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Abstract

The intrinsic stochasticity of gene expression leads to cell-to-cell variations, noise, in protein abundance. Several processes,
including transcription, translation, and degradation of mRNA and proteins, can contribute to these variations. Recent single
cell analyses of gene expression in yeast have uncovered a general trend where expression noise scales with protein
abundance. This trend is consistent with a stochastic model of gene expression where mRNA copy number follows the
random birth and death process. However, some deviations from this basic trend have also been observed, prompting
questions about the contribution of gene-specific features to such deviations. For example, recent studies have pointed to
the TATA box as a sequence feature that can influence expression noise by facilitating expression bursts. Transcription-
originated noise can be potentially further amplified in translation. Therefore, we asked the question of to what extent
sequence features known or postulated to accompany translation efficiency can also be associated with increase in noise
strength and, on average, how such increase compares to the amplification associated with the TATA box. Untangling
different components of expression noise is highly nontrivial, as they may be gene or gene-module specific. In particular,
focusing on codon usage as one of the sequence features associated with efficient translation, we found that ribosomal
genes display a different relationship between expression noise and codon usage as compared to other genes. Within
nonribosomal genes we found that sequence high codon usage is correlated with increased noise relative to the average
noise of proteins with the same abundance. Interestingly, by projecting the data on a theoretical model of gene expression,
we found that the amplification of noise strength associated with codon usage is comparable to that of the TATA box,
suggesting that the effect of translation on noise in eukaryotic gene expression might be more prominent than previously
appreciated.
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Introduction

The stochastic nature of gene expression promotes cell-to-cell

differences in protein level, usually referred to as noise [1,2,3].

Recent studies, both experimental and computational, have

revealed that such cell-to-cell variability can be both disadvanta-

geous [4,5,6,7,8], as variations in protein level might negatively

affect the precision of signaling and regulation, and advantageous

[9,10,11,12,13,14], by enabling heterogeneous stress-response

programs to environmental changes [10]. Expression noise has

also been proposed to have an important impact on gene evolution

[6,15,16]. These diverse roles are expected to be accompanied by

complex and heterogeneous modes of noise regulation. In

addition, feedback loops and other network motifs might be

utilized to regulate noise [17,18,19,20] or propagate it through

regulatory networks [19,21,22], adding to the overall complexity.

The sources of variation in gene expression in an isogenic cell

population are typically divided into two basic groups: (i) the

intrinsic noise attributed to the inherent stochasticity of expression

processes, and (ii) the extrinsic noise resulting from variation in cell

state related to cell-cycle progression, cell size, subtle environ-

mental differences, and other stochastic events that are external to

the system – in this case external to the process of expression of an

individual gene [1,23,24,25,26,27,28]. Several stochastic processes

including transcription, translation, and mRNA and protein

degradation can contribute to the intrinsic noise [2]. The relative

contribution of these components is gene or gene-module specific.

Basic factors can be gleaned from correlations between noise level
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and gene characteristics such as promoter structure, gene function,

essentiality, chromatin density, and similar features [29]. In the

context of the prokaryote B. subtilis, it has been observed that the

predominant source of phenotypic noise strength is translational

efficiency [30]. It has been proposed that in prokaryotes, low

transcription but high translation rates produce protein bursts

leading to strong fluctuations in the protein level [17,30]. In

contrast, noise in eukaryotic gene expression is assumed to be

predominantly influenced by the dynamics of transcription

[29,31,32], in particular transcription bursts [33,34,35]. Tran-

scription bursts are not unique to eukaryotes and also have a clear

impact on prokaryotic noise [36],[37]. Similarly, translation

dynamics is expected to have an impact on eukaryotic gene

expression. Along this line, Blake et al. demonstrated experimen-

tally that codon usage can impact noise strength in eukaryotic gene

expression and proposed that increased translational efficiency

might have a substantial effect when coupled with a noisy

transcriptional state [31]. Furthermore, a recent analysis of data

collected by Bar-Even et al. showed some tendency for efficiently

translated genes to have increased noise [38].

