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Abstract. Phenotypic differences between closely-related species may arise 
from differential expression regimes, rather than different gene complements. 
Knowledge of cellular protein levels across a species sample would thus be use-
ful for the inference of the genes underlying such phenotypic differences. dos 
Reis et al [1] recently proposed the tRNA Adaptation Index to score the opti-
mality of a coding sequence with respect to a species’ cellular tRNA pools. As a 
preliminary step towards a multi-species analysis that would utilize this index, 
we examine in this paper its performance in predicting protein expression levels 
in the yeast S. cerevisiae and find that it likely predicts maximal potential levels 
of proteins. We also show that tAI profiles of genes across species carry func-
tional information regarding the interactions between proteins. 

1   Introduction 

A major challenge in evolutionary research is to understand molecular and genomic 
causes of phenotypic divergence of species. One obvious source of difference in  
phenotype and life-style among related species may be differences in their gene com-
plements. The phylogenetic profiles method [2] utilizes this concept by clustering to-
gether genes that share the same pattern of presence/absence in the genomes of a set 
of species. A striking example [3] is the recent identification of an entire set of genes 
involved in the formation of cilia - short hair-like appendages found on the  
surfaces of some types of cells in some organisms. The genes were identified on the 
basis of their presence in all (sequenced) species known to have ciliated cells and ab-
sence in all (sequenced) species known to be devoid of this sub-cellular structure. 

Such a methodology, although useful, is necessarily limited to genes that are found 
in only a fraction of the species analyzed, and may be problematic when one would 
like to make inferences for closely related species. Martin et al [4] created a matrix 
denoting for each E. coli open reading frame (ORF) its conservation, in a variety of 
prokaryotic species, relative to the E. coli sequence. They suggested that clustering 
this matrix by genes could lead to genotype-to-phenotype associations, and could  
perhaps even reveal the genes responsible for specific traits. As an example they  
identified functions that are over-represented in genes differentiating between Gram-
positive and Gram-negative bacteria.  
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Recently, it has been shown that predicted levels of expression of functionally  
related proteins tend to co-evolve [5, 6] allowing the study of interactions between 
proteins present in all analyzed species. These studies utilized the Codon Adaptation 
Index (CAI) [7] as a predictor of protein levels. The CAI infers the optimality weights 
of the various codons by examining the codon usage of the coding sequences of a 
group of genes that are assumed to be highly expressed in the species examined, and 
uses these weights to judge the optimality of any coding sequence in this species with 
respect to translation. The underlying assumption of this method is that the coding se-
quences of highly expressed genes are well-adapted to the tRNA pools of the cell, so 
that their codon usage reflects these pools, and therefore allows for the inference of 
optimality scores for codons, and consequently for coding sequences. The observation 
that cellular tRNA pools are highly correlated with the tRNA gene copy numbers in 
the genome [8], allows for the inference of codon optimality scores more directly, 
without the need to select a group of highly expressed genes. Indeed, a recent study 
suggested an alternative index of translational optimality – the tRNA Adaptation In-
dex (tAI) [1], and demonstrated its use for the inference of genome-wide translational 
selection. As a preliminary step towards the analysis of phenotypic divergence using 
tAI, we examine in this paper the utility of this index as a predictor of protein expres-
sion levels, as well as the functional content of multi-species tAI profiles. 

2   Results and Discussion 

2.1   tAI as an Indicator of Protein Expression Levels 

The tAI predicts the level of adaptation of a coding sequence relative to the cell’s 
tRNA pools. As a first test of the functional power of prediction of this index we ex-
amined its correspondence with genome-wide experimentally determined protein lev-
els in S. cerevisiae [9]. Using the protein levels of almost 4000 S. cerevisiae ORFs we 
obtain a significant positive correlation (R=0.63 using Pearson correlation; p<1e-363) 
between tAI values and the corresponding log-transformed protein levels (Fig. 1A). 
The same analysis, using a different data set constituting 150 proteins [10], yielded 
similar results. Comparable, yet lower, correlations were obtained using the related 
indices CAI [7] (R=0.58) and FOP’ [11] (R=0.57). 

