
Theory
An Evolutionarily Conserved
Mechanism for Controlling the
Efficiency of Protein Translation
Tamir Tuller,1,2,5 Asaf Carmi,1,5 Kalin Vestsigian,3 Sivan Navon,1 Yuval Dorfan,1 John Zaborske,4 Tao Pan,4

Orna Dahan,1 Itay Furman,1 and Yitzhak Pilpel1,*
1Department of Molecular Genetics
2Faculty of Mathematics and Computer Science

Weizmann Institute of Science, Rehovot 76100, Israel
3Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
4Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
5These authors contributed equally to this work
*Correspondence: pilpel@weizmann.ac.il

DOI 10.1016/j.cell.2010.03.031
SUMMARY

Recent years have seen intensive progress in
measuring protein translation. However, the contri-
butions of coding sequences to the efficiency of the
process remain unclear. Here, we identify a univer-
sally conserved profile of translation efficiency along
mRNAs computed based on adaptation between
coding sequences and the tRNA pool. In this profile,
the first �30–50 codons are, on average, translated
with a low efficiency. Additionally, in eukaryotes,
the last �50 codons show the highest efficiency
over the full coding sequence. The profile accurately
predicts position-dependent ribosomal density
along yeast genes. These data suggest that transla-
tion speed and, as a consequence, ribosomal density
are encoded by coding sequences and the tRNA
pool. We suggest that the slow ‘‘ramp’’ at the begin-
ning of mRNAs serves as a late stage of translation
initiation, forming an optimal and robust means to
reduce ribosomal traffic jams, thus minimizing the
cost of protein expression.

INTRODUCTION

mRNA translation is controlled at multiple stages and by diverse

mechanisms. A major part of the control occurs at the stage of

initiation, where ribosomes are recruited to and assembled on

the mRNA, typically on the 50 untranslated region (UTR) (Ingolia

et al., 2009). The elongation phase is governed by both the

mRNA secondary structure (Gray and Hentze, 1994) and the

extent of adaptation of the coding sequence to the cellular

tRNA pool (dos Reis et al., 2004; Sharp and Li, 1987). The abun-

dance of tRNAs that correspond to the different codons in a gene

was suggested to determine the speed (Akashi, 2003; Man and

Pilpel, 2007) and accuracy (Drummond and Wilke, 2008) of trans-
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lation. Thus, codons that are recognized by abundant or rare

tRNAs will be respectively referred to here as codons with high

and low efficiency (or as codons that are respectively highly or

lowly adapted to the tRNA pool).

Transcripts whose codons are biased toward the more abun-

dant tRNAs were found to be more highly expressed (Man and

Pilpel, 2007; Qin et al., 2004). Indeed protein expression levels

can be artificially increased by designed mutations that increase

their codon-tRNA adaptation (Arava et al., 2003; DeRisi et al.,

1997; Percudani et al., 1997; Tuller et al., 2007), pointing to a

causal relationship between codon usage and expression level.

Accordingly, the extent of adaptation between genes and the

tRNA pool in different species was found to vary in evolution

according to organisms’ lifestyle needs (Man and Pilpel, 2007).

So far, studies that gauge translation efficiency have mostly

considered average codon usage over entire genes (dos Reis

et al., 2004; Man and Pilpel, 2007; Sharp and Li, 1987; Tuller

et al., 2007). Such studies typically do not consider the order in

which codons with low and high translation efficiency appear

along the transcript. Although it was shown previously that the

extent of codon bias changes along transcripts (Qin et al.,

2004), it is not known whether gene sequences are arranged

so as to determine specific levels of speed and accuracy of

translation at various positions along transcripts. The order of

high-efficiency and low-efficiency codons along transcripts

could govern the process of translation, especially given that

multiple ribosomes are often simultaneously loaded on a given

transcript (Arava et al., 2003). Such instructions could affect

speed and processivity of translation as well as the overall cost

of protein production in cells. Such ‘‘traffic rules’’ of translation

may thus be selected for during evolution.

To investigate a role for codon selection in modulating transla-

tion efficiency, we inspected open reading frame sequences and

tRNA repertoires in dozens of fully sequenced genomes. The

input to our computed profile of translation efficiency consists

of coding sequences and a measure of adaptation between

codons and the various tRNAs (dos Reis et al., 2004), which

was previously shown to represent translation efficiency (dos
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Figure 1. The tRNA Gene Copy Correlates with Levels of tRNA

Genes in S. cerevisiae

tRNA gene copy numbers versus the expression levels of tRNA genes in

S. cerevisiae measured by a microarray dedicated to the tRNAs in this species

(Dittmar et al., 2004). tRNA levels were measured independently with two alter-

native dyes (Cy5 and Cy3), each producing similar correlations with the gene

copy numbers.

See also Table S1 and Figure S1.
Reis et al., 2004; Man and Pilpel, 2007; Tuller et al., 2007). We

describe a universally conserved translation efficiency profile

that features low translation efficiency over the first �30–50

codons of mRNAs. This feature is conserved in species that

represent the three domains of life. Translation efficiency profiles

of individual genes are often very noisy, yet selected subsets of

the genes in each genome display this pattern. The observed

profile in the yeast S. cerevisiae accurately predicts the recently

measured ribosome density profiles of mRNAs in this species

(Ingolia et al., 2009). This correlation provides an indication that

codon-tRNA adaptation approximates well the speed of transla-

tion at various positions along mRNAs. This result also indicates

that ribosomal speed and hence density are encoded into genes’

sequences and the tRNA pool. We propose that the conserved

translation efficiency profile may have been selected for in

diverse species as it minimizes ribosome traffic jams and abor-

tive protein synthesis and, as a consequence, the cost of protein

expression.

