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SUMMARY

The translation machinery and the genes it decodes
co-evolved to achieve production throughput and
accuracy. Nonetheless, translation errors are
frequent, and they affect physiology and protein evo-
lution. Mapping translation errors in proteomes and
understanding their causes is hindered by lack of a
proteome-wide experimental methodology. We pre-
sent the first methodology for systematic detection
and quantification of errors in entire proteomes.
Following proteome mass spectrometry, we identify,
in E. coli and yeast, peptides whose mass indicates
specific amino acid substitutions. Most substitutions
result from codon-anticodon mispairing. Errors
occur at sites that evolve rapidly and that minimally
affect energetic stability, indicating selection for
high translation fidelity. Ribosome density data
show that errors occur at sites where ribosome ve-
locity is higher, demonstrating a trade-off between
speed and accuracy. Treating bacteria with an ami-
noglycoside antibiotic or deprivation of specific
amino acids resulted in particular patterns of errors.
These results reveal a mechanistic and evolutionary
basis for translation fidelity.

INTRODUCTION

Genetic information propagation is subject to errors in DNA repli-

cation, transcription, and translation. DNA replication typically

manifests the highest fidelity, featuring a mutation rate on the or-

der of 10�9–10�10 per nucleotide per genomedoubling (Lee et al.,

2012; Zhu et al., 2014). ‘‘Phenotypic errors’’—i.e., errors in

transcription and translation—occur at a considerably higher

rate. The bacterial RNA polymerase misincorporation rate

is 10�4–10�5per nucleotide (TraverseandOchman, 2016). Amino
M

acid substitutions rates are higher, estimated to be 10�4–10�3

per incorporated residue (Kramer and Farabaugh, 2007).

Translation errors can result either from the charging of a tRNA

with the wrong, ‘‘non-cognate’’ amino acid (synthetase error or

‘‘mischarging’’) or from the ribosome failing to discriminate

against imperfect codon-anticodon complexes in its A-site (ribo-

some error or ‘‘mispairing’’). The accuracy of both processes is

amplified by kinetic proofreading (Hopfield, 1974; Ninio, 1975),

a general mechanism that, through an irreversible energy-

consuming step, allows discrimination levels that are inacces-

sible at thermodynamic equilibrium. Theoretical models have

demonstrated that proofreading is subject to an inherent trade-

off between speed, accuracy, and energetic cost (Wohlgemuth

et al., 2011; Chen et al., 2016; Banerjee et al., 2017).

The resources cells invest to ensure that proteins function

properly indicate that errors during protein synthesis strongly

affect fitness. Proteins that are translated with errors can mis-

fold, aggregate, be engaged with wrong interactions, and

saturate the protein quality control machinery, resulting in pro-

teotoxic stress (Drummond and Wilke, 2009) and diseases;

e.g., in aging (Lee et al., 2006; Lindner andDemarez, 2009; Kapur

and Ackerman, 2018). Conversely, some errors might be advan-

tageous. Moderate levels of methionine misacylation on non-

methionine tRNAs can provide a fitness advantage in oxidative

stress in bacteria and humans (Netzer et al., 2009; Jones et al.,

2011; Wiltrout et al., 2012). High error rates allow a parasitic

yeast to increase its adherence and evasion of immunity

(Miranda et al., 2013). Mistranslation is beneficial in response

to environmental stresses because it disseminates phenotypic

viability in surface proteins (Miranda et al., 2013). On an evolu-

tionary timescale, phenotypic errors might open evolutionary

paths otherwise precluded by epistatic interactions (Whitehead

et al., 2008), and they may facilitate purging of deleterious muta-

tions (Bratulic et al., 2017). Natural selection constrains the iden-

tity of codons at evolutionarily conserved positions, suggesting

that evolution favorsmore accurate codons at these sites (Drum-

mond and Wilke, 2008).

These profound biological implications of translation fidelity

reveal the need to measure translation accuracy per site per
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protein throughout proteomes under diverse life conditions.

However, although the rates of DNAmutation and RNA polymer-

ase errors are now quantifiable thanks to sequencing, errors in

protein translation have remained elusive at the proteome-wide

level. An early effort by Edelmann and Gallant (1977), who

directed at cysteine misincorporation in E. coli’s flagellin, sug-

gested an error occurring every 10,000 amino acids. Lumines-

cent reporters allowed quantitative tracking of mistranslation at

defined positions within these reporter genes (Kramer and Fara-

baugh, 2007; Kramer et al., 2010). These methods have high-

lighted the importance of codon-anticodon recognition and

tRNA competition as determinants of these error rates.

However, current methods only estimate an averaged error

rate for entire proteomes, and, hence, major questions remain

open. Accurate and broad measurements of error rate per pro-

tein per position would reveal whether error rates change within

and between proteins. This would shed light on the relative

contribution of tRNA synthetases and ribosomes to translation

errors. Detecting and quantifying amino acid substitutions

across the proteome may reveal evolutionary constraints

imposed by translation infidelity and whether and how overall

translation fidelity responds to environmental and genetic pertur-

bations and allow us to find out whether organisms modulate er-

ror levels locally.

Mass spectrometry (MS)-based proteomics enable routine,

high-throughput characterization of proteomes and common

post-translational modifications (PTMs) and has been described

as an upcoming tool for the study of protein mistranslation

(Drummond and Wilke, 2009). Proteomics have been harnessed

to detect various substitutions from several purified recombinant

proteins (Zhang et al., 2013) and to track the incorporation of nor-

valine at leucine positions in E. coli mutants (Cvetesic et al.,

2016). However, MS has yet to be harnessed for the systematic

study of amino acid substitutions on a proteome-wide scale.

Such a study has so far been hindered by the low abundance

of substitutions compared with other natural and post-transla-

tional protein modifications and a much larger search space.

Here we performed a deep proteomics analysis to detect and

quantify translation errors in E. coli under normal and perturbed

conditions, repurposing the MaxQuant algorithm (Cox and

Mann, 2008) from its typical PTM analysis to identify mass shifts

in peptides that result from amino acid substitutions. We then

validated these identifications using a set of independent

analyses that included a shift in high-pressure liquid chromatog-

raphy (HPLC) retention time because of a change in hydropho-

bicity of the encoded amino acid. Our dataset of translation error

events allowed us to start unraveling the mechanistic basis and

evolutionarily selective forces that shape translation errors and

fidelity. We found that most errors result from mispairing be-

tween codons and near-cognate tRNAs, mostly within the A

site of the ribosome. We derived the amino acid error spectrum

of each codon in the genetic code to deduce patterns of codon

mispairing at each of its three codon positions.We found that the

aminoglycoside drug affects the error pattern and revealed that it

mainly causes errors because of mispairing at the third codon

position. By depriving cells of particular amino acids, we

observed misincorporation of specific amino acids instead of

the depleted ones. In addition, comparing the substitutions
428 Molecular Cell 75, 427–441, August 8, 2019
spectra between yeast and bacteria revealed a similar error

pattern, probably reflecting shared chemical constraints. Finally,

we found that errors are allowed to occur more frequently at

evolutionarily rapidly evolving sites, at protein structure sites in

which mutations are more tolerated energetically, in lowly ex-

pressed proteins, and in positions along mRNAs in which the

ribosome progresses more rapidly.

RESULTS

A Pipeline to Confidently Identify Amino Acid
Substitutions in a Proteome
MS enables identification of peptides within complex samples.

From a computational point of view, amino acid substitutions

can be regarded as a particular case of PTMs, many of which

are now routinely studied at the proteome level. However, the

standard database search algorithm is not suitable for large-

scale detection of substitutions. Assuming peptides of an

average length of 10 amino acids, there would be on the order

of 200 times more singly modified than canonical peptides to

search for, leading to impractical search times and a consider-

able loss of statistical power.

Blind modification searches (Tsur et al., 2005; Savitski et al.,

2006; Na et al., 2012) offer a way to identify modified peptides

without requiring the user to enter a list of predefined modifica-

tions. They rely on the observation that modified peptides are

usually less abundant than their unmodified counterparts and

are therefore only likely to be present in the sample if their corre-

sponding unmodified peptide has already been detected. We

thus adapted MaxQuant (Cox and Mann, 2008), developed for

the analysis of PTMs, to identify mistranslated peptides using

its ‘‘dependent peptide search’’ algorithm (Figure 1A). Depen-

dent peptides are defined as peptides that show mass shifts in

comparison with the unmodified, genome-encoded ‘‘base pep-

tides’’ (Figure 1B). We applied a series of filters to the list of iden-

tified dependent peptides to stringently remove known PTMs

and known artifacts and conservatively retain only amino acid

substitutions (STARMethods). A full dataset of all identified sub-

stitution errors can be found in Table S1 and Table S2.