Significant correlations have been previously observed between CAI and mRNA 
levels [12], presumably due the general association of high protein levels with high 
transcript levels. Indeed, the correlation between the log-transformed genome-wide 
mRNA [13] and protein [9] levels obtained under similar conditions is highly signifi-
cant with a Pearson correlation coefficient R=0.62 (p<1e-363; Fig. 1B). However, 
transcript levels are generally considered poor indicators of protein levels, as similar 
mRNA levels may be accompanied by a wide range (up to 20-fold difference) of pro-
tein levels, and vice versa [14]. Some of the discrepancy between mRNA and protein 
levels may be perhaps explained by different levels of translational control exerted on 
genes with a similar mRNA level. Such translational control may be manifested in the 
adaptation of the coding sequence of genes to the tRNA pools of the cell. Therefore, 
the tAI could potentially provide complementary information to mRNA levels when 
predicting protein levels. To examine the contribution of the tAI in the prediction of  
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Fig. 1. The relationship of tAI and experimentally-determined mRNA levels with experimen-
tally-determined protein levels in S. cerevisiae. A. log-transformed protein levels vs. tAI; B. 
log-transformed protein levels vs. log-transformed mRNA levels. C. experimentally-determined 
log-transformed protein levels vs. predicted log-transformed protein levels, obtained from mul-
tiple linear regression using both tAI and mRNA levels. mRNA and protein data were obtained 
from [13] and [9], respectively. 

protein levels when mRNA levels are also available we computed a multiple linear 
regression model utilizing both tAI and log-transformed mRNA levels [13] to predict 
the log-transformed protein levels [9] (Fig. 1C). The model’s improvement over the 
individual predictors seems quite modest, with the Pearson correlation coefficient of 
the fitted values with the log-transformed protein levels being 0.67 (p<1e-363).  
However, computation of the partial correlations indicates that each of the individual 
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variables makes a significant contribution: the partial correlation of tAI with the log-
transformed protein levels, given the log-transformed mRNA levels is R=0.34 
(p=3.44e-100); and a partial correlation of R=0.29 (p=6.4e-74) for the log-
transformed mRNA and protein levels, given the tAI. 

Examination of the scatter-plot of tAI vs. the log-transformed protein levels, re-
veals that although the correlation between these two variables is highly significant, 
similar to the observation for mRNA levels, tAI is not a good predictor of protein lev-
els. A possible explanation for the inaccuracies in the predictions of the tAI is that, 
whereas protein and transcript levels vary across different conditions, the tAI is inde-
pendent of conditions. Therefore, it is possible that tAI is an indicator of the maximal 
potential protein levels, rather than the protein levels at a specific condition. To exam-
ine the validity of this hypothesis we capitalized on the many microarray experiments 
of recent years, as compared to few proteomic studies. The fact that high mRNA lev-
els generally correspond to high protein levels, allows us to make a comparison of tAI 
with mRNA levels rather than protein levels. We examined 24 outliers for the correla-
tion between the tAI and mRNA levels, that exhibited relatively high tAI (greater than 
0.5), but lower levels of transcript than would be expected, and looked for experi-
ments where these outliers were induced, using a wild-type yeast strain. This analysis 
was obviously limited to the conditions covered by experiments published to date, and 
therefore does not necessarily cover all the conditions yeast cells may experience. 
However, despite this limitation, in the majority of cases (21/24 cases) we could find 
a condition under which the ORF was at least twofold induced, with the lowest 
maximal induction being 3.4-fold for YLR461W, a member of the seripauperin fam-
ily, during the unfolded protein response [15]. In many cases we could find an  
experiment for which the product of the mRNA levels at log-phase [13] and the fold-
induction value was in line with the expected mRNA level. For example, YPL240C, a 
cytoplasmic chaperone of the HSP90 family with a tAI value of 0.60, but very modest 
transcript levels under log-phase growth [13], is induced 11.7-fold during a heat 
shock experiment from 21°C to 37°C [16]. Thus, available data support our hypothe-
sis of tAI as an indicator of maximal protein levels under all possible conditions  
encountered by the cell. 