RESULTS

A Universally Conserved Translation Efficiency Profile
The translation efficiency profile of a gene is defined, for each

codon position, as the estimated availability of the tRNAs that

participate in translating that codon. The profile is high at codons

that correspond to abundant tRNAs and low at codons that

correspond to rare tRNAs. In particular, we used the tRNA-adap-

tation index (tAI) to evaluate translation efficiency (dos Reis et al.,

2004 and Experimental Procedures) at each codon. The tAI

measure of an entire gene, developed following the classical

Codon Adaptation Index (Sharp and Li, 1987), is defined as the

(geometric) average of tRNA availability values over all the

codons in the gene (see Experimental Procedures). For each
codon, the tAI considers the availability of the tRNA with the

perfectly matched anticodon along with weighted contributions

from imperfect codon-anticodon pairs, reflecting wobble inter-

actions. Whereas the original tAI measure is defined as an

averaged value over the entire gene (Experimental Procedures,

Equation 2), here we consider separately each codon along the

sequence in what we define as the ‘‘local tAI’’ of a codon (see

Experimental Procedures, Equation 1). Table S1 (available

online) contains the local tAI value of each of the 61 types of

codons in a diversity of species.

Typically, the tAI uses the copy number of tRNA genes in the

genome as a proxy for their abundance in the cytoplasm.

Although this is a common assumption (see Extended Experi-

mental Procedures 1 and 2, Table S1, and Man and Pilpel,

2007; Percudani et al., 1997; Tuller et al., 2007), we examined it

in S. cerevisiae using a microarray dedicated to the tRNAs in

this species (Dittmar et al., 2004, 2006; Pavon-Eternod et al.,

2009; Zaborske et al., 2009). Specifically, we examined the corre-

lation between tRNA abundance and their gene copy number in

yeast cells growing on a rich medium. tRNA abundance measure-

ments were based on the Cy3 and Cy5 fluorescence values of

each tRNA on the array and came from a labeling method that

relies only on the single-stranded 30NCCA in every tRNA (demon-

stration of the feasibility of the method was done by quantitative

comparison to 2D PAGE analysis of tRNAs; Dittmar et al., 2004,

2006; Pavon-Eternod et al., 2009; Zaborske et al., 2009).

We found that tRNA gene copy numbers are relatively highly

correlated with their expression levels in rich medium conditions

(r = 0.76 over 39 tRNA species, see Figure 1 and Figure S1). We

also found that this correlation remains relatively high even when

yeast undergo a major metabolic shift, termed ‘‘diauxic shift’’

(DeRisi et al., 1997), from fermenting to respiratory conditions

(correlation between 0.65 and 0.71; see also Table S1). The array

analysis indicates that the tRNA gene copy number provides

a reasonable proxy for tRNA abundance, and we thus use it, in

S. cerevisiae and in the rest of the species too, in all subsequent

tAI calculations.

We started by inspecting the averaged translation efficiency

profiles of all the genes in a given genome. To accomplish this

analysis, all genes were lined up according to their start codon,

and an average local tAI value at each position was calculated

(see Experimental Procedures). In parallel, we also lined up all

the genes in each genome relative to the stop codon and

computed the average across all genes in the last position, the

penultimate position, etc. Altogether we analyzed genomes of

27 organisms with representatives from all three domains of

life (see Table S2).

As seen in Figure 2 and Table S2 (see also Figure S1,

Figure S2, and Figure S3), in almost all species examined, the

averaged translation efficiency profile reveals several remark-

ably conserved features. Translation starts with relatively low-

efficiency codons for about the first 30–50 positions. We term

this part the ‘‘low-efficiency ramp’’ or the ‘‘ramp’’ for short. The

ramp region is then followed by a plateau with�5%–10% higher

translation efficiency on a genome average. A clear outlier in the

ramp is the second codon position, which follows the initiating

methionine that shows high efficiency compared to its neigh-

boring codons in the majority of the species (Figure S2). This
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B Figure 2. Selected Genome-Averaged Translation

Efficiency Profiles

(A–D) Averaged translation efficiency profile (for the start

line-up, see Experimental Procedures) for the first 200

codons in D. melanogaster (A), C. elegans (B), S. cerevisiae

(C), and E. coli (D). Note the different span of values in each

subplot. Each figure contains the averaged tAI profile

(black) and the randomized profile ±3 standard deviations

(gray; see details in the Experimental Procedures).

(E and F) The translation efficiency profiles in various

organisms for the start/end codon line-up (see Experi-

mental Procedures). Each row describes the translation

efficiency profile of a different organism and each pixel

describes a codon. Green denotes lower tAI, whereas

red denotes higher tAI (see color bar on the right). The

blue vertical line (E) denotes the means of the length of

the ramp (Figure S2, Experimental Procedures) in prokary-

otes/eukaryotes; the ratio between the means of these

regions in eukaryotes/prokaryotes (34.5/24 = 1.43) may

correspond to a difference in the size of the footprinted

region of the eukaryotic and prokaryotic ribosomes on

transcripts.

See also Table S2 and Figure S2.
design might support a fast release and recycling of the initiating

methionine tRNA. In most of the examined eukaryotic species,

predominantly in fungi, the profile shows an increase in efficiency

toward the last �50 codons of the genes, which in fungi are

higher by up to 5% more than the value at the plateau in the

middle section of genes (Figure 2F). Properly randomized

sequences (and also some particular gene sets, see below) do

not give rise to such signals (Figure 2, Table S2).