Most of the High-Quality Hits Are Bona Fide Amino Acid
Substitutions
Aiming to identify translation errors in E. coli, we generated deep

proteomics profiles that would allow detection of the rare

mistranslation events. In total, we generated error maps of 10

samples, each in two replicates (STAR Methods). First, we

grew wild-type E. coli cells (MG1655) in defined medium (3-(N-

morpholino)propanesulfonic acid [MOPS] complete, 37�C) in

biological duplicates, harvested cells at three time points—two

time points during the exponential phase (t1 optical density

[OD],�0.5; t2 OD,�1.5) and one time point during the stationary

phase (t3 OD,�2.3)—and used our pipeline to detect amino acid

substitutions. Mass spectrometers sample, in priority, the most

abundant peptides for MS2 fragmentation. Because we expect

translation errors to be present at a much lower level than their

corresponding error-free peptides (Figure S1), we fractionated

our samples to reduce their complexity and increase the

chances of sampling low-abundance peptides. We separated



Figure 1. A Computational Pipeline to Confidently Identify Amino Acid Substitutions from Mass Spectrometry Data

(A) Overview of the pipeline. For a detailed description of the different steps, see STARMethods. Numbers indicate the number of peptides identified in each step

of the pipeline.

(B) TheMaxQuant-dependent peptide search performs exhaustive pairing of unidentified spectra to a spectral library derived from the identified spectra. For each

pair of (identified, unidentified) spectra of the same charge z and found in the same fraction, the algorithm first computes the mass difference Dm =munidentified �
midentified. It simulates, in silico and sequentially, the addition of a single moiety of mass Dm at any position in the identified peptide and generates the corre-

sponding theoretical spectrum for the modified peptide. These spectra are then compared with the experimental spectrum using MaxQuant Andromeda’s score

formula. The pair with the highest score is retained, and the significance of the match is assessed using a target-decoy false discovery rate (FDR) procedure.

(C) The observed retention time shift induced by our set of substitutions is accurately predicted by a simple sequence-based retention time model.
proteins into a high-solubility and a low-solubility fraction (Khan

et al., 2011) that could be enriched with error products and

further fractionated each cellular fraction into five chemical frac-

tions by strong cation exchange (SCX) chromatography.

Given mass differences detected between a pair of base and

dependent peptides, we must first establish that they represent

bona fide amino acid substitutions and not methodological arti-

facts and examine the possibility that they may represent PTMs

with exactly the samemass difference.We took advantage of the

fact thatmany amino acid substitutions result in a change of pep-

tide hydrophobicity and that they should hence result in retention

time shifts during liquid chromatography (LC). The retention time

of a peptide can be predicted with high accuracy (R2 > 0.9) as the

sum of the hydrophobicity coefficients of its amino acids (Moruz

and K€all, 2017). Therefore, the predicted HPLC retention time of

the substituted amino acid can be computed and compared with

the observed retention time recorded for the substituted peptide.

We trained a retention time prediction algorithm (Goloborodko

et al., 2013) on a list of identified unmodified peptides and

used it to generate an expectation of the retention time shift

induced by the substitutions (Figure S2). We compared this
expectation with the observed retention time shift for each of

the detected substitutions (Figure 1C), revealing a good agree-

ment, indicating that we typically correctly identify amino acid re-

placements. Because MS2 spectra are systematically recorded

for highly abundant parent ions, our sampling strategy is biased

toward detection of substitutions originating from highly abun-

dant peptides (Figure S1). We devised a procedure (Figure S5)

that estimated that approximately 8% of the substituted pep-

tides detected by the pipeline are likely un-annotated PTMs or

artifacts.

We define a substitution as a combination of a position in a

protein, characterized by an ‘‘origin’’ amino acid, its associated

codon, and a ‘‘destination’’ amino acid. We then divide substitu-

tions into two sets: a near cognate error (NeCE) is defined to be

the case when the error-bearing codon of the origin amino acid

matches (any) two of three bases of at least one of the codons

of the destination amino acid, and a non-cognate error (NoCE)

is defined to be the case when none of the codons of the wrongly

incorporated amino acid match, with one mismatch, the codon

of the original amino acid (cases in which the original codon

matched one of the destination codons by two nucleotides but
Molecular Cell 75, 427–441, August 8, 2019 429



the destination codon does not have a perfectly matched

cognate tRNA in the organisms’ genome were also considered

as NoCE). For example, a substitution from serine encoded by

AGC into an asparagine is considered a NeCE because one of

the codons encoding asparagine, AAC, represents a single

mismatch (A instead of G at the second position); in contrast,

substitution of a cysteine encoded by a UGU into an alanine

must be a NoCE. The structure of the genetic code dictates

that, of all detectable codon-to-amino acid substitutions, 30%

are expected to be of the NeCE type. In stark contrast, in our

data of detected substitutions, 64% of the unique substitutions

with the core E. coli dataset (wild-type, MOPS complete) are

classified as NeCE. Such enrichment for NeCE serves as an indi-

cation that we inspect genuine amino acid substitutions.

The ribosome uses small differences in free energy between

correct and incorrect codon-anticodon matches to select tRNAs

andhasbeen shown togenerateNeCEsatmuchhigher rates than

NoCEs (KramerandFarabaugh,2007).During loadingof anamino

acid by an aminoacyl-tRNA synthetase, an error can stem from

the choice of an incorrect tRNA or loading of an incorrect amino

acid. Because the majority of synthetases assess the identity of

the tRNA by probing the bases of the anticodon, this first mecha-

nism of error is also likely to generate mostly NeCEs. However, if

the error results from loading of the wrong amino acid, then there

should be a priori no preference for NeCEs over NoCEs. We will

consider NoCEs as more likely to stem from a synthetase error,

and we will examine below the notion that the majority of NeCEs

indeed represent mRNA-tRNA mispairing events.

The E. coli Amino Acid Substitution Landscape
We generated 613 20 codon-to-amino acid matrices that depict

the prevalence of each type of amino acid misincorporation (Fig-

ures 2AandS3). The i,jth entry in thematrix depicts thenumbersof

unique peptides in the proteome in which amino acid j was found

to be misincorporated instead of an amino acid encoded by

codon i. Because leucine and isoleucine share the same mass,

we cannot distinguish them as error destinations. Furthermore,

substitution types that transform a codon into its cognate amino

acid or that involve a stop codon or substitutions that cannot be

detected using our method because they represent a mass shift

that corresponds precisely to the mass shift and specificity of a

known PTM were discarded from subsequent analyses, and

they were grayed out in this graphical depiction (STARMethods).

Even upon normalization of substitution counts to codon usage,

the matrices only have minor changes (data not shown).

The substitution matrix is highly structured, and some substi-

tutions appear to be much more prevalent than others. In partic-

ular, we observe that the codon used to encode an amino acid

position determines error patterns at the corresponding site.

This is nicely illustrated with substitutions from Gly to Asp and

Glu. When Gly is encoded by the GGC codon, the frequent sub-

stitution destination is the near-cognate Asp (which can be en-

coded by GAC), whereas encoding Gly with GGA often results

in substitution of Gly with Glu (presumably because of its near-

cognate codon GAA). Similar additional cases were found for

other amino acids (Figure 2A).

We calculated the observed error rate, estimated as the ratio of

intensity between the dependent and base peptide, for abun-
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dantly detected substitutions at each site where it occurred.

Because wemeasured the proteome at different time points dur-

ing culture growth (Figure S4), we could follow the error rate for

those substitutions as the culture grew. As an example, the

SerAGC/Asn substitution was detected among a total of 81

different peptides across the proteome in untreated, MOPS-

complete samples. Figure 2B summarizes the error rate

estimations; eachdot in the plot corresponds to one specific sub-

stitutiononaparticular proteomic position, and theerror rate is on

the x axis. Shown are the 10 most frequent substitutions types in

the proteome. The majority of the substitutions that are observ-

able in our dataset span the error rate range around 10�3, with

the most highly abundant substitutions showing slightly higher

error rates. Because of the MS acquisition strategy, positions

that feature a low error rate are less likely to be detected, which

could lead to over-estimation of the actual error rates. We note

that, for most substitution types, the error rates seem to consis-

tently decline as cells progress from exponential to stationary

phase; of the 10 most prevalent substitution types, only two

follow the opposite trend, and both involve the common glycine

GGC codon, perhaps reflecting an intracellular shortage of

glycine. However, it is possible that thismeasured decline in error

level may in part reflect a general potential decrease in total

protein synthesis in cells as they enter the stationary phase, a sit-

uation that,whenaccompaniedbydegradationof erroneouspro-

teins, would result in an apparent decline in error levels.