2.2   tAI as a Predictor for Translational Selection in a Genome 

The application of the tAI to the sequences of a genome is useful only if translational 
selection has played a significant part in shaping the codon usage of a genome. Thus, 
before selecting species for a multi-species analysis we checked whether translational 
selection can be detected in their genome. The effective number of codons (Nc) is a 
measure of the departure of codon usage in a sequence from random usage of syn-
onymous codons, and is related to the amount of entropy in codon usage [17]. Nc 
reaches its maximal value (61) when codon usage is completely random, and its 
minimal value when only one codon is used per amino acid. Therefore, if translational 
selection were the only force shaping codon usage, sequences selected for optimal 
translation would be detected by their low values of Nc. However, codon usage, and 
with it Nc, is largely affected by the silent GC content (Xg), i.e. the percentage of 
codons that have guanine or cytosine at their third nucleotide position. dos Reis et al. 
[1] have suggested testing for the presence of translational selection in a genome, by 
assessing the correlation between the tAI, and the difference between f(Xg), a  
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function predicting Nc based solely on Xg, and Nc. A strong positive correlation in 
this test would indicate co-adaptation between codon usage and tRNA gene copy 
numbers. We applied this test to eight ascomycotic yeast species, and found transla-
tional selection to be present in all of them (Table 1; Fig. 2). In spite of this, it may be 
that while translational selection shaped the residual codon bias in coding sequences 
left after accounting for the effect of silent GC, mutation pressure has been so strong 
that the effect of translational selection on the overall codon bias in the sequence 
might be minute. In such a case, changes in protein levels may be achieved in differ-
ent ways, for example by raising the levels of transcript. This suggests that the test by 
dos Reis et al is not appropriate for testing the extent of the effect of translational se-
lection in shaping codon usage, and as a consequence on expression. Therefore, to test 
the contribution of translational selection to overall codon usage, we tested the corre-
lation between tAI and Nc. This time we expect strong negative correlation if codon 
usage is highly adapted to the cellular tRNA pools. We found that for seven of the 
species this correlation was highly significant (Table 1; Fig. 3A). However, for A. 
gossypii the magnitude of correlation was low and insignificant (Table 1; Fig. 3B), 
suggesting that for this species tAI would not be a good predictor of expression levels. 
We therefore excluded A. gossypii from the subsequent analysis. 

Table 1. Pearson correlation of tAI with f1(Xg)-Nc and with Nc in various ascomycotic yeast 
species  

species 

correlation of 
tAI with 
 f1(Xg)-Nc significance 

correlation of 
tAI with Nc significance 

A. gossypii 0.60 < 0.001 -0.38 0.384 
C. albicans 0.62 0.002 -0.65 0.005 
C. glabrata 0.86 <0.001 -0.79 <0.001 
D. hansenii 0.78 <0.001 -0.75 <0.001 
S. bayanus 0.81 <0.001 -0.73 <0.001 
S. cerevisiae 0.81 <0.001 -0.79 <0.001 
S. pombe 0.83 <0.001 -0.66 <0.001 
Y. lipolytica 0.82 <0.001 -0.84 <0.001 

 

Fig. 2. tAI vs. f1(Xg)-Nc for S. cerevisiae (A) and A. gossypii (B) ORFs 
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Fig. 3. tAI vs. Nc for S. cerevisiae (A) and A. gossypii (B) ORFs 

In general, we can conclude that the tAI cannot be used as a predictor of protein 
expression levels in all genomes. It has already been suggested that translational se-
lection may not be operating in all genomes [1]. However, our results indicate that 
even in cases where translational selection can be shown to be present, as indicated by 
the difference between f(Xg) and Nc, it may still be that translational selection makes 
an insignificant contribution to the overall codon bias, making the tAI an inappropri-
ate predictor of protein expression levels. 

2.3   Multi-species tAI Profiles Contain Functional Information 

If phenotypic divergence between species were the product of different expression re-
gimes, it is expected that the levels of the proteins underlying the phenotype would vary 
across species in a coordinated manner under the relevant conditions. In this respect the 
prediction of protein levels from coding sequences seems problematic, since these pre-
dictions are condition-independent. Yet, recent studies [5, 6], using CAI as a predictor 
for protein expression levels, showed that the profiles of predicted expression levels 
across species tended to be correlated for functionally interacting protein pairs, indicat-
ing that functional inferences based on predicted expression levels might be possible.  

To validate the use of tAI for functional inferences we checked the behavior of tAI 
profiles of genes across species for a set of experimentally-determined interacting 
protein pairs taken from the data of [18]. We generated, using sequence similarity 
measures, a table of close to 5000 orthologous groups in the seven ascomycotic yeast 
species that showed a significant influence of translational selection over their codon 
usage patterns (Table 1). Over 2500 of these groups were present in at least six of the 
eight species, including S. cerevisiae and S. pombe, and were used for further analy-
sis. For each orthologous group we generated a profile of predicted expression levels 
across species, using the tAI. We thus obtained a matrix where each column corre-
sponds to a yeast species, and each row to an orthologous group. We compared the 
distribution of Pearson correlation coefficients found among the tAI profiles of pro-
tein pairs known to interact, with those of two sets of non-interacting protein pairs. 
The first set of non-interacting pairs, C, was obtained by calculating all possible pairs 
using the proteins in the interacting pairs set, and then subtracting those pairs that are 
known to interact. The second control, C’, was a random sample of 1311 pairs from 
C, the same number of pairs as in the set of known physically interacting pairs. We 
found the correlations among the physically interacting pairs to be significantly higher  
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Fig. 4. Distribution of Pearson correlation coefficients among the tAI profiles of protein pairs 
known to physically interact (solid line), as compared to the corresponding distributions of the 
two sets of non-interacting proteins C (dashed line) and C' (dotted line) 

than those found in both sets of non-interacting pairs (p<1e-100 for both comparisons 
using a Wilcoxon-Cox rank sum test; Fig. 4). 

