect on the expression

profile in the biological conditions in which both the motif and its

substituted variant are coherent. Interestingly, examination of the

distribution of correlation coefficients between the mean

expression profiles of the motif and its substituted variant for

those substitutions that fell into the last category revealed that

these correlation coefficients tend to be high and statistically

significant (Figure 5). Thus, it seems that cases similar to the one

observed for Ndt80 and SUM1, in which a substitution results in

a switch to a binding site that is active in the same biological

condition as the original binding site, are quite rare. Table 1

describes the few cases found to constitute such a switch.

Consequently, we define the substitutions that fall into the last

category as benign substitutions that will have very little effect on

expression. Overall from the decision tree it is apparent that the

majority (,97.5%) of the single nucleotide substitutions result in

a loss of a functional binding site. It should be emphasized,

though, that the our criteria for inclusion in the high confidence

core dataset were very strict (both in terms of expression

coherence and evolutionary conservation), and that more loose

criteria could have resulted in a lower proportion of binding site

loss events.

Deducing general properties of expression-altering
substitutions

Using the classification of substitutions obtained for the filtered

core dataset we next attempted to generalize these predictions in

order to define properties of substitutions that alter gene

expression. Our goal was to define substitution types that are

more radical than others (in analogy to amino acid substitutions

where there are conservative changes that maintain the chemical

properties of the residue versus radical changes that result in a

residue with different characteristics). For this purpose we used

chi-square tests to compare the distribution of the different

substitution types among the cases of binding site loss with that

found for cases with benign effects on expression (the last category

in the decision tree which corresponds to binding site conservation

or switch). The results are summarized in Tables 2–4. We found

that substitutions from A to T (or from T to A) are the most

underrepresented among the cases of binding site loss, implying

that such substitutions tend to be benign (Table 2). On the other

hand, substitutions from G to T (or from T to G) seem to be very

radical as they are the most overrepresented among cases of

binding site loss (Table 2). In general it seems that substitutions

that involve a G (either as the source nucleotide or as a target

nucleotide, i.e. N-.G, or G-.N, where N is any nucleotide, but

G) tend to lead to a binding site loss, whereas substitutions that

involve an A (as a source or as a target) have a tendency to be

benign (see Tables 3 and 4 for source and target statistics,

respectively). Also, the identity of the source nucleotide has less of

an impact on the outcome than the identity of the target

nucleotide, as attested by the higher chi-square scores in Table 4

compared to Table 3. Finally, by taking into account the chi-

square deviation observed for each of the twelve possible

substitution types, as well as the information whether it is found

more or less than expected among the cases of binding site loss, we

can rank the substitution types from most benign to most severe

(Table 2). These statistics also allow us to rank in terms of severity

Figure 3. Evolutionary conservation of highly scoring k-mers. A. Evolutionary conservation in four Saccharomyces species [27] was calculated
for the highly scoring S. cerevisiae cell cycle k-mers (lengths 7–11; shown in red) and compared with the conservation of two sets of motifs defined by
yeast phylogenetic footprinting: Cliften et al. [27] (green) and Kellis et al. [28] (blue). A set of the randomized k-mers was used as a control (to preserve
the same GC content) and is shown in magenta. For each putative motif, evolutionary conservation was calculated by finding the percentage of fully
conserved (in all aligned species) positions in each motif instance, and averaging over all motif instances. The background promoter conservation
was calculated in a similar manner by counting the number of fully conserved positions in each promoter and averaging over all promoters. The
highly scoring k-mers are conserved comparably to the set of motifs published by Kellis et al. [28] and appear to be more conserved than the set
published by Cliften et al. [27]. The randomized k-mers show an evolutionary conservation that is similar to that of the background promoters
(,36%). B. Evolutionary conservation rate in four Saccharomyces species [27] was calculated for the motifs of the core dataset (blue) and compared
with the evolutionary conservation rate of a control set of randomized k-mers (to preserve GC content), shown in red. For each putative motif,
evolutionary conservation rate was calculated as the percentage of motif instances that are highly conserved (i.e. at least 90% of the motif positions
were identical across all four species). The evolutionary conservation rates of the core dataset motifs tend to be higher than those of the control set
(Wilcoxon-Cox ranksum test; p,102300 ).
doi:10.1371/journal.pgen.1000018.g003
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the three possible substitutions from every source nucleotide. For

instance, in a position containing a C as the source, the most

severe substitution would be to a G, followed by T, and then by A.

