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Single-cell experiments of simple regulatory networks can markedly differ from cell population experiments.
Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For
instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such
oscillations may appear damped in the population average. In this paper we investigate the role of RNA
stochastic fluctuations as a leading force to produce a sustained excitatory behavior at the single-cell level. As
opposed to some previous models, we build a fully stochastic model of a negative feedback loop that explicitly
takes into account the RNA stochastic dynamics. We find that messenger RNA random fluctuations can be
amplified during translation and produce sustained pulses of protein expression. Motivated by the recent
appreciation of the importance of noncoding regulatory RNAs in post-transcription regulation, we also con-
sider the possibility that a regulatory RNA transcript could bind to the messenger RNA and repress translation.
Our findings show that the regulatory transcript helps reducing gene expression variability both at the single-
cell level and at the cell population level.
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I. INTRODUCTION

The growing interest in biological noise has led to many
efforts to measure gene expression at the single-cell level
�1–3�, revealing a very distinct dynamics when compared to
population cell experiments �4�. In two well-studied ex-
amples, the p53-mdm2 regulatory network and the NF-�B
signaling pathway, sustained oscillations are observed in
single cells following activation signals �5–7�, while cell
population experiments only show damped oscillations
�8–10�. In both cases the core circuit consists of a negative
feedback loop, one of the most common network designs,
where the active transcription factor promotes the transcrip-
tion of its own repressor.

Stable oscillations are not trivially generated in a single
negative feedback loop �11�. A loop composed of only two
agents does not oscillate for plausible macroscopic equa-
tions. Sustained oscillations require at least three agents,
where the third one introduces a time delay that repeatedly
causes the system to overshoot or undershoot above and be-

low the steady state �12�. Some models achieve sustained
oscillations by introducing ad hoc time delays to reproduce
those that a system incurs when manufacturing the various
molecular components �9,13�. The dynamics can also be en-
riched by considering combinations of negative and positive
feedback loops �14–16�, bistable switches �17�, or by inher-
iting oscillatory signals from upstream regulators �10,13�.

In this paper we show that the stochastic fluctuations in
gene expression in a negative feedback loop can produce
sustained pulses of protein expression. It has been suggested
that protein fluctuations are driven by underlying messenger
RNA �mRNA� fluctuations �2,3,18�. We show that the
mRNA stochastic fluctuations can be amplified during trans-
lation and induce a sustained excitatory behavior character-
ized by a series of sustained anticorrelated pulses in the ex-
pression of the positive and negative regulators of the loop.

Noise-induced oscillations have already been found in
other systems. Oscillations in a circadian clock consisting of
a combination of a positive and a negative feedback loop are
enhanced by the intrinsic biochemical noise �14�. Resonant
amplification of the stochastic fluctuations can lead to cy-
cling behavior in the Volterra system �19� and in self-
regulatory genes �20�. Here, we show that a simple negative
feedback loop consisting of an activator protein and its re-
pressor is capable of producing protein pulses when the sto-
chastic fluctuations of the mRNA are taken into account.
This result does not rely on having a large number of mol-
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ecules or on the particular statistical properties of the noise,
neither depends on upstream pulsating signals or couplings
to additional loops.

Recently several experimental studies have shown that
gene expression occurs in bursts of transcriptional activity
�21–23�. These bursts are usually ascribed to random up-
stream events, such as chromatin remodeling or random pro-
moter transitions. Here, we demonstrate that sustained pulses
of protein expression can be produced merely by the stochas-
tic nature of mRNA kinetics.

In view of the crucial significance of mRNA fluctuations,
we asked ourselves how gene expression can be accurately
regulated in the noisy cellular environment. Regulation of
gene expression is a complex multilayered process that in-
volves many different players. Since their discovery more
than a decade ago, regulatory RNAs �termed “regRNAs” in
this paper� have emerged as key regulators in virtually all the
cellular processes studied to date. regRNAs are noncoding
RNAs that regulate gene expression by base pairing to a
partially or fully complementary mRNA target. Micro-RNAs
�miRNA� �24� and antisense RNA �25� are two examples of
regulatory RNAs.