Single-cell analyses of gene expression in yeast provided an

important step towards understanding noise etiology and demon-

strated a general trend where expression noise scales with protein

abundance [29]. This trend suggests that expression of most genes

follows roughly a random stochastic process. Importantly, there

are some deviations from this basic trend, indicating that gene

specific factors might be altering this general behavior. Newman

et al. measured these deviations with the DM measure, defined as

the difference of the gene specific noise and the median noise for

proteins with the same abundance, as estimated from the trend

line for the relation between noise and abundance. We use the

term noise differential to denote such deviation of the noise of an

individual gene from the average trend, and thus DM is a measure

of noise differential. Studies by Newman et al. [29] have uncovered

a highly significant correlation of noise differential with several

transcription regulation features, including the presence of a

TATA box, but did not reveal such highly significant correlation

with codon usage, the hallmark of translation efficiency [39,40,41].

However, untangling different components of expression noise is

highly nontrivial. Intrinsic and extrinsic fluctuations can be

separated experimentally by utilizing dual reporter measurements

[1,24], but experimental separation of transcriptional and

translational components would additionally require single-cell

measurements of both mRNA and protein copy numbers

simultaneously [42].

To complement these studies, we used computational means to

investigate the question of to what extent sequence features known

or postulated to accompany translation efficiency can also be

associated with noise differential. Specifically, we considered

codon usage, as measured by the tRNA adaptation index (tAI),

and 59 UTR structure. High tAI is postulated to contribute to

efficient translation elongation, while low secondary structure at

the 59 UTR has been shown to negatively correlate with ribosomal

density [43,44,45,46,47,48]. Thus, these two features may

potentially correlate with amplification of the strength of

transcription noise and noise differential.

We observed that ribosomal proteins display a different relation-

ship between expression noise and codon usage as compared to other

proteins. Focusing on nonribosomal proteins, we found that the

above-mentioned features indeed have significant associations with

noise differential. Among these features, the statistical significance of

the association with tRNA adaptation index is the highest. We then

used a theoretical noise expression model to decompose the protein

abundance associated noise strength into two components: noise

associated with transcription (represented by the presence of a TATA

box) and noise putatively associated with translation (represented by

high tAI), while controlling for the protein abundance. Strikingly, we

found that the amplification of noise strength associated with high

tRNA adaptation index is comparable to the amplification of noise

strength associated with the presence of a TATA box. The noise

factoring strategy that we introduced here for the purpose of

uncovering relative interplay between these two factors is general and

can be readily applied to tease apart other contributions of interest.

Results

Noise is defined as the coefficient of variation CV~s=m, where m

is the mean and s2 is the variance of experimental measurements.

Recent single-cell studies of gene expression in yeast have uncovered

a general trend where the squared coefficient of variation is

inversely proportional to protein abundance [29,32]. Supporting

this understanding, Bar-Even et al. provided a theoretical argument

for the hypothesis that expression noise results from a stochastic

process where mRNA copy number follows the random birth and

death process. Given this principal scaling property, attention has

been turned towards uncovering systematic deviations from this

abundance-related trend and correlating such deviations with

specific gene features. Here we use the data gathered in the

experiment of Newman et al., where the trend line was only

paralleling the Poissonian process for low to moderate expression

levels. Using a two-dye experiment on a sample of highly expressed

proteins, the experimenters demonstrated that these deviations from

the Poissonian process for high expression levels are caused by

extrinsic noise. Newman et al. accounted for this effect by

introducing the DM measure (defined above).

Heterogeneity of noise properties in different gene
groups

Given that translation efficiency has been found to impact cell-

to-cell noise in prokaryotic organisms [30] and that translation

Author Summary

The stochastic nature of gene expression leads to cell-to-
cell differences in protein level referred to as noise.
Expression noise can be disadvantageous, by affecting
the precision of biological functions, but it may also be
advantageous by enabling heterogeneous stress-response
programs to environmental changes. Therefore various
genes and gene groups might display various levels of
expression noise. Importantly, gene expression is a multi-
step process and the stochasticity of its individual steps,
including transcription and translation, contributes to the
resulting variability. Recent single cell analyses of gene
expression in yeast have confirmed the theoretically
predicted general trend where expression noise scales
with protein abundance. However, some deviations from
this basic trend have also been observed, prompting
questions about the contribution of gene-specific features
to such deviations. Accounting for noise heterogeneity in
different gene groups, we revealed a clear relationship
between noise and translation-related genomic features,
specifically codon usage and 59 UTR secondary structure.
Our results suggest that the effect of translation on these
deviations might be more prominent than previously
appreciated, and provide important clues towards under-
standing expression stochasticity in yeast.