3   Conclusion 

The tAI, an intuitive measure of the optimality of a coding sequence in terms of transla-
tion, correlates well with experimentally-determined protein and mRNA levels, and may 
be a good predictor of the maximal levels of protein under all conditions encountered by a 
species. The putative levels of protein predicted by the tAI tend to vary in a coordinated 
manner across species for physically interacting pairs, indicating the potential of this index 
to serve in functional inferences regarding phenotypic differences among closely-related 
species. However, care should be taken to apply the tAI only to genomes where transla-
tional selection can be shown to be a major force shaping codon usage in sequences. 

4   Data and Methods 

4.1   Species Analyzed  

The yeast species used in this study are Saccharomyces cerevisiae, Saccharomyces 
bayanus, Candida glabrata, Ashbya gossypii, Debaryomyces hansenii, Candida albi-
cans, Yarrowia lipolytica and Schizosaccharomyces pombe. 
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4.2   Protein and Coding Sequences 

C. albicans protein and coding sequences were downloaded from [19]. S. cerevisiae 
and S. bayanus protein and coding sequences were downloaded from [20]. For S. ba-
yanus several sequences may correspond to different fragments of the same ORF. We 
used the annotation given by [21] to merge such fragments.  

For the remaining five species files in both fasta and UniProt formats were 
downloaded from [22]. The UniProt format files were used to construct a dictionary, 
linking accessions referring to nucleotide sequences to their corresponding proteins. 
We then downloaded, from [23] all entries corresponding to the species in question 
and containing a “CDS” feature, in EMBL format. A perl script utilizing BioPerl [24] 
was then used to go over the EMBL format file to extract coding sequences of acces-
sions corresponding, according to the dictionary, to sequences in the protein fasta file. 
Coding sequences were used only if their length was at least three times the length of 
the protein sequence. If the coding sequence was longer than this length we assumed 
that this was due to an alternative initiation of the sequence, and used the last N nu-
cleotides, where N is the expected length for the coding sequence.  

4.3   tRNA Gene Copy Numbers 

For all species except C. albicans and S. bayanus the tRNA gene copy numbers were 
obtained by applying the tRNAscan-SE software version 1.1 [25] to chromosome  
sequences obtained from GenBank (http://www.ncbi.nlm.nih.gov/Genbank). For S. 
bayanus we used the tRNA gene copy numbers of the closely related S. cerevisiae. 
Although a list of the tRNA genes for this species is available [21], the low total 
number of protein-coding genes available for it and the other two sensu stricto species 
sequenced in the same project (less than 5000 in each of the three species, compared 
to close to 6000 in S. cerevisiae), indicates that the quality of the genome sequence 
may not be high enough to reliably determine the copy numbers of tRNA genes. The 
strong conservation of synteny between S. bayanus and S. cerevisiae [21] and the 
relatively short time that has passed since their divergence (~20 million years ago) 
makes the use of the tRNA gene copy numbers from S. cerevisiae a conservative 
choice. 

For C. albicans we extracted the tRNA gene counts from [19]. 

4.4   Calculation of tAI, Nc, f1(Xg)-Nc, Their Correlation and Its Significance for 
Coding Sequences 

The tAI method is described in detail in [1]. Briefly, the method entails calculating a 
weight for each of the sense codons, derived from the copy numbers of all the tRNA 
types that recognize it. For a given coding sequence, the tAI value is then the geomet-
ric mean of the weights of all its sense codons (stop codons were ignored when en-
countered). To calculate the tAI for coding sequences we used the codonR scripts 
supplied by [1], downloaded from http://people.cryst.bbk.ac.uk/~fdosr01/tAI/, which 
we modified to include the first codon, as well as other methionines. The effective 
number of codons (Nc,[17]) was calculated with the modified version of the codonW 
program, supplied by [1], which was downloaded from the same site. This version of 
codonW was further modified to accommodate the alternative yeast nuclear code used 



Examination of the tRNA Adaptation Index as a Predictor of Protein Expression Levels 115 

by D. hansenii [26]and C. albicans [27]. The significance of the observed correlation 
of Nc with tAI was calculated by permuting the tAI weights of the sense codons 1000 
times. Each such permutation was then used to compute the correlation of Nc with the 
tAI calculated using the randomized weights. These calculations were done using 
scripts downloaded from the same site and the R software for statistical computing 
(http://www.r-project.org). 