Although the averaged profile over all genes in a genome is

relatively smooth, the profile of single genes is often noisy. Still
346 Cell 141, 344–354, April 16, 2010 ª2010 Elsevier Inc.
it was important to inspect single genes, identify

those that contribute the most to the observed

averaged signal, and examine the possibility

that other weaker signals may have been

missed at the genome-average level. We thus

defined and identified the ‘‘bottleneck’’ region

in each individual gene—a sequence window

of 15 codons in length (that represents the

length of the ribosome footprint region on

mRNAs (Alberts et al., 2002; Ingolia et al.,

2009; Kaczanowska and Ryden-Aulin, 2007;

Menetret et al., 2000; Milo et al., 2009; Zhang

et al., 1994; Zhu et al., 1997); very similar results

were observed for windows of 10–20 codons

in length), with the highest averaged values of

1/(local tAI) (i.e., 15 codons with the longest

dwell time in a gene). Figure 3 shows the distri-

bution of locations of the bottleneck regions

along all genes in two distantly related yeast

species, S. cerevisiae and S. pombe. Both distri-

butions show a consistent picture—a clear

tendency to have the bottleneck relatively early

along the genes. Other than this region there

are no other regions that show any pronounced

preference to contain bottlenecks. This picture
shows that the ramp is a superposition of the translation effi-

ciency profile of a relatively high number of genes (e.g., the

bottleneck of 1330 genes is within the first 54 codons).

The analyses presented so far have addressed individual

genes on one hand and averages of entire genomes on the other.

An intermediate level is that of sets of genes that share a biolog-

ical function. We considered genes that share the same Gene

Ontology (GO) slim categories (Hirschman et al., 2006). Figures

4A and 4B and Table S3 show the averaged profiles of genes

from representative categories. We found that the genes from
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Figure 3. Bottlenecks in Translation Efficiency

Tend to Be Localized Close to mRNAs 50 Ends

The distribution of the positions of the bottlenecks in

S. cerevisiae (A) and S. pombe (B). For each bottleneck

position, the number of genes with a bottleneck in that

position was normalized by dividing it by the number of

genes whose length extends beyond that position. The

distribution is similar also when considering only genes

with more than 200 codons (inset).
many of the GO slim categories show evidence of containing a

ramp. For example, genes that share the GO categories ‘‘cellular

carbohydrate metabolic process’’ and ‘‘transport’’ demonstrate

a very clear ramp. However, other gene sets, including those

that share the GO categories ‘‘transcription’’ and ‘‘nucleus

organization’’ do not have a ramp (see more examples in Fig-

ure 4B and Table S3). Interestingly, the presence of the ramp

is seen even among categories with very different absolute

translation efficiency levels. For example, Figure 4C shows the

local translation efficiency profile of cytosolic and mitochondrial

ribosomal proteins in S. cerevisiae. Interestingly, although

selection acted to enhance overall efficiency of the cytosolic

ribosomal proteins, the initial region shows lower efficiency

relative to the rest of the genes.

Beyond inspection of single genes, gene sets, and genome

average, the highest level of averaging is from multiple genomes.

We averaged all the eukaryotic profiles and all the prokaryotic

ones. Notably, the length of the ramp (see Figure S2 for an

illustration of how the length of the ramp was computed) in

eukaryotes and prokaryotes is around 1–3 ribosomes (depend-

ing on the definition of the actual number of nucleotides that

are covered by a single ribosme; Alberts et al., 2002; Ingolia

et al., 2009; Kaczanowska and Ryden-Aulin, 2007; Menetret

et al., 2000; Milo et al., 2009; Zhang et al., 1994; Zhu et al.,

1997). The ratio between the length of the ramp in eukaryotes

and prokaryotes (mean ramp length in eukaryotes is 34.5

codons; mean ramp length in prokaryotes is 24 codons; the ratio

between these lengths is 1.43) may correspond to a difference in

the size of the footprinted region of the eukaryotic and prokary-

otic ribosomes on transcripts.

We next wanted to examine if the ramp is maintained

during an environmental change. For that we returned to the

diauxic shift experiment in which we found some changes in

the relative representation of the various tRNAs in the tRNA

pool (Figures S1 and S2). We computed the ramp for all
Cell 141
genes but measured tRNA levels at each

time point instead of the static gene copy

numbers, and we found that the ramp is

largely maintained genome-wide (Figures S1

and S2).

The Universal Translation Efficiency
Profile Is under Selection
The translation efficiency profile is highly

conserved in evolution, but this fact by itself is

not a guarantee that the profile is under direct
selection. An alternative might be that the profile is conserved

as a by-product of selection acting on other conserved

features. We have examined and excluded several specific

alternatives.

We started by examining the possibility that the observed

profile is conserved merely because the tRNA pool and codon

biases are sufficiently conserved. According to this null

hypothesis, the interspecies differences in the tRNA pool

and the coding sequences are small enough to maintain the

translation efficiency even if the profile is not under direct

selection. We thus computed the translation efficiency profile

of all the genes from one species using the tRNA pool of

another, repeating this procedure for various pairs of species.

This is a simple computational resemblance of true species

hybridization experiments that are used to tell apart the contri-

bution of cis- and trans-acting factors used in transcription

research (Tirosh et al., 2009; Wang et al., 2007; Wittkopp

et al., 2004). In one such hybrid analysis, the S. cerevisiae

genes were translated using the Y. lipolytica tRNA pool, and

in a reciprocal analysis, the coding sequences of Y. lipolytica

were translated using the tRNA pool from S. cerevisiae. We

have chosen these two species because their tRNA pools

and their codon biases have diverged quite significantly

(Man and Pilpel, 2007), yet both species display the conserved

translation efficiency profile. Figure 5 shows that in these

hybrids the ramp region is much shorter and shallower.

More generally, the ramp region becomes shorter and shal-

lower when hybridizing S. cerevisiae with tRNA pools from

organisms with increasing evolutionary distances, and also

when examining additional pairs of species (see also Table

S4). These results indicate that the tRNA pools and the codon

preferences have sufficiently diverged between species so as

to eliminate the translation efficiency profile if it were not

directly selected for. We thus conclude that coevolution of

the tRNA pool and the coding sequences took place in each
, 344–354, April 16, 2010 ª2010 Elsevier Inc. 347
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Figure 4. The Profile of Local Translation

Efficiency of Selected Gene Groups

(A) The profile of local translation efficiency of three

GO slim categories that have a ramp.