Factoring Eukaryotic Expression Noise
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efficiency has been demonstrated to have the potential to amplify

transcription noise in eukaryotic cells [31], the low statistical

significance of the correlation between codon usage and noise in

Newman and colleagues’ large-scale yeast study [29] was to some

extent unexpected. Remarkably, we observed that the distribution

of codon usage (as measured by tRNA adaptation index [49]) has a

long tail (Figure 1a). Removing this tail at a wide range of cut-off

values increases the significance of the Spearman correlation

between tAI and DM (Figure 1a inset). We noticed that the genes

at the tail of the tAI distribution are highly enriched in ribosomal

genes – 98 out of 153 genes with tAI above 0.55 are ribosomal

(binomial test, p-value,e-74). Comparing all ribosomal and

nonribosomal genes, we found that these two groups have

different distributions of noise differentials (DM) - the ribosomal

group is significantly less noisy than the remaining genes

(Figures 1b and 1c; Wilcoxon rank-sum test, p-values,e-4.7 and

e-24.4 for YEPD and SD, respectively); the difference is also

statistically significant for equal sample sizes (Supplementary

Table S1). In addition, the correlation between DM and tAI in

ribosomal group was negative (Figure 1d; Spearman correlation

20.4, p-values,e-7 for both YEPD and SD). In contrast, we

observed a highly significant positive correlation between noise

differential and tRNA adaptation index in the group of

nonribosomal genes, suggesting a robust contribution of the

translation process to expression noise in this group of genes

(Figure 1d; Spearman correlation, p-values,e-11.1 and e-9.6 for

YEPD and SD, respectively). Given this different relation between

noise differential and codon usage for these two groups of genes,

we removed all ribosomal genes (see Materials and Methods) from

further analyses and focused only on nonribosomal genes.

Additionally, we combined the measurements from both growth

media and subdivided the nonribosomal genes into three groups

according to noise level: low, medium and high noise genes (see

Materials and Methods for precise description of the grouping).

Figure 2a shows statistically significant differences in tRNA

adaptation index between these three noise differential levels

(Wilcoxon rank-sum test, all p-values,e-3.9).

Variations in mRNA secondary structure correlate with
variations in noise differential

The structure of messenger RNA is known to affect translation

efficiency [43,44,45,46,47,48]. A low level of secondary structure

at the 59 UTR of mRNA correlates with increased ribosomal

density, leading to an increased translation rate

[43,44,45,46,47,48,50,51]. More importantly, simultaneous trans-

lation of several protein molecules from the same mRNA molecule

leads to a deviation from the Poissonian model of gene expression

(see also Fraser et al. [4]). Therefore, we conjectured that the level

of secondary structure at the 59 UTR of mRNA might impact

expression noise. To test this hypothesis we computed, for each

gene in the nonribosomal group and each position within the gene,

the gene base pairing probability in RNA structure (Materials and

Methods). Indeed, we observed statistically significant inverse

correlation between 59 UTR secondary structure and noise

differential (Figure 2b; Spearman correlation, p-values,e-3.2

and e-8.2 for YEPD and SD, respectively). Using the same

subdivision of the genes into three groups as for the codon usage

above, we observed that the noisiest genes were characterized by

the lowest base pairing probability in the 59 UTR region, while the

least noisy genes had the most structured 59 UTR. The differences

between the highly noisy group and remaining two groups are also

statistically significant (Figure 2b; Wilcoxon rank-sum test, p-

values,e-9.4 and e-6.1 for comparison with low and medium

noise genes, respectively; Supplementary Table S1 for equal size

set sampling).

Potentially, if a gene is optimized for rapid but noisy expression

then optimization of codon usage is likely to be accompanied by

other efficiency boosting features such as unstructured 59 UTR.