In the mammalian genomes regRNAs often share the
same transcriptional regulation as their targets, giving rise to
a diversity of feed-forward loops �26,27�. Such pairs of tar-
get and regRNA transcripts are found to be coregulated, co-
expressed, or inversely expressed more frequently than ex-
pected by chance, presumably due to sharing of common
transcription factors �25,27–29�. In particular, some tran-
scription factors have been found to bind to overlapping tran-
script pairs, thus potentially coupling the regulation of a cod-
ing gene and its regRNA �26�. It was suggested that one
potential purpose of such a design is to filter transcription
noise �25�.

In this work we consider the case in which the positive
regulator in the loop transcribes both mRNA and regRNA.
The latter could be either a miRNA or an antisense. Addi-
tionally, we assume that the regulatory transcript binds to the
mRNA and prevents its translation, but without promoting its
degradation. We show that the presence of regRNA reduces
the excitability of the system by increasing its capacity to
buffer the noise.

II. MODELS

We consider three alternative designs of a negative feed-
back loop. The main loop is composed of a transcription
factor �the positive regulator P� and its repressor �the nega-
tive regulator N�. We assume that in response to some exter-
nal cellular signal, P has been activated and is promoting the
transcription of N. Two of the designs also model the tran-
script dynamics. In the three models, P is degraded at the
post-translational level via protein-protein interaction with N.
Schematic representations of the three models, as well as the
individual chemical reactions, are shown in Fig. 1. The de-
scription of the biochemical parameters and their range of
variation are summarized in Table I. The values adopted cor-
respond to typical mammalian cells.

A. Base model

The base model consists of the two protein regulators P
and N, and an mRNA transcript S. �The latter will be inter-
changeably referred to as “transcript,” “sense transcript,” or
“sense mRNA.”� P promotes the transcription of S, which in

FIG. 1. �Color online� Schematic representation of the reduced,
base, and extended models together with the chemical reactions.
The reduced model, making up the simplest feedback loop, consid-
ers only the production and degradation of the proteins �P� and �N�
and assumes that mRNA is in quasiequilibrium. The base model
includes mRNA dynamics by expanding the chemical reaction of
the production of N �solid red box�. The additional chemical reac-
tions describe the transcription of sense mRNA �S�, the translation
of N, and the degradation of S. Finally, the extended model puts into
play regulatory RNAs, R �dashed blue box�, by adding their tran-
scription, degradation, and the formation and degradation of a
sense-regRNA complex C.

TABLE I. Symbols used as parameters of the models, their val-
ues or range of variation, and their description.

Symbol
Value

�min−1� Meaning

� 200 Transcription factor �P� induction

�S 0.05–10 mRNA �S� induction

�R 0.01–20 Antisense �R� induction

� 0.05–50 Protein �N� translation

�ON 0.001–10 Sense-regRNA binding

�OFF 0.001–10 Sense-regRNA unbinding

�P 0.10 N-assisted decay of P

�S 0.03 Sense autodegradation

�R 0.03 regRNA autodegradation

�N 0.10 Protein �N� autodegradation

nS 3a Hill’s coeff., sense transcription

nR 1a Hill’s coeff., regRNA transcription

kS 500a Threshold, sense transcription

kR 300a Threshold, regRNA transcription

aDimensionless parameters.
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turn encodes for the negative regulator N. The deterministic
equations are

dP

dt
= � − �PNP , �1a�

dS

dt
= �S

PnS

PnS + kS
nS

− �SS , �1b�

dN

dt
= �S − �NN . �1c�

We assume that the cooperative binding of ns molecules of P
at the promoter site of N is required for efficient transcrip-
tion, and we model the transcription rate with a Hill’s func-
tion. The translation rate of N is proportional to the transcript
level S. Finally, the rate of the N-mediated degradation of P
is proportional to the concentration of both proteins.

B. Extended model: Incorporation of regulatory RNA

This model introduces a regRNA, denoted R, which tar-
gets S. P promotes the transcription of both S and R tran-
scripts. R regulates S by base pairing to it, thus creating a
hybrid S-R complex C. We assume that the complex mol-
ecule can unbind but not degrade, i.e., it returns to the system
both complementary RNA transcripts.