4.5   Generation of a Table of Orthologous Groups 

The orthologous groups were constructed using a S. cerevisiae-centered methodology. 
We constructed, using the inparanoid algorithm [28], six lists of orthologous groups 
containing genes from only two species – S. cerevisiae and one of the other six  
species. These two-way groups were then merged to obtain orthologous groups poten-
tially encompassing all species in the sample. 

The generation of the lists of two-species orthologous groups utilized the inpara-
noid algorithm [28]without an outgroup and without bootstrapping. We kept only se-
quences that were assigned a confidence value of at least 25% for their membership in 
the group. There is a discrepancy between the inparanoid algorithm as reported in 
[28], and the program supplied by the authors at http://inparanoid.cgb.ki.se/: while the 
paper specifies that the matched segment between two sequences must cover at least 
50% of the longer sequence in order for the sequences to be considered homologous, 
the program applies this cutoff to the shorter sequence. In order to avoid domain-level 
matches, we modified the inparanoid program to reflect the algorithm as presented in 
the paper.  

The second part, the merger of the six two-species lists into one seven-species list, 
was achieved by iteratively adding the two-species lists. The order of processing of 
the lists was dictated by the relative closeness of the second species in the list to S. 
cerevisiae (S. cerevisiae was included in all lists): starting with S. cerevisiae’s most 
distant relative (S. pombe) and ending with its closest relative (S. bayanus). C. albi-
cans and D. hansenii are equidistant from S. cerevisiae, and we arbitrarily chose to 
first analyze the C. albicans list. Each iteration consisted of going over all ortholo-
gous groups in the list being processed. For each such group, if its S. cerevisiae genes 
were found in a group obtained in a previous iteration, the two groups were merged; 
otherwise, if the genes in the group appeared after the divergence of S. cerevisiae 
from the previously analyzed species, a new group was created. Note that if a duplica-
tion had occurred after the divergence from the previously analyzed species then more 
than one group may be merged with the same pre-existing group. The order of 
merger, i.e. according to the order of divergence from S. cerevisiae, ensures that there 
will be no ambiguity as to which pre-existing group to add a currently analyzed 
group. 

4.6   Generation of a Matrix of Predicted Expression Levels Across Species 

We combined the orthologous groups table with tAI scores to create a matrix of pre-
dicted expression levels across species. In cases where the orthologous group con-
tained several paralogs we used the maximal tAI score among them. We discarded all 
profiles that had no representative from S. pombe. The resultant matrix of predicted 
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expression was then submitted for preprocessing at the GEPAS server [29]: profiles 
with more than 30% missing values were removed, missing values in the remaining 
profiles were imputed using the KNNimpute algorithm with k=15. This left us with 
2592 profiles. Each column of the matrix was subsequently normalized, so that for 
each species the mean and standard deviation would be 0 and 1, respectively. 

4.7   Analysis of Outliers Having High tAI, But Relatively Low mRNA 
Expression Levels 

We analyzed two groups of outliers in the comparison of tAI and experimentally de-
termined mRNA levels obtained from [13]: ORFs with 0.6≤tAI and transcript levels 
at most 10 (9 ORFs), and ORFs with 0.5≤tAI<0.6 and transcript levels at most 1 (20 
ORFs). Since mRNA levels are subject to noise, results for the same condition may 
vary across experiments, and what may seem as an outlier using the data of one ex-
periment may not be an outlier using the data of another experiment. We therefore  
filtered out from the set of outliers five ORFs that were not outliers using another 
dataset obtained under similar conditions (dataset GSM6711 corresponding to one of 
the control samples in the study of [30]). The control dataset was downloaded from 
the GEO database [31] (http://www.ncbi.nlm.nih.gov/geo). We then used the “expres-
sion connection” tool at the SGD database site [32] to obtain the maximal induction 
levels of the outlying ORFs, taking care to consider only experiments in which a wild-
type strain was used. 

4.8   Pairs of Physically Interacting Genes in S. crevisiae 

We extracted 2301 pairs of proteins from the supplementary data of von Mering et al 
[18] by filtering out those protein pairs that were marked as “previously annotated: 
no”. We further filtered out pairs of paralogs belonging to the same orthologous 
groups, and pairs where at least one member was not in the data matrix, leaving 1311 
pairs of interacting proteins. 
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