Indeed, there is a highly statistically significant inverse correlation

between 59 UTR structure and tAI (Spearman correlation 20.2;

p-value,e-22). Partial correlation analysis indicates that these

correlations remain statistically significant when controlling for the

third factor (Supplementary Table S2). The correlation of 59 UTR

with DM in YEPD was the weakest and after controlling for tAI or

TATA was only marginally significant (p-value = 0.0366 and p-

value = 0.0134 respectively). Therefore we did not include 59 UTR

in our next analysis, where we used a theoretical noise expression

model to decompose the gene-specific amplification of noise

strength into a transcriptional component attributed to the TATA

box and a putative translational component attributed to tAI.

Decomposing noise strength amplification into TATA
and tAI associated components

Given the above-demonstrated relationship between the

sequence features associated with translational efficiency and

noise differential, we wanted to see whether we could capture the

interplay between transcriptional and translational features in a

more quantitative way. Theoretical models imply that both

transcription and translation bursts lead to an increase in noise

strength [17,20,26,52,53] – equivalent to the Fano factor as

defined by F~s2=m~CV 2:m (note that for a Poissonian process

F~1, while a process with Fw1, i.e. CV2
w1=m, is considered to

be noisy). Specifically, if B(g) is the transcription burst size of gene

g and C(g) is the translation burst size then, ignoring any other

noise contributors, noise strength can be approximated as the

product B(g):C(g) (see Materials and Methods for additional

derivation). Here, we would like to capture the relative contribu-

tions of the B(g) and C(g) components to the noise strength.

We focused on the tAI measure of codon usage as a translation-

related feature that correlated most strongly with noise differential

in our study. The correlation with 59 UTR RNA structure was

considerably weaker, so we did not consider it in this analysis.

Defining noise strength amplification defined as a fold-increase of

noise strength for constant protein abundance, we wanted to

capture the interplay between the noise strength amplification that

can be attributed to increased tAI and the noise strength

amplification that can be attributed to presence of a TATA box.

The latter relation was identified in previous studies as one of the

most prominent transcriptional noise contributors [26,54,55]. We

note that noise strength amplification (a concept similar to the

noise residual [32]) implies an increase of noise differential. This is

explained more naturally in terms of theoretical models (see

Materials and Methods).

To estimate noise strength amplification due to TATA box

presence and compare it to noise strength amplification attributed

to high tAI, we devised two complementary approaches. First, we

divided all nonribosomal genes into three groups: TATA genes

with high tAI, non-TATA genes with high tAI, and non-TATA

genes with low tAI (Figure 3a). All three groups overlap on a

certain abundance interval (contain a subgroup of proteins with

similar abundance), allowing us to estimate noise strength

amplification. Specifically, the average ratio of Fano factor values

for TATA genes with high tAI to those for non-TATA genes with

high tAI provides an estimate of the noise strength amplification

that can be associated with the TATA box to be b~1:27+0:07
(YEPD). Along the same lines, the average ratio of Fano factors for

non-TATA genes with high tAI to those for non-TATA genes with

Factoring Eukaryotic Expression Noise
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low tAI provides an estimate a~1:19+0:02 (YEPD) of noise

strength amplification that can be associated to high tAI values.

The estimates based on data in SD medium are similar

(Supplementary Table S3). This indicates that, on average, the

noise strength amplification that accompanies high tAI values is

comparable to the noise strength amplification that accompanies

the presence of a TATA box.

As an alternative approach to estimate b, we divided the genes

into two groups: genes containing a TATA box and genes without

the TATA box. We looked at noise strength as a function of codon

usage (Figure 3b) and directly compared noise strength for TATA

and non-TATA genes at the same codon usage values. If the

TATA box leads to noise strength amplification b, then the trend

for the relation between codon usage and noise strength for TATA

genes should be related to the trend for non-TATA genes by a

multiplicative factor b. This is indeed what we observed

(Figure 3b). Assuming that TATA and non-TATA genes with

the same tAI are, on average, under the influence of the same

extrinsic noise, then this graph provides an estimate of

b~1:23 + 0:07 (YEPD), well within the error bars of the

previous estimation. This consistency, and the fact that the noise

strength amplification observed in Figure 3b is consistent over the

full range of codon usage, including low codon usage genes that

are typically not very abundant, suggests that this estimate is not

affected by extrinsic noise.

