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SUMMARY

A dichotomous choice for metazoan cells is between
proliferation and differentiation. Measuring tRNA
pools in various cell types, we found two distinct
subsets, one that is induced in proliferating cells,
and repressed otherwise, and another with the oppo-
site signature. Correspondingly, we found that genes
serving cell-autonomous functions and genes in-
volved in multicellularity obey distinct codon usage.
Proliferation-induced and differentiation-induced
tRNAs often carry anticodons that correspond to
the codons enriched among the cell-autonomous
and the multicellularity genes, respectively. Because
mRNAs of cell-autonomous genes are induced in
proliferation and cancer in particular, the con-
comitant induction of their codon-enriched tRNAs
suggests coordination between transcription and
translation. Histone modifications indeed change
similarly in the vicinity of cell-autonomous genes
and their corresponding tRNAs, and in multicel-
lularity genes and their tRNAs, suggesting the ex-
istence of transcriptional programs coordinating
tRNA supply and demand. Hence, we describe the
C

existence of two distinct translation programs that
operate during proliferation and differentiation.
INTRODUCTION

An important dichotomy in the life of a cell in many multicellular

species is between proliferation and differentiation. The classic

The Hallmarks of Cancer (Hanahan and Weinberg, 2000) states

that ‘‘.cells may be induced to permanently relinquish their pro-

liferative potential by being induced to enter into postmitotic

states, usually associated with acquisition of specific differentia-

tion-associated traits.’’ Indeed, proliferation and differentiation

are often distinct cellular states; generally, differentiated cells are

less proliferative, and proliferating cells are typically not terminally

differentiated. Cancer demonstrates this dichotomy, as trans-

formed cells sometimes lose their original differentiation marks

(Kumar et al., 2012). This dichotomy was also illustrated in normal

liver (Klochendler et al., 2012), in which a small percentage of pro-

liferative cells show reduced levels of liver differentiation markers.

So far, most studies that examined gene-expression pro-

grams in proliferation, cancerous in particular, and differentiation

focused on the transcriptome (Dutkowski and Ideker, 2011;

Perou et al., 2000). More recently, interest increased in mea-

suring translation and its changes in cancer (Hsieh et al., 2012;

Pavon-Eternod et al., 2009) and in differentiating cells (Ingolia
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et al., 2011). Originally, the interest in translation was mainly

focused on initiation (Mamane et al., 2006; Sonenberg and Hin-

nebusch, 2009), yet, more recently, attention toward elongation

has increased (Hsieh et al., 2012). The secondary structure of the

mRNA was recognized as a prime factor affecting initiation and

early elongation (Goodman et al., 2013; Kudla et al., 2009; Tuller

et al., 2010). However, whether this essential attribute of mRNAs

can be programmed to change dynamically across conditions is

unknown. The cellular tRNA pool is another prime factor that

controls translation (reviewed in Gingold and Pilpel, 2011; Subra-

maniam et al., 2013; Tuller et al., 2010), and a role of the tRNA

pool in cancer and across differentiated tissues is beginning to

be characterized. Small-RNA sequencing (Yang et al., 2010)

and tRNA customized arrays (Pavon-Eternod et al., 2009) have

provided data regarding changes in tRNA availability in cancer.

Occupancy of the tRNA polymerase, RNA Pol III, in the vicinity

of tRNA genes was measured across organs and species (Kutter

et al., 2011; Raha et al., 2010) as were the histone epigenetic

marks in their vicinity (Barski et al., 2010; Oler et al., 2010). Yet,

it remains unknownwhich tRNAs display which types of changes

in various cell types and how they affect and are affected by the

transcriptome and by cellular physiology.

If we consider the tRNA as the ‘‘supply’’ in translation, then the

codon usage in the transcriptome is the ‘‘demand’’ (reviewed

in Gingold and Pilpel, 2011). The balance between supply and

demand, i.e., the extent of adaptation of the tRNA pool to the

codon usage in the transcriptome, could affect production levels

of proteins (Qian et al., 2012). In addition, cellular fitness could be

affected by the extent of a global codon-to-tRNA adaptation (Ku-

dla et al., 2009; Navon andPilpel, 2011), and especially highly ex-

pressed genes appear to be codon optimized (Gingold et al.,

2012). It was suggested that low compatibility between demand

and supply, especially if presented by highly expressed genes,

can result in a global inefficient allocation of resources such as

ribosomes and thus could be fitness reducing (Kudla et al.,

2009). Hence, production costs and production throughput are

prime factors that can be influenced by coordination between

tRNA supply and demand. Equally interesting are cases in which

certain genes appear to be selected for deliberately low codon-

to-tRNA adaptation, e.g., as in the case of some circadian clock

genes (Xu et al., 2013; Zhou et al., 2013).

Here we measured the tRNA pool in hundreds of proliferating

and differentiating samples, including cancers and normal cells.

We found that the tRNAs that are induced in proliferating cells

are typically repressed in differentiating/arresting cells, and

that they carry anticodons which often correspond to a codon

usage signature that is characteristic of proliferation-related

genes. Conversely, the tRNAs that are induced in differentiating

cells are often found to be repressed in proliferating cells and to

be better tuned to a characteristic codon-usage preference of

the differentiation-related genes.