We further examined the cases where two motifs that differ by

one nucleotide are coherent in a shared condition. In such cases

the genes that contain one version of a motif and the genes that

contain an alternative version of the same motif may display a

similar, or dissimilar expression pattern (in the same condition

where they both show high coherence). We thus examined the

corresponding expression profiles in such conditions and asked if

they tend to be similar or not for the different substitution types.

To explore this possibility we examined separately the distribu-

tions of correlation coefficients and corresponding p-values for the

different substitution types (supporting Figure S7). Since we cannot

distinguish which motif corresponds to the ‘wild-type’ and which

corresponds to a ‘mutant’ in this case the distributions for

complementary substitution types were pooled together. Visual

examination of these distributions revealed that the distribution of

p-values for substitutions between C and G tends to higher (i.e. less

significant) values relative to the corresponding distributions for

substitutions among other pairs of nucleotides (median p-value for

CuG substitutions is 1.08e-04, whereas the highest median for the

other pairs of nucleotides is 6.60e-05). In other words, substitutions

between G and C tend to generate more cases of dissimilar

expression patterns compared to other substitutions. Using a

rigorous comparison between the distributions corresponding to

different pairs of nucleotides we found that no two distributions

differ significantly from each other when correcting for multiple

hypotheses (supporting Tables S2, S3, and S4). Nonetheless, the

comparisons between the distribution of p-values corresponding to

CuG substitutions to the other distributions yield much lower p-

values than comparisons among the distributions of other pairs of

nucleotides (p-values range from 0.0336 to 0.1606 for comparisons

involving the CuG substitutions, whereas for other comparisons

the lowest p-value is 0.5382). This may indicate that CuG

substitutions have a greater tendency than other substitutions to

weaken the affinity of the regulatory protein to the binding site.

Discussion

We constructed an unbiased dataset of motifs relevant to

transcription in the yeast genome by quantifying the effect of

promoter sequence elements on the expression profiles of the

corresponding genes. We validated the biological significance of

our putative motifs by multiple analyses including coverage of

known TF binding sites, evolutionary conservation and additional

features, which are known to characterize functional binding sites.

The quantitative link we formed between motif sequence and

function allowed us to compare the effects on gene expression of

binding sites differing by a single nucleotide position. Such

comparisons were then used to infer what would be the severity of

substituting one binding site into the other. We applied our tools to

the yeast genome and were able to produce reliable predictions

about the outcome of single nucleotide substitutions in a single

binding site, of the transcription factor Ndt80, that has been

extensively characterized experimentally. Applying the same

Figure 4. Statistics of the fates of substitutions in the filtered motif dataset. All possible single-nucleotide substitutions in the filtered motif
dataset were considered. In order to obtain a non-redundant set of substitutions, if both ‘wild-type’ motif and its substituted variant were members
of the filtered motif dataset then the reverse substitution was not examined. In total 28,937 substitutions were examined. Cases where the
substituted variant was not a member of the filtered motif dataset were considered as binding site losses. Of the remaining 702 substitutions, 118
constitute clear cases of binding site switches, as the ‘wild-type’ and substituted variant do not share biological conditions in which both of them are
presumed to be active based on their EC scores. For the remaining 584 substitutions the effect of the substitution (conservation of the binding site or
binding site switch) can only be determined by the similarity in mean expression profiles, as in these cases both ‘wild-type’ and substituted variant
are coherent in a shared condition. Substitution types that are over-/under-abundant in the categories of ‘‘binding site loss’’ or ‘‘binding site retention
or binding site switch’’ are denoted, with upward- and downward-pointing arrows indicating over- and under-representation, respectively.
doi:10.1371/journal.pgen.1000018.g004
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rationale to a high-confidence subset of our motifs, defined by its

