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Survival in natural habitats selects for microorganisms that are
well-adapted to a wide range of conditions. Recent studies re-
vealed that cells evolved innovative response strategies that ex-
tend beyond merely sensing a given stimulus and responding to
it on encounter. A diversity of microorganisms, including Escher-
ichia coli, Vibrio cholerae, and several yeast species, were shown
to use a predictive regulation strategy that uses the appearance of
one stimulus as a cue for the likely arrival of a subsequent one. A
better understanding of such a predictive strategy requires eluci-
dating the interplay between key biological and environmental
forces. Here, we describe a mathematical framework to address
this challenge. We base this framework on experimental systems
featuring early preparation to either a stress or an exposure to
improvement in the growth medium. Our model calculates the
fitness advantage originating under each regulation strategy in
a given habitat. We conclude that, although a predictive response
strategy might by advantageous under some ecologies, its costs
might exceed the benefit in others. The combined theoretical-
experimental treatment presented here helps assess the potential
of natural ecologies to support a predictive behavior.

adaptation | conditioning | evolution

M icroorganisms are constantly faced with environmental stim-
uli and stresses. Over the years, cellular response to such
challenges has been intensively studied in several model organisms
(1-5). Prevalent response strategies follow a sense and respond
logic: cells continuously monitor their environment and induce
a cellular response to cope with a stimulus on encounter with it.
Although evolution selects for improved sensing and response
mechanisms, adaptation can also extend and result in the emer-
gence of more sophisticated response strategies. For example, un-
der stochastic switching, cells randomly alternate between potential
cellular states. In a fluctuating environment that is hard to monitor,
such a response strategy might ensure that a portion of the pop-
ulation is always prepared for unpredicted challenge (6-8).

Here, we focus on environments that are characterized by
a stereotypical temporal order of stimuli. Previous theoretical
work has suggested that such ecologies may select for organisms
that use information about the natural sequence of events (8).
Recent studies have revealed examples of such adaptations in
model microorganisms. Tagkopoulos et al. (9) investigated the
response of Escherichia coli to temperature elevation that is fol-
lowed shortly after by a drop in oxygen availability on entry of
bacteria to the host digestive tract and observed an associative
anticipatory regulation pattern—each signal by itself can invoke
response to both stimuli. In another study, we have shown that
E. coli has adapted to the sequential order of exposure to different
sugars along the mammalian digestive tract. Additionally, we have
shown that this conditioned response entails the bacteria with
fitness advantages when cells are exposed to the two sugars in their
sequential natural order (10). Vibrio cholerae, another species that
transits through the digestive tract, was also observed to exhibit an
anticipatory response. Specifically, these bacteria were shown to
induce genes important for the subsequent life stage outside the
host during the late stages of host infection (11).

Studies on two yeast species, Saccharomyces cerevisiae and
Candida albicans, have shown the potential of a predicative ca-
pacity under additional ecologies. Focusing on the shift from

www.pnas.org/cgi/doi/10.1073/pnas. 1019754108

fermentation to respiration experienced during wine production,
we have shown that S. cerevisiae has adapted to the typical order
of stresses in this ecology (10). Recently, Rodaki et al. (12) have
shown that C. albicans, a human pathogen, induces an oxidative
and cationic stress response on encounter with glucose. This
induction might reflect a protective conditioned response that
cells mount when present in the blood serum to protect them-
selves from future encounters with the host’s immune response.

These observations in diverse ecologies suggest that the recently
discovered adaptive conditioning might be, in fact, ubiquitous in
biology. However, although previous studies have focused on ex-
perimentally uncovering the specifics of particular examples, it is
not clear a priori that a predictive behavior should always pay off.
A comprehensive theoretical approach, which will weigh the cost
of prediction against its benefit under various cellular systems and
ecological environments, is noticeably missing. Such an approach
is needed, because it can reveal the parameters that would char-
acterize the ecologies that support conditioning and the ecologies
in which this strategy would not be adaptive.