What are the possible explanations for these error patterns

and preferences? One possibility is that imbalances in expres-

sion between a cognate and a near-cognate tRNA may lead to

translation errors. To examine this possibility, we performed

deep RNA sequencing of the bacterial tRNA pool at the same

time points where we measured the proteome during culture

growth.We could thus detect and quantify tRNA expression level

changes and examine the ratio of expression (and, hence, poten-

tial imbalances) between pairs of cognate and near-cognate

tRNAs.Weexamined, for all the substitutions shown in Figure 2B,

whether dynamic changes in error rates can be explained by

dynamic changes in tRNA level imbalances. We found that the

patterns in the majority of these cases are consistent with the

relative change in tRNA abundance. In particular, we see that,

if the ratio of abundance between the cognate and near-cognate

tRNA increases between two phases of the growth cycle (e.g.,

exponential phase to stationary phase), then the error rate be-

tween the corresponding amino acid tends to decrease, and,

vice versa, when the ratio decreases, the error rate increases

(Figure 2C). This indicates that some of the translation errors

indeed occur as the cognate and near-cognate tRNAs compete

on the ribosome’s A site, in part based on their relative concen-

trations. However, because of a paucity of examples, this result

cannot be declared statistically significant.

A Global Nucleotide Mispairing Pattern for Translation
Errors
We further classified NeCEs based on the type of codon-anti-

codon mismatch within the codon and the nucleotide types

they involved. We created 4 3 4 ‘‘confusion matrices’’ that de-

pict the mispairing propensity of each nucleotide within the

codon to mispair against each nucleotide in the anti-codon.



Figure 2. Overview of the Substitution Profile of E. coli in MOPS Complete Medium

(A) Matrix of substitution identifications. Each entry in the matrix represents the number of independent substitutions detected for the corresponding (original

codon, destination amino acid) pair in the MOPS-complete dataset. The logarithmic color bar highlights the dynamic range of detection. Grey squares indicate

substitutions from a codon to its cognate amino acid, substitutions from the stop codon, or substitutions undetectable via our method because they are

indistinguishable from one of the PTMs or artifacts in the UniMod (http://www.unimod.org/) database. Substitutions to Leu and Ile are a priori undistinguishable

and thus grouped together.

(B) Left panel: for each of the top 10 most frequently detected substitution types, we fetched the quantification profile of the dependent peptide and the base

peptide. Each dot represents the ratio of intensities IDP/IBP for each of the samples when both peaks were detected and quantified. The black lines indicate the

medians of the distributions. Colors indicate the growth phase of the culture in which samples were taken: exponential (t1 OD,�0.5), mid-log (mid/late log t2 OD,

�1.5), and stationary (t3 OD,�2.3). Right panel: we inferred the most likely mismatch for each of the substitution types, using a procedure described in the STAR

Methods. This allows us to guess that the V-to-I/L substitutions are likely substitutions from Val to Ile, enabled by a G:U mismatch at the first position (in cases in

which the corresponding tRNA was missing, we considered a wobble providing tRNA).

(C) tRNA imbalances might explain error patterns. Following tRNA deep sequencing during the culture growth cycle, we calculated, for each of these 10 most

common error types, the ratio of expression between the cognate and near-cognate tRNA. The ratio of expression between mid-log to exponential time points is

color-coded,and likewisebetweenstationary toexponential timepoints (,p<0.1,,,p<0.05,n=3).Agreenmark to the left of thecolormap indicates that thechange

in the ratio between the cognate to near-cognate tRNA expression correctly predicts a decline or an increase in the error rate of the corresponding codon-to-amino

acid event, a red mark indicates lack of agreement, and the single white mark is a case in which the error pattern in (B) did not show a clear temporal trend.
Because each of the three codon positions may feature

different mispairing patterns, we created three such matrices,

one for each codon position (Figure 3A). Most of the substitu-

tions were found to originate from a single mismatch type,

and substitutions that could not be unambiguously traced

back were assigned to the most likely mismatch using a greedy

algorithm (STAR Methods). The most frequently observed sub-
stitution types involve mismatches between uracil and guanine

in the first or the second position of the codon. Interestingly,

this observation holds mainly for G:U mismatches in the first

and second position of the codon, where the codon base is

G and the anticodon base is U. Other common mismatches

are G:G in the first position and U:G in the second position of

the codon. The differences between the three matrices is
Molecular Cell 75, 427–441, August 8, 2019 431
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Figure 3. Error Spectra in E. coli and S. cerevisiae Reveal a Shared Signature

(A) Top panel: an example of a NeCE-originated substitution. Bottom panels: NeCEs are classified by the mismatch most likely to generate them. The shade

intensity reflects the logarithm (base 2) of the number of peptides in which the corresponding mismatch was observed. Grey boxes are either correct base

pairings or mismatches to which no substitutions could be unambiguously mapped. To measure similarity or dissimilarity between pairs of 4 3 4 matrices, we

computed Pearson’s correlations between (linearized forms) of pairs of matrices. We compared all three codon position-specific matrices within each species

and also each pair of matrices at each codon position between the two species. Of all comparisons betweenmatrix pairs, twowere significantly correlated (hence

demonstrating similar substitution patterns). The E. coli matrix at position 1 was similar to the S. cerevisiae matrix at position 1 (r = 0.94, p = 6 3 10�6), and the

E. colimatrix at position 2 was similar to the S. cerevisiae matrix at position 2 (r = 0 0.86, p = 33 10�4). All other pairs of matrices were non-significantly similar.

(B) The substitution identificationsmatrices of S. cerevisiae (green channel, left) and wild-type E. coli grown onMOPS complete (red channel, right) are compared

and overlaid (center). The intensity of the color is proportional to the logarithm of the number of independent identifications, with one pseudo-count. Values are

normalized by the highest entry in the matrix for each of the two organisms. The blue box highlights the recently described property of eukaryotic AlaRS to

mischarge tRNACys. The same statistical procedure as in (A) was conducted (r = 0.4, p = 1 3 10�40).
among the several indications gathered here that we observe

translation errors and not transcription errors.

E. coli and S. cerevisiae Share Similar Error Profiles
We then wished to compare error profiles between bacteria and

aneukaryote to examinewhether errors areconstrainedbychem-

ical or evolutionary necessities. We reanalyzed a previously pub-

lished MS dataset of strong anion exchange (SAX) and SCX

fractionatedproteomesofS. cerevisiaegrownunder a single con-

dition, a rich medium (30�C, yeast extract peptone dextrose

(YPD)) (Kulak et al., 2014) usingour pipeline (Figure3B, leftmatrix).

Similarly to the core E. coli dataset, themajority of the errors were

classified as NeCEs (63%). Comparing the error spectrum be-

tween the two species (Figure 3B, center matrix), we observed a

high overlap between the set of substitution types. For example,

the most highly frequent substitution types (e.g., MetAUG/Thr,

SerAGC/Asn, ValGUU/Ile/Leu) are shared between the two spe-

cies. Among the34substitution typesobservedmore thanonce in

the yeast dataset, 25 hadbeenseen in theE. coli samples. Among

the 25 substitution types also detected in E. coli, 16 were NeCEs.
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Conversely, among the remaining 9 substitution types that were

not seen in the bacterial samples, only 4 were NeCEs. This

observation reveals a universal error pattern for mistakes that

are likely tooccurwithin the ribosome,whereasmostNoCEs likely

originate from separate factors unique to each of the species.

The most notable difference between the two species (marked

with a light blue rectangle in the three matrices in Figure 3B) is in

the most frequently observed substitution of Cys to Ala in yeast,

which is not seen in the bacterium. A recent report (Sun et al.,

2016) revealed thebasis for thisexact observation: theeukaryotic,

but not prokaryotic, alanyl-tRNA synthetase (AlaRS) tends to

mischarge tRNACys with alanine.