evolutionary conservation, we were able to assess the effects of

single-base substitutions on motifs from this subset and examine

the prevalence of binding site losses, binding site switches and

binding site retention among the substitution outcomes. We found

that the overwhelming majority of single nucleotide substitutions

result in binding site loss. However, the flip side of the coin is that

many sequences that do not participate in transcription regulation

are only a single nucleotide substitution away from becoming a

functional regulatory site. The de novo formation of such sites might

have a detrimental effect, and may explain the fact that motifs that

are assumed to be non-functional differ in their positional

Figure 5. Similarity of expression patterns for overlapping conditions of single-nucleotide substitution variants. Pearson correlation
coefficients (A) and corresponding p-values (B) were calculated for the mean expression profiles observed in shared conditions of pairs of motifs from
the filtered core dataset that differ by a single nucleotide and share at least one condition where they both display significant expression coherence.
(C) p-values for substitutions from C to G and from G to C. (D) p-values for substitutions from A to T and from T to A. Substitutions between C and G
tend to produce correlations between mean expression profiles that are less significant than other substitution types. For the purpose of plotting the
p-value histograms very small p-values were conservatively set to 1e-06.
doi:10.1371/journal.pgen.1000018.g005

Table 1. Putative cases where a substitution causes a switch to a binding site that is active in the same condition as the ‘wild-
type’.

motif 1 motif 2 shared biological condition
number of time
points

Pearson correlation
coefficient P-value

GTGACCCG GTGACGCG spellman cell-cycle cdc28 17 20.1865 0.47

CGCGTAAA CGGGTAAA spellman cell-cycle cdc28 17 20.0614 0.81

CGCGACGC GCGCCGCG Environmental response - acid 7 0.2818 0.54

GACGCGAA GGCGCGAA spellman cell-cycle cdc28 17 0.3332 0.19

GCGACGCG GCGCCGCG Environmental response - acid 7 0.5571 0.19

ACGCGTC GCGCGTC Environmental response - acid 7 0.5581 0.19

CCCCTAA CCCCTGA Gasch environmental response - diamide 8 0.6333 0.09

GCGACGCG GCGATGCG Environmental response - acid 7 0.6678 0.10

ATGCGATG TTGCGATG Gasch environmental response - Hypo-osmotic 5 0.7401 0.15

Nine cases are described where two motifs, which are members of the filtered dataset, differ by one nucleotide from each other, and show significant coherence in a
shared biological condition. The mean expression profiles of genes harboring these motifs in their promoters are different (Pearson correlation coefficient , 0.75 and p-
value.0.05), implying that the substitution that would switch one motif to the other would cause a binding site switch.
doi:10.1371/journal.pgen.1000018.t001
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preferences from our core dataset of motifs (see supporting Text

S1 and Figure S5). It would be interesting to examine whether

non-functional motifs that differ by only a single nucleotide from

functional motifs are specifically avoided at promoter positions

that are relevant for transcription regulation.

Differential effects of substitution types on binding sites
By accumulating statistics for many substitutions across the

motifs in our filtered motif dataset we observed that not all

nucleotide substitutions are similar in severity: In the S. cerevisiae

genome substitutions involving a G have a harsher effect on

average than those involving an A. This observation may be

perhaps explained by the fact that although both G and A

participate in specific protein-DNA recognition through hydrogen

bonds between the side chains of nucleotides and amino acids, the

amino acids that preferentially bind G (Lysine, Arginine, Serine

and Histidine) are much more prevalent in DNA-protein contacts

than those that preferentially recognize A (Asparagine and

Glutamine) [29]. Also, the observation that substitutions between

A and T are under-abundant in cases of binding site loss may be

explained by the fact that both these nucleotides participate in

ring-stacking interactions with proline and phenylalanine in

Table 2. Comparison of the distributions of substitution types among cases of binding site loss and those of benign effect.