(B) The length of the ramp (L2P) of all the GO slim

categories.

(C) The profile of local translation efficiency of

cytosolic ribosomal proteins (left) and mitochon-

drial ribosomal proteins (right).

See also Table S3.
species so as to conserve the translation efficiency profile.

This suggestion is in line with the general indications of the

emergence of codon bias from coevolution (Vetsigian and

Goldenfeld, 2009).

The second null hypothesis relates to the possibility that the

observed translation efficiency profile results from selection

acting at the amino-acid sequence level. In contrast to this

possibility, we found that in the region of the initial ramp the

actual codon chosen from all possible codons of the given

amino acid is often the one with low efficiency (see the red plots

corresponding to the AAtAI profile in Table S2; see Experi-

mental Procedures for explanations about the AAtAI profile).

Beyond the ramp region, codon choice does not show this

bias. This result excludes the possibility that the observed

profile is a by-product of constraints at the protein sequence

level.

Likewise, we have excluded another potential alternative

reason for the observed profile, that it is a by-product of a puta-

tive position-dependent variation in the GC content along genes

(Figure S3).

We thus conclude that the translation efficiency profiles are

not only universally conserved but are also likely under direct

selection, presumably due to direct effects on fitness.
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Codon-tRNA Adaptation May
Determine Translation Speed
and Ribosome Density along
Transcripts
A central question thus is what actual

physical or biochemical quantity is en-

coded by the translation efficiency profile.

One interesting possibility is that the

values of the local tAI determine the local

speed of movement of the translating

ribosome through each codon along

mRNAs. According to this hypothesis,

the ribosomes are moving on average

more slowly at the ramp region. The

hypothesis that the observed profile

determines the speed of the ribosome at

each position generates a clear prediction

about the density of ribosomes at any

given position. Assuming that ribosome

distributions on mRNAs are at steady

state (e.g., assuming little or no prema-
ture abortions of translation), the flux of ribosomes through

a codon position x is given by

jðxÞ= vðxÞ�fðxÞ;

where v(x) is the speed of translation at the position x, and f(x) is

the density of ribosomes at that position. In other words, if the

translation efficiency profile is a speed profile, we expect it to

be inversely correlated with a ribosome density profile along

genes. In particular, our profile predicts a high density of ribo-

somes at the first 30–50 codon positions.

The averaged ribosome density on transcripts (number of ribo-

somes divided by the length of the transcript) had been previ-

ously measured for most of the genes in the S. cerevisiae

genome (Arava et al., 2003). Recently, ribosome densities at

a single base resolution were measured genome-wide for thou-

sands of transcripts in the S. cerevisiae genome (Ingolia et al.,

2009). The measured distribution features a high density of

ribosome at the 50 most 50 codons and a plateau from that

point on (Ingolia et al., 2009). Thus, the low-efficiency ramp

that we observed computationally coincides well with the exper-

imentally observed region of high ribosomal density. In general,

comparing the experimentally measured ribosomal density
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Figure 5. Hybrid Analysis Indicates

Selection for Coevolution of tRNA Pools

and Genes Sequences to Preserve the Ramp

Translation efficiency profiles with native and

nonnative tRNA pools for start codon line-up.

(A) The translation efficiency profile of S. cerevi-

siae.

(B) The translation efficiency profile of S. cerevisiae

using Y. lipolytica tRNA pool.

(C) The translation efficiency profile of Y. lipolytica.

(D) The translation efficiency profile of Y. lipolytica

using S. cerevisiae tRNA pool.

The black bolded line represents the actual calcu-

lated tAI profile; the gray lines represent the

mean ± 3 standard deviations of the tAI profiles

of randomized sets of gene. See also Table S4

and Figure S3.
with the reciprocal of the translation efficiency profile

reveals relatively high similarity (Pearson correlation r = 0.5749;

p < 10�28).

We further realized that imperfections in the correlation

between density and the reciprocal of the translation efficiency

profile might reflect a discrepancy between the translation

efficiency profile and the actual speed of ribosomes, e.g., due

to ribosome traffic jams. We will term the local tAI-based speed

profile the ‘‘nominal speed profile.’’ At low translation initiation

rates, the ribosome may indeed move according to this speed

profile. Yet at higher initiation rates, ribosomes may start to

jam and hence might move with a different local speed, which

we term the ‘‘effective speed profile.’’ To estimate the effective

speed profile and its deviation from the nominal speed profile

at each position, we simulated ribosome movement on tran-

scripts (Zhang et al., 1994, Figure S4, Experimental Procedures,

and Extended Experimental Procedures 3–5). The basic rule that

governs the movement in the simulation is that a ribosome

proceeds through a given codon position according to the

nominal translation speed profile unless it collides with the ribo-

some in front of it, in which case it halts until that ribosome

proceeds forward. We ran the simulation for each S. cerevisiae

gene whose ribosome density profile was measured experimen-

tally by Ingolia et al. (2009) separately and inferred the effective

speed profiles and the simulated profiles of ribosome densities.

Strikingly, when we averaged the single-gene effective speed

profiles (with the same averaging as done for the density profiles;

Ingolia et al., 2009), we found that the reciprocal of the obtained

effective speed profile highly correlates (r = 0.93; p < 10�75;

Figure 6A) with the experimental density profile. Similarly, when

we averaged the profiles of ribosome densities we found that

the computed density profile highly resembles the experimental

one (up to r = 0.96; Figure 6B). The main free parameter in the

simulation is the translation initiation rate � the inverse of the

time required for a ribosome to attach to, and assemble on, an

mRNA (see Figure S4 and Experimental Procedures). We thus
experimented with a range of feasible initiation rates. As can

be seen in Figure 6B, the high correlation between the experi-

mental and computed densities is maintained throughout a broad

range of initiation rates. Only at very low initiation rates (i.e., long

initiation times) where traffic jams are less likely to form does the

simulated density lose resemblance to the experimental one

(Figure 6B).