The set of equations describing the model is given by

dP

dt
= � − �PNP , �2a�

dS

dt
= �S

PnS

PnS + kS
nS

− �ONRS + �OFFC − �SS , �2b�

dR

dt
= �R

PnR

PnR + kR
nR

− �ONRS + �OFFC − �RR , �2c�

dC

dt
= �ONRS − �OFFC , �2d�

dN

dt
= �S − �NN . �2e�

The extended model contains 14 parameters described in
Table I. In this work we focus on analyzing how the temporal
behavior of the protein levels is influenced by the mRNA and
regRNA transcription rates, the translation rate, and the S-R
complex formation and destruction. Therefore, we systemati-
cally explored how the variation in �S, �R, �, �ON, and �OFF
affect the emergent system behavior. We maintained the re-
maining parameters constant throughout the simulations;
random exploration showed that changes in their values did
not affect the behavior of the system appreciably.

C. Reduced model: Neglected RNA kinetics

Finally, to isolate the effect of RNA fluctuations we con-
sider a reduced model where the RNA transcripts are as-

sumed to be in quasiequilibrium. From a molecular perspec-
tive, this model corresponds to the limit where the time
scales associated with RNA transcription and degradation are
much shorter than those associated with protein production
and degradation. Thus, the transcript levels adjust rapidly to
changes in P and N, and dS

dt �0 in Eq. �1b�. The equations
become

dP

dt
= � − �PNP , �3a�

dN

dt
=

��S

�S

PnS

PnS + kS
nS

− �NN . �3b�

III. NUMERICAL ALGORITHM AND DATA ANALYSIS

We modeled the stochastic behavior at the single-cell
level using the Gillespie algorithm �30�. To quantify the im-
portance of the stochasticity we solved the deterministic
equations and compared their trajectories with the stochastic
dynamics for each set of chemical parameters in all three
models. The deterministic equations always reached a steady
state, which is the same in all three models for a given set of
parameters. We chose this value as initial condition of the
stochastic simulations in order to minimize the initial tran-
sient period. Each single stochastic simulation represents a
possible cell realization, the equivalent of a single-cell ex-
periment in this description. To simulate the behavior of a
random distribution of cells, we computed 300 realizations
with different random seeds for each set of chemical param-
eters. The typical length of each simulation was 2000 min.

For each molecular species X, where X stands for P, N, S,

R, and C, we computed the average molecular count X̄
= �X�t��t �averaged across all simulations and over time� and
the coefficient of variation, V, defined as the ratio between
the standard deviation and the average level,

V�X� =
��X�t� − X̄�2�t

1/2

X̄
. �4�

V significantly increases with the amplitude of pulses of X;
therefore, it provides a general signature of the stochasticity
and strength of the pulsations for the three models.

To identify the pulsating dynamics in more detail, we
computed the normalized autocorrelation function �31�,
given by

C��� =
��X�t� − X̄��X�t + �� − X̄��t

��X�t� − X̄�2�t

. �5�

The autocorrelation function for each model and parameters
was averaged over 300 realizations of the initial conditions.
Additionally, we compared the results of the autocorrelation
with the power spectrum, defined as S�k�= �F�k�F�−k��,
where F�k� is the Fourier transform of X�t� and �¯ � denotes
average over realizations.
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IV. RESULTS

Figure 2 provides a snapshot of the stochastic behavior of
the three models. For each model, an example of a typical
simulation is shown on the left panels, while the correspond-
ing correlation functions and power spectra �averaged over
300 runs� are depicted on the right panels. Overall, the base
model is characterized by a clear excitatory behavior in the
positive regulator P. This is confirmed by the peaked corre-
lation function, which provides a characteristic period of the
pulses. At the other extreme, the reduced model completely
lacks pulses, and the correlation function rapidly decays to
zero. Finally, the extended model shows a more complex
behavior: the time evolution is characterized by a combina-
tion of short pulses and long-term fluctuations. The correla-
tion function has a smooth oscillating shape that corresponds
to the long-term fluctuations, and a characteristic period of
the pulses cannot be identified. The detailed description of
the results for each model, as well as an analysis of the
conditions for the presence or lack of excitations, is provided
next.