Here, we explore the potential of a predictive capacity in
microorganisms by developing a mathematical framework that can
estimate the advantage of this regulation strategy over the naive
sense and respond strategy that is often assumed to exist. We start
by experimentally exploring the fitness advantage of early prepa-
ration before two different stimuli: addition of a superior carbon
source to the growth medium and exposure to a stressful envi-
ronment. Next, we describe a phenomenological mathematical
model that elucidates the key biological and environmental pa-
rameters that contribute to the selective advantage gained from
a conditioned response strategy and the relationships between
them. The economics-like model predicts a net gain in fitness
because of conditioning as a balance between biological cost and
benefit parameters and environmental parameters such as the
regularity of the changes. Finally, we illustrate the capacity of the
model as a research tool when addressing natural ecologies. We
show that the model predicts that the ecology of the mammalian
digestive tract favors a conditioned response in regard to sugar
metabolism as was indeed observed in WT E. coli.

Results

Advantage of Conditioning Under Diverse Environments. Environ-
mental changes either improve or worsen the organism’s growth
conditions. To explore the potential advantage of early prepara-
tion under such situations, we experimentally examined the fitness
of E. coli in two separate setups, featuring exposure to stress or
addition of a superior carbon source to the growth medium.

In our experiments, we monitored changes in the population
size of two identical cultures undergoing an environmental
change (Fig. 14). Before the change, a conditioned culture was
exposed to an inducing predictive signal to trigger early prepa-
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ration, whereas a control unconditioned culture was not exposed
to the inducing signal. The fitness of early preparation is denoted
by the population size ratio of a conditioned culture over the
unconditioned control culture after the environmental change.
Thus, under a given experimental setup, a ratio larger than one
indicates that early preparation is advantageous, whereas a ratio
smaller than one indicates that early preparation is actually
disadvantageous. Because an adequate preparation period is
likely to be required for cells to sufficiently prepare, we repeated
our experiment while varying the delay time between the trig-
gering stimuli and the environmental change.

In the first system, in which the environmental change features
an improvement of growth conditions, we added lactose to E. coli
cells initially growing on glycerol, an inferior carbon source. We
reasoned that early preparation will enable conditioned cells to
use the superior carbon source immediately on encounter without
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Fig. 1. Fitness advantage of early preparation. (A) Experimental setup ex-
posing cells to two signals sequentially or simultaneously. Experiments
measuring fitness advantage of conditioning (B) before lactose addition and
(C) before severe heat shock. Blue bars denote the SEs of three repeats. The
red graph marks the model predication (S/ Text).
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the typical delay time required for inducing the relevant metabolic
pathway. In this setup, preparation before sugar encounter was
triggered by addition of a metabolically inert artificial inducer
isopropyl B-b-1-thiogalactopyranoside (IPTG). Thus, IPTG-
conditioned cells preinduced the lactose operon without any
energetic gain. In the second system, we explored the stress
autoprotection phenotype to quantify the advantage of early
preparation. Numerous studies have shown that model micro-
organisms can efficiently protect themselves from lethal stresses
if they are exposed to mild levels of stress in advance (10, 13-17).
In our experiment, E. coli cells growing in their optimal growth
temperature were conditioned by a mild, nonlethal temperature
elevation before a severe heat shock. In this setup, the control
population was challenged by only the severe heat shock.

Fig. 1 B and C shows, respectively, the measured fitness ad-
vantage of preparation before addition of lactose or before ex-
posure to a severe heat shock at various time intervals (the
preparation period between the two signals). Noticeably, the
dependency of the fitness advantage on the preparation period is
qualitatively similar in these two diverse systems—when the
delay is very short, early preparation offers little to no advantage.
Similarly, when the delay is too long preparation becomes dis-
advantageous as well. An optimal time interval is, thus, obtained
that maximizes the use of conditioning. These results can be
intuitively understood after taking into account that early prep-
aration is likely to be energetically costly to conditioned cells.

Phenomenological Model. The results of our experiments show
a qualitatively similar dependency of the fitness advantage on the
preparation period. This similarity between the metabolic and
stress systems suggests that a single phenomenological model
might be sufficient to capture the underlying dynamics that govern
the relative fitness of conditioning under diverse environments.