Together these results provide an indication that codon-tRNA

adaptation may serve as a code that determines ribosomal

translation speed. These results also suggest that translation

speed, and hence ribosome density, may be encoded in gene

sequences and the tRNA pool. The agreement between the

computational and the experimental profiles also indirectly lends

support to the assumptions of the codon-tRNA adaptation

model, e.g., that tRNA gene copy numbers are a good predictor

of the tRNA abundance (dos Reis et al., 2004). A corollary of this

conclusion is that the computed profile is a simple means to

predict the shape of the ribosomal density function in other

species, and that the density function seen in yeast is likely

conserved. This result also suggests how potential changes in

the relative amounts of particular tRNAs (Dittmar et al., 2006;

Graslund et al., 2008) might modify the profile of ribosome

density in a given species or a given condition. For instance, if

the concentration of a rare tRNA, whose matched codons mainly

concentrate close to 50 ends of genes, is elevated at a given

condition the result might be a more flat density function.

Finally, under conditions of amino-acid starvation, the first 40–

50 codons showed high ribosomal density (Ingolia et al., 2009).

This increased ribosomal density seems more pronounced than

the density that is observed in rich media. Based on the correla-

tion we demonstrated between ribosome density and reciprocal

of speed, we suggest that the speed of the ribosome is slower

at the beginning of genes in this condition. That is, in

S. cerevisiae, the ramp is maintained (and is probably more pro-

nounced) under a starvation condition (note that the tRNA pool

may change in starvation; see, for example, Dittmar et al., 2005).
Cell 141, 344–354, April 16, 2010 ª2010 Elsevier Inc. 349
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Figure 6. Experimentally Measured Ribosome Density Negatively

Correlates with Computed Translation Efficiency

(A) Correlation between experimentally measured ribosomal density (Ingolia

et al., 2009) and the reciprocal of the simulated speed profile when not

considering the first five codons (which are outliers) and when considering

all the codons (the subfigure at the lower right corner). Dots are color coded

according to codon location along genes, with the greenest dots representing

codons that are close to the ATG, and codons that are farthest away in red. The

density and speed profiles were obtained by averaging the profiles at each

position of the genes in the S. cerevisiae genome. The speed profile was

obtained by simulating ribosomal scan of all the transcripts in this species.

The Pearson correlation between density and 1/speed is 0.93 (p < 10�75).

The correlation between density and the reciprocal of original ‘‘nominal’’ trans-

lation efficiency profile is lower, r = 0.5749 (p < 10�28).

(B) The correlation between the mean profile of ribosome density (Ingolia et al.,

2009) and the mean profile of simulated ribosome density (Experimental

Procedures) at a resolution of single codons for different simulated ribosome

binding initiation time (units of the translation time of the slowest codon; see

Experimental Procedures for definition).

(C) The translation efficiency profile of genes with the top and the lowest

ribosomal density distribution. As can be seen, the extent of ramping

decreases at lowly dense genes.
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We do note that additional factors are likely involved in setting

the speed and density of translating ribosomes. In particular, the

folding energy of the mRNA secondary structure appears to be

highly relevant (Kudla et al., 2009; Tuller et al., 2010), and it

remains to be investigated how tRNA availability and mRNA

structure interact in determining the final density profile.

The Potential Fitness Advantages of the Translation
Efficiency Profile
The conclusion from the density and speed analysis is that the

ramp limits the speed of ribosomes over the first dozens of

codons on transcripts and generates as a consequence a

high-density area. The generation of a short high-density section

at the 50 region of mRNAs may give rise to a jam-free region over

the rest of the transcript because ribosomes that pass the bottle-

neck are less likely to jam. Under this assumption, ramping

would be needed mainly for genes with high overall ribosome

density as these genes would be more prone to jamming. In

addition, it is conceivable that a jam on a gene with high

mRNA copy number is likely to be more detrimental than a

comparable jam that occurs on a low mRNA copy number

gene. We thus returned to the ribosomal density (Ingolia et al.,

2009) and mRNA copy number data (Ghaemmaghami et al.,

2003) and characterized each gene by its mRNA copy number

or ribosome density or by multiplying its mRNA copy number

by its ribosome density, and we looked separately on genes at

the top and bottom 10% of the distribution of these features.

We found that genes with highest ribosomal density, mRNA

level, or the product of ribosome density and mRNA levels

display a stronger ramp than genes with the lowest levels of

these features (Figure 6C). We verified that this signal is not a

result of difference in protein length between the two gene sets

(not shown). We note that the length of the slow ramp is a mean-

ingful parameter given that across the various species it is signif-

icantly correlated with the extent of selection for translation

efficiency (Figure S4). In addition, a similar analysis demon-

strated that the ramp signal is stronger in genes with higher

protein-to-mRNA abundance ratios (see Figure S4). In that

respect, we note that the ramp is ‘‘universal’’ in that it is observed

in all analyzed species, yet we expect that only a strategic

portion of the genes in each genome will feature this design—

primarily genes that need to operate at a high production level.