For the yeast data, we also computed three 4 3 4 confusion

matrices and observed that, similar to the E. coli matrices, they

also predominantly feature G:U mismatches at the first or sec-

ond positions (Figure 3A), but the eukaryote also shows an

elevated level of G:G mispairing in the second position.

Observing such levels of error similarity between such loosely

related organisms suggests that these errors depend on univer-

sal chemical or genetic constraints.



Figure 4. The Error Spectrum Is Affected by Sub-lethal Concentrations of Paromomycin

(A) The substitution identifications matrices of E. coli in LB (red channel, left) or LB supplemented with paromomycin (green channel, right) are compared and

overlaid (center). The intensity of the color is proportional to the logarithm of the number of independent identifications, with one pseudo-count. Values are

normalized by the highest entry in the matrix for each of the two conditions. The blue boxes highlight errors involving third-position mismatches.

(B) Quantification of the top 10 most frequent substitutions in the drugs dataset. Errors involving third-position mismatches are shaded in light blue.

(C) NeCEs are classified using the same procedure as in Figure 3A for the LB samples, with or without paromomycin. The shade intensity reflects the logarithm

(base 2) of the number of peptides in which the corresponding mismatch was observed. Pearson correlation was calculated as in Figure 3A. Significantly similar

positions found were as follows: LB position 2 against position 2 of LB + paromomycin (r = 0.92, p = 1 3 10�5) and LB position 1 against position 3 (r = 0.83,

p = 7 3 10�4).
Aminoglycoside Treatment and Amino Acid Depletion
Affect the Translation Error Spectrum
We characterized error patterns upon perturbations. First, we

grew E. coli in Luria-Bertani medium (LB) supplemented with

sub-lethal concentrations of paromomycin, an aminoglycoside

antibiotic known to interfere with the ribosome’s proofreading

activity (Gromadski and Rodnina, 2004; Kramer and Farabaugh,

2007). We inspected the codon-to-amino acid error matrices un-

der treated and non-treated conditions (Figure 4A), the error rate

profiles (Figure 4B), and the nucleotide mispairing matrices (Fig-

ure 4C). Comparing the codon-to-amino acid substitution

matrices between treated and untreated samples revealed a

clear pattern: the drug increased error rates, especially at third

codon wobble positions.

Next we examined the effect of amino acid depletion on the

cell’s error spectrum. In three parallel experiments, we partially

depleted either isoleucine, proline, or serine using the corre-

sponding auxotrophic E. coli strains or the wild-type strain

(STAR Methods). We predicted that, upon depletion of each of

the amino acids, we would observe elevated levels of errors spe-

cific to the deleted amino acid. Further, we examined which

amino acids replaced the depleted one and which codons of

the original depleted amino acid were more sensitive to deple-

tion. Overall, we observed increased translation errors, typically

leading from certain codons of the depleted amino acid to other
amino acid destinations, which were typically NeCEs of the

depleted one (Figure 5); there were no major changes in the

rate of substitution from other amino acids (data not shown).

Depletion of Ile resulted in an elevation of errors in the auxotroph

(DIlvA) strain, in which Ile is replaced predominantly with Met,

Thr, and Val, all destinations that represent NeCE substitutions

(Figure 5A). Upon depletion of Pro, we also detect new errors

leading mainly from proline, and the main new destinations

were Ala, Ile/Leu, Thr, and Ser (all NeCEs of the corresponding

codons apart from Ile, which cannot be distinguished from Leu

with MS). Curiously, these new substitutions were more preva-

lent when the auxotroph was grown on complete medium rather

than on proline-depleted medium (Figure 5B). Upon depletion of

serine, proline (a NeCE substitution) becomes the most

abundantly observed new destination of serine. The AGU and

AGC codons are often substituted with Asn, but this dynamics

is also observed in the non-depleted wild type (Figure 5C).

However, when we followed a time course of the translation error

dynamics across the growth of the culture toward stationary

phase, these codons showed more intricate dynamics. We

observed, as expected, an increase in the rate of SerAGC/Asn

mistranslation, and the rate of this error intensified as the cells

approached stationary phase, when the depletion effect intensi-

fied (Figure 5D). This result indicates a clear mechanism that ac-

counts for mistakes in translation in which a shortage of an amino
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Figure 5. Depleting Cells of Particular Amino Acids Promotes Mistranslation at Certain Codons of the Corresponding Amino Acid

The shade of each cell is proportional to the logarithm of the number of different peptides observed bearing a substitution from the codon on the y axis to the

amino acid on the x axis. Only codons of the depleted amino acid are represented for clarity in each panel; other amino acids rarely show a response relative to the

wild type, not depleted.

(A) Effects of isoleucine depletion on isoleucine codons. Top: wild type grown on complete medium. Center: DilvA, an isoleucine auxotroph, grown on complete

medium. Bottom: DilvA grown on medium depleted of isoleucine.

(B) Effects of proline depletion on proline codons: Top: wild type grown on complete medium. Center: DproA, a proline auxotroph, grown on complete medium.

Bottom: DproA grown on medium depleted of proline.

(C) Effects of serine depletion on serine codons: Top: wild type grown on complete medium (6 samples pooled). Bottom: DserA, a serine auxotroph grown on

medium depleted of serine (6 samples pooled).

(D) Error rate quantification of the three most common error types for serine depletion. Error rates were computed as the ratio of intensities of the substituted and

the unmodified parent peptide. Colors indicate the growth phase of each of the three time points when samples were taken for each of the two cultures. Exact OD

values can be found in Figure S4.
acid determines its probability to be replaced by others. A theo-

retical model (Elf et al., 2003) predicts that the UCN serine co-

dons should be affected more strongly by depletion than the

AGC and AGU codons due to differential loading of the corre-

sponding tRNAs. Indeed, our method detected increased

number of substitutions stemming from the UCN codons upon

starvation. On the other hand, the rate of substitution shows an

increase, upon deletion, in the AGC and AGU codons. This

observation does not necessarily contradict the theory because

the AGC and AGU errors are also those most seen in MOPS

complete medium, and it is possible that the UCX codons suffer

more from starvation, but the substitutions in these codons re-

mained at low levels in absolute terms.
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Surprisingly, we also observed a signal for threonine-to-serine

substitutions, which is independent of the threonine codon (data

not shown). This is in line with the observation made by Ling and

Soll (2010), who reported that E. coli’s threonine aaRS tended to

misincorporate serine for threonine during oxidative stress

conditions.

A Tradeoff between Fidelity and Speed of Translation by

the Ribosome

The theory of kinetic proofreading (Hopfield, 1974; Ninio, 1975)

predicts that the ribosome trades-off speed and accuracy dur-

ing the aa-tRNA selection step, with a higher error rate ex-

pected at positions where the ribosome decodes more rapidly

(Banerjee et al., 2017). This trade-off was experimentally



observed in vitro as a function of magnesium concentrations

(Johansson, Zhang and Ehrenberg, 2012) and in vivo while

comparing hyper and hypo-accurate ribosomal mutants (Zhu,

Dai and Wang, 2016). Yang et al. (2014) proposed that yeast

cells take advantage of mRNA structures downstream of the

ribosome to tip this trade-off toward faster or more accurate

decoding.

The speed at which ribosomes translate mRNAs can be esti-

mated at nucleotide resolution from ribosome footprint density

(Ingolia, 2016). Such data allowed us to test whether substitu-

tions arise preferentially at quickly translated positions. We esti-

mated the A-site ribosome density across the proteome of E. coli

(MG1655) using a published dataset acquired under similar con-

ditions (Woolstenhulme et al., 2015) and standardized this den-

sity score per protein to control for intergenic differences in

mRNA abundance and translation initiation levels (STAR

Methods). We compared the mean ribosome density at error

sites with that of sets of random controls (Figure 6A). In each

of the controls, the mean ribosome density of the bona fide sub-

stitutions was found to be lower than that of most of the random

controls (Figure 6C); error sites are less dense and, hence, trans-

lated faster than expected by chance. The mean density at sites

associated with a substitution was significantly (p = 0.025) lower

than expected under our null model controlling for biases asso-

ciated with codon identity.