A. Stochastic fluctuations of RNAs can produce pulses
of protein expression

We first considered the base network �Eqs. �1��, which
contains the positive regulator P, the mRNA S, and the nega-
tive regulator N. Figure 2�a� shows the outcome of a typical
stochastic simulation. For comparison, the P deterministic
value is also shown. The stochastic and deterministic simu-
lations exhibited remarkable differences. While the determin-
istic concentration was locked in a steady state, the stochas-
tic integration showed a sustained excitatory behavior, where
P and N were expressed in a series of anticorrelated pulses.
The presence of regular pulses of protein expression in the
base model is revealed by the autocorrelation function C���
of P, as shown in the right panel in Fig. 2�a�. The autocor-
relation presents a pulsating behavior that provides quantita-
tive information about the dynamics of the system. The nega-
tive anticorrelation peak indicates the characteristic width of
the pulses, around 25 min. The first positive peak provides
the characteristic interval between consecutive pulses,
around 100 min, and that is in agreement with the maximum
in the power spectrum.

FIG. 2. �Color online� Examples of stochastic simulations in the �a� base, �b� reduced, and �c� extended models. Left panels: copy number
of P �thick green line�, N �dotted blue line�, and mRNA �black line�. The average P copy number �dashed green line� is compared to the
deterministic trajectory of P �solid red line�. For clarity, their average values are indicated on the right. The vertical dashed lines in �a�
illustrate the correlation between pulses of N and mRNA. Right panels: detail of the corresponding autocorrelation functions C��� and power
spectra S�k� �inset�, averaged over 300 runs.

RODRÍGUEZ MARTÍNEZ et al. PHYSICAL REVIEW E 81, 031924 �2010�

031924-4



Minimal transcription and translation rates of the negative
regulator N were required to identify an excitatory behavior
with an observable pattern, as illustrated in Fig. 3. Below
minimal values of � and � the amount of N was insufficient
to implement an effective negative feedback: the pulses of
protein expression became irregular, while the average inter-
val between consecutive pulses increased. At extremely low
transcription and translation rates the pulses disappeared al-
together. Above these extreme conditions we observed that in
general a characteristic interpulse period emerges in the base
model for all tested sets of parameters �Fig. 3�. The autocor-
relation shows clear peaks that provide a characteristic pe-
riod. The average period depends on the transcription and
translation rates, and ranges between 30 and 200 min for
realistic rates.

The origin of the pulses can be understood by observing
the mRNA time trace. As shown in Fig. 2�a�, the mRNA is

transcribed in a series of micropulses that are subsequently
amplified during translation and inherited by N. The strong
correlation between the pulses of mRNA and N is evident in
the figure.

We also observed a strong correlation between the mRNA
interpulse time lags and the typical width of the pulses of P.
As seen in Fig. 2�a�, P only reached significant levels after a
substantial decay in N prior to a new pulse of N. Therefore,
the typical length of the P pulses depends on the decay time
of N, which has been taken to be around 5 min �32�. The fast
N degradation also explains the small width of P pulses com-
pared to the typical time gap between consecutive pulses.

Finally, we note that the excitatory behavior of the net-
work crucially depends on having a low number of mRNAs.
In the base model, the average number of mRNA copies was
below 5 for most of the explored parameter space �Figs. 4
and 5�. This low average value is in agreement with mea-
surements of transcripts copy number in mammalian cells,
where it was found that many transcripts are present in less
than one copy per cell on average �33�.

1. Comparison with the reduced model: The importance
of the mRNA stochastic fluctuations

To further test the impact of the mRNA stochastic dynam-
ics, we considered an alternative circuit design, the reduced
model �Eqs. �3��, where the mRNA was assumed to be in
quasiequilibrium and therefore was not explicitly included in
the circuit. Figure 2�b� shows an example of stochastic simu-
lation run with the same biochemical parameters as the base
model in Fig. 2�a�. The protein dynamics was considerably
different in both models. While the pulses were clearly
present in the base model, no trace of pulses could be found
in the reduced model. Similar conclusions are reached by
comparing the autocorrelation and power spectrum in both
models.