A recent study (Kudla et al., 2009) looking at the influence of

mRNA structure on translation initiation provides an opportunity

to measure in a more direct way the effect of obeying the trans-

lation efficiency profile on the organism’s fitness. In that study,

154 versions of the gene encoding the green fluorescent protein

(GFP) were synthesized such that the 3rd codon positions were

randomized. Each version was driven by a strong promoter,

expressed in E. coli, and cells’ fitness was measured for each
The results remain significant also after controlling for the length of the genes

(genes with higher ribosome density tend to be shorter). Specifically, the

group of the 20% genes with the lowest ribosome density after removing the

50% longest genes (the final mean length is 1433; ramp length 30) have longer

ramp than the group of the 20% genes with the highest ribosome density

after removing the 50% shortest genes (the final mean length is 1447;

ramp length 89). See also Figure S4.
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Figure 7. The Effect of Ramping on Fitness, Production, and

Expression Cost

(A) Growth rate (measured by OD) of each GFP variant (Kudla et al., 2009)

versus similarity (measured by Spearman correlation) between the translation

efficiency profile of the variant and the averaged profile of all endogenous

genes in E. coli. Upper left corner: the above correlation computed separately

for quadrants of the GFP library binned according to their tAI values. Main

figure: dot plot of the growth rate versus similarity to the genomic translation

efficiency profile of E. coli for the different variants in the GFP library (correla-

tion coefficient r = 0.2; p < 0.014); points that are related to the lowest tAI

quadrant bin in the subfigure are colored blue, other points are red.

(B) A conceptual model depicting the value in selection for ramping in transcripts

withhigh translation rates. We compare the relationship between translation initi-

ation rate and cost of translation per protein for transcripts with (red) and without

(blue) ramp designs. At low translation initiation rates, the ribosomes move inde-

pendently of one another, thus the cost of translation per protein is independent

of the initiation rate. The ramp design incurs a cost because it slows down the

ribosomes. At high translation initiation rates, however, ribosome traffic jams

increasingly dominate the cost of translation. In this regime, ramping reduces

the cost of protein production at a given production level and increases the

production capacity at a given cost. The translation initiation rate and the degree

of ramping are two knobs that evolution can tune to maximize fitness, which, in

the case shown, favor the ramp. The iso-fitness lines reflect an increase in fitness

with protein production rate and decreases with the total cost of translation.

See also Table S5.
strain (Kudla et al., 2009). That study presented experimental

evidence that average codon bias might minimize the burden

of protein expression on the cell (Kudla et al., 2009). Although
this GFP library was not designed for the purpose of testing

the effects of the ramp, we still found that some of the GFP

proteins have a profile that somewhat resembles the ramp,

whereas others do not show this feature. Consistently, we find

a modest, yet significant correlation between the extent to which

a GFP variant obeys the translation efficiency profile and the

fitness of the strain that expresses it (r = 0.2; p value < 0.014;

Figure 7A). Further, we partitioned the genes in the library

according to their average tAI value and focused on 25% of

the variants with the lowest tAI values. These genes could

generate the highest burden on fitness due to potential

overall low translation efficiency (Kudla et al., 2009). Among

those genes, there exists a higher correlation (r = 0.6, n = 37,

p value < 1.26*10�4) between the extent of agreement with the

translation efficiency profile and bacterial fitness (Figure 7A).

Thus, especially among genes with lower translation efficiency

(and hence higher ribosome density) obeying the translation effi-

ciency profile is crucial for minimizing fitness reduction. This

observation thus suggests that the ramp in translation efficiency

profiles found in endogenous genes may have been selected for

minimizing the cost of protein expression due to translation.

The data of Kudla et al. (2009) can be used for understanding

the relation between ramp, fitness, and the component of the

initiation rate (relative to the elongation rate) that is determined

by the properties of the 50UTRs. All the GFP variants have iden-

tical 50UTR sequences and thus identical (absolute) initiation

rates; however, as the coding sequences were randomized,

the elongation rate (measured by the tAI) is different for different

GFP variants. Thus, the different GFP variants have different

relative initiation-to-elongation rates. The relative initiation rate

is higher when the tAI is lower. Figure 7A (inset), thus, demon-

strates that the ramp is more important when the relative initia-

tion rate is higher.

DISCUSSION

The Potential Role of the Ramp in the Context
of Initiation Control
Translation initiation is a prime point of control as it governs the

binding and assembly of the ribosome and the initiation

machinery on a transcript. These processes mainly take place

at the 50UTRs of genes. The ramp we describe here may repre-

sent an important next stage of translational control that modu-

lates the parameters set by the previous initiation stage. The

ramp may thus couple between initiation and elongation and

add unique regulatory features, stemming from the fact that it

is ‘‘written’’ on a translated sequence.

Robustness and Economy—Reduction

of Expression Cost by Filtering out Randomness

The 50UTR of each mRNA serves as a control region by modu-

lating translation initiation through, for example, influence over

ribosome binding rate. The secondary structure and the nucleo-

tide sequence in this region affect both the average spacing

between ribosomes (and hence the protein production rate at

steady state) and the statistical deviations around that average.

As we turn the initiation rate knob to increase the protein produc-

tion rate, these fluctuations become increasingly more likely to

generate instances of too closely spaced ribosomes that can
Cell 141, 344–354, April 16, 2010 ª2010 Elsevier Inc. 351



jam and, potentially, also abort translation. Thus, fluctuations

become increasingly more costly. The ramp in the coding

sequence, however, may provide a second and independent

knob that can tune down the variance set by initiation rate in

the spacing between ribosomes. The ramp consists of dozens

of codons, each determining a separate random event of tRNA

binding, and thus serves as a very effective noise filter; the prob-

ability that with the passage of a given ribosome, all the codons

in the ramp will allow fast movement of the ribosome, and poten-

tially collision with the ribosome ahead of it, is practically zero. Of

course such a design is not needed for proteins with a very low

binding rate; these are unlikely to jam anyway, and indeed the

extent of ramping decreases at lowly dense genes in the yeast

genome (Figure 6C).