Discussion

We examined the deviations from the general trend where

expression noise scales with protein abundance. In principle, all

processes involved in gene expression can contribute to such a

deviation. However, pinpointing the relative contributions of these

components is nontrivial. Our study clearly demonstrated a

relation between genomic features associated with the translational

Figure 1. (a) Histograms of tRNA adaptation index (tAI) scores of budding yeast genes shows a long tail of high tAI values that is highly enriched in
ribosomal genes (98 out of 153 genes with tAI.0.55, binomial test p-value,e-74). Inset: Spearman correlation between tAI and DM increases at a
wide range of high tAI cut-off values. (b,c) Ribosomal and nonribosomal genes have different distributions of noise differentials (DM) in both YEPD
and SD media – the ribosomal genes are significantly less noisy. For graphing purpose the DM values are shifted by constant c = 5 prior taking the
logarithm. (d) Spearman correlation between tAI and noise differential (DM) for the whole dataset, including nonribosomal and ribosomal proteins in
YEPD and SD media.
doi:10.1371/journal.pcbi.1002644.g001

Factoring Eukaryotic Expression Noise
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process and intrinsic noise. High codon usage and low content of

59 UTR secondary structure correlated with increased expression

noise differential. The relative contribution of transcription and

translation features to noise varied for different gene groups. In

particular, high codon usage ribosomal genes are characterized by

low noise differential. This heterogeneity is probably a primary

reason behind the difficulties in uncovering the interplay between

various contributors.

We also performed an initial estimation of the noise strength

amplification associated with TATA box presence and noise

Figure 2. Comparison of translation related mRNA features: (a) codon usage (tRNA adaptation index and (b) average base pairing probability
at the 59 UTR mRNA structure for different noise differential levels. The nonribosomal genes were subdivided into three groups: low, medium and
high noise genes, according to their noise differential levels in YEPD and SD media.
doi:10.1371/journal.pcbi.1002644.g002

Figure 3. Decomposing noise strength amplification into TATA and tAI associated components. (a) The trend lines for the relation
between protein abundance and noise strength (YEPD medium) in three groups of genes: TATA genes with high tAI (red), non-TATA genes with high
tAI (blue) and non-TATA genes with low tAI (cyan). High and low tAI mean upper and lower tertile of tAI distribution, respectively. The abundance
region where all three trend lines overlap is enlarged. The shift between TATA and non-TATA genes, both with high tAI, represents an amplification
associated with the TATA box (transcription feature), b= 1.2760.07, while the shift between non-TATA genes with high and low tAI represents an
amplification associated with high codon usage (translation feature), a= 1.1960.02. (b) The trend for the noise strength (YEPD medium) as a function
of codon usage efficiency (tAI) for TATA genes (red) and non-TATA genes (blue). The shift between these two trend lines provides an alternative
estimate of b, representing the impact of the TATA box on noise strength.
doi:10.1371/journal.pcbi.1002644.g003

Factoring Eukaryotic Expression Noise
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strength amplification that accompanies genes with high codon

usage. Surprisingly, on average, the amplification of noise strength

that accompanies high codon usage is comparable to the

amplification that accompanies TATA box.

While precise factoring of intrinsic noise into its constitutive

components requires additional experimental data, the approach

developed in this study allowed us to provide initial estimates of

the relative contributions of transcriptional and translational noise

factors. The noise factoring strategy that we introduced in this

study is general and can be used to measure the relative impact of

other noise factors.

Materials and Methods

Data sources
Ribosomal genes. The list of ribosomal genes was down-

loaded from the website of the SGD (Saccharomyces Genome

Database) project under the GO term ‘‘Structural constituent of

ribosome’’ (GO: 0003735, http://www.yeastgenome.org/cgi-bin/

GO/goTerm.pl?goid = 3735). It consists of 224 manually curated

genes.

TATA –genes. The list of genes with TATA-containing and

TATA-less promoters was obtained from a study by Basehoar et al.

[56].

Noise and groups. We used single-cell profiling measure-

ments of protein abundance and its cell-to-cell variations in S.

cerevisiae, provided by Newman et al. [29]. The experimenters

measured steady-state protein levels for cells grown in rich (YEPD)

and minimal (SD) media. The DM values (referred here as noise

differentials) were used to quantify gene-specific noise levels.