source nucleotide
target
nucleotide

cases of binding
site loss

cases of benign
effecta

more/less binding site
loss compared to
expectation

chi-square
deviation p-value

T A 2392 80.5 less 20.59 5.69e-06

A T 2558 80.5 less 15.36 8.91e-05

C A 2142 67.5 less 12.75 3.56e-04

A C 2606 67.5 less 3.69 0.0549

C T 2147 44.5 less 2.04e-04 0.9886

G A 2196 41 more 0.46 0.4986

T C 2476 44.5 more 0.95 0.3305

C G 2180 35 more 2.41 0.1208

G C 2212 35 more 2.70 0.1005

A G 2623 41 more 3.51 0.0609

G T 2206 23.5 more 11.51 6.93e-04

T G 2497 23.5 more 16.65 4.49e-05

The counts of the different substitution types are displayed for the inferred cases of binding site losses and benign effect (‘benign’ are defined as cases where both the
original motif and the substituted variant share at least one condition in which both display significant EC scores). The distributions of counts differ significantly among
the two types of substitution outcomes (chi-square test; chi-square deviation = 82.89; 11 degrees of freedom; p-value = 4.07e-13). For each substitution type we also
tested whether it is distributed differently among the two categories of substitution outcomes, using a chi-square test with one degree of freedom (for the purpose of
this test all other substitution types were collapsed into one category of substitution types). Statistically significant p-values, using a FDR [23] of 0.1, are shown in bold.
The table also specifies whether the substitution type is found more/less than expected among the cases of binding site loss. Using the direction and size of the
deviation from expectation the substitution types are sorted in ascending order of predicted severity.
aFor cases where the substitution results in a benign outcome, i.e. both original motif and the substituted variant are within the filtered motif dataset, the identity of the
original motif and the mutant was decided according to the order of traversal of the motif dataset (in order to avoid double-counting of substitutions). Therefore, in
order to avoid the dependence of counts on the order of processing of motifs, counts for complementary substitution types (e.g. C-.G and G-.C) were averaged.

doi:10.1371/journal.pgen.1000018.t002

Table 3. Comparison of the distributions of substitution types among cases of binding site loss and those of benign effect,
pooling together substitution types with the same source nucleotide.

source nucleotide
cases of binding
site loss

cases of benign
effecta

binding site loss more/
less than expectation chi-square deviation p-value

A 7787 189 less 6.5415 0.0105

C 6469 147 less 1.6522 0.1987

G 6614 99.5 more 13.0631 3.01e-04

T 7365 148.5 more 0.128 0.7205

The counts of the different substitution types, pooling together substitutions with the same source nucleotide, are displayed for the inferred cases of binding site losses
and benign effect (cases where both the original motif and the substituted variant share at least one condition in which both display significant EC scores). The
distributions of counts differ significantly among the two types of substitution outcomes (chi-square test; chi-square deviation = 16.1185; 3 degrees of freedom; p-
value = 0.0011). For each substitution type we also tested whether it is distributed differently among the two categories of substitution outcomes, using a chi-square
test with one degree of freedom (for the purpose of this test all other substitution types were collapsed into one category of substitution types). Statistically significant
p-values, using a FDR [23] of 0.1, are shown in bold. The table also specifies whether the substitution type is found more/less than expected among the cases of binding
site loss.
aFor cases where the substitution results in a benign outcome, i.e. both original motif and the substituted variant are within the filtered motif dataset, the identity of the
original motif and the mutant was decided according to the order of traversal of the motif dataset (in order to avoid double-counting of substitutions). Therefore, in
order to avoid the dependence of counts on the order of processing of motifs, counts for complementary substitution types (e.g. C-.G and G-.C) were averaged.

doi:10.1371/journal.pgen.1000018.t003
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protein-DNA complexes [29]. It would be interesting to check

whether the rules we have found apply to additional genomes.

An intriguing follow-up on this study would be to test additional

features that may affect the sensitivity of a binding site position to

substitutions, such as its evolutionary conservation and its

proximity to the protein in the DNA-protein complex. Many

such features may be ultimately integrated in order to form a

prioritization scheme that would allow the ranking of existing

genome variations by their disease-causing potential.

The approach presented here demonstrates for the first time

how a huge amount of data, in this case the promoter sequences of

all yeast genes as well as expression data for all genes across

multiple conditions, can be harnessed and utilized for taking the

first step towards assessing the effects of nucleotide substitutions on

regulatory binding sites. A conceptual analogue of this endeavor

for assessing the effects of amino acid substitutions on protein

function could amount to mutating many proteins, say enzymes, in

many different ways, and for each mutation measuring the

reduction, or change, in biochemical activity and specificity. Since

data for such an effort is not even close to becoming available, the

methodology presented here utilizes in a unique way data that is

available for its domain. While the main advantage of our

methodology is the huge sample size, the disadvantage is that we

are unable to control for other differences between promoters of

analyzed genes (i.e. differences that are outside of the substituted

position). The fact that we obtain statistically significant differences

between the effects of different types of substitutions on expression

likely indicates that, despite uncontrolled sources of variation, we

extracted genuine signals.