Potential for Gene-Specific and Condition-Specific

Control

The ramp may encode an interesting sensing capability—the

low-efficiency codons at the beginning of transcripts may allow

high sensitivity to the abundance of amino acid-loaded tRNAs

in the cell. As such, it may provide a simple mechanism for early,

thus low-cost, abortion of translation in the case of a paucity of

raw material. In more general terms, compared to control

through the UTR, the ramp has a potential to control differentially

individual genes under different conditions. Indeed we see that

different functional gene sets may represent different designs

of the ramp. We also predict that the shape of the ramp may

change for particular genes across conditions (e.g., if the

concentration of some of the tRNAs is modulated relative to

others). The ramp may thus encode for gene-specific and condi-

tion-specific dynamic control of early translation elongation.

A Range of Potential Physiological Roles for the Ramp
The ramp in translation efficiency has the potential of reducing

traffic jamming of ribosomes. Reduction in jamming is, in turn,

desired for several reasons. First, it reduces the total amount

of time that ribosomes are sequestered on a given transcript.

Second, jammed ribosomes, which halt at slow codons (Li

et al., 2006), spend more time on the transcript, increasing the

probability of spontaneous fall off. Abortive protein synthesis

may also occur due to collisions between jammed ribosomes;

thus ramps may be advantageous in preventing spontaneous

and collision-dependent abortions. On top of that, the ramp

may limit most abortions that do occur to the beginning of the

transcripts. This may be desired because in these regions fall

off is least wasteful in terms of energy (ATPs) and raw materials

(e.g., charged tRNAs). Thus low speed at the beginning may

reflect reduced purifying pressure against early abortion, or

a pressure to concentrate abortions at early stages if they reduce

late, costly ones. In this respect, the elevation in translation speed

toward the end of transcripts (seen mainly among the fungi) may

reflect a deliberate selective pressure to avoid late abortions.

We assume that at a given level of protein expression the cost

of production increases with the total time ribosomes spend on

mRNAs. Although the initial ramp may increase that time (and

hence the cost) over the initial section of mRNA transcripts, it

may result in an overall shorter duration of sequestering of trans-

lating ribosomes. Thus if ramping decreases the probability of

jamming it may reduce the cost of gene expression at a given
352 Cell 141, 344–354, April 16, 2010 ª2010 Elsevier Inc.
production level and increase the production capacity at a given

cost (Figure 7B; see also Table S5 and Extended Experimental

Procedures 3–5). Note, however, that when initiation rate is

low, jamming is less likely as matter of course and hence ramp-

ing may only incur a slowing-down cost with no subsequent

gain (Figure 7B), explaining why genes with low ribosome densi-

ties have a shorter ramp (Figure 6C).

A profile of translation speed may also correspond to a posi-

tion-specific profile of translation errors—longer dwell times at

slow codons may result not only in abortion but also in higher

translation error probabilities (Drummond and Wilke, 2008;

Kurland, 1992). According to this notion we predict that the

beginnings of proteins may accumulate more translation muta-

tions compared to other regions in proteins. The speed profile

may also constitute an essential code for proper protein folding

(Kimchi-Sarfaty et al., 2007; Widmann et al., 2008).

Some of these considerations may also apply to other

biological processes. For example, it would be interesting if

transcription, and the movement of motor proteins such as

kinesin, implement a similar design of ‘‘slow start’’ to alleviate

some of the ‘‘process costs’’ and the effects of stochasticity

(Schnitzer and Block, 1995; Svoboda et al., 1994). Our work

may have direct implications not only for understanding evolu-

tionary processes underlying translational control but also for

the technology of heterologous gene expression. This more

applied area is another domain where the question ‘‘what is

the optimal level of expression of genes?’’ must be asked. The

science and art of expressing a gene from one species in another

often amounts to modifying the codons of the gene and supple-

menting the host with specific tRNAs (Graslund et al., 2008). Yet

the full challenge of heterologous expression is not only to maxi-

mize expression per host cell but also to minimize the burden on

the host or maximize fitness of the entire ‘‘factory.’’ We suggest

that implementation of appropriate ramping in heterologous

proteins, given the host’s tRNA pool, might improve the yield

and success rate with this technology for the same reasons it

was selected evolutionarily.
EXPERIMENTAL PROCEDURES

Data Sources of Information

The tRNA copy numbers and the coding sequences of the nine yeasts were

downloaded from the work of Man and Pilpel (Man and Pilpel, 2007). The

tRNA copy numbers of the other organisms were downloaded from the

Genomic tRNA Database (http://lowelab.ucsc.edu/GtRNAdb/) (Lowe and

Eddy, 1997). The coding sequences of the fly and the worm were downloaded

from BioMart (Durinck et al., 2005) on August 2008; the coding sequences of

other eukaryotes were downloaded from NCBI on May 2009. The coding

regions of all the archaea and bacteria were downloaded from NCBI (http://

www.ncbi.nlm.nih.gov/Ftp/) on August 2008. The mRNA levels and protein

abundance were downloaded from the work of Ghaemmaghami (Ghaemma-

ghami et al., 2003).

Per nucleotide ribosome density of 1525 genes was obtained from the work

of Ingolia et al. (2009); when we compared density to speed (tAI) or simulated

density we used the same set of genes as was used in Ingolia et al. (2009).

The version of the GFP protein with synthetic random codon bias and corre-

sponding measurements of growth rate (optical density, OD) were obtained

from the work of Kudla et al. (2009). Information about the length of the eukary-

otic/prokaryotic ribosome footprinted mRNA segment was based on Alberts

et al. (2002), Ingolia et al. (2009), Kaczanowska and Ryden-Aulin (2007),

http://lowelab.ucsc.edu/GtRNAdb/
http://www.ncbi.nlm.nih.gov/Ftp/
http://www.ncbi.nlm.nih.gov/Ftp/


Menetret et al. (2000), Milo et al. (2009), Zhang et al. (1994), and Zhu et al.

(1997). The lists of ribosomal proteins were downloaded from Hirschman

et al. (2006).