Misincorporations Occur at Error-Tolerant and Rapidly

Evolving Protein Positions

A prediction (Drummond and Wilke, 2008) posited that, to avoid

fitness loss because of protein misfolding and aggregation,

cells manage their errors by selecting error-proof codons at po-

sitions where inserting the correct amino acid is critical for

folding or function. Support for that theory was obtained by

computational means. To examine this notion, we computed

normalized conservation scores for each position in the

E. coli proteome (STAR Methods) so that a high score indicates

that an amino acid position evolves rapidly compared with

other positions in the same protein. To account for the fact

that some amino acids types tend to be more conserved than

others and that some codons are over-represented at

conserved positions, we devised three strategies to generate

adequate negative controls (Figure 6A). In the first and least

stringent control, for each observed substitution, we sampled

a normalized conservation score from any position in the

same protein. In the second control, the random re-sampling

was carried within the same protein but also with the additional

constraint that the amino acid type in the randomly sampled

position is identical to the amino acid type observed originally

at the position where the substitution occurred. Finally, in the

most stringent control, we performed random re-sampling

within the same protein at sites sharing the same codon as

the observed positions. We generated 1,000 such re-samplings

in each of the three types of negative controls and compared

the mean of the observed distribution of evolutionary rate

scores at the observed substitution positions with those of

the random control distributions to obtain empirical p values.

The mean rate of evolution at substitution sites was similar to

that of random sets of positions generated through the first

model but significantly higher than that of the random sets
generated with the other two (Figure 6B). Consistent with a pre-

vious prediction (Drummond and Wilke, 2008), controlling for

codon identity reduced the magnitude of the difference be-

tween the real error sites and randomly selected sites (second

and third control, Figure 6B, ‘‘same codon’’ versus ‘‘same

amino acid’’), supporting the notion that evolution allows or

precludes error-prone codons from sites that are correspond-

ingly tolerant or intolerant to errors. However, codon identity

did not fully account for the poor conservation at substituted

sites, suggesting that other factors allow cells to locally modu-

late their error levels.

Similarly to conservation, we examined the related possibil-

ity that observed substitutions minimally affect the energetic

folding stability of the protein in which they occur. We pre-

dicted the effect of each of the observed substitutions on its

protein’s folding stability (DDG). We compared the distribution

of DDG to mock distributions obtained via three control stra-

tegies (Figure 6D). The first is the ‘‘identity control,’’ and it

allows us to test whether the observed NeCEs are less desta-

bilizing, on average, than other substitution types modeled to

occur at the same protein positions. We generated 1,000

random sets of DDG values so that for each observed substi-

tution, we randomly sampled a destination amino acid

accessible via a single-nucleotide substitution from the er-

ror-bearing codon and computed the difference in free energy

resulting from the resulting amino acid substitution. The mean

DDG of the set of bona fide substitutions, 1.45 kcal/mol, was

lower than that of each of the 1,000 mock sets sampled under

the identity control, suggesting that error rates are tuned so

that substitutions preferentially replace the original amino

acid with one that would minimally affect protein folding at

the same site. Our control strategy accounts for the fact that

substitution types classified as NeCEs tend to swap chemi-

cally similar amino acids because of the organization of the

genetic code. For a second negative control, we asked

whether the observed errors were preferentially mapped to

protein positions in which they minimally destabilize folding.

We generated 1,000 sets for each observed NeCE and esti-

mated the DDG that would have resulted from that same sub-

stitution occurring at a randomly chosen position of the same

protein sharing either the same amino acid (‘‘amino acid con-

trol’’) or the same codon (‘‘codon control’’). The mean DDG of

our set of observed substitutions was lower than that of 98%

of the sets generated with the amino acid control and 97% of

those generated with the codon control, suggesting that sub-

stitutions preferentially occur at protein sites where they

would not disturb folding.

Little Indication for Selective Degradation of Proteins

with Harmful Misincorporations

From the above analyses, it could be deduced that the transla-

tion machinery selectively avoids harmful errors. But an alterna-

tive interpretation could be that all errors, benign and harmful,

are equally likely to occur but that the protein degradation ma-

chinery selectively degrades proteins bearing harmful errors.

To address this alternative, we performed another full experi-

ment of our error detection pipeline on E. coli deleted for the

Lon protease, a protein that degrades misfolded and unfolded

proteins (Powers, Powers andGierasch, 2012). In theDlon strain,
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Figure 6. Global Properties of Substitution Errors

(A) General sampling strategy. To test whether the set of detected substitutions differs from expectations in any way, we first need to account for the fact that

many local properties of proteins are affected by the protein’s expression level and so is our ability to detect substitutions from that protein. First, the local

property of interest (‘‘score’’) is recorded at all positions bearing a substitution. The average of that set is plotted as a red dashed line. To compare this average

with an appropriate control, we devised three strategies to eliminate the potential contributions of protein level, amino acid identity, and codon identity on the

score. In each of these strategies, we draw 1,000 sets of the same size as the set of observed substitutions and plot the average of each of these sets as a blue dot.

In the first strategy, for every bona fide distribution, we draw the score from any position within the same protein. In the second strategy, we draw the score from

any position within the same protein that shares the same amino acid as the one bearing the bona fide substitution. Similarly, in the third control, the codon for the

sampled position has to be the same as the substituted codon.

(B) Amino acid conservation. We derived amino acid conservation scores for E. coli proteins using the COGs database to fetch 50 homologs, MUSCLE

(Edgar, 2004) to align them, and rate4site to estimate the evolutionary rate at each site. The resulting scores are standardized per protein, and a high score

indicates low conservation. The empirical p values are computed by dividing the number of blue dots above the red line by 1,000. n indicates the number of

positions considered in this analysis.

(C) Ribosome density. Ribosome profiling data from Woolstenhulme et al. (2015) was processed (STAR Methods) to estimate the ribosome density at positions

along the E. coli transcriptome. Because ribosome speed (density) can only affect errors in cis, this analysis was restricted to NeCEs. The empirical p values are

computed by dividing the number of blue dots bellow the red line by 1,000. n indicates the number of positions considered in this analysis.

(D) Effect of substitutions on protein stability. For proteins whose 3D structure is known, we evaluated the effect of NeCEs on protein stability using FoldX. In

control 1, we test whether the observed substitutions are, on average, less destabilizing than those stemming from other single-nucleotide mismatches between

the codon and the anticodon at the same position. In controls 2 and 3, we test whether the observed substitution type observed was less destabilizing, on

average, at the observed position than at other positions sharing the same amino acid or the same codon. The empirical p values are computed by dividing the

number of blue dots bellow the red line by 1,000. n indicates the number of positions considered in this analysis.

(E) Effect of Dlon. Top: distribution of DDG associated with substitutions observed in Dlon (blue) and wild type (green) strains. The mean of the two distributions

does not differ significantly (two-sidedWilcoxon rank-sum test, p = 0.132). Bottom: distribution of the rate4site conservation score associated with substitutions

observed inDlon (blue) and wild type (green) strains. Themean of the two distributions does not differ significantly (two-sidedWilcoxon rank-sum test, p = 0.367).
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Figure 7. The Error Rate Decreases with Protein Expression

Log 10 of the error rate (dependent peptide [DP]/base peptide [BP] intensity ratio) is plotted against the average protein expression. Log error rates of all detected

peptides within a protein are averaged into one score per protein. Only proteins with two or more dependent peptides were considered for this analysis.

(A and B) In the scatterplot (A), each protein is a dot, whereas in the violin plot (B), proteins are binned together based on expression. Protein expression for all

E. coli proteins are taken from PaxDB.

(C and D) Shows the same analysis but with the tRNA adaptation index (tAI) (dos Reis et al., 2004), a computational proxy for expression, instead of the

PaxDB data.

For the scatter plots (A and C), r indicates the Pearson correlation and p is the corresponding p value. n indicates the number of proteins. For the violin plots

(B and D), two-sided Wilcoxon rank-sum test was conducted. *p < 0.05, **p < 0.01.
observed error rates should more closely mirror the actual trans-

lation error rate.

We detect more errors upon deletion of Lon (Figure S6A), indi-

cating that the protease indeed eliminates proteins with transla-

tion errors. However, we found that new errors exposed upon

deletion of the protease do not have a different level of de-stabi-

lizing effects on protein structure (Figure 6E, top; Figure S6B),

nor do they have any modified tendency to occur in more

(or less) slowly evolving sites in proteins (Figure 6E, bottom; Fig-

ure S6C). These results indicate that depletion of errors from

structurally sensitive and slowly evolving sites results from

genuine selection for higher accuracy at these sites. These re-

sults do not exclude the parallel possibility that the degradation

machinery has selectivity too, to eliminate preferentially proteins
with de-stabilizing errors. It is possible that other proteases

degrade proteins with de-stabilizing errors.