An additional application of the present approach may be in

algorithms that assign PWMs to promoters (e.g. PRIMA [30]) as it

should provide means to differentially weigh mismatches between

the PWM preferences and the promoter sequence, based on

expected effect on expression. Particularly, at least in the S.

cerevisiae genome, if the mismatch between the PWM and the

sequence examined involves a G, the sequence is less likely to be a

functional binding site than if the mismatch involves an A.

Methods

Dataset construction
Promoter sequences for 5,651 S. cerevisiae genes were taken

from the Saccharomyces Genome Database (SGD) [31]. Whole-

genome mRNA expression data of 40 time series experiments in

S. cerevisiae, were downloaded from ExpressDB [32]. These time

series represent a wide range of natural (e.g. cell cycle) and

perturbed conditions. This set of conditions was utilized by us

before [33] and a complete list of conditions is available at

http://longitude.weizmann.ac.il/TFLocation/conditions_explist.

html.

Yeast promoters were systematically scanned for all occur-

rences of every possible k-mer (k varies from 7–11), resulting in an

index file listing for each k-mer the set of genes that contain it in

their promoters, along with the positions and orientations (strand)

of each occurrence. Bidirectional promoters were taken twice in

different orientations and associated with the corresponding

genes. Following the k-mer indexing step, EC scores (and

corresponding p-values) in various experimental conditions were

calculated for the sets of genes containing each of the k-mers in

their promoters. The correction for multiple hypotheses was

performed separately for each condition using a false discovery

rate (FDR [23]) of 0.1 (allowing 10% false positives). In addition

to the EC scores and corresponding p-values, each k-mer was

characterized by the expression profile it dictates; this was

defined, at each time point as the average expression level of all

genes assigned to the k-mer. Such averaged profiles were defined

for each k-mer in each of the 40 time series experiments, resulting

in 40 vectors per motif.

A fundamental assumption made by our method was that a

regulatory protein recognizes and binds double stranded DNA,

and would therefore bind a motif instance equally whether it

appears on the forward strand or the reverse strand of the

promoter. Thus, in generating our motif dataset we considered a

specific k-mer and its reverse complement as a single motif. As a

consequence, pairs of genes with divergent promoters always

ended up together in the sets of genes used to calculate the EC

score of a motif. To address the question of what impact the above

assumption had on the resulting dataset of motifs with statistically

significant EC scores (the ‘double-stranded dataset’), we reapplied

our method to the promoters of the S. cerevisiae this time counting

forward instances and reverse instances of the same k-mer

separately. We refer to the dataset of motifs with statistically

significant EC scores generated in this way as the ‘single-stranded

dataset’. Supporting Table S5 gives a detailed comparison of the

double-stranded and single-stranded datasets. While the two

datasets are of similar size, the overlap between them is quite

Table 4. Comparison of the distributions of substitution types among cases of binding site loss and those of benign effect,
pooling together substitution types with the same target nucleotide.

target nucleotide
cases of binding
site loss

cases of benign
effecta

binding site loss more/
less than expectation

chi-square
deviation p-value

A 6730 189 less 22.8045 1.79e-06

C 7294 147 less 0.1309 0.7175

G 7300 99.5 more 23.307 1.38e-06

T 6911 148.5 more 0.28 0.5967

The counts of the different substitution types, pooling together substitutions with the same target nucleotide, are displayed for the inferred cases of binding site losses and
benign effect (cases where both the original motif and the substituted variant share at least one condition in which both display significant EC scores). The distributions of
counts differ significantly among the two types of substitution outcomes (chi-square test; chi-square deviation = 34.9607; 3 degrees of freedom; p-value = 1.24e-07). For each
substitution type we also tested whether it is distributed differently among the two categories of substitution outcomes, using a chi-square test with one degree of freedom
(for the purpose of this test all other substitution types were collapsed into one category of substitution types). Statistically significant p-values, using a FDR [23] of 0.1, are
shown in bold. The table also specifies whether the substitution type is found more/less than expected among the cases of binding site loss.
aFor cases where the substitution results in a benign outcome, i.e. both original motif and the substituted variant are within the filtered motif dataset, the identity of the
original motif and the mutant was decided according to the order of traversal of the motif dataset (in order to avoid double-counting of substitutions). Therefore, in
order to avoid the dependence of counts on the order of processing of motifs, counts for complementary substitution types (e.g. C-.G and G-.C) were averaged.