RESULTS

Opposing tRNA Signatures in Proliferation and
Differentiation
In order to follow changes in the tRNA pool in a diversity of prolif-

erating, differentiating/differentiated, and arrested cells, we used
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two complementary experimental platforms: microarrays and

the histone modification maps in the genomic vicinity of the

tRNA genes. First, we designed and printed microarrays that

probe human tRNAs (in addition to other noncoding and coding

genes). Our array platform represents tRNAs for most amino

acids and anticodon types, excluding tRNAs that are either

prone to cross-hybridization or that have low tRNA scores

(Lowe and Eddy, 1997) (see Experimental Procedures, Extended

Experimental Procedures, and Table S3). We used the arrays to

measure expression levels of tRNAs in 470 samples that repre-

sent various states of proliferation (normal or cancerous), differ-

entiation or growth arrest, and senescence (see Table 1). Our

proliferating cells consisted of both primary tumors and cancer

cell lines from diffuse large B cell lymphoma (DLBCL), bladder,

colon, glioblastoma, and prostate cancer. In addition, we also

examined immortalized normal fibroblasts that were induced to

proliferate by expression of key oncogenes, or after release

from serum starvation. Our differentiated cells included normal

cells from each of the above tumor sources, in addition to embry-

onic stem cells (ESCs) after induction of differentiation. In addi-

tion, we inspected immortalized fibroblast cells at two arrested

conditions, namely after induction of senescence and in

response to serum starvation. In parallel to the microarrays, we

analyzed ENCODE data sets (Bernstein et al., 2012) and addi-

tional sources (Bert et al., 2013; Gifford et al., 2013). We in-

spected the vicinity of the human tRNA genes with respect to

several histone modifications that are associated with either

active transcription or repression, in addition to examining occu-

pancy by RNA Pol III (Oler et al., 2010).

The two experimental platforms are complementary, exam-

ining the expression of the tRNAs themselves and their genomic

regions and transcriptional statuses, respectively. Reassuringly,

the tRNA abundance measurements obtained with the arrays

correlate well (Pearson coefficient = 0.54 to 0.71 for the various

conditions) with transcription activation-associated chromatin

modifications as measured in ENCODE across all represented

tRNAs (Figure 1A). We first focused on the expression measure-

ments based on microarray platform.

Figure 1B shows the relative changes in the tRNA pool in each

of 68 patients with DLBCL compared to the tRNA levels in normal

B cells from ten healthy donors. Overall, the tRNA pool changes

reproducibly among the lymphoma patients, e.g., the median

Pearson correlation among all pairs of samples was 0.66.

Whereas the expression of some tRNA genes is elevated more

than 10-fold in cancer, the expression of others decreases more

than 10-fold. Interestingly, in some cases, tRNAs that translate

different codons for the same amino acid show opposite trends.

Comparing the tRNA pool changes in several cancer types,

each relative to its corresponding normal tissue, we found a

high similarity among the patients within each given cancer

type (Figure 1C, values on the diagonal), and also a significant,

albeit lower, similarity between different cancers (Figure 1C,

off-diagonal).

Cancerous samples, and even cancer cell lines, are complex

and can be heterogeneous. To complement the picture that

emerges from such samples, and to examine whether the prolif-

eration/differentiation statuses of cells are reflected in their tRNA

pools, we established a series of manipulated noncancerous



Table 1. Overview of Samples Used for RNA Expression Profiling

Cancer/Model System Samples/Cell Lines Sample Description/Experiment

Primary Cancers

Bladder cancer patient samples and cancer cell lines tumor samples (n = 83), normal tissue (n = 8), bladder cancer cell lines (n = 13)

Colon cancer patient samples and cancer cell lines carcinoma samples (n = 44), adenoma samples (n = 39), adjacent normal

mucosa (n = 16), colon cancer cell lines (n = 10)

Diffuse large B cell

lymphoma

patient samples and cancer cell lines tumor samples (n = 68), normal B cells (n = 10), DLBCL cell lines (n = 2)

Glioblastoma patient samples and cancer cell lines tumor samples (n = 71), normal brain (n = 2), glioblastoma cell lines (n =2)

Prostate cancer patient samples and cancer cell lines tumor samples (n = 28), normal tissue (n = 11), prostate cancer cell lines (n = 3)

Model Systems

Differentiation human embryonic stem cells (hESC) ATRA-induced differentiation of hESCs after 0, 1, 3, and 5 days (n = 3 per

time point)

Serum starvation human fibroblast cells: BJ/hTERT proliferating and serum-starved human fibroblast cells with re-introduction of

serum for 30 min, 2 hr, and 4 hr (n = 3 per time point)

Senescence human fibroblast cells:

TIG3/hTERT/BRAF::ER

BRAF-induced senescence versus control in human fibroblast cells after 4 hr

and 72 hr (n = 3 per time point)

MYC overexpression human fibroblast cells: BJ/hTERT human fibroblast cells with overexpression of MYC or control vectors for 24 hr

and 72 hr (n = 3 per time point)

RAS overexpression human fibroblast cells: BJ/hTERT human fibroblast cells with overexpression of HRASV12 or control vectors for

24 hr and 72 hr (n = 3 per time point)
cells that were induced either to proliferate, to arrest growth, to

senesce, or to differentiate.

We first examined the tRNA pool in normal human fibroblasts

induced to proliferate by a 4 hr time course of serum stimulation

following a period of serum starvation-induced cell-cycle arrest.

In addition, we examined the same cell type 72 hr after over-

expression of either of the oncogenes MYC or HRASV12. The

model systems were validated for oncogene overexpression

and induction of relevant proliferation and differentiationmarkers

(Figures S1A and S1B). We found that the tRNA pool changes

similarly among all proliferating samples, either cancerous or

noncancerous (Figure 1C).

To determine the tRNA profile in differentiated and arresting

cells, we created three different model systems: (1) human

ESCs (hESCs) induced to differentiate with retinoic acid; (2)

BRAF-induced senescence in human fibroblasts; (3) induced

cell-cycle arrest in human fibroblasts by serum starvation.

Here too we validated that the treatments yielded the expected

response (Figures S1C and S1D). The changes in tRNA levels

were typically positively correlated among all the differentiated

and arrested cells, whereas they were overall negatively corre-

lated with the changes observed in the proliferating samples

(Figure 1C). Figure 1D illustrates a collection of correlation plots

between the tRNA pool changes among the proliferative sam-

ples (0.38 < Spearman’s rho < 0.69; all p values < 0.05), as

well as the negative correlations between proliferative and differ-

entiating/arresting samples (�0.7 < Spearman’s rho < �0.42; all

p values < 0.05).