Our model focused on two alternative response strategies, the
conditioned response (CR) and the naive direct response (DR), in
an environment that consists of two stimuli, S; and S,. We present
the equations of the mathematical model in a few stages. First, we
derive the organism’s response function—a function describing
the time-dependent changes in the R, response level under a given
response strategy. The gain and cost effects are manifested as
dynamic changes in the basal growth rate and are derived from the
response function. By integrating over changes in the growth rate,
we calculate the fitness of each response strategy in the given en-
vironment. Finally, the cumulative effects are used to yield an
experimentally measurable fitness parameter.

The basal growth rate of an organism changes on encounter
with a stimulus, and it is affected by two opposing influences: the
cost of mounting the response (denoted c) and the benefit gained
from responding (denoted b). Thus, in a steady state, the change
in the growth rate (denoted §) is the product of the gain and cost
coefficients: § = b - ¢ - §p4gq. Using this representation, the rela-
tive fitness of an organism (F) in a changing environment can be
represented as the sum of all changes relative to the basal growth
rate (Eq. 1):

F= }b(r) -c(tydt. [1]
0

To model the time-dependent dynamics of the R, response, we
relied on a function describing an exponential approach to
a steady-state protein level (Eq. 2),

Y(t) =Ye(l—e™), [2]

where ¢ is the time from induction, Yy, is the steady-state level of
the protein, and a is the dilution/degradation rate. For simplicity,
active degradation of the protein is neglected, and hence, a
equals the growth rate 8, which is often assumed in bacteria
(18). This basic function is used to develop the two alternative
response functions rpr(?) and rcr(t), which denote the relative
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response level (normalized to Yy) under the DR and CR, re-
spectively (Fig. 2, response panel) (Egs. 3 and 4):

0 t <At

rDR(t) = { 1—e~=A1) t5 Af and [3]

rer(t) =1—e™ ™. 4]

The benefit gained under each regulation strategy is taken as the
temporary increase in the basal growth rate. Here, we assume
that the gain is linearly proportional to the response level at
a given time point and is gained only when S is present (Fig. 2,
gain panel). Because the benefit coefficient (b) depends on the
biological system, a scaling parameter is added (x), and the co-
efficient is set to one if no benefit exists (Egs. 5 and 6):

bDR(I) =1 +KYDR(t) and [5]
1 t< At
ber(t) = { 14 wrer(t) t>At° (6]

The cost under each regulation strategy is modeled through
a temporary decrease in the basal grow rate. We assume that the
cost originates from processes such as transcription and trans-
lation occurring at a constant rate (19, 20). Thus, unlike the gain,
the cost is constant per time unit and proportional only to the
production rate (p). Additional and more elaborate cost func-
tions featuring time dependency of the cost on the induction
period are presented in SI Text (Eqs. S10-S13). Because the R,-
normalized production rate, f, is a binary parameter (B = 0 or
f = 1 at the presence and absence of the stimulus, respectively)
in both regulation strategies, the cost coefficient is modeled us-
ing only a system scaling factor (n) and is set to one if no cost
exists (Egs. 7 and 8):

conlt) = {1_11 1= and 71
CCR(I) =1-n. [8]

R, level

Growth
Rate

Growth
Rate

Rate

Growth

Time (generations)

Fig. 2. Calculation of the relative fitness in an example habitat. The blue
and red graphs mark DR and CR, respectively. The stimuli are marked on top.
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Using the gain and cost coefficients, we can integrate over all
temporal changes in the growth rate (Fig. 2, net effect panel) to
calculate the fitness of the two alternative response strategies in
a stimuli-coupled environment (S; was followed by S,) (Egs. 9
and 10):

Fpg"® = At + J(l —m)(1+x(1—e™ " ))drand (9]
At

FEowled _ (1 _q)Ar+ J(1 S+ k(l—e~ ). [10]
At

The relative fitness after solving the integrals is (Eq. 11)

1_e—uAt

AFCoupled _ I’]At, [11]

CR-DR — (1-n)x

whereas in an uncoupled environment (only S; appears), the
relative fitness of each response strategy is reduced to the in-
tegral over the cost coefficients (Eq. 12):

AFCR2 R = —nTsi. [12]

We can now incorporate Eqs. 11 and 12 into a single fitness
equation to calculate the fitness in a composite environment that
includes both coupled and uncoupled appearances of the two
stimuli (Eq. 13):

_ p— A

AFcg_pr :P((l —TI)KT—HN) = (1=p)(=nTs1),

[13]

where p denotes the conditional probability that S, will occur
given that §; occurred. Note that the expression is calculated
for an average encounter with S, (weighed by p).