In this study, we classified genes according to noise level in both

YEPD and SD media. We subdivided the genes into three groups

using somewhat arbitrary thresholds for noise level (DM):

N high noise genes - genes with high noise level in at least one

medium, i.e. DMSD.4 or DMYEPD.4;

N medium noise genes - genes with medium noise level in at least

one medium but without high noise level in any medium, i.e.

1,DMSD#4 or 1,DMYEPD#4 and DMSD#4; DMYEPD#4;

N low noise genes - genes with low noise level in any medium

where it was measured but without medium or high noise level

in any medium, i.e. DMSD#1 and DMYEPD#1.

This classification resulted in 1432 genes in the low level, 571

genes in the medium level, and 315 genes in the high level group

(total 2328 genes). Note that all ribosomal genes were removed

from this analysis.

Computing codon usage
We measured the translation efficiency by the tAI score, which

takes into account the availability of tRNA for each codon, and the

efficiency of the codon-anticodon coupling. We followed the

definition of Tuller et al. [57].

Computing base pair probability
All S. cerevisiae gene sequences with 100 bases upstream were

downloaded from the UCSC genome browser [58] (June 2008

genome assembly of S. cerevisiae). We used the RNAplfold program

from the Vienna RNA package [59] to compute the base pair

probabilities of RNA secondary structure for all sequences in our

dataset. RNAplfold computes local pair probabilities; the probabilities

are averaged over all windows of given size L that contain the base

pair. We ran RNAplfold with a few different window sizes in the

range of 100–300 nucleotides and obtained quite similar results. The

results presented here are based on a window size of 150 nucleotides.

The composite pairing probability profile was built by averaging base

pairing probabilities over all genes for each position in the profile.

Noise model
Assuming that protein abundance is characterized by two

parameters – the mean number of protein production bursts per

cell cycle, and the mean number of proteins produced per burst –

Friedman et al. established the correspondence between these

parameters and steady-state distribution. In a system where both

transcription bursts and translation bursts are assumed to

contribute to the total burst in protein abundance, noise strength

F (g), can be decomposed further into transcriptional and

translational components. Specifically, if B(g) is the transcription

burst size of gene g and C(g) is the number of proteins translated

from one mRNA molecule then, ignoring any other noise

contributors, the noise strength F (g) can be approximated as

B(g):C(g).

As an alternative derivation, following Raser et al. [26] (equation

[6] SOM), we simplified the expression for noise strength as

F&1zEm?pzEm?p

kmca

(kazca)2
,

where Em?p is the average number of proteins produced from a

single mRNA molecule, ka is the promoter activation rate, km is the

RNA production rate, and ca is the promoter closing rate.

Assuming that the protein production rate is proportional to codon

usage C(g) and that the transcription-related noise strength is

attributed to a transcription burst size B(g) we have

F&1zEm?p(1z
kmca

(kazca)2
)&1zC(g)B(g):

Noise trends and computing noise strength amplification
We used a trend line to smooth out fluctuations in the noise data

and to show an underlying pattern more clearly. To compute the

trend line, we used the moving average method with overlapping

windows of fixed number of genes. We used two different window

sizes depending on the size of the gene group: 100 and 300 genes

for data in Figure 3a and 3b, respectively. To estimate noise

strength amplification (parameters a and b), we divided the

interval where trend lines of considered gene groups overlap into

bins, and for each bin we computed the ratio of mean trend values

between each pair of gene groups. As an estimate of each

parameter we took the average value of computed ratios.

Computational platforms
All calculations and statistical analyses were performed using the

R statistical environment (http://www.r-project.org). Scripts were

written in the Python programming language (http://www.

python.org/).

Supporting Information

Table S1 P-values for Wilxocon tests performed on the original

data groups and on sampled groups.

(XLSX)

Table S2 Pairwise Spearman’s rank correlation between DM,

tAI and 59 UTR structure for nonribosomal genes, and partial

correlations controlling for tAI, 5’ UTR and TATA presence.

(XLSX)
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Table S3 Estimates of noise strength amplification associated

with the TATA box (parameter a) and the tRNA adaptation index

(parameter b), based on data from YEPD and SD media.

(XLSX)
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