Two special tRNAs, the initiator methionine and the selenocys-

teine, are noticeable (Figure S1E). The initiator methionine tRNA,

but not the elongator, is induced in most proliferating samples

and repressed in the differentiating or arresting cells. These re-

sults are in line with a study showing that overexpression of
C

the initiator tRNA-Met elevates cell proliferation in human epithe-

lial cells (Pavon-Eternod et al., 2013). Conversely, the tRNA for

selenocysteine is repressed in many of the proliferating cells

and in cancers in particular, in line with a known anticancerous

effect of selenocysteine (Almondes et al., 2010).

Next we usedprincipal-component analysis (PCA) to represent

the similarity between the tRNA pools at all time points in these

model systems. In this representation, each time point in each

treatment is represented by a dot, pairs of samples with similar

tRNA dynamics are adjacent on the plane, and arrows represent

the direction of time in each treatment. Interestingly, we obtained

a continuous spectrum, on one side of which are the tRNA pools

of the differentiated, senescent, and arrested cells, and at the

other extreme are the proliferating, starvation-released cells

(Figure 1E). Following the tRNA pools along each process, we

observed a gradual smooth transition to one of the two extremes:

cells induced for differentiation or senescence gradually change

their tRNA pool oppositely from proliferating cells.

Importantly, the similarity of the tRNA pools among the prolif-

erative samples, and conversely among the differentiated/ar-

rested samples, does not reflect a global transcriptome-wide

pattern. When we instead clustered the various samples based

on mRNA expression changes, we found a markedly different

picture in which samples are clustered together according to

their tissue origin rather than by proliferation/differentiation sta-

tus (Figure S1F). These results indicate that whereas the mRNA

expression captures a tissue identity signature, the tRNA pool

mainly reflects information about proliferative status of the cell.

This conclusion also holds truewhen examining the tRNApools

using a completely different experimental platform, i.e., the

epigenetic status of tRNA genes in the genome. We analyzed

the ENCODE data set (Bernstein et al., 2012) and checked the

vicinity of tRNA genes with respect to histone modifications
ell 158, 1281–1292, September 11, 2014 ª2014 Elsevier Inc. 1283
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associated with active or repressed transcription, which were

shown to function similarly at Pol III genes and Pol II transcrip-

tional units (Barski et al., 2010; Oler et al., 2010). We found a

similar trend as observed in the arrays: the transcriptional activity

status in the vicinity of the tRNA pool is similar in differentiated

cells, however it takes a distinct form in cancer cells (Figure S1G).

A Distinct Codon-Usage Signature of Proliferation-
RelatedGenes andGenes Involved inDifferentiation and
Multicellularity
If each tRNA was equally required for translation of genes

involved in proliferation and differentiation, then any increase

or decrease in the expression of a given tRNA would have

affected the translation of all genes in a similar direction. Under

this assumption, it would be unclear why certain tRNAs increase,

whereas others decrease in expression during proliferation or

differentiation. We thus hypothesized that the differential regula-

tion of the tRNAs might be rooted in a distinction in codon usage

of genes involved in proliferative or differentiation processes. To

examine this possibility, we analyzed codon usage in genes

belonging to various functional categories. We first focused on

two functional gene sets of the Gene Ontology (GO) classifica-

tion (Ashburner et al., 2000), namely the ‘‘M phase of mitotic

cell cycle’’ (92 genes) and ‘‘pattern specification’’ (82 genes),

i.e., genes involved in differentiation.We computed codon usage

for each of the 61 codons for the genes in each of the two cate-

gories (correcting for potential amino acid usage biases, see Fig-

ure 2A legend) and observed a remarkable dichotomy: for most

amino acids, there exists at least one codon that is preferentially

used in the cell-cycle genes and at least one distinct codon that

is preferentially used in the pattern-specification genes (Fig-

ure 2A and Table S1). Interestingly, the cell-cycle-preferred

codons tend to have an A or a T nucleotide at the 3rd codon po-

sition, whereas the pattern-specification preferred codons have

a tendency to end with G or C nucleotides (Figure S2A). Although

it is generally the case that cell-cycle-related genes are more AT

rich, it is particularly their 3rd nucleotide codon position that is

more AT rich (Figure S2A). Notwithstanding, it is well known

that promoters of cell-autonomous/housekeeping genes reside

in CpG islands (Saxonov et al., 2006), thus the high A/T content

of the cell-cycle genes in the 3rd codon position appears to be a
Figure 1. Expression Changes in the tRNA Pool in Proliferation, Differe

(A) A sample of correlation plots depicting similarity between tRNA abundance m

extent of the transcription activation-associated H3K27ac modification as measu

with same anticodon are grouped; a total of 206 tRNA genes, which are covered

(B) An expression matrix of the tRNAs in DLBCL and normal B cells. Each horizon

bottom 10 lines are normal B cells; each column represents a tRNA type, grouped

and the color code depicts (log2) fold-change of each tRNA type (averaged over a

samples.

(C) Hierarchical clustering of all sample types based on changes in tRNA expr

belonging to the same type, where the numbers in parentheses denote the numb

correlation between the tRNA expression profiles of two different sample types.

correlation among all pairs of samples within a given type of samples.

(D) A sample of correlation plots depicting similarity between changes in the tRNA

Each dot represents a tRNA type.

(E) A PCA in which biological samples are represented in the space of tRNA po

replicates. Neighboring dots represent pairs of samples in which the expression o

red arrows depict the change in the tRNA pool during release from serum starvatio

of stem cells (time points are marked by blue triangles), and the second upon in
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distinct phenomenon. Interestingly, whereas the cell-autono-

mous functions are characterized by high CpG content in their

promoters, multicellularity functions that are not related to devel-

opment and patterning are characterized by low CpG promoter

content (Figure S2B).