The new fitness expression (Eq. 13) is useful, because it can
be applied to calculate an experimentally measurable fitness
parameter, the population size ratio (Egs. 14):

Ncr/Npr = exp(8pasal - AFcR-pR)- [14]

A population ratio above one indicates that, in the tested
environment, early preparation is advantageous, whereas a ratio
below one indicates a parameter combination that selects for the
direct response strategy.

Conditioned Stress Response. Under some environments, the fit-
ness advantage of early preparation can be manifested as a single
time-independent event. Such a benefit function is useful when
considering stressful environments in which the increased sur-
vival of a cell is proportional to the R; level at the time point of
stress exposure. These environments can be modeled by dis-
carding the accumulative gain (x = 0) and adding a new non-
integrative benefit parameter B. After this manipulation, the
fitness equation (Eq. 13) becomes (Eq. 15):

AFEES e = p(B—=nAl) — (1—p)(—nTs). [15]

Because B is expected to depend on the preparation level at
the time of S, exposure, we modeled B as linearly dependent on
the R, level at the time of encounter and used a new scaling
parameter k* (Eq. 16):
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B =reg(Af)K*. [16]

Note that x* is proportional to the maximal fold protection that
can be entailed by early preparation (Eq. 17):

k" = In( fold protection) /Spsar- [17]

Exploring the Parameter Space. The relative fitness equation allows
us to quantitatively study the relationship between key biological
and environmental parameters. One interesting aspect that can
be explored is which environments are expected to select for
early preparation. We used the model to address two prototypic
predictable ecologies: an environment in which growth con-
ditions improve and stressful environments.

As an example of improvement in growth conditions, we
consider a metabolic upgrade. For this, we used the gain and
production cost previously measured for the E. coli in the lac-
tose-metabolizing system (19). Because such pathways typically
include a limited number of metabolic genes, they are expected
to bear only a low cost. Additionally, because the benefit is gained
only from a relatively short period of the superior nutrient
breakdown, we expect only a moderate gain from early prepara-
tion. Sugar metabolism by E. coli passing through the mammalian
digestive tract is one such ecology that fits this environmental
prototype (10).

Focusing on the environmental parameters (p and Af) reveals
the environmental setups that can support a conditioned response
strategy in such a limited biological system (Fig. 34). As the figure
shows, CR is expected to be beneficial in at least moderately
predictable environments (p > 0.5) and for a limited range of
delay periods. However, the potential fitness advantage under
such circumstances is relatively low, saturating at only a few per-
cent in terms of population size ratio. The dependencies between
additional model parameters are further explored in Fig. S1.

Now let us consider stress preparation (10-17). Such envi-
ronments are characterized by the potential high benefit of
preparation (e.g., a 50-fold protection was measured recently in
cell survival) (10). Remarkably, this increased survival sometimes
relies only on a handful of genes (e.g., one gene underlying a 20-
fold protection against heat in E. coli) (16).

Fig. 3B shows the model’s predications for a modest stress
system characterized by a low cost and only a modest protection
potential. The increased survival of heat-conditioned E. coli and
S. cerevisiae against severe diverse stresses that are facilitated
by a single chaperone is an example of such a cellular system
(14, 16). Although the results in this prototypic type of envi-
ronment recapitulate the basic dynamics revealed in the growth
improvement example (Fig. 34), the parameter subspace that
selects for CR is considerably larger, and the fitness advantage is
one order of magnitude larger. Noticeably, in such a preparation
for stressful changes, even poorly predictable environments (p <
0.2) can select for CR at an optimal delay time. Likewise, a wide
range of delay periods selects for CR (e.g., up to 10 generations
in a moderately predictable environment) (p = 0.5).