As opposed to the base model, intrinsic mRNA fluctua-
tions were not allowed in the reduced model. Hence, the

FIG. 3. �Color online� Color map of the characteristic P inter-
pulse interval for the base model as a function of the transcription
and translation coefficients ��S and �, respectively�. A sustained
excitatory behavior with a characteristic period appears once mini-
mum translation and transcription rates are attained. The four sur-
rounding plots, whose corresponding ��S ,�� values are indicated
with dots on the color map, illustrate the behavior of the autocor-
relation function C���, averaged over 300 runs, for four extreme
combinations of transcription and translation rates. Except for very
low transcription and translation rates, the autocorrelation C���
shows peaks of correlation that identify the characteristic interpulse
interval.

FIG. 4. �Color online� Ratio between the P stochastic level av-
eraged over time and over 300 simulations and the P deterministic
steady state in the base model, as a function of the transcription and
translation rates. Contour lines show equal stochastic levels of P
�solid black line�, N �dashed white line�, and mRNA �dotted red
line�. The black cross indicates the location of the example shown
in Fig. 2�a�.
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protein levels showed very uniform patterns with only small
deviations around the deterministic steady state. The protein
levels were also characterized by a very small coefficient of
variation. The latter is in agreement with the experimental
evidence that, when the contribution of external factor affect-
ing cell-to-cell variability is subtracted, noise in protein ex-
pression is dominated by the stochastic production and de-
struction of mRNAs �2,3�. We stress that both networks were
simulated with the same algorithm, kinetic parameters, and
initial conditions.

An additional difference between both models was given
by the average of the stochastic simulations. The average,
which provides an insight into cell population dynamics,
converged toward the deterministic trajectory in the reduced
model, but not in the base model. The deviation in the base
model became especially important at low transcription
rates.

Figure 4 shows the ratio of the stochastic P copy number
�averaged over time and over 300 simulations� and the de-

terministic steady state. For transcription rates below 0.1
transcript/min, the deterministic description clearly underes-
timated the real circuit behavior. The fact that the divergence
appeared at low transcription rates, and that it was absent in
the reduced model, hints at the mRNA stochastic dynamics
as the source of this divergence. This is another interesting
example of a biological network presenting a deviation be-
tween the stochastic average and the deterministic equations.
Such deviations are commonly expected in nonlinear sys-
tems and/or systems containing a small number of mol-
ecules, although more generic systems can also present large
deviations �34�.

2. Noise is minimized at high transcription
and low translation rates

To achieve a given protein concentration an organism can
adopt diverse strategies characterized by different transcrip-
tion and translation rates. One strategy consists of producing
a few mRNA transcripts and translating them efficiently. Al-
ternatively, the organism can transcribe a larger number of
transcripts and translate each one of them inefficiently. The
former strategy is energetically favorable since a lower num-
ber of transcripts have to be produced; however, it was sug-
gested that it may lead to a noisier pattern of protein expres-
sion �35�.

In order to determine the influence of these two strategies
on noise, we ran simulations for different transcription and
translation rates in the base model. For each set of param-
eters we computed the coefficient of variation �Eq. �4�� as
shown in Fig. 5. As a visual help we also plotted curves
corresponding to equal average levels of P, N, and S. Ex-
amples of stochastic simulations at some extreme values are
shown in the figure, as well.

Two axes of variation can be roughly identified. Along the
main diagonal �from the bottom left to the upper right cor-
ner� the average level of N grows as the transcription and
translation rates increase. The opposite behavior is seen for
P, reflecting the negative feedback loop between both pro-
teins. At the same time, the coefficient of variation of P
remains practically constant along this axis. Along the other
diagonal the coefficient of variation of P changes from a
minimum at high transcription and low translation rates and
reaches a maximum at low transcription and high translation
rates. This behavior is seen for the coefficient of variation of
N as well �data not shown�. We also observed that higher
levels of noise are obtained when the average number of
mRNA transcripts is low, and vice versa �see the dotted red
equi-�S� lines in Fig. 5�, demonstrating the importance of the
mRNA fluctuations to the excitatory behavior.

Experimental measurements of protein expression reveal
that in many cases the variance in protein levels is roughly
proportional to the mean. This trend is usually explained in
terms of an increase in the transcription noise with the ex-
pression level �2,3�. Yet, some genes are observed to deviate
from this scaling law.