Examining all major GO categories in human, including all

‘‘Biological Process’’ categories that include at least 40 genes,

we calculated for each the average codon usage of its constitu-

ent genes. We used PCA to visualize similarity in codon usage

between all gene sets (Figure 2B). In this display, two gene sets

are close if they have a similar codon-usage pattern and are far

apart otherwise. The above-mentioned sets ‘‘M phase of mitotic

cell cycle’’ and ‘‘pattern specification’’ are at the two ‘‘poles’’ of

the projection, thus representing the two most distinct gene

sets in terms of codon usage. Interestingly, the first three PCs

alone span >70% of the variance of the data. A striking result

was that especially along the first PC, there is a clear separation

between gene categories related to development and multicellu-

larity processes on one side and genes related to cellular pro-

liferation and other cell-autonomous processes on the other

(Figure 2B). Particularly, at one end of the first PC axis, we found

genes involved in processes such as cell cycle, DNA replication

and cell division, transcription, translation, mRNAmetabolic pro-

cess, mRNA splicing, DNA repair, protein folding, and nucleo-

some assembly. In contrast, on the other side of the plane, we

found functionalities related to differentiation and developmental

patterning in addition to other multicellularity processes such as

cell adhesion, cell-junction assembly, toll-like receptor signaling,

and extracellular matrix. We also examined the GO category

‘‘negative regulation of cell cycle’’ and found these genes to

reside away from their respected regulated cell-cycle genes tar-

gets. Likewise, angiogenesis genes reside closer to the ‘‘multi-

cellular’’ side, yet ‘‘negative regulators of angiogenesis’’ have a

more proliferation-like codon usage. These findings show how

network properties, such as sign of a regulatory effect, can be

encoded in the codon selection of genes.

Interestingly, whereas the first PC separates GO functional

gene sets according to the cell-autonomous versus multicellu-

larity functionalities, the second PC separates, although much

more modestly, the development and embryonic patterning

genes from the rest of themulticellularity functionalities (including
ntiation, and Senescence

easurements (log scale) obtained with the microarrays on one hand and the

red in ENCODE on the other. Each dot represents a tRNA type (all tRNA genes

both on the array and in ENCODE, are represented).

tal line represents a biological sample: upper 68 lines are DLBCL samples, and

by anticodon. The expression values in all 10 normal samples were averaged,

ll iso-acceptor groups) in each sample relative to the average of the 10 normal

ession profiles. Each column and row represents the average of all samples

er of samples belonging to that type. Off-diagonal entries denote the Pearson

The main diagonal, from top right to bottom left, depicts the median Pearson

pool among different types of proliferative and differentiated/arrested samples.

ol expression changes; all points represent an average over three biological

f the tRNA pool changes similarly. Three time-course treatments are shown: the

n, one of the blue arrows represents the change in the pool during differentiation

duction of senescence (time points are marked by blue circles).
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Figure 2. Codon Usage of Various Functional Gene Categories

(A) A dot plot depicting amino acid-normalized codon usage in two functional

gene sets, ‘‘M phase of the mitotic cell cycle’’ and ‘‘pattern specification.’’

Each dot represents one codon of the genetic code, represented by the cor-

responding amino acid. The value of a codon on the x axis is the probability

that the codon will be used given that its encoded amino acid is used in cell-

cycle genes, whereas the values on the y axis depict the probability of using

the codon given the amino acid in patterning specification genes.

(B) A PCA projection of the human codon usage. Most gene sets (filled sym-

bols) are derived from the GO; sets indicated by empty symbols are derived

from expression data. The location of each gene set in this space is determined

by the average codon usage of all the genes that belong to it. The % variance,

1286 Cell 158, 1281–1292, September 11, 2014 ª2014 Elsevier Inc.
cell adhesion, immune response, signal transduction, and stress

response; Figure S2B). This indicates a slight, yet consistent dif-

ference in codon usage between these types of function.

To complement the GO-based classification, we also exam-

ined an annotation-independent classification of genes that is

solely based on expression measurements of proliferating or

differentiating/differentiated cells. The first paradigm was that

of dividing versus differentiated hepatocytes. In a recent study,

dividing liver cells were identified and isolated from the mature

organ, and transcriptome analysis indicated that they undergo

dedifferentiation (Klochendler et al., 2012). In particular, the

study designated genes that are either induced or repressed in

the dividing liver cells compared to the rest of the differentiated

organ. We examined each of these gene sets and found that

the proliferation-induced genes and the proliferation-repressed

genes have a clear distinction in their codon usage (Figures 2B

and S2C). Conversely, examining stem cells at the 5th day after

induction of differentiation, we found that differentiation-induced

and differentiation-repressed genes can be distinguished by

their codon usage, with differentiation-repressed genes showing

an overall higher similarity to the codon usage of the cell-cycle

genes (Figures 2B and S2C).

Importantly, we observed a similar distinction in the codon us-

age of the proliferation genes and the differentiation genes in

other vertebrates too, including mouse and chicken, indicating

that this distinction in codon usage of the two programs is deeply

rooted in vertebrate evolution. This is shown in Figure 2C, which

was obtained after pooling together the genes from the two GO

categories ‘‘cell cycle’’ and ‘‘cell differentiation’’ from the above

vertebrates, in addition to the fly and the worm, and projecting all

10 gene sets on a PCA plane. Interestingly, the fly also shows the

distinction in codon usage, yet the actual codons enriched in

proliferation and in differentiation in this organism are distinct

from the codons that are preferentially used to encode these pro-

grams in the vertebras. This indicates that vertebrates and in-

sects may have converged independently toward separation in

codon usage of proliferation and differentiation genes, albeit

with different codons realizing this separation. In contrast, the

worm Caenorhabditis elegans does not show a separation in

codon usage between proliferation and differentiation genes,

perhaps consistent with the fact that the fate acquisition in this

species happens through mitotic cell division (Sulston and Hor-

vitz, 1977) (Figures 2C and S2D). Rather than a separation be-

tween proliferation and differentiation genes, themain distinction

in codon usage in the worm (that corresponds to the first PC) is

between genes with high and low translation-efficiency levels

(Figure S2E, right panel). Interestingly, in humans, separation

of GO categories according to expression level (by translation-

efficiency measure) is obtained too, but only in the third PC,

which by definition spans less of the variance in the data (Fig-

ure S2E, left panel).
out of the total original variance in the high-dimensional space, spanned by the

first and second PCs is indicated on the x and y axis, respectively.