doi:10.1371/journal.pgen.1000018.t004
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low: 4728/8610 motifs are unique to the double-stranded dataset

(both the forward and reverse instance of the motif is absent from

the single-stranded dataset) and 3767/8280 motifs are completely

unique to the single-stranded dataset. This indicates that the

answer to the question of whether TF binding sites are directional

is not a straight-forward one. The high fraction of motifs unique

to the double-stranded dataset implies that in many cases both

forward and reverse instances of a motif generate the same

expression pattern, and may not be detectable using the single

stranded methodology because of lack of statistical power due to

splitting of the regulated genes into two gene sets. On the other

hand, the high fraction of motifs unique to the single-stranded

dataset, as well as the high number of cases where only one

direction of a double-stranded motif is included in the single-

stranded dataset implies that in many cases the directionality of

the motif is important to the recognition by the regulatory

protein. For these motifs consideration of their reverse comple-

ment in the calculation of EC scores in the double-stranded

methodology adds noise that in many cases cannot be overcome

by the signal. Thus, the most comprehensive approach in the

future would probably be to consider the union of the results

obtained using both the double-stranded and the single-stranded

approaches. For simplicity, we chose to limit the current study to

those motifs generated by the double-stranded methodology.

Future studies may consider also those motifs generated using the

single-stranded methodology.

Our method for compiling our dataset of potential regulatory

motif is based on the detection of motifs whose presence in the

promoters of a group of genes is associated with a similar

expression pattern for the genes in question. A potential concern

could be that paralogs resulting from very recent duplication

events, and that have therefore not diverged sufficiently both in

their promoters and expression patterns, would lead to false

positives in our motif dataset. To address this concern we

examined, using the data of Kafri et al. [34], the relationship

between time of duplication (as assessed by Ks, the rate of

synonymous substitutions within the coding sequence) and the

overlap in known motif content of pairs of paralogs (supporting

Figure S8). We found that time of duplication is not a good

predictor for the tendency of paralogs to share regulatory motifs.

Therefore, it seems unlikely that the similarity in promoter

sequences of paralogous genes would drive false discovery of

potential regulatory motifs.

The Expression Coherence (EC) score
The formal definition of the EC score is the fraction of gene

pairs in a given set S, for which the Euclidean distance between

normalized expression profiles falls bellow a threshold D.

EC Sð Þ~
gi, gj=i[S : ExpDist gi, gj

� �
vD

� ��� ��

Sj j � Sj j{1ð Þ72

The threshold D is determined based on the distribution of

pairwise distances between expression profiles of all genes in the

genome (or more precisely of all genes for which expression level

was monitored). The original definition of the EC score [18] used

the 5th percentile as the cutoff for defining ‘‘close’’ expression

profiles (D). This definition may create a bias towards TFs that

exert a very tight regulation and miss regulatory motifs that

correspond to factors exerting a more lose regulation. We

therefore tested a range of EC definitions, with cutoffs

corresponding to the 5th, 10th, 20th, 30th, 40th and 50th

percentiles of the pair-wise distance distribution. For each

definition of EC cutoff we assigned a significance p-value

separately. P-values were calculated by random sampling. For

each of the 40 expression time series and for each gene set size

(varying from 3–50 genes), we selected 100,000 random gene sets

and computed an EC score for each such set at each cutoff

definition. We define the p-value of a given EC score as the

fraction of random sets (of the same size and at the same

condition) that scored similarly or higher (note that this sets a

lower bound of 1025 on the significance that can be assigned to a

given EC score). Because we assume that for a given EC score,

the probability to get the same score for random sets of genes

drops with the set size, gene sets larger than 50 were assigned an

upper bound approximated p-value, using the randomly sampled

sets of size 50. See supporting Figure S9 for the distribution of set

sizes used for the different k-mers.