A complementary stress system can also be addressed. Fig. 3C
focuses on predications for a system characterized by high cost
and high-protection capacity. This setup reflects a genome-wide
predicative response that underlies a considerable protective
capacity. Two examples that fit this prototypic system can be
found in the increased survival of conditioned S. cerevisiae to
oxidative stress (10, 21) and increased survival of glucose-
conditioned C. albicans to oxidative stress (12), which both in-
volve the expression of hundreds of genes. The analysis reveals
that, although CR can yield a remarkable fitness advantage for
some value combinations, it is much less robust to long delay
periods compared with the modest stress system. This restricted
capacity under long delay periods arises from the high cost of
a genome-wide response.

To conclude, the three systems explored above share qualita-
tively similar fitness dynamics that reflect the advantage of
conditioning in highly predictable ecologies characterized by
a high gain to cost ratio. Among the important differences are
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Fig. 3. Exploring the fitness landscape in different environments. Predicted
relative fitness as a function of delay period and predictability in a (A)
metabolic setup (low cost and moderate gain), (B) limited stress setup (low
cost and moderate protection), and (C) broad stress system (high cost and
high protection). Note the different scale of fitness in the three figures.

the scale of the potential fitness advantage, ranging over three
orders of magnitude, and the ability of even poorly predictable
environments to modestly select for conditioning given that
other parameters are favorable. An unexpected similarity is the
optimal value for the delay time between the stimuli (Af). The
optimal values are restricted to a narrow range of 1-2.5 gener-
ation times, reflecting an inherent dependency of the fitness on
the response time of the biological system. The system’s response
time in our model is captured by the dilution/degradation pa-
rameter a. Thus, by inducing protein degradation, cells can in-
crease a and adjust the system to shorter delay periods (Fig. S2).

Fit to Experimental Results. We used the model to readdress the
experimental results measuring the fitness of early preparation (S/
Text has a full account, and Fig. S3). In the lactose system, values of
all parameters were experimentally measured: the values of the
gain (k) and the production cost (n) have been previously estimated
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(19) and reproduced by us. However, an additional cost parameter
is also known to exist in this system. This cost originates from
excessive transport of lactose and consequent loss of mem-
brane potential in cells already expressing the lactose permease
when encountering the sugar (22). As Fig. 1B shows, we observed
a good agreement between the model predication and experi-
mental results without adjusting any free parameters.

Analysis of the experimental stress system also shows a good
fit to the model (Fig. 1C). In this case, the fit was preformed after
defining a feasible range for the degradation rate (o). Inter-
estingly, an optimal fit was observed for a high degradation rate,
indicating that active protein degradation and not just dilution
takes place. This observation agrees with the known elevation of
active protein degradation under heat stress in E. coli (23).

Model Expansion—Two-Phase Conditioning. The CR strategy de-
scribed above represents a full commitment of an organism to
the R, response on encounter with the preceding stimulus S;.
However, under a more adjustable strategy, S; might activate R,
to a partial level only. Such partial activation reflects only a
limited commitment of the cell to R, in response to Sy, whereas
only S, fully triggers R,. We term this strategy two-phase con-
ditioned response (CR2) to indicate the two steady-state levels of
R,—first, an intermediate level when S, is encountered, and
then, a full level when S, appears. A full account of this ex-
pansion is in SI Text, and Fig. S4.

Intuitively, CR2 can be viewed as a risk management strategy,
allowing an organism to be moderately prepared for only a part
of the cost. Subsequently, such a partial commitment can po-
tentially significantly increase the environmental subspace that
selects for early preparation. Fig. 4 shows our analysis of CR2 in
the metabolic system previously addressed (Fig. 34). As the figure
indicates, conditioning can be selected even in poorly predictable
and long delay periods (Fig. 44). This ability is achieved through
reduced commitment to conditioning (Fig. 4B).