(C) Similarity in codon usage of the cell cycle and differentiation genes in five

animals.We pooled together from each of the five species the genes belonging

to each of the two GO categories and ran the analysis on all ten gene sets

together.



Figure 3. Projection of the tRNA and mRNA Expression Changes on

the Codon-Usage Map

The same PCA map for codon usage as in Figure 2B is drawn, with overlay, by

a color code, representing the expression change of tRNAs andmRNAs (upper

C

ProliferationGenes Preferentially UseCodonsMatching
tRNAs Upregulated in Proliferating Cells
So far, we have shown that the tRNAs and the codon usage have

distinct signatures in proliferation and differentiation, but do the

anticodons carried by the proliferation-induced tRNAs show a

bias toward the codons that are enriched in the proliferation

genes? Indeed, we found that the cancer-induced tRNAs typi-

cally correspond, either perfectly or via wobbling, to codons

enriched among the proliferation-processes genes. To visualize

these results, we calculated the expected translational efficiency

for the genes in each GO category based on their codon

sequence and the cancerous versus the normal tRNA pool

(Figures 3A, 3B, and S3A–S3D, upper panels). In parallel, we

examined the changes at the mRNA levels of various gene sets

(Figures 3A, 3B, and S3A–S3D, lower panels). It is well known

that the proliferation- and gene expression-related genes are

induced in cancer, and that differentiation genes are often

repressed in cancer (Kumar et al., 2012). We found that

cancer-induced mRNAs have distinct codon usage as they are

clustered in the codon-usage space away from the cancer-

repressed genes (Figures 3A, 3B, and S3A–S3D, lower panels).

Conversely to cancer, when we examined the tRNA pool at the

5th day after induction of differentiation of stem cells with retinoic

acid, we found that the induced tRNAs largely correspond to the

codons that are enriched among the multicellularity side of the

codon-usage map, which again correlates well with the changes

in mRNA expression levels (Figure 3C). Hence, in both cancer

and differentiation, we can clearly observe a good correspon-

dence between supply and demand: induction of genes at the

mRNA level is typically accompanied by induction of the tRNAs

needed for their translation (Figures 3A–3C and S3A–S3D, and

see also Figure S3E).

Histone Modifications and tRNA Regulatory Elements
Reflect Coordination betweenExpression of tRNATypes
and mRNA Clients
The correlation between changes at the mRNA and tRNA levels

suggests the existence of coordination between supply and de-

mand in translation. To investigate such coordination further, we

inspected the histone modification patterns in the vicinity of

tRNA and mRNA genes in the human genome, given that RNA
and lower panels in each subplot, respectively) in proliferation and differenti-

ation. Upper panel in each subplot: each gene category is color coded ac-

cording to the relative change in availability of the tRNAs that correspond to the

codon usage of its constituent genes, averaged over all genes in the category;

the variation in the tRNA availability of each individual gene was calculated by

the weighted arithmetic average of the fold-changes in the expression of the

tRNA iso-acceptors that serve in translating it. Thus a red color for a given gene

category indicates that on average the genes in that category have codons that

mainly correspond to the tRNAs that are induced in the condition, whereas a

blue color indicates that the codon usage in the categories is biased toward

the tRNAs that were repressed in that given condition. The lower panel in each

subplot displays changes at the mRNA level, averaged over all the genes in

each gene category under the same conditions as in the upper panel, where

here too red means that the genes were induced under the mentioned con-

dition. In (A) and (B), the conditions are cancerous cells (glioblastoma primary

cancer and bladder cancer cell lines; additional conditions in Figure S3),

whereas in (C), the condition is induction of stem cells to differentiation by

retinoic acid (day 5 after treatment).
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Figure 4. Histone Modification Coordination between tRNA Supply

and Demand

(A) Sequence logo of the box A and box B in the promoters of all tRNA genes, in

the tRNAs that are neither proliferation nor differentiation associated, in the

differentiation tRNAs, and in the proliferation tRNAs. The positions that are

most distinctive between the proliferation and differentiation tRNAs’ versions

of the motifs are highlighted.

1288 Cell 158, 1281–1292, September 11, 2014 ª2014 Elsevier Inc.
Pol III and RNA Pol II share similar modifications associated with

either transcriptional activation or repression (Barski et al., 2010;

Oler et al., 2010).

We first found that usage of a codon tends to correlate with the

extent of histone modification around tRNA genes with the

corresponding anticodon (Figure S4A illustrating H3K27ac).

Focusing on the ‘‘cell cycle’’ and ‘‘cell differentiation’’ gene cat-

egories, we defined two sets of tRNAs: one holding tRNAs

corresponding to codons over-represented among the cell-cy-

cle genes and another with tRNAs corresponding to codons

over-represented among the cell-differentiation genes (listed in

Table S2). We called the two sets ‘‘proliferation tRNAs’’ and ‘‘dif-

ferentiation tRNAs,’’ respectively. To examine whether this clas-

sification corresponds to the transcriptional regulation of the

tRNA genes, we analyzed their promoter sequences and epige-

netic histone modifications. The promoter in tRNA genes is inter-

nal and consists of two known motifs, the ‘‘box A’’ and the ‘‘box

B.’’ To search for sequence differences, we ran a motif-finding

algorithm (MEME, see Experimental Procedures) separately on

the 121 proliferation tRNA genes and on the 118 differentiation

tRNA genes. Remarkably, we found that especially the box B

significantly differs between tRNAs involved in proliferation or

differentiation, indicating distinct and concerted regulation of

their transcription (Figures 4A and S4B).