Our results show a general agreement with the previous
observation; at a fixed transcription rate, the noise increases
with the expression level. However, our results also show
that noise fundamentally depends on the interplay between

FIG. 5. �Color online� Color map of the coefficient of variation
of P in the base model, as a function of the transcription and trans-
lation coefficients ��S and �, respectively�. Contour lines show
equal average stochastic levels of P �solid black line�, N �dashed
white line�, and mRNA �dotted red line�. P exhibits maximum co-
efficient of variation at low �S and high �. The black cross indicates
the position of the example shown in Fig. 2�a�. The four plots
illustrate the P�t� behavior for four different values of the coeffi-
cient of variation, showing that the pulsating behavior of P is maxi-
mum at high translation rates �.

RODRÍGUEZ MARTÍNEZ et al. PHYSICAL REVIEW E 81, 031924 �2010�

031924-6



the transcription and translation rates. For instance, along the
lines of constant protein levels the coefficient of variation
reaches a maximum at low transcription and high translation
rates. This suggests that the variability in protein expression
depends not only on the average expression level, but also on
the ratio of transcription versus translation efficiency. Addi-
tional factors such as nonlinear regulatory loops �as in our
model system� may also lead to deviations from the scaling
rule.

B. Regulatory RNA filter transcription noise

We want to address here the question of how the presence
of a regRNA transcript, which targets the mRNA transcript S,
modifies the excitatory behavior inherited from the mRNA
stochastic fluctuations. Figure 2�c� shows a typical stochastic
simulation of the extended model that includes a regRNA,
run with the same biochemical parameters as the base model
�Fig. 2�a��. While pulses of protein expression were present
in both networks, the extended model �Eqs. �2�� showed
broader peaks with significantly lower amplitude relative to
the average expression. A comparison of the autocorrelation
in both models showed a weaker spiky behavior in the ex-
tended model. Similarly, while the power spectrum shared a
similar trend with the base model, it lacked the clear maxi-
mum present in the latter one.

The deterministic levels of P �red line� are also shown for
both models in Fig. 2. While none of the systems was cor-
rectly described by the deterministic solution, the departure
from the deterministic dynamics was smaller in the model
with regRNA. This suggests that, in the presence of a
regRNA molecule, the individual cell’s dynamics is more
robust to transcript fluctuations, hence leading to a reduced
cell-to-cell variability.

To verify that the reduced excitability in the extended
model is due to the action of the regRNA, we tested the
dynamics of the extended model at different regRNA tran-
scription rates and compared it with the base model dynam-
ics. If our hypothesis is correct, the two systems should show
differences in their excitatory dynamics as the amount of
regRNA increases. Simulations started at a minimum sense
transcription rate of 0.1 transcript/min in order to have a
sufficient amount of N for the effective repression of P. At
low regRNA copy numbers, the coefficient of variation was
maximized at low sense transcription rate, in agreement with
the qualitative behavior of the base model �Fig. 6�a��. How-
ever, at a high regRNA copy number �above 15 transcripts�,
the coefficient of variation became independent of the sense
transcription rate.

The origin of this difference becomes clear when one ob-
serves the time traces of the different RNA transcripts in both
models. Figure 6�b� shows the mRNA time trace in the base
model, where no regRNA is present in the system. Clear
mRNA micropulses with a typical length on the order of the
mRNA half-life are observed. These micropulses are ampli-
fied during translation, producing the observed pulses of pro-
tein expression. An equivalent plot for the extended model
�Fig. 6�c�� reveals a completely different dynamics. The re-
gRNA serves as a capacitor: it sequesters sense mRNA when

there are copies available and releases them back when there
are none. Since the typical binding and unbinding rates are
much faster than the RNA half-life, this sequester and release
process is repeated many times during a typical mRNA mi-
cropulse, effectively erasing memory from any previous
mRNA stochastic state. For completeness, Fig. 6�c� also
shows the concentrations of sense, regRNA, and sense-
regRNA complex. Notice also that the average mRNA con-
centration is significantly closer to the deterministic trajec-
tory in the extended model, which evidences the reduction in
the stochastic fluctuations in the network.

Based on these observations we conclude that the re-
gRNA is able to filter out some of the stochastic fluctuations
and induce a smoother protein expression pattern. Such a
noise dampening capacity was predicted before in a circuit in
which a shared transcription factor regulates a pair of sense
and a highly expressed antisense transcript �25�.