Computing tAI, AAtAI

In this subsection we will briefly describe the different measures for translation

efficiency used in this work. We used two measures for translation efficiency:

tAI and AAtAI. As we explain later, the latter was used as a control for a potential

amino-acid sequence bias.

The tAI

We computed the tAI similarly to the way it was computed in the work of dos

Reis et al. (2004). This measure gauges the availability of tRNAs for each codon

along an mRNA. As codon-anticodon coupling is not unique due to wobble

interactions, several anticodons can recognize the same codon, with different

efficiency weights (see dos Reis et al. for all the relations between codon-

anticodons).

Let ni be the number of tRNA isoacceptors recognizing codon i. Let tGCNij

be the copy number of the jth tRNA that recognizes the ith codon, and let Sij be

the selective constraint on the efficiency of the codon-anticodon coupling. We

define the absolute adaptiveness, Wi, for each codon i as

Wi =
Xni

j = 1

ð1� SijÞtGCNij : (1a)

From Wi we obtain wi, which is the relative adaptiveness value of codon i, by

normalizing the Wi’s values (dividing them by the maximal of all 61Wi).

wi = Wi=ðmax WiÞ: (1b)

The final tAI of a gene, g, is the following geometric mean:

tAIg =
�Ylg

k = 1

wikg
�1=lg

; (2)

where ikg is the codon defined by the k’th triplet on gene g, and lg is the length

of the gene (excluding stop codons).

We made one change compared to the computations of dos Reis et al.; we

re-inferred the Sij values by performing hill-climbing optimization of the

Spearman correlation between protein abundance and translation efficiency

in S. cerevisae. For this purpose we used the protein abundance measure-

ments of Ghaemmaghami et al. (2003). The Sij values can be organized in

a vector (S vector) as described in dos Reis et al. (2004); each component in

this vector is related to one wobble nucleoside-nucleoside paring: I:U, G:U,

G:C, I:C, U:A, I:A, etc. The final S vector obtained by our optimization was

½0 0 0 0 0:561 0:28 0:9999 0:68 0:89�:

The AAtAI

The amino acid tAI (AAtAI) was computed similarly to the tAI. The only change

is that each wi is obtained from Wi by dividing it by the maximal Wi of all codons

coding the same amino acid that codon i codes for. Thus, the AAtAI reflects

normalization by the maximal possible tAI of a given protein sequence.

Computing Local tAI and AAtAI

In the case of the tAI, the local profile of a gene was defined as the vector of the

tAI values assigned to the gene’s codons (omitting the first ATG), i.e.:

Local tAIGenei
=
�
tAIc2

; tAIc3
;.; tAIcn

�
;

where ci is the codon at position i in the gene (cn is the codon before the stop

codon). For a particular species, all the genes in the genome were lined up

once according to their start codon, and once according to their stop codon,

and averaged head and tail profiles were calculated as
Local tAIstart =
�
tAI2; tAI3; tAI4;.

�
Local tAIend =

�
tAIn; tAIn�1; tAIn�2;.

�

where

tAIi =
X

Genesi

tAIci
=jGenesi j

and Genesi is the number of genes with at least i+1 codons.

The local values for AAtAI were computed in a similar way—we considered

AAtAI of codons instead of codons’ tAI.

Profiles of AAtAI describe tAI after controlling for amino-acid bias. Thus, we

expect these profiles to be similar to the profiles of the tAI if indeed the

observed tAI profile is related to translation efficiency and not amino-acid bias.

Randomized Profiles of Translation Efficiency

To verify that the observed translation efficiency profile is not an artificial result

of the fact that we lined up the genes by the start/stop codon, we performed

the following control. Each coding sequence was randomly shuffled, and the

average genome profile was calculated. This process was repeated 100 times.

The mean and standard deviations of the 100 sets of profile were then calcu-

lated for each position. The randomized profiles were compared to the original

profile.

Simulation of Ribosomal Movement

To explore the movement of ribosomes along the mRNA sequences we used

a simulation, based on the model of Zhang et al. (1994) (see Figure S4 and

more details in Extended Experimental Procedures 3–5). By this model, a single

codon translation time is determined per ribosome by the translation time of

that codon (i.e., the tAI of the codon) and the potential presence of a ribosome

in front of it: if there is no ribosome in front of the given ribosome its velocity is

solely governed by the translation efficiency profile, yet to maintain a required

minimal distance between the subsequent ribosomes, if there is a ribosome

in front of the given one, it is delayed until the ribosome in front of it has

proceeded on. Other parameters of the simulations are as follows: the

minimum distance between two consecutive ribosomes, the ribosome binding

time, and the termination time—the time required for the ribosome to release

the mRNA.

Measurement of the tRNA Pool in S. cerevisiae

Logarithmic culture (2.5 3 106 cells/ml) of S. cerevisae cells (Strain 4741:

MATa; his3D1; leu2D0; met15D0; ura3D0) was grown on YPD medium (2%

yeast extract, 1% peptone, 1% dextrose) at 30�C until reaching stationary

phase. During growth, glucose concentration in the media was measured

using UV test kit (Boehringer Mannheim catalog number 716251) and the

diauxic shift was identified. At 1.5 hr intervals during growth, samples were

taken and frozen in liquid nitrogen. RNA was extracted using MasterPure

(EPICENTER Biotechnologies) and hybridized to tRNA microarray as

described in Dittmar et al. (2006), Pavon-Eternod et al. (2009), and Zaborske

et al. (2009). Briefly, the basic protocol consists of four steps starting from total

RNA: (1) deacylation to remove remaining amino acids attached to the tRNA,

(2) selective Cy3/Cy5 labeling of tRNA, (3) hybridization on commercially

printed arrays, and (4) data analysis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and five tables and can be found with this article online at doi:10.

1016/j.cell.2010.03.031.
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