We next used the ENCODE data to inspect the chromatin state

around the upstream and downstream regions of the tRNA genes

from the two sets and at the flanking regions of the correspond-

ing protein-coding genes from each of the ‘‘cell cycle’’ and ‘‘cell

differentiation’’ GO categories. Figures 4B and S4C show the

tRNA and mRNA level analysis, respectively. In both figures,

we depict the density of the selected activation-associated

modification (H3K27ac) and the repressing modification

(H3K27me3) in two cancer cell lines and three differentiated

normal cell lines (Figures 4B and S4C; see also Figure S4D for

additional chromatin modifications and Figures S4E and S4F

for statistical significance analysis). We made several observa-

tions: (1) when examining the activation-associatedmodification,

the upstream regions of the proliferation tRNAsweremore heavi-

ly modified than their differentiation counterparts, predominantly

in the cancer cells, (2) the repressing modification, H3K27me3,

shows the opposite behavior, consistent with lower transcription

rate of the differentiation tRNAs in all samples, (3) in the
(B) Density profiles of H3K27ac and H3K27me3 modifications in the vicinity of

tRNA genes in either proliferating (cancerous) or differentiated mature cells. All

tRNA genes are aligned according to their TSSs, and the regions of 500 bp

upstream and downstream of the TSS are shown on the x axis. The y axis

shows the averaged density of these two modifications as a function of dis-

tance from the TSS. Shown are the signals (y axis) of the following gene sets:

tRNAs that are not occupied by RNA Pol III (colored in black); occupied ‘‘pro-

proliferation’’ tRNAs (75 genes, colored in red); and occupied ‘‘pro-differenti-

ation’’ tRNAs (81 genes, colored in blue). Each gray line is an average of a

random set of 81 tRNA genes, sampled from 299 occupied human tRNA

genes. p value analysis on the difference between the proliferation and dif-

ferentiation tRNAs is in Figure S4E. Occupancy data were retrieved from Oler

et al. (2010).

(C) The codon-usage PCAmap as in Figures 2 and 3, colored here according to

the density of the activating modification H3K27Ac in the vicinity of tRNA

genes (upper panel, see details in the Experimental Procedures section) or in

vicinity of mRNA-coding genes.



Figure 5. Change in Histone Modification

around the Genomic Locations of tRNAs in

Differentiation

The average level of H3K27Ac in the genomic vi-

cinity of all proliferation (red) and differentiation

(blue) tRNAs is depicted as a ratio between hESCs

and cells differentiated from the stem cells into

ectoderm, endoderm, and mesoderm. The tran-

scription start site is marked with TSS. A randomi-

zation test (see Experimental Procedures) was

devised that assesses the significance of the devi-

ation of the proliferation tRNAs above the value of 1,

and the differentiation tRNA below 1 at any given

position around the TSS. Whenever the test for

either tRNA set had a p value < 0.05, a ‘‘+’’ was

marked in red and blue, respectively.
differentiated cells, the gap in activation modifications of the two

tRNA sets was much more narrow and even closed in some

cases, and (4) these changes around the tRNA genes are largely

mirrored at the levels of the corresponding proliferation and dif-

ferentiation protein-coding genes, which also show a higher

extent of activation modifications for the proliferation genes

compared to the differentiation genes, and a reversed trend for

the repressing modification (Figure S4C). Note, however, that

the dynamic activity is also seen upstream to the transcription

start site (TSS), whereas the classical view of the tRNA promoter

is that it is located downstream from the TSS (Galli et al., 1981). It

is thus possible that potentially functional information as to the

transcriptional control of tRNA exists also upstream to the TSS.

Next, we colored all the gene categories in the codon-usage

PCA map, this time according to the information on the

H3K27ac activation-associated chromatin modification (Fig-

ure 4C) around either the corresponding tRNA genes (upper

panel) or the mRNA-coding genes themselves (lower panel).

Shown here is the case of the K562 leukemia cell line. We found

that the genes on the cell-autonomous (right) side of the map

have codons that strongly correspond to the tRNAs that are

associated with the activating modification, whereas the genes

on the multicellularity (left) side of the map show the opposite

behavior. Here the coordination with the mRNA level is clearly

seen as well. The protein-coding genes on the cell-autonomous

side of the codon-usage map are more often associated with

activating modifications compared to the genes on the multicel-

lularity side of the map.

Histone Modifications around the tRNA Genes Change
Dynamically during Cellular Differentiation and
Cancerous Transformation
To systematically examine the notion of dynamic changes of his-

tone modifications in the vicinity of tRNA genes during differen-

tiation and cancer, we inspected histone modifications in two
Cell 158, 1281–1292, Se
available data sets: the first when hESCs

were differentiated into the three germ

layers (Gifford et al., 2013), and the second

in cancer versus normal cells. When ESCs

were differentiated into either ectoderm,

endoderm, or mesoderm, we consistently
observed a significant (p value < 0.05) reduction in H3K27ac on

the proliferation tRNA genes and, correspondingly, higher levels

of modifications on the differentiation tRNA genes in each of the

three germ layers (Figure 5A). This indicates that each of the

three differentiation treatments shows a dynamic reduction in

activation of the proliferation tRNAs and a shift toward express-

ing the differentiation tRNAs. Similarly, we noticed a modest

trend in which the cell-autonomous gene sets are consistently

less intensely modified with H3K27Ac in differentiated skeletal

musclemyotube (HSMMtube) compared to its less differentiated

precursor (HSMM) (Bernstein et al., 2012), whereas GO cate-

gories associated with multicellularity show the opposite

behavior (Figure S5A). Inspecting cancerous transformation of

normal prostate cells (Bert et al., 2013), similar to one of the con-

ditions tested on our above-mentioned array platform, we exam-

ined data on the reciprocal, repression-associated modification,

H3K27me3. As expected, we found that the amount of this

repressive modification increases on the differentiation tRNAs

in cancer, whereas the modification of the proliferation tRNA

set is somewhat reduced (Figure S5B).