Misincorporations Occur Less Frequently in Highly

Expressed Proteins

Further to observing that sensitive and slowly evolving positions

along proteins show fewer errors than other sites on the same

proteins, we wanted to examine whether certain proteins display

overall lower error rates than others. In particular, we checked

whether more highly expressed genes exhibit lower error rates.

Indeed, we saw a negative correlation between protein expres-

sion level (taken from PaxDB; Wang et al., 2015) and mean error

rate among all peptides within a protein (Figures 7A and 7B). This

correlation is sustained across the entire dynamic range of pro-

tein abundance levels. The correlation was also observed when
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we used two additional means to assess protein expression

levels, one based on the computational tRNA adaptation index

(dos Reis et al., 2004; Figures 7C and 7D) and a second based

on the current study’s protein expression data (data not shown).

This observation supports a model (Yang et al., 2014) that sug-

gested that, upon trading off accuracy and speed of translation,

highly expressed genes would be optimized for accurate trans-

lation because the cost of mistranslating them would be

prohibitive.

DISCUSSION

Here we provide a new methodology to detect and quantify

translation errors at protein and codon resolution. We quantify

the error rate to be around one misincorporation event per

1,000 translated residues on average, but this rate varies by

more than an order of magnitude between sites in proteins, co-

dons, and physiological conditions. Although translation errors

have, by definition, a short expiration time. Until the protein is

degraded, the reproducible nature of such errors—i.e., the fact

that same protein positions tend to repeatedly misincorporate

the same amino acid—actually indicate that errors endure

throughout the life of the organism as if they were encoded in

the DNA.

Although both the ribosome and the amino acid synthetases

are responsible for translation errors, the majority of errors de-

tected here appear to be made by the ribosome, which tends

to mispair codons against near-cognate anticodons, incorpo-

rating wrong amino acids based on codon similarity. Indeed,

codon choice can be conserved and can affect translation effi-

ciency and accuracy (Conticello et al., 2000; Frumkin et al.,

2018; Rak et al., 2018). Although the error patterns show resem-

blance between prokaryotes and eukaryotes, potentially

because of the chemical nature of base pairing, our analysis

did expose particular types of errors, predominantly in eukary-

otes, that correspond to known amino acid mischarging ten-

dencies of certain synthetases.

Several lines of evidence indicate that our observed amino

acid misincorporations events mainly represent translation er-

rors, not transcription errors. First, transcription error rates

are estimated at 10�5-10�6 per nucleotide (Traverse and Och-

man, 2016); i.e., up to three orders of magnitude lower than the

rate of detectable translation errors found here. Further, indica-

tions that we observed genuine translation errors and not tran-

scription are that (1) error tendencies correlate with ribosome

translation speed; (2) we observed different nucleotide mispair-

ing patterns at each of the three codon positions; and (3), we

employed two environmental perturbations that should only

affect translation—a drug against ribosome proofreading and

amino acid depletion, and they both modified and elevated de-

tected errors.

Measuring error rates per protein and per position within pro-

teins reveals that errors are distributed in a very non-random

fashion. Certain positions within proteins appear to be much

more error-prone than others, and certain proteins appear to

be relatively protected from errors. The fact that the majority of

errors observed here are attributed to mispairing between co-

dons and anti-codons suggests that there exists a ‘‘fidelity
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code’’ for the ribosome that determines the probability of error

and type of misincorporation that can occur at each position.

The fact that the ribosome was shown here to be translating

more rapidly at sites of error, that codon identity dictates errors,

the observation that an anti-ribosome drug affected the error

pattern, and the observation that error sites are more rapidly

evolving and less sensitive thermodynamically to mutations all

suggest that the propensity to make translation errors and the

type of errors made are programmed into genes’ sequences.

Together, these analyses reveal that translation errors have a

clear mechanistic basis and that their propensity is subject to

evolutionary selection.

Examining the error patterns across diverse perturbations re-

vealed a physiological context of translation fidelity. We exam-

ined the proteome-wide error spectra at various stages of the

growth cycle, upon depletion of particular amino acids, when

bacteria encounter anti-ribosomal antibiotics and when a key

component of the misfolding response gene is compromised.

Each of these perturbations revealed a change in the amount,

rate, and type of revealed translation errors, suggesting that

translation infidelity is a central constraint that characterizes

physiology under many life conditions. An exciting possibility is

that genes are programmed to make particular errors and that

they use errors to regulate gene expression, similar to stochastic

RNA editing (Bar-Yaacov et al., 2017, 2018).

Our experiments with amino acid depletion indicate that the

economy of amino acids in the cell can affect quality control dur-

ing aminoacylation. This conclusion follows from our observation

of changes in error patterns involving a given amino acid when

that amino acid is depleted from the medium. Together with pre-

vious findings showing that oxidation levels in the cell affect the

accuracy of tRNA aminoacylation quality control (Ling and Soll,

2010), the picture that now emerges is that diverse factors play

a role in determining acylation error rates and patterns.

Our analyses of translation errors could be discussed in the

same context as that of noise in gene expression (Bar-Even

et al., 2006; Newman et al., 2006; Eldar and Elowitz, 2010; Ba-

lázsi et al., 2011). The study of noise in gene expression

brought the realization that genetically identical cells can

express the same protein at different levels. These studies re-

vealed how cells govern noise levels in different genes the im-

plications of noise for physiology and evolution. Analyses of

noise in gene expression revealed several key properties: (1)

noise scales with gene expression; (2) the propensity for noise

differs between genes, e.g., stress-related genes are more

noisy than genes encoding structural proteins; and (3) noise

levels are programmed into genes sequences. In parallel to

‘‘protein quantitative noise,’’ the current study reveals ‘‘protein

sequence noise;’’ i.e., translation errors. Both noise sources

appear to be regulated by cells in a gene-specific fashion;

most essential and highly expressed genes are protected

from both quantitative or sequence noise, whereas rapidly

evolving genes or less sensitive positions within genes are

more free to display the two types of randomness. For the

two manifestations of randomness, an exciting possibility is

that randomness generates diversity among genetically iden-

tical cells, a state that could be essential under certain life

conditions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E.coli: strain MG1655 ATCC stock center Cat #: 47076

E.coli: strain BW25113 CGSC stock Center Cat #: 7636

E.coli: strain JW2880-1 CGSC stock Center Cat #: 10234

E.coli: strain JW0233-2 CGSC stock Center Cat#: 8468

E.coli: strain JW3745-2 CGSC stock Center Cat#: 10733

E.coli: strain JW0429-1 CGSC stock Center Cat#: 8592

Chemicals, Peptides, and Recombinant Proteins

MOPS rich defined medium Teknova Cat#: M2105

Serine methyl ester Sigma Cat #: 412201

Proline methyl ester Sigma Cat #: 287067

Isoleucine methyl ester Sigma Cat #: 58920

B-PER Bacterial Protein Extraction Reagent Thermo Fisher Scientific Cat#: 78248

TRI-reagent Sigma Cat#: T9424

Agencourt AMPure XP Beckman Coulter Cat#: A63881

AlkB wt and D135S Zheng et al., 2015 N/A

TGIRT-III InGex Cat#: TGIRT50

T4 RNA ligase New England Biolabs Cat#: M0204L

Dynabeads myOne SILANE Thermo Fisher Scientific Cat#: 37002D

NEBNext PCR mix New England Biolabs Cat#: M0541L

Trypsin Promega Cat#: V5113

C18 StageTip Fisher Scientific Cat#: 14-386-2

Deposited Data

Raw and analyzed mass spectrometry data This paper PRIDE: PXD014341

Raw and analyzed tRNA data This paper GEO: GSE128812

E. coli reference genome ASM584v2 Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/

GCA_000005845.2#/st

E. coli tRNA sequences Lowe and Chan, 2016 http://gtrnadb.ucsc.edu/genomes/bacteria/

Esch_coli_K_12_MG1655/

E. coli reference CDS European Nucleotide Archive http://bacteria.ensembl.org/Escherichia_coli_

str_k_12_substr_mg1655/Info/Index

E. coli reference proteome UNIPROT https://www.uniprot.org/proteomes/UP000000625

Saccharomyces cerevisiae raw mass

spectrometry files

PRIDE https://www.ebi.ac.uk/pride/archive/projects/

PXD000269

Saccharomyces cerevisiae reference CDS

Saccharomyces cerevisiae reference proteome UNIPROT https://www.uniprot.org/proteomes/UP000002311