Evolutionary conservation
Promoter data for four closely related Saccharomyces species S.

cerevisiae, S. mikatae, S. kudriazevii and S. bayanus were taken from

Cliften et al. [27]. Reference lists of motifs that were defined solely

based on phylogenetic footprinting were taken from both Cliften et

al. [27] and Kellis et al. [28]. The motif conservation calculation

was adapted from Xie et al. [35]. Motif conservation was defined

as the fraction of motif positions that are identical across all 4

species. We defined the motif conservation rate separately for each

motif as the ratio of conserved motif instances to total occurrences

of the motif in the genome. We regarded a motif instance as

conserved if it displayed at least 90% conservation. Note that since

the promoter alignments do not cover whole promoters for all

genes the conservation rate doesn’t factor in all occurrences of the

motif in the S. cerevisiae genome, and in particular some of the

motifs did not appear in any of the alignments and their

conservation rate is thus undetermined. The distribution of

conservation rates obtained for our core dataset of motifs was

compared to a control distribution, which was obtained by

calculating the conservation rate for randomized versions of the

motifs (in order to preserve GC content). We took the 95th

percentile of the control set distribution as the cutoff defining high

conservation. Supporting Protocol S1 displays the results obtained

with different cutoffs for the definition of high conservation. It can

be seen that using different cutoffs the general trends observed in

Table 2 are preserved, albeit less strictly in the more permissive

cutoffs.

Supporting Information

Figure S1 Re-discovery of the Harbison motif set using our

scoring method

Found at: doi:10.1371/journal.pgen.1000018.s001 (0.07 MB

DOC)

Figure S2 Distributions of GC content for high scoring k-mers

and for the Harbison motifs

Found at: doi:10.1371/journal.pgen.1000018.s002 (0.09 MB

DOC)

Figure S3 Distributions of entropy values and number of

different nucleotides within the k-mer for high scoring k-mers

versus low scoring k-mers

Found at: doi:10.1371/journal.pgen.1000018.s003 (0.09 MB

DOC)

Figure S4 Distributions of mean and maximum number of

occurrences per promoter for high scoring k-mers versus low

scoring k-mers
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Found at: doi:10.1371/journal.pgen.1000018.s004 (0.07 MB

DOC)

Figure S5 Positional bias of high scoring k-mers.

Found at: doi:10.1371/journal.pgen.1000018.s005 (0.15 MB

DOC)

Figure S6 Plot of normalized EC scores versus evolutionary

conservation for the highly scoring S. cerevisiae cell cycle k-mers.

Found at: doi:10.1371/journal.pgen.1000018.s006 (0.09 MB

DOC)

Figure S7 Distribution of expression similarities for the different

types of single nucleotide substitutions

Found at: doi:10.1371/journal.pgen.1000018.s007 (0.04 MB

DOC)

Figure S8 Comparison of the age of duplication of pairs of

paralogs (approximated by Ks) and their tendency to share known

regulatory motifs in their promoters

Found at: doi:10.1371/journal.pgen.1000018.s008 (0.12 MB PDF)

Figure S9 Distribution of the set sizes of genes examined in

constructing the core motif dataset that is relevant for the cell cycle

Found at: doi:10.1371/journal.pgen.1000018.s009 (0.03 MB

DOC)

Table S1 Significantly scoring k-mers (our core set motifs). This

table lists our core motif sequences, along with their EC scores and

p-values in the biological condition in which each motif obtained

the most significant score. For motifs that matched at least one of

Harbison’s PWMs with a match score higher than 99, the highest

scoring match is also listed.

Found at: doi:10.1371/journal.pgen.1000018.s010 (1.41 MB XLS)

Table S2 Redundancy and uniqueness in the core motif dataset

Found at: doi:10.1371/journal.pgen.1000018.s011 (0.05 MB

DOC)

Table S3 Coverage of the Harbison motif set by our core dataset

Found at: doi:10.1371/journal.pgen.1000018.s012 (0.04 MB

DOC)

Table S4 comparison, among the different substitution types, of

the distributions of p-values (corresponding to correlation

coefficients) of mean expression profiles (in shared conditions) of

motifs differing by a single nucleotide substitution

Found at: doi:10.1371/journal.pgen.1000018.s013 (0.01 MB XLS)

Table S5 Comparison of the significant motif datasets obtained

using the double-stranded and single-stranded methodologies

Found at: doi:10.1371/journal.pgen.1000018.s014 (0.04 MB XLS)

Text S1 Validation of the method of construction of the motif

dataset and the comparison of this dataset to published datasets.

Found at: doi:10.1371/journal.pgen.1000018.s015 (0.14 MB

DOC)

Protocol S1 Robustness Analysis

Found at: doi:10.1371/journal.pgen.1000018.s016 (0.05 MB XLS)
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