Adaptive Conditioning in E. coli and the Intestinal Ecology. The
mammalian digestive tract represents an ideal environment that
can potentially select for conditioning. Microorganisms found
in this ecology usually alternate between the digestive tract and
the outside environment (e.g., water, sediment, and soil) (24).
Moreover, focusing on the digestive tract reveals a habitat that
is characterized by a sequential exposure to various stimuli. In-
deed, previous studies have uncovered examples of a CR strategy
both in E. coli (9, 10) and V. cholerae (11).

Here, we readdress this habitat using the developed mathe-
matical model to test its use for natural ecologies. Specifically,
during passage along the digestive tract, exposure to lactose
precedes exposure to another sugar, maltose (25). We, thus,
expect that this environment can potentially select for condi-
tioning in sugar metabolism—bacteria that link between the
presence of lactose and future exposure to maltose may better
use maltose resources on encounter.

The model was used to predict the regulation strategy that is
most beneficial for the induction of the lactose and maltose
metabolic pathways. Calculations were based on the previously
estimated parameter values of the digestive tract, At = 3 h and
8 = In(2) (25). Unfortunately, the values of the gain and cost
parameters are not known for this system, and direct measure-
ment within the natural habitat is extremely difficult. Thus, we
define a wide range of possible gain to cost ratios. Because E. coli
responds to maltose, it is safe to assume that the gain is greater
than the cost, yielding a lower boundary of unity to the ratio. As
an upper boundary, we used the gain (k) to production cost (1)
ratio of the lactose system that reflects the energy yield in a
carbon source superior to maltose.

Fig. 5 shows the model’s predications, indicating that, under
this range of possible values, a two-phase conditioning strategy is
most advantageous. Thus, on encounter with lactose, cells are
expected to fully induce the lactose operon and additionally,
induce the maltose operon to an intermediate level. The maltose
operons are expected to be fully induced only on encounter with
maltose itself. Furthermore, conditioning remains most advanta-
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Fig. 4. Fitness landscape of two-phase conditioning in a metabolic setup
(low cost and moderate gain). (A) The predicted relative fitness as a function
of delay period and predictability. The enclosed dashed subspace denotes
parameter combinations that also select for full conditioning (CR). (B) The
optimal intermediate response level.

geous, even under alternative cost function (Fig. S5). The model
predications are in agreement with the experimentally measured
promoter activities for the maltose and lactose operons (10).

Discussion
Recent experimental studies suggest that diverse microorganisms
adapted to reoccurring patterns of stimuli in their natural hab-
itats by treating an early stimulus as a predictor for the likely
arrival of a future environmental challenge. Here, we present
a theoretical framework that helps to elucidate this adaptation
and the key environmental and biological forces that affect it.
The presented model was based on a minimal set of biological
assumptions and was restricted to only a few key parameters.
However, under a different set of assumptions, the model can be
easily updated to accommodate additional, more complex bio-
logical instances.

In the scope of this paper, we addressed two prototype envi-
ronments that can potentially select for early preparation: im-

|an3] asuodsas ajelpawIaiu|
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Gain to cost ratio (k/n)
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Fig. 5. Model-predicted regulation strategies in the digestive tract. The
model was used to calculate the optimal intermediate level of induction
after encounter with S; as a function of the gain to cost ratio and delay time.
The color code marks the intermediate response level. The typical delay time
and feasible range of gain to cost ratios are marked in gray. The magenta
bar depicts the mean intermediate induction levels (0.37 + 0.2) observed for
the five maltose operons in response to lactose in the WT E. coli (10).
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provement in growth conditions and stresses. Using the model,
we explored the fitness dynamics under each environment to
reveal different fitness landscapes that are governed by similar
dynamics. Biological systems characterized by low cost and
moderate gain can support a conditioned response only in highly
predictable environments with restricted delay periods (Fig. 34).
Additionally, the fitness advantage gained by early preparation is
in the order of a few percents in population-size terms. A dif-
ferent picture emerges for stressful environmental setups (Fig. 3
B and C). A modest stress protective response characterized by
a low cost and moderate protection capacity can be selected in
a very wide range of tested delay and predictability values. This
large subspace indicates that early preparation is expected to be
a robust solution, even in a noisy environment (featuring varying
predictability and delay periods over time). Additionally, the
fitness advantage that will be gained under conditioning is larger
by one order of magnitude relative to an environment that pre-
pares the organism for an improvement in growth conditions.
The complementary stress system explored, characterized by a
considerable cost and high protection capacity, revealed that,
although the fitness advantage gained by early preparation can
reach hundreds of percents, this system is much less robust to
a noisy environment because of the high cost.