The filtering capability of the regRNA depends crucially
on having fast coupling rates between both RNA strands.
Figure 7�a� shows the coefficient of variation of P in the
extended model as a function of the sense-regRNA binding
and unbinding rates, and for two different values of the re-
gRNA transcription rate.

The lowest coefficient of variation is reached in the panel
with a higher regRNA transcription rate. Figure 7�a� also
shows curves of equal amount of sense S, regRNA R, and
S-R complex. In both panels the minimum coefficient of
variation was reached as a trade-off between having fast
binding and unbinding dynamics and having the highest
number of regRNA molecules �magenta line�. We conclude
that the noise buffering capability needs both a sufficient
number of regRNA transcripts and a fast kinetics to be effi-
cient. This is clearly illustrated in Fig. 7�b�, which shows
examples of stochastic simulations for different combina-
tions of binding and unbinding rates, and for two extreme
values of the regRNA transcription rate �R. Indeed, there is
practically no buffering for low regRNA numbers �left pan-
els�, and the time evolution of both P and N shows a pulsat-
ing behavior even at large binding dynamics. On the con-
trary, for high regRNA numbers �right panels�, such a
pulsating behavior is observed only at very low binding dy-
namics to rapidly disappear as soon as the binding-unbinding
kinetics, and therefore the buffering capacity, increases.

V. DISCUSSION

We have analyzed the response of three different network
architectures of a feedback loop and we have observed re-
markable differences among them that emerge from the RNA
dynamical description. The fluctuations inherited from the
transcription process can be amplified during translation and
produce pulses of protein expression. The deterministic ap-
proach fails to describe such dynamics both at the single-cell
level, where no trace of excitatory behavior is observed, and
at the cell distribution level, where the deterministic steady
state underestimates the protein levels.

Deviations between the stochastic average and the deter-
ministic equations may have different origins �34�. In our
case the difference emerges as a result of the nonlinear terms,
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FIG. 6. �Color online� Buffering role of the regRNA in the extended model. �a� Color map of the coefficient of variation of P in the
extended model, as a function of the sense and regRNA transcription coefficients ��S and �R, respectively�, with �=10. Contour lines show
equal average levels of P �solid black line�, mRNA �dotted red line�, and regRNA �dashed yellow line�. The coefficient of variation is
maximized at low transcription rates. The black cross indicates the location of the example shown in Fig. 2�a�. �b� Example of the mRNA
variation �black� for a stochastic simulation of the base model with �S=2.4 and �=5.0. The dotted black and the dashed red lines show,
respectively, the average mRNA concentration and the mRNA deterministic trajectory. �c� Top: mRNA concentration �black� for a stochastic
simulation of the extended model with identical parameters and �R=2.0. The mRNA average value is shown with the dotted black line, and
the mRNA deterministic trajectory is indicated with the dashed red line. Bottom: concentrations of sense mRNA �S, thin black line�, regRNA
�R, dotted brown line�, and S-R complex �C, thick cyan line�. The right panels show schematic representations of the base and extended
models.

RODRÍGUEZ MARTÍNEZ et al. PHYSICAL REVIEW E 81, 031924 �2010�

031924-8



FIG. 7. �Color online� Effect of the binding-unbinding rates on the filtering capability of the regRNA. �a� Color maps of the coefficient
of variation of P as a function of the binding and unbinding coefficients ��ON and �OFF, respectively� of the sense and regRNA in the
extended model. Data are shown for two different regRNA transcription rates �R. Sense transcription and translation rates are maintained
constant. The contour lines show equal average stochastic levels of sense molecules �S, solid black line�, regRNA �R, dotted pink line�, and
complex �C, dashed white line�. For �R=0.01 min−1 the number of regRNA is almost constant and only the average value is shown. �b�
Examples of P �thick green line� and N �dotted blue line� stochastic simulations for two different values of regRNA transcription rate �R, and
for four different combinations of complex binding ��ON� and unbinding rate ��OFF�. The sketch in the top right of each panel indicates the
location of the examples shown in �a�. The value underneath each sketch shows the corresponding coefficient of variation.
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which induce correlations that are not present in the deter-
ministic framework. These correlations become particularly
important at low mRNA levels, where the largest deviation is
observed. Indeed, several works in the literature point at the
possibility of having very few transcripts per cell, in some
cases, less than 1 on average �36�. At such low copy num-
bers, our findings stress the importance of using stochastic
models to accurately describe the network dynamics.