DISCUSSION

We here describe the existence of function-related translational

codes hardwired into the genetic code. The regulation of the

tRNAs, which constitute the proliferation and differentiation pro-

grams, appears to work in concert with other gene-expression

programs operating in the cell, so that coordinated changes

occur at the mRNA level and at the tRNA level. Particularly, we

found that changes at the mRNA level in proliferating or differen-

tiated cells are coordinated with corresponding changes at the

tRNA availability level. These observations thus demonstrate co-

ordination between tRNA supply and demand. This coordination

maymanifests a general design principle in gene expression: the

entire process appears to be coupled across its multiple stages
ptember 11, 2014 ª2014 Elsevier Inc. 1289



(Dahan et al., 2011; Lotan et al., 2005, 2007). The tRNA availabil-

ity is known to be regulated at various levels including transcrip-

tion, posttranscriptional processing, amino acid loading, and

degradation. Although each level could make important contri-

butions, here we have used comprehensive transcriptomic and

epigenomic mapping to suggest a substantial role for the tran-

scriptional level.

Why do cells coordinate supply and demand in translation?

The observed coordination might be essential as a means to

ensure high expression of certain genes, i.e., genes that are high-

ly expressed at the mRNA level at a certain cellular state might

also be translated more efficiently due to their good adaptation

to the tRNA pool at that state. An alternative consideration

does not implicate the matching between supply and demand

in expression of particular genes but would rather suggest that

proper coordination between supply and demand may allow

optimization of the overall translation-resource allocation in the

cell. According to this notion, when supply and demand are

balanced, ribosomes are expected to flow with little congestion,

and hence production costs are minimized.

Some studies found no evidence for translational selection in

human (dos Reis et al., 2004; Kanaya et al., 2001), suggesting

that synonymous codons in human are not selected to maximize

translation efficiency (Lercher et al., 2003). Conversely, other

studies do indicate weak, yet significant, translational selection

in human, according to estimates of codon-usage adaptation

to the global tRNA pool (Comeron, 2004; Lavner and Kotlar,

2005), and in vertebrates more generally (Doherty and McIner-

ney, 2013). The conservation of the dual translational programs

among the vertebrates examined here shows that this is not a

human-specific trait but rather a much more ancient one that

could have been selected for over prolonged evolutionary pe-

riods and large population sizes.

Why did the translation system evolve to operate with two

distinct modes in proliferation and differentiation? We speculate

that the separation into a dual program can ‘‘lock’’ the differenti-

ated cells in a stable state that prevents undesired proliferation

and transformation. According to thismodel, if, due to noisy tran-

scriptional leakage, a given pro-proliferation gene was abnor-

mally expressed in the cell, it would not be translated efficiently

because the tRNA pool is relatively devoid of tRNAs that corre-

spond to its codon usage. In this respect, the presence of distinct

translational programs may serve to reduce aberrant expression

resulting from transcriptional or posttranscriptional noise and

ensure stable cell-fate decisions during processes such as differ-

entiation. As such, the existence of a dual translational program

may serve to ‘‘canalize’’ cellular processes (Waddington, 1942)

and might thus initially serve as a cancer-protective mechanism.

However, such a translation program may also act as a double-

edged sword because, if cancer hijacks this program by selec-

tively upregulating proliferative tRNAs, it will have the potential

to boost the translation of pro-cancerous transcripts.
EXPERIMENTAL PROCEDURES

Sample Preparation

This study comprised human tissue (cancer and normal) samples from

patients and healthy donors as well as a range of cell-based model systems
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depicted in Table 1. All the information about sample collection and prepara-

tion is available in Extended Experimental Procedures and Table S4.

Data Sources

Expression Profiling of Human tRNAs and mRNAs in Different

Cancerous Cell Types and Physiological Conditions

Expression profiles were measured using custom-made microarrays (Nimble-

gen). The microarrays contain probes for 6,856 protein-coding transcripts and

26,910 ncRNAs including 294 probes corresponding to 206 tRNA genes. The

various cell types fromwhich RNAwas hybridized onto the array are detailed in

Table 1. Our microarray platform was recently shown to be useful for charac-

terization of known and also putative human transcripts and was shown to

largely agree with RNA sequencing data, especially among genes that are

as highly expressed (Nielsen et al., 2014). Detailed information about the array

design appears in Supplemental File S2.

tRNA Gene Copy Number

The tRNA gene copy numbers of all analyzed species were downloaded from

the Genomic tRNA Database (http://lowelab.ucsc.edu/GtRNAdb/) (Lowe and

Eddy, 1997).

Coding Sequences

The coding sequences of H. sapiens andM. musculus were downloaded from

the Consensus CDS (CCDS) project (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/).

The coding sequences of C. elegans were downloaded from Ensembl ftp

site (http://www.ensembl.org) (WS210, release 59). The coding sequences

of D. melanogaster were downloaded from FlyBase (http://flybase.org/).

Classification of Gene Categories

Defined gene categories by biological process were downloaded from the

Gene Ontology project (http://www.geneontology.org/); to avoid too-small

gene sets, we only considered those with at least 40 genes.

Chromatin Modification

Fragment densities for 25 bp bins along the genome and discrete intervals

of ChIP-seq fragment enrichment were downloaded from the Broad Histone

(wgEncodeBroadHistone) Track at UCSC website (http://genome.ucsc.

edu/).

Calculation of the Variation in the Human tRNA Pool

For each tRNA type (i.e., anticodon) in a given sample, we summed the expres-

sion of its corresponding individual genes. Then we divided the expression of

each tRNA type by its averaged expression in either normal cells of the same

tissue (for primary tumors and cancerous cell lines) or the corresponding refer-

ence condition (e.g., for cells released from starvation, the reference was

starved cells; for cells induced to proliferate by overexpresion of an oncogene,

the reference was cells transduced with an empty vector, etc.) (see Table 1 for

a detailed description). Finally, for a given cell type, we averaged the fold-

changes in the tRNA expression across all of its corresponding samples,

e.g., over 68 samples for DLBCL (see in Table 1).