Oligonucleotides

Primer for tRNA reverse-transcription This paper N/A

DNA

50-CACGACGCTCTTCCGATCTT �30

RNA

50-

rArGrArUrCrGrGrArArGrArGrCrGrUrCrGrUr

G-30

30 adaptor for tRNA library ligation 50- AGATCG

GAAGAGCACA-30
This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Custom python scripts This paper https://github.com/ernestmordret/substitutions/

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Samtools Li et al., 2009 http://samtools.sourceforge.net/

homertools Heinz et al., 2010 http://homer.ucsd.edu/homer/download.html

Bedtools Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2/releases

MaxQuant version 1.5.5.1. Cox and Mann, 2008 http://www.coxdocs.org/doku.php?

id=maxquant:common:download_and_installation
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yitzhak

Pilpel (pilpel@weizmann.ac.il)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

To generate the E. coli drug dataset, E. coli strain MG1655 (Genotype: F-, lambda-, rph-1, ‘‘ATCC: 47076’’) was grown in 3ml LBme-

dia (10 g/l tryptone, 5g/l yeast extract, and 10 g/l NaCl) at 30�Cuntil reaching stationary phase. Cultures were diluted 1:100 and grown

aerobically in 100ml LB with and without addition paromomycin (final concentration of 5 mg/ml). Cultures were grown in standard

Erlenmeyer at 37�C, shaking speed of 200rpm until reaching mid-log phase (ODx 0.5). Each experiment was done in two indepen-

dent biological repeats.

To generate amino acids depletion dataset, cells were grown in of 3ml of modified MOPS rich defined medium made with the

following recipe: 10X MOPS rich buffer, 10X ACGU nucleobase stock and 100X 0.132M K2HPO4 (Teknova, Cat.#: M2105) were

used at 1X final concentration. Medium was supplemented with 0.25% glucose as carbon source, 10�4% thiamine, 17.2mM Serine,

640mMLysine, 661mMArginine, 592mMHistidine, 464mMTyrosine and 800mMof all 15 remaining amino acids. pHwas adjusted to 7.4

using 1M NaOH. Cultures were grown at 37�C until reaching stationary phase. Cells were then diluted 1:1000 into the appropriate

media (see details below) and grown at 37�C. The exact strains, media, growth conditions and growth phase in which samples

were taken in the different depletion experiments were:

d Serine depletion: BW25113 (WT) strain was grown in modified MOPS rich defined medium and JW2880-1 (DserA) strain was

grown inmodifiedMOPS definedmedium depleted for amino acid serine (8.6mMSerine and 800mMSerinemethyl ester (Sigma

Cat#: 412201)). Cultures were grown in standard Erlenmeyers, shaking speed of 200rpm and samples were taken at 3 time

points during culture growth (see Figure S4 for exact harvesting times and OD values). Each experiment was done in two

independent biological repeats.

d Proline depletion: BW25113 (WT) strain was grown in modified MOPS rich defined medium and JW0233-2 (DproA) strain was

grown in either modified MOPS rich defined medium or modified MOPS defined medium depleted for amino acid proline (0mM

Proline and 160mM Proline methyl ester (Sigma Cat#: 287067)). Cultures were grown in baffled Erlenmeyers to increase aera-

tion, shaking speed of 200rpm and samples were taken at a single time point at stationary phase (‘‘t1 stationary’’). Each exper-

iment was done in three independent biological repeats.

d Isoleucine depletion: BW25113 (WT) strain was grown in modifiedMOPS rich definedmedium and JW3745-2 (DilvA) strain was

grown in either modified MOPS rich defined medium or modified MOPS defined medium depleted for amino acid isoleucine

(100mM Isoleucine and 160mM Isoleucine methyl ester (Sigma Cat#: 58920)). Cultures were grown in baffled Erlenmeyers to

increase aeration, shaking speed of 200rpm and samples were taken at a single time point at stationary phase (‘‘t1 stationary’’).

Each experiment was done in three independent biological repeats.

To generate the protease deletion dataset, BW25113 (WT) strain as well JW0429-1 (Dlon) strain were grown in 3ml of modified

MOPS rich defined medium at 37�C until reaching stationary phase. Cells were then diluted 1:1000 into the same media. Cultures

were grown in baffled Erlenmeyers, shaking speed of 200rpm to increase aeration and samples were taken at a single time point

at stationary phase (‘‘t1 stationary’’). Each experiment was done in three independent biological repeats. All auxotrophs, lon mutant,

as well as the corresponding wild-type were obtained from the Keio deletion library (Baba et al., 2006).
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METHOD DETAILS

Proteome extraction
We adapted our proteome extraction protocol from Khan et al. (2011). Bacterial cultures were centrifuged at 4000 rpm for 5 min, and

washed twice with 10ml PBS. Remaining PBS was vacuum-aspirated and the pellets were frozen in ethanol-dry ice and stored

at �80�C until protein extraction. For protein extraction, pellets were re-suspended in 1 mL of B-PER bacterial protein extraction

buffer (Thermo Fisher Scientific), and vortexed vigorously for 1 min. The extract was centrifuged at 13,000 rpm for 5 min. The super-

natants (high solubility fractions) were collected and frozen in an ethanol-dry ice bath. High solubility fractions were stored at�80�C.
The remaining pellets were re-suspended in 2mL of 1:10 diluted B-PER reagent. The suspensions were centrifuged and washed one

more timewith 1:10 diluted B- PER reagent. The pellets were re-suspended in 1mL of Inclusion Body Solubilization Reagent (Thermo

Fisher Scientific). The suspensions were vortexed for 1min, shaken for 30min, and placed in a sonication bath for 10min at maximum

intensity. Cell debris were removed from the suspension by centrifugation at 13,000 rpm for 15 min. The supernatants were frozen in

an ethanol-dry ice bath (low solubility fraction), and stored at �80�C.

Sample preparation, HPLC and Mass Spectrometry
400 mg of protein was taken for Filter aided sample preparation (FASP)(Wi�sniewski et al., 2009) trypsin digestion on top of 30kDa

Microcon filtration devices (Millipore). Proteins were digested overnight at 37�C and the peptides were separated into five fractions

using strong cation exchange (SCX) in a StageTip format. Peptides were purified and concentrated on C18 StageTips (Rappsilber,

Ishihama andMann, 2003) (3MEmporeTM, St. Paul, MN, USA). Liquid-chromatography on the EASY-nLC1000HPLCwas coupled to

high-resolution mass spectrometric analysis on the Q-Exactive Plus mass spectrometer (ThermoFisher Scientific, Waltham, MA,

USA). Peptides were separated on 50 cm EASY-spray columns (ThermoFisher Scientific) with a 140min gradient of water and aceto-

nitrile. MS acquisition was performed in a data-dependent mode with selection of the top 10 peptides from each MS spectrum for

fragmentation and analysis.

Raw file processing
High and Low solubility fractions were aligned separately using MaxQuant. The amino acid substitutions identification procedure re-

lies on the built-in dependent peptide algorithm of MaxQuant (Cox and Mann, 2008; Sinitcyn et al., 2018).

The Dependent Peptide search
Experimental spectra were first searched using a standard database search algorithm, without any variable modification, and the

significance of identifications was controlled to a 1% FDR via a target decoy procedure. Identified spectra are then turned into a

spectral library, and a decoy spectral library is created by reversing the sequences of the identified spectra. For each

possible pair consisting of an identified spectrum in the concatenated spectral libraries and an unidentified experimental spectrum

of the same charge, and recorded in the same raw file, we apply the following steps: first we compute the mass shift Dm by

subtracting the mass of the identified (unmodified) spectrum to that of the unidentified (modified) spectrum, then we simulate

modified versions of the theoretical spectrum by adding in silico this mass shift at every position along the peptide, and finally we

evaluate the match between the theoretical spectrum and the experimental spectrum using a formula similar to Andromeda’s

binomial score.

For each unidentified peptide, thematchwith the best score is reported, the nature of thematch (target or decoy) is recorded, and a

target-decoy procedure (Elias and Gygi, 2007) is applied to keep the FDR at 1%. Peptides identified using this procedure are called

Dependent Peptides (DP), whereas their unmodified counterparts are named Base Peptides (BP).

Additionally, the confidence of the mass shift’s localization is estimated using a method similar to MaxQuant/Andromeda’s PTM

Score strategy, which returns the probability that the modification is harbored by any of the peptide’s amino acid.