The excitatory behavior was observed only after simulat-
ing the circuit dynamics with the Gillespie algorithm �30�.
There are alternative methods to model stochastic fluctua-
tions. The Langevin approach, for instance �37�, adds a small
stochastic term to the continuous deterministic equations to
account for noise. This approach is not suitable in our system
because of the strong RNA fluctuations that prevent the char-
acterization of a smooth continuous background. An alterna-
tive approach is based on the linear noise approximation of
the master equation �38�. It assumes that the system contains
a large number of particles and models noise as a continuous
linear Gaussian perturbation. This linearized description has
been applied to processes involving two molecular species
�39�. Opposed to the linear approaches, the Gillespie algo-
rithm provides a simple yet powerful method to obtain sto-
chastic and dynamical solutions compatible with the full
master equation. It does not require external assumptions on
the noise, the number of molecules and species, or the dy-
namical regime of the system.

The protein pulses originate in the RNAs stochastic fluc-
tuations. This result is supported by the observed correlation
between the typical protein pulse length or frequency and the
mRNA fluctuations, as shown in Fig. 2. Additional evidence
is provided by the fact that when the RNA intrinsic random-
ness is neglected, the stochastic behavior converges toward
the deterministic concentration. These results are in agree-
ment with experimental evidences that mRNA fluctuations
are a fundamental source of noise in protein expression �2,3�.

To produce a given average protein concentration the cel-
lular machinery may choose among different transcription
and translation rates. Minimized variability among cell popu-
lation is obtained with a combination of high transcription
and low translation rates, as shown in the case of an auto-
regulated gene in steady state using a linearized stochastic
model �18�. Our results generalize this observation. We have
analyzed a dynamical stochastic negative feedback loop and
found, similarly, that noise is minimized at high transcription
and low translation rates, as shown in Fig. 5.

The presence of a noncoding regRNA may help buffering
the mRNA fluctuations while allowing the cell to maintain
low rates of transcription. In this work we have considered a
regRNA that binds the sense transcript and sequesters it from
the cellular environment, thus preventing its translation. A

regRNA molecule sequesters mRNA when there are some
coding transcripts available in the medium and releases them
back when there are none. If this process is repeated suffi-
cient number of times during a typical mRNA half-life, the
memory of previous states inherited from the transcription
process can be erased and, therefore, noise can be partially
buffered. In this way, regRNA contributes to reduce the tem-
poral variability at the single-cell level and, consequently,
also the cell-to-cell variability. A requisite for this mecha-
nism to work efficiently is fast binding and unbinding �com-
pared to the typical RNA lifetime� between the regulatory
RNA and its target mRNA, as shown in Fig. 6. As a result of
this buffering, the extended model is less excitable. The cir-
cuit still shows pulses, yet compared to the base model
where there is no regRNA, the pulses are broader, of smaller
amplitude, and they appear at a lower frequency.

A prime example of an oscillating negative feedback loop
is provided by the p53-mdm2 regulatory network. This sys-
tem has been shown to oscillate at the single and cell popu-
lation levels �sustained oscillations versus damped oscilla-
tions, respectively� �8,9�. The maintenance and shape of the
oscillations have been linked to two upstream signaling ki-
nases as well as to an additional negative feedback loop �10�.
Interestingly however, a single nucleotide polymorphism
�SNP309� found in the mdm2 promoter that results in higher
levels of mdm2 mRNA and protein �40� has been shown to
disrupt the oscillations of p53 and mdm2 proteins �41�. This
finding supports the idea that RNAs could play an important
role in the oscillatory dynamics in this network, as a high
number of mdm2 mRNAs would minimize the importance of
the intrinsic stochastic fluctuations, and thus attenuate the
pulses of protein expression.

While this work has considered a negative feedback loop,
the mechanism that we have described is more general and
applies to a wide variety of regulatory networks. We have
shown that the RNA dynamics is a fundamental source of
intrinsic noise, suggesting that a realistic description of ge-
netic networks requires the stochastic modeling of the tran-
scription stages of protein expression.
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