Estimating Translational Efficiency in Terms of tRNA Activation

Index

We generated a new measure of translational efficiency (implemented in Fig-

ure 4C), termed henceforth as ‘‘tRNA activation index’’ (tACI). Our measure

is calculated similarly to the tAI measure of translation efficiency (dos Reis

et al., 2004), with one major change—we determine tRNA availability in terms

of chromatin modification enrichment rather than gene copy numbers. As

such, the new measure can be computed for every condition in which chro-

matin data exist.

Employing the aforementioned discrete intervals of ChIP-seq fragment

enrichment, we set the activation score of each individual tRNA gene to be

the average enrichment of the activating H3K27ac modification overlapping

the 1,000 bp centered around its TSSs. Individual tRNA genes, for which no

statistically significant signal enrichment was found, were classified as

‘‘not activated.’’ Next, we defined the activation score of each tRNA type

(anticodon) by the sum of the activation scores of its gene copies. Then, we

determined the translation efficiency of an individual codon by the extent of

activation of the tRNAs that serve in translating it, incorporating both the fully

matched tRNA as well as tRNAs that contribute to translation through wobble

rules (Crick, 1966).

http://lowelab.ucsc.edu/GtRNAdb/
ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/
http://www.ensembl.org
http://flybase.org/
http://www.geneontology.org/
http://genome.ucsc.edu/
http://genome.ucsc.edu/


Formally, the translation efficiency score for the i–th codon is as follows:

Wi =
Xni
j = 1

ð1� sijÞtCMEij ;

where n is the number of tRNA isoacceptors that recognize the i-th codon,

tCMEij denotes the sum of the chromatin modification enrichment (CME) of

the activated copies of the j-th tRNA that recognizes the i-th codon, and sij
correspond to the wobble interaction, or selective constraint on the effi-

ciency of the pairing between codon i and anticodon j, as was determined

and implemented for the original tAI measure. As done in the original tAI

formalism by dos Reis et al., the scores of the 61 codons are further

divided by the maximal score, and finally, the tACI value of a gene with L

codons is then simply calculated as the geometric mean of the wi’s of its

codons:

tACIðgÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
YL
c= 1

wc

L

vuut

Motif Finding

The box A and B motifs, the promoter motifs within tRNA genes, were pre-

dicted using the motif discovery algorithm MEME (v4.6.1; Bailey and El-

kan, 1994) with the following parameters: -dna -mod zoops -nmotifs 2

-minw 15 -maxw 15. Box A and B motifs were learned separately for all

(512), unclassified (273), differentiation (118), and proliferation (120) tRNA

genes. Differences in box A and B motifs between tRNA sets were

assessed using a Pearson correlation-based motif similarity score (Pietro-

kovski, 1996). The score was maximized over all ungapped motif align-

ments and normalized by the average motif length. Differences between

motifs were assessed using a permutation test in which the observed

motif similarity score was compared against a set of 1,000 permutation-

based motif similarity scores. Permutation samples were obtained by

randomly sampling tRNA genes from the whole pool of tRNA genes while

considering the observed tRNA sample set sizes. Motifs were considered

to be significantly different if the observed motif similarity score was within

1% of the lowest permutation-based similarity scores (i.e., one-tailed p

value of 0.01).

Assessing the Significance of Dynamic Changes of Histone

Modifications in tRNA Genes’ Vicinity during Proliferation and

Differentiation

For each experiment, we first normalized the read density of either the

H3K27ac (Figure 5) or H3K27me3 (Figure S5B) histone modification, to

achieve overlapping distribution of either the proliferating or differentiating

cell types and their precursor. For each cell type of a given experiment,

we then sampled 500 times two random tRNA gene sets, where one of

the sets had a set size equal to that of the proliferation tRNAs, and the other

of the differentiation tRNAs. Next, we averaged the histone modification

density for the members of each random set and computed either the ratio

between the averages of each cell type to that of its precursor or the ratio

between the averages of the precursor and its derived cell types at each po-

sition along the sequence coordinates. p values were calculated at each

sequence position as (1) the fraction out of 500 random samples that

showed higher ratios compared to the examined ratio—for either the ratio

seen between the proliferation tRNAs in hESC compared to ectoderm/

mesoderm/endoderm or the differentiation tRNAs in prostate cancer

compared to normal cells; (2) the fraction out of 500 random samples that

showed lower ratios compared to the examined ratio—for either the ratio

seen between the differentiation tRNAs in hESC compared to ectoderm/

mesoderm/endoderm or the proliferation tRNAs in prostate cancer

compared to normal cells.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and four tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2014.08.011.
C

AUTHOR CONTRIBUTIONS

H.G., D.T., A.H.L., and Y.P. conceived the project, designed the work,

analyzed all data, and wrote the paper. H.G. did the majority of the computa-

tional work; D.T. did the majority of the experimental work.
ACKNOWLEDGMENTS

Work in the authors’ laboratory is supported by a European Research Council

(ERC) grant (Y.P.) and by the Danish National Advanced Technology Founda-

tion, the Danish Council for Strategic Research, the Danish Council for Inde-

pendent Research, the Novo Nordisk Foundation, the Lundbeck Foundation,

and the Danish Cancer Society (A.H.L.). Y.P. is an incumbent of the Ben-

May Professorial Chair. S.M.K. was supported by a postdoctoral fellowship

from the Netherlands Organisation for scientific research (NWO). The Centre

for Epigenetics is supported by the Danish National Research Foundation

(DNRF82). We thank Simon Kasif and Erez Dekel for stimulating discussions.

Received: December 25, 2013

Revised: May 13, 2014

Accepted: August 8, 2014

Published: September 11, 2014
REFERENCES

Almondes, K.G., Leal, G.V., Cozzolino, S.M., Philippi, S.T., and Rondó, P.H.
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