DP identifications filtering
The list of all known modifications was downloaded from http://www.unimod.org/, and those marked as AA substitution, Isotopic

label or Chemical derivative were excluded. Entries in this list are characterized by a monoisotopic mass shift, and a site specificity

(i.e., they can only occur on a specific amino acid or on peptides’ and proteins’ termini). We removed from our analysis any DP iden-

tification that could be explained by any of the remaining modifications, using the following criteria: the recorded Dm and the known

modification’s mass shift must not differ by more than 0.01 Da, and the modification must be harbored by a site consistent with the

uniprot entry with a probability p R 0.05. Conversely, we computed the list of all possible amino acid substitutions and their asso-

ciated mass shifts. For every substitution, we only retained DP identifications such that the observed Dm and the AA substitution’s

mass shift did not differ by more than 0.005 Da, and the mass shift was localized on the substitution’s original AA with p R 0.95.

Among the remaining DP identifications, those such that the peptide sequence after substitution was a substring of the proteome

(allowing Ile-Leu ambiguities), were also removed, to prevent pairing of dependent peptides and base peptides between paralogs.

Finally, the FDR was controlled once again at 1% using the same procedure as above.

Next we examined the capacity of the Dependent Peptide algorithm of MaxQuant to identify knownmass shifts in a well-controlled

setup. For that we used a large set of synthetic peptides and their corresponding phospho-peptide counterparts (Marx et al., 2013),
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that was subject to LC-MS/MS measurements. This dataset constitutes a ground truth to determine the validity of the DP algorithm.

We downloaded data from the PRIDE deposition https://www.ebi.ac.uk/pride/archive/projects/PXD000138/files. We used the Fasta

files of the whole human proteome plus the synthetic peptides. We ran MaxQuant with default settings and only oxidation of methi-

onine as variable modification and not including phosphorylation. The dependent peptide peptide-spectrum matches (PSMs) were

restricted to a false discovery rate of maximally 1% using a target-decoy approach. The dependent peptide algorithm found 1,315

PSMswhosemodification mass corresponds to a singly phosphorylated peptide with 1%FDRon dependent peptides. Among these

were neither decoy hits, nor wrongly identified peptides, indicating that the dependent peptides strategy employed in the present

work is highly specific and efficient in limiting false positive identifications.

Error rate quantification
In order to assess the error rate, we quantify and compare pairs of base and dependent peptides across many samples. For

each independent substitution, we fetched the quantification profile of the base peptide from MaxQuant’s peptides.txt table, and

similarly fetch the dependent peptide’s quantification profile from the matchedFeatures.txt table. Whenever a peak has been de-

tected and quantified for both the dependent and the base peptide, we estimate the translation error rate as the ratio of their

MS1 intensities.

Assignment of NeCE to their most likely nucleotide mismatch
The assignment of observed substitutions to appropriate anticodons, done here in order to determine underlyingmismatch type, was

carried out in two steps. First, substitutions that could unambiguously result from a mispairing of a single tRNA type were counted,

and probabilities of base-to-base mispairing were obtained; then, substitutions that could have been explained by utilizingmore than

one tRNA type were addressed by considering the prior base-to-base substitutions derived from the unambiguous cases. When two

or more tRNA molecules could explain a given substitution, and existing priors were missing, we have distributed with equal prob-

ability the observations among all possible mismatch types. The procedure was repeated until convergence.

Evolutionary rates computation
For each of the proteins associated to a substitution in theMOPSdataset, we fetched a list of orthologous protein sequences from the

COG database (Galperin et al., 2015), excluding partial matches (membership class = 3). Proteins whose list of orthologs contained

less than 50 sequences were excluded from this analysis. For the remaining proteins, we randomly selected 50 sequences from the

list, and created evolutionary alignments usingMUSCLE (Edgar, 2004). The alignments were then used to compute normalized evolu-

tionary rates per site with the rate4site program (Pupko et al., 2002). The mean evolutionary rate of sites associated with detected

substitutions was compared to that of a 1,000 randomly sampled positions, using the strategy described in Figure 6A.

Effect of substitutions on protein stability
For each of the proteins associated to a substitution in the MOPS dataset, we attempted to fetch the best 3D structure for its bio-

logical assembly in the PDB database to estimate the effect of our substitutions on protein stability using the FoldX software (Schym-

kowitz et al., 2005). We excluded membrane proteins, whose stability is poorly modeled by FoldX, and excluded ribosomal protein

because the ribosome is too big to be modeled entirely. We restricted our analysis to WT proteins from E. coli, excluding structures

determined from orthologs. Among the remaining structures, we selected those with the lowest R-free score.

These structures were first ‘‘repaired’’ using the repairPDB command. We then evaluated the effect of a set of amino acid

substitutions comprising the detected substitutions and the controls described in Figure 6D on protein stability (DDG), using the

PositionScan command. Finally, the mean(DDG) of our set of substitutions was compared to the mean(DDG) of 1000 randomly

sampled substitutions, using the strategy described in Figure 6D.

Deep sequencing of the tRNA pool in E. coli

Bacterial cultures were grown toOD values roughly corresponding to exponential phase (OD�0.8), late exponential phase (OD�1.9),

and stationary phase (OD�2.3), experiment was done in three biological repeats. Culttures were centrifuged at 12,000 rpm for 1 min,

frozen in liquid nitrogen and stored at �80 C until RNA extraction. RNA was extracted using TRI-reagent (Sigma-Aldirch), according

to standard protocol. tRNA sequencing protocol was adapted from Zheng et al., 2015 (Zheng et al., 2015) with minor modification.

Small RNA was isolated using SPRI-beads (Agencourt AMPure XP, Beckman Coulter), using dual side size-selection protocol. First

RNA and beads were mixed at 1:1.8 ratio, and supernatant was collected. The small RNA was isolated by mixing the clear superna-

tant with bead at 1:0.8 ratio, with addition of X1.34 isopropanol. Small RNA was treated for modification removal using AlkB wt, and

D135S enzymes, a kind gift fromProf. Tao Pan. Reverse transcription was done using TGIRT-III enzyme, with the indicated DNA-RNA

hybrid primer. 30 adaptor was ligated to the cDNA using T4 ligase (NEB). The cDNAwas purified using DynabeadsmyOne SILANE (life

Technologies) after each step. The library was amplified using NEBNext PCR mix and cleaned using SPRI-beads. Samples were

pooled and sequenced using NextSeq illumina.
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Primer name Primer sequence

Reverse-transcription DNA 50-CACGACGCTCTTCCGATCTT �30

Reverse-transcription RNA 50-rArGrArUrCrGrGrArArGrArGrCrGrUrCrGrUrG-30

30 adaptor 50- AGATCGGAAGAGCACA-30
Read were trimmed using homerTool. Alignment was done to the genome and mature tRNA using Bowtie2 with parameters–very-

sensitive-local. Read aligned with equal alignment score to the genome and mature tRNA were annotated as mature tRNA. Reads

aligned to multiple tRNA genes were randomly assigned when mapping to identical anticodon, and discarded from the analysis if

aligned to different anticodon. Read count was done using BedTools-coverage count.

Ribosome density computation
Ribosome profiling data for the MOPS complete experiments were downloaded from Woolstenhulme et al. (2015) (‘‘GEO:

GSM1572266, GSM1572267’’). Reads were aligned using the 30 mappingmethod described in the corresponding article, and shifted

by 12 nt to obtain the density at the A-site. Read counts from both replicates were summed to obtain more robust estimates, and 20

codons were excluded from both the 30 and the 50 ends to avoid known biases. For the remaining positions, we applied the trans-

formation x: log2(x + 1) to stabilize the variance, and standardized the resulting score to obtain the normalized read density

(NRD), so that themean of the NRDper protein is 0 and its standard deviation is 1. Themean(NRD) of the set of observed substitutions

was then compared to that of 1000 randomly sampled substitutions, using the strategy described in Figure 6A.

DATA AND CODE AVAILABILITY

Raw files were processed with MaxQuant v. 1.5.5.1. Resulting files were processed using a custom pipeline written in Python. The

parameters file for MaxQuant and the scripts can be found at https://github.com/ernestmordret/substitutions/.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol

et al., 2019) partner repository. The accession number for the mass spectrometry protemoics data reported in this paper is PRIDE:

PXD014341.

The tRNA sequencing data have been deposited in GEO. The accession number for the tRNA sequences reported in this paper is

GEO: GSE128812.
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