Rooting our model in the realm of cellular decision making
(26), we introduced the flexibility offered by the partial prepa-
ration strategy (CR2). Interestingly, we observed that this flexi-
bility considerably increases the subspace of parameters that can
select for conditioning (Fig. 44). Indeed, using this expanded
model, we predicted that CR2 (and not CR) would be the most
advantageous response strategy for the maltose metabolic path-
way (Fig. 5). This observation is in agreement with the previous
experimentally measured promoter activities of maltose and lac-
tose operons (10). In the future, additional augmentation in
model complexity can be obtained. For example, a feed-forward
network motif is one potential means to attain a delayed re-
sponse after encounter with the first stimulus (27), thus cir-
cumventing some of the unnecessary costs caused by premature
protein production. In fact, our measurements in the E. coli
maltose system reveal such a potential example. Focusing on the
temporal dynamics of maltose operons, induction in response to
lactose reveals that they are not induced immediately after lactose
exposure but feature a delayed response (see Fig. S1 in ref. 10).

Organisms may have evolved more clever strategies in which
the gain is still maximized but the costs are minimized. One such
potential solution might be represented by the poised RNA
polymerase, which under stress, can be localized and stalled next
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to promoters of genes such as heat-shock genes (28), perhaps in
preparation for stress. The rapid release of stalled polymerase
was suggested to facilitate efficient responses to the dynamically
changing environment, but it may occur with minimal cost pro-
duction of stress response genes before stress actually occurs.
Future modeling would be needed to assess the costs and ben-
efits associated with such adaptations.

Conditioning does not need to be a deterministic response
strategy. Especially in partially predictable environments, mi-
crobial population may exercise a bet-hedging strategy (6-8) in
which, under an early predictive signal, only a part of the pop-
ulation will be conditioned and another part may remain un-
affected. By expanding the model to allow heterogeneity in the
population dynamics, it will be possible to clarify which subset of
environmental setups selects for a combined strategy and which
setups select for a purely conditioned strategy.

Materials and Methods

Strains and Media. E. coli MG1655 (E. coli Genetic Stock Center) was used for
model validation. E. coli W2244 (29) was used as a lacZ mutant strain
(lacZ394) to measure additional cost.

Experiments in lactose system were done in M9 medium (M9 salts, 1 mM
MgSO,4, 0.1 mM CaCl2, 0.05% casamino acids, 5 ng/mL thiamine) supple-
mented with 0.1% glycerol (Baker). Lactose (10 mM; Fluka) and IPTG (0.15
mM; Sigma) were added similarly to the method used in ref. 19. Heat-shock
experiments were done in rich media (LB).

Population-Size Measurement. Population size was measured similarly to the
method used in ref. 19, and experimental setup is shown in Fig. 1. In the
lactose system, overnight cultures, diluted into fresh media, were grown for
1 h at 37 °Cand were then transferred to a 96-well plate for IPTG and lactose
treatment. Population size was monitored using a multiwell spectropho-
tometer at 595 nm (GENios; TECAN). The relative fitness of early preparation
was taken as the OD ratio of the conditioned culture over unconditioned
control culture 1.5 h after the addition of lactose. In the heat-shock system,
overnight cultures, diluted into fresh media, were grown for 1 h at 37 °C.
Conditioned cultures were transferred to 45 °C to invoke autoprotection. All
cultures were challenged by a 52 °C water bath for 2 min and plated in 96-
well plate for growth. The relative fitness of early preparation was taken as
the OD ratio of the conditioned culture over the unconditioned control
culture 1.5 h after the severe